Deposited by the BOSTON ATHENÆUM
IN THE LIBRARY OF THE
Boston Medical Library Association,
BY AUTHORITY OF THE TRUSTEES.

[Signature]

Librarian.

Date Jan 1895.
THE

ELEMENTS

OF

MATERIA MEDICA

AND

THERAPEUTICS.

BY

JONATHAN PEREIRA, M.D. F.R.S. & L.S.

LICENTIATE OF THE ROYAL COLLEGE OF PHYSICIANS IN LONDON;
MEMBER OF THE ROYAL COLLEGE OF SURGEONS;
FELLOW OF THE ROYAL MEDICAL AND CHIRURGICAL SOCIETY;
CORRESPONDING MEMBER OF THE SOCIETY OF PHARMACY OF PARIS;
HONORARY MEMBER OF THE PHARMACEUTICAL SOCIETY OF GREAT BRITAIN;
EXAMINER IN MATERIA MEDICA AND PHARMACY TO THE UNIVERSITY OF LONDON;
AND ASSISTANT PHYSICIAN TO, AND LECTURER ON MATERIA MEDICA AT, THE LONDON HOSPITAL.

Second Edition,
ENLARGED AND IMPROVED.

VOL. II.

LONDON:
LONGMAN, BROWN, GREEN, AND LONGMANS,
PATERNOSTER ROW.
1842.
TO

JOHN LINDLEY, PH. D. F.R.S.

PROFESSOR OF BOTANY IN UNIVERSITY COLLEGE, LONDON,
VICE-SECRETARY OF THE HORTICULTURAL SOCIETY,

ETC. ETC. ETC.

The Second Volume of this Work is Dedicated,

AS A

TESTIMONY OF ADMIRATION OF HIS BRILLIANT TALENTS
AND EXTENSIVE BOTANICAL ACQUISITIONS,

BY HIS OBLIGED FRIEND,

THE AUTHOR.
II. THE ORGANISED KINGDOM.

I. The Vegetable Sub-Kingdom.

Division I. Cryptogamia.—Flowerless Plants.

<table>
<thead>
<tr>
<th>Order</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. ALGÆ</td>
<td>Fucus vesiculosus</td>
<td>872</td>
</tr>
<tr>
<td></td>
<td>*Ethiops vegetabilis</td>
<td>872</td>
</tr>
<tr>
<td></td>
<td>Chondrus crispus</td>
<td>873</td>
</tr>
<tr>
<td></td>
<td>Decoctum Chondri</td>
<td>874</td>
</tr>
<tr>
<td></td>
<td>Gelatina Chondri</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>Gigartina Helminthocorton</td>
<td>875</td>
</tr>
<tr>
<td></td>
<td>* Other Medicinal or Esculent Algae</td>
<td>877</td>
</tr>
<tr>
<td>ii. LICHENES</td>
<td>Cetraria islandica</td>
<td>878</td>
</tr>
<tr>
<td></td>
<td>Decoctum Cetrariae</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>Rocella tinctoria</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>*Archil or Archin</td>
<td>881</td>
</tr>
<tr>
<td></td>
<td>Lecanora tartarea</td>
<td>882</td>
</tr>
<tr>
<td></td>
<td>Persio (Cudbear)</td>
<td>883</td>
</tr>
<tr>
<td></td>
<td>Lacmus (Litmus)</td>
<td>883</td>
</tr>
<tr>
<td></td>
<td>1. Tinctura Lacmi</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>2. Charta Lacmi</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>* Other Esculent and Medicinal Lichens</td>
<td>885</td>
</tr>
<tr>
<td>iii. FUNGI</td>
<td>Ergotæcia abortifaciens</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>* Other Esculent, Medicinal, and Poisonous Fungi</td>
<td>887</td>
</tr>
<tr>
<td>iv. LYCOPODIACEÆ</td>
<td>Lycopodium clavatum</td>
<td>889</td>
</tr>
<tr>
<td>v. FILICES</td>
<td>Nephrodium Filix mas</td>
<td>890</td>
</tr>
<tr>
<td></td>
<td>Oleum Filicis maris</td>
<td>892</td>
</tr>
</tbody>
</table>
Division II. Phanerogamia.—Flowering Plants.

1. Rhizantheæ.—Rhizanths.

ORDER VI.—RAFFLESIAE

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafflesia Arnoldi</td>
<td>893</td>
</tr>
</tbody>
</table>

2. Endogeneæ.—Endogens.

ORDER VII.—GRAMINEÆ

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharum officinarum</td>
<td>895</td>
</tr>
<tr>
<td>1. Syrupus</td>
<td>901</td>
</tr>
<tr>
<td>2. Liquor Sacchari tosti</td>
<td>901</td>
</tr>
<tr>
<td>Hordeum distichon</td>
<td>901</td>
</tr>
<tr>
<td>1. Decoctum Hordei</td>
<td>903</td>
</tr>
<tr>
<td>2. Decoctum Hordei compositum</td>
<td>903</td>
</tr>
<tr>
<td>* * Byne; Cerevisia; Cerevisiae Fermentum</td>
<td>904</td>
</tr>
<tr>
<td>1. Cataplasma Fermenti</td>
<td>905</td>
</tr>
<tr>
<td>2. Cataplasma Fæculæ Cerevisiae</td>
<td></td>
</tr>
<tr>
<td>Avena sativa</td>
<td>905</td>
</tr>
<tr>
<td>1. Decoctum Aveæ</td>
<td>906</td>
</tr>
<tr>
<td>2. Pulvis pro Cataplasmate</td>
<td>906</td>
</tr>
<tr>
<td>3. Cataplasma simplex</td>
<td>906</td>
</tr>
<tr>
<td>Triticum vulgare</td>
<td>906</td>
</tr>
<tr>
<td>Decoctum Amyli</td>
<td>910</td>
</tr>
<tr>
<td>* * Panis Triticeus; Furfur Tritici</td>
<td>910</td>
</tr>
<tr>
<td>Secale Cereale</td>
<td>910</td>
</tr>
<tr>
<td>Secale cornutum</td>
<td>911</td>
</tr>
<tr>
<td>1. Pulvis Secalis cornuti</td>
<td>926</td>
</tr>
<tr>
<td>2. Infusum Secalis cornuti</td>
<td>926</td>
</tr>
<tr>
<td>3. Decoctum Secalis cornuti</td>
<td>926</td>
</tr>
<tr>
<td>4. Tinctura Secalis cornuti</td>
<td>926</td>
</tr>
<tr>
<td>5. Oleum Ergotæ</td>
<td>927</td>
</tr>
<tr>
<td>* * Rice; Millet; Maize</td>
<td></td>
</tr>
</tbody>
</table>

ORDER VIII.—ACORACEÆ

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acorus Calamus</td>
<td>928</td>
</tr>
</tbody>
</table>

ORDER IX.—ARACEÆ

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arum maculatum (Portland Arrow-root)</td>
<td>931</td>
</tr>
</tbody>
</table>

ORDER X.—PALMÆ

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagus Rumphii</td>
<td>932</td>
</tr>
<tr>
<td>Sagus laevis</td>
<td>933</td>
</tr>
<tr>
<td>Saguerus Rumphii</td>
<td>933</td>
</tr>
<tr>
<td>Sago</td>
<td>934</td>
</tr>
<tr>
<td>Areca Catechu</td>
<td>936</td>
</tr>
<tr>
<td>* * Palm Oil; Dragon's Blood</td>
<td>937-8</td>
</tr>
</tbody>
</table>

ORDER XI.—MELANTHACEÆ

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colchicum autumnale</td>
<td>938</td>
</tr>
<tr>
<td>1. Pulvis cormi Colchici</td>
<td>947</td>
</tr>
<tr>
<td>2. Pulvis seminum Colchici</td>
<td></td>
</tr>
</tbody>
</table>
### Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Tinctura (seminum) Colchici</td>
<td>947</td>
</tr>
<tr>
<td>4. Tinctura (seminum) Colchici composita</td>
<td>947</td>
</tr>
<tr>
<td>5. Vinum semenum Colchici</td>
<td>948</td>
</tr>
<tr>
<td>6. Vinum (cormi) Colchici</td>
<td>948</td>
</tr>
<tr>
<td>7. Acetum (cormi) Colchici</td>
<td>948</td>
</tr>
<tr>
<td>8. Extractum (cormi) Colchici aceticum</td>
<td>949</td>
</tr>
<tr>
<td>9. Extractum Colchici cormi</td>
<td>949</td>
</tr>
<tr>
<td>10. Oxymel (cormi) Colchici</td>
<td>949</td>
</tr>
<tr>
<td>11. Succus Colchici</td>
<td>949</td>
</tr>
<tr>
<td>Heraeodactylus</td>
<td>949</td>
</tr>
<tr>
<td>Veratrimum album</td>
<td>951</td>
</tr>
<tr>
<td>1. Pulvis Veratri</td>
<td>955</td>
</tr>
<tr>
<td>2. Vinum Veratri</td>
<td>955</td>
</tr>
<tr>
<td>3. Decoctum Veratri</td>
<td>955</td>
</tr>
<tr>
<td>4. Unguentum Veratri</td>
<td>956</td>
</tr>
<tr>
<td>Asagrea officinalis</td>
<td>956</td>
</tr>
<tr>
<td>1. Pulvis Sabadilla</td>
<td>960</td>
</tr>
<tr>
<td>2. Tinctura Sabadilla</td>
<td>960</td>
</tr>
<tr>
<td>3. Extractum alcoholicum Sabadilla</td>
<td>960</td>
</tr>
<tr>
<td>4. Veratria</td>
<td>960</td>
</tr>
<tr>
<td>* Veratum Sabadilla et viride</td>
<td>964</td>
</tr>
<tr>
<td>Order XII. — Liliaceae</td>
<td></td>
</tr>
<tr>
<td>Aloe</td>
<td>964</td>
</tr>
<tr>
<td>1. Pillæ Aloës composite</td>
<td>977</td>
</tr>
<tr>
<td>2. Pillæ Aloës cum Myrrhâ</td>
<td>977</td>
</tr>
<tr>
<td>3. Pillæ Aloës et Assafetide</td>
<td>977</td>
</tr>
<tr>
<td>4. Pillæ Aloës et Ferri</td>
<td>977</td>
</tr>
<tr>
<td>5. Pulvis Aloës compositus</td>
<td>977</td>
</tr>
<tr>
<td>6. Pulvis Aloës cum Canellâ</td>
<td>977</td>
</tr>
<tr>
<td>7. Decoctum Aloës compositum</td>
<td>978</td>
</tr>
<tr>
<td>8. Extractum Aloës purificatum</td>
<td>978</td>
</tr>
<tr>
<td>9. Tinctura Aloës</td>
<td>978</td>
</tr>
<tr>
<td>10. Tinctura Aloës composita</td>
<td>978</td>
</tr>
<tr>
<td>11. Vinum Aloës</td>
<td>978</td>
</tr>
<tr>
<td>12. Aloë colata</td>
<td>978</td>
</tr>
<tr>
<td>Squilla maritima</td>
<td>979</td>
</tr>
<tr>
<td>1. Pulvis Scille</td>
<td>983</td>
</tr>
<tr>
<td>2. Pillæ Scille compositae</td>
<td>983</td>
</tr>
<tr>
<td>3. Tinctura Scille</td>
<td>984</td>
</tr>
<tr>
<td>4. Acetum Scille</td>
<td>984</td>
</tr>
<tr>
<td>5. Oxymel Scille</td>
<td>984</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>984</td>
</tr>
<tr>
<td>Allium Cepa</td>
<td>986</td>
</tr>
<tr>
<td>* Other Dietetical, Medicinal, or Poisonous Liliaceae</td>
<td>986</td>
</tr>
<tr>
<td>Order XIII. — Smilaceae</td>
<td></td>
</tr>
<tr>
<td>Smilax</td>
<td>988</td>
</tr>
<tr>
<td>1. Pulvis Sarza</td>
<td>999</td>
</tr>
<tr>
<td>2. Infusum Sarsaparilla compositum</td>
<td>1000</td>
</tr>
<tr>
<td>3. Decoctum Sarze</td>
<td>1000</td>
</tr>
<tr>
<td>4. Decoctum Sarze compositum</td>
<td>1001</td>
</tr>
</tbody>
</table>
CONTENTS.

5. Syrupus Sarœa
6. Extractum Sarœa
7. Extractum Sarœa fluidum
8. Extractum Sarœa compositum
   * China root; Smilax aspera

Order xiv. — Iridaceœ

Crocus sativus
   1. Syrupus Croci
   2. Tinctura Croci
   * Orris root

Order xv. — Taccaceœ

Tacca pinnatifida (Tahiti Arrow Root)

Order xvi. — Amaryllidaceœ

Order xvii. — Musaceœ

Order xviii. — Marantaceœ

Maranta arundinacea
   * Canna (Tous les Mois)

Order xix. — Zingiberaceœ

Zingiber officinale
   1. Tinctura Zingiberis
   2. Syrupus Zingiberis
   3. Infusum Zingiberis
   4. Ginger Beer

Curcuma longa
   Charta curcumœ

Curcuma angustifolia

Amomum Cardamomum

Amomum Grana Paradisi

Amomum angustifolium

Amomum Clusii

Amomum macrosporum

Amomum maximum

Elettaria Cardamomum
   1. Tinctura Cardamomœ
   2. Tinctura Cardamomœ composita

Elettaria major
   * Other Medicinal Zingiberaceœ (Cardamoms and Aromatic Rhizomes)

Order xx. — Orchideœ

Vanilla aromaticœ

3. Exogeneœ.— Exogens.


Order xxii. — Cycadaceœ
Contents.

Order xxii.—Coniferae

<table>
<thead>
<tr>
<th>Conifer</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus</td>
<td>1039</td>
</tr>
<tr>
<td>Abies</td>
<td>1041</td>
</tr>
<tr>
<td>Larix europaea</td>
<td>1042</td>
</tr>
</tbody>
</table>

Medicinal Substances obtained from the preceding Coniferous Plants 1043

I. Oleo-Resines Terebinthinae 1043

II. Oleum Terebinthina 1049
   1. Enema Terebinthinae 1056
   2. Linimentum Terebinthinae 1056

III. Resinae Terebinthinae 1057
   1. Resina 1057
   1. Ceratum Resina 1058
   2. Emplastrum Resina 1059
   2. Pix Burgundica 1059
   *Emplastrum Picis 1059

IV. Pix liquida et Pix solida 1060
   1. Pix liquida 1060
   1. Aqua Picis liquida 1062
   2. Unguentum Picis liquida 1062
   3. Oleum Picis liquida 1062
   2. Pix nigra 1063
   *Unguentum Picis nigra 1063

Juniperus communis 1063
   1. Oleum Juniperi 1065
   2. Spiritus Juniperi compositus 1066

Juniperus Sabina 1066
   1. Oleum Sabinae 1069
   2. Ceratum Sabinae 1069

*Other Medicinal Products of Conifera 1069

ß. Angiospermae.—Angiosperms.

1. Monochlamydea (Apetala).

Order xxiii.—Balsamaceae 1070

Liquidambar 1070
Liquid Balsam of Storax 1070

Order xxiv.—Salicaceae 1071
Salix 1071
Salicin 1074

Order xxv.—Cupuliferae 1075
Quercus pedunculata 1075
1. Decoction Quercus 1078
2. Extractum Quercus 1078
Quercus infectoria 1078
1. Tinctura Galla 1083
CONTENTS.

2. Unguentum Gallarum
3. Unguentum Gallæ compositum

* * Other Medicinal Cupuliferae

ORDER XXVI.—Ulmaceæ

Ulmus campestris
Decoctum Ulmi

* * Other Medicinal Ulmaceæ

ORDER XXVII.—Urticaceæ

Humulus Lupulus

1. Infusum Lupuli
2. Tinctura Lupuli
3. Extractum Lupuli
4. Lupulina
5. Tinctura Lupulinae

Morus nigra

1. Syrupus Mori
2. Ficus Carica
3. Dorstenia Contrajerva

* * 1. Antiaris toxicaria
2. Artocarpus
3. Cannabis sativa
4. Parietaria officinalis

ORDER XXVIII.—Piperaceæ

Piper nigrum

1. Confectio Piperis nigri
2. Unguentum Piperis nigri

Piper longum

1. Oleum Cubebe
2. Tinctura Cubebeæ

* * Piper Betle

ORDER XXIX.—Euphorbiaceæ

Croton Tiglium

1. Infusum Cascarillæ
2. Mistura Cascarillæ composita
3. Tinctura Cascarillæ

Ricinus communis

1. Oleum Ricini

Euphorbia

Janipha Manihot

* * Other Medicinal Euphorbiaceæ

ORDER XXX.—Aristolochiaceæ

Aristolochia Serpentaria

1. Infusum Serpentariae
<table>
<thead>
<tr>
<th>CONTENTS.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Tinctura Serpentiniae</td>
<td>1136</td>
</tr>
<tr>
<td>Asarum europaeum</td>
<td>1138</td>
</tr>
<tr>
<td>Pulvis Asari compositus</td>
<td>1138</td>
</tr>
<tr>
<td>* Other Medicinal Aristolochiaceae</td>
<td>1138</td>
</tr>
<tr>
<td>ORDER XXXI.—LAURACEÆ</td>
<td>1138</td>
</tr>
<tr>
<td>Cinnamomum zeylanicum</td>
<td>1139</td>
</tr>
<tr>
<td>1. Oleum Cinnamomi</td>
<td>1143</td>
</tr>
<tr>
<td>2. Aqua Cinnamomi</td>
<td>1144</td>
</tr>
<tr>
<td>3. Spiritus Cinnamomi</td>
<td>1145</td>
</tr>
<tr>
<td>4. Tinctura Cinnamomi</td>
<td>1145</td>
</tr>
<tr>
<td>5. Tinctura Cinnamomi composita</td>
<td>1145</td>
</tr>
<tr>
<td>6. Pulvis Cinnamomi compositus</td>
<td>1145</td>
</tr>
<tr>
<td>7. Confectio aromatica</td>
<td>1145</td>
</tr>
<tr>
<td>8. Emplastrum aromaticum</td>
<td>1146</td>
</tr>
<tr>
<td>Cinnamomum Cassia</td>
<td>1146</td>
</tr>
<tr>
<td>1. Oleum Cassie</td>
<td>1149</td>
</tr>
<tr>
<td>2. Aqua Cassie</td>
<td>1149</td>
</tr>
<tr>
<td>3. Spiritus Cassie</td>
<td>1149</td>
</tr>
<tr>
<td>4. Tinctura Cassiae</td>
<td>1149</td>
</tr>
<tr>
<td>Camphora officinarum</td>
<td>1149</td>
</tr>
<tr>
<td>1. Misture Camphore</td>
<td>1159</td>
</tr>
<tr>
<td>2. Misture Camphore cum Magnesia</td>
<td>1159</td>
</tr>
<tr>
<td>3. Tinctura Camphore</td>
<td>1160</td>
</tr>
<tr>
<td>4. Tinctura Camphore composita</td>
<td>1160</td>
</tr>
<tr>
<td>5. Linimentum Camphore</td>
<td>1160</td>
</tr>
<tr>
<td>6. Linimentum Camphore compositum</td>
<td>1161</td>
</tr>
<tr>
<td>Sassafras officinale</td>
<td>1161</td>
</tr>
<tr>
<td>Oleum Sassafras</td>
<td>1162</td>
</tr>
<tr>
<td>Laurus nobilis</td>
<td>1162</td>
</tr>
<tr>
<td>Oleum Lauri</td>
<td>1163</td>
</tr>
<tr>
<td>* Other Medicinal Lauraceæ</td>
<td>1164</td>
</tr>
<tr>
<td>ORDER XXXII.—MYRISTICACEÆ</td>
<td>1165</td>
</tr>
<tr>
<td>Myristica officinalis</td>
<td>1165</td>
</tr>
<tr>
<td>1. Oleum Myristicae</td>
<td>1168</td>
</tr>
<tr>
<td>2. Oleum Macidis</td>
<td>1168</td>
</tr>
<tr>
<td>3. Myristicae Adeps</td>
<td>1168</td>
</tr>
<tr>
<td>4. Spiritus Myristicae</td>
<td>1169</td>
</tr>
<tr>
<td>ORDER XXXIII.—THYMELACEÆ</td>
<td>1169</td>
</tr>
<tr>
<td>Daphne Mezerem</td>
<td>1170</td>
</tr>
<tr>
<td>Decoctum Mezerrei</td>
<td>1172</td>
</tr>
<tr>
<td>* Other Medicinal Thymelaceæ</td>
<td>1172</td>
</tr>
<tr>
<td>ORDER XXXIV.—POLYGONACEÆ</td>
<td>1172</td>
</tr>
<tr>
<td>Rheum</td>
<td>1173</td>
</tr>
<tr>
<td>1. Infusum Rhei</td>
<td>1187</td>
</tr>
<tr>
<td>2. Tinctura Rhei</td>
<td>1188</td>
</tr>
<tr>
<td>3. Tinctura Rhei composita</td>
<td>1188</td>
</tr>
<tr>
<td>4. Tinctura Rhei et Aloës</td>
<td>1188</td>
</tr>
<tr>
<td>5. Tinctura Rhei et Gentianaæ</td>
<td>1188</td>
</tr>
<tr>
<td>6. Vinum Rhei</td>
<td>1188</td>
</tr>
<tr>
<td>7. Extractum Rhei</td>
<td>1188</td>
</tr>
</tbody>
</table>
CONTENTS.

8. Pilulae Rhei  ...  ...  ...  ...  ...  ...  ...  ...  1189
9. Pilulae Rhei compositae  ...  ...  ...  ...  ...  ...  ...  1189
10. Pulvis Rhei et Ferri  ...  ...  ...  ...  ...  ...  ...  ...  1189
11. Pulvis Rhei compositus  ...  ...  ...  ...  ...  ...  ...  ...  1189

Rumex Acetosa  ...  ...  ...  ...  ...  ...  ...  1190
Rumex Hydrolapathum  ...  ...  ...  ...  ...  ...  ...  ...  1190
Polygonum Bistorta  ...  ...  ...  ...  ...  ...  ...  ...  ...  1191

* * * Coccloba uvifera  ...  ...  ...  ...  ...  ...  ...  ...  1191

Order xxxv. — Chenopodiaceae  ...  ...  ...  ...  ...  1192
Barilla  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  1192

2. Corolliflorae.

Order xxxvi. — Labiatae  ...  ...  ...  ...  ...  ...  ...  1192

Lavandula vera  ...  ...  ...  ...  ...  ...  ...  ...  ...  1192
1. Oleum Lavandulae  ...  ...  ...  ...  ...  ...  ...  ...  1194
2. Spiritus Lavandulae  ...  ...  ...  ...  ...  ...  ...  ...  1194

* * * Lavender Water  ...  ...  ...  ...  ...  ...  ...  ...  1194
3. Tinctura Lavandulae composita  ...  ...  ...  ...  1195

Mentha viridis  ...  ...  ...  ...  ...  ...  ...  ...  ...  1195
1. Infusum Menthae simplex  ...  ...  ...  ...  ...  ...  1196
2. Infusum Menthae compositum  ...  ...  ...  ...  ...  1196
3. Oleum Menthae viridis  ...  ...  ...  ...  ...  ...  1197
4. Spiritus Menthae viridis  ...  ...  ...  ...  ...  ...  1197
5. Aqua Menthae viridis  ...  ...  ...  ...  ...  ...  1197

Mentha piperita  ...  ...  ...  ...  ...  ...  ...  ...  ...  1197
1. Oleum Menthae piperitae  ...  ...  ...  ...  ...  ...  1198
2. Spiritus Menthae piperitae  ...  ...  ...  ...  ...  ...  1198
3. Aqua Menthae piperitae  ...  ...  ...  ...  ...  ...  1199

Mentha Pulegium  ...  ...  ...  ...  ...  ...  ...  ...  ...  ...  1199
1. Oleum Menthae Pulegii  ...  ...  ...  ...  ...  ...  1200
2. Spiritus Menthae Pulegii  ...  ...  ...  ...  ...  ...  1200
3. Aqua Menthae Pulegii  ...  ...  ...  ...  ...  ...  1200

Rosmarinus officinalis  ...  ...  ...  ...  ...  ...  ...  ...  ...  1200
1. Oleum Rosmarini  ...  ...  ...  ...  ...  ...  ...  ...  1201
2. Spiritus Rosmarini  ...  ...  ...  ...  ...  ...  ...  ...  1201

* * * Hungary Water  ...  ...  ...  ...  ...  ...  ...  ...  1202

Origanum vulgare  ...  ...  ...  ...  ...  ...  ...  ...  ...  1202
1. Oleum Origani  ...  ...  ...  ...  ...  ...  ...  ...  ...  1203

Majorana hortensis  ...  ...  ...  ...  ...  ...  ...  ...  ...  1203
Melissa officinalis  ...  ...  ...  ...  ...  ...  ...  ...  ...  1204
Marrubium vulgare  ...  ...  ...  ...  ...  ...  ...  ...  ...  1205

* * * Other Medicinal and Dietetical Labiatae  ...  ...  ...  ...  ...  1206

Order xxxvii. — Scrophulariaceae  ...  ...  ...  ...  ...  1206

Digitalis purpurea  ...  ...  ...  ...  ...  ...  ...  ...  ...  1206
1. Infusum Digitalis  ...  ...  ...  ...  ...  ...  ...  ...  1206
## CONTENTS.

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Common Name</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Verbascum Thapsus</td>
<td>Tinctura</td>
<td>Extractum</td>
<td>Pilula</td>
<td>Scoparia nodosa</td>
<td>Unguentum</td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Atropa Belladonna</td>
<td>Tinctura</td>
<td>Extractum</td>
<td>Empltastum</td>
<td>Unguentum</td>
<td>Belladonna</td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Datura Stramonium</td>
<td>Extractum</td>
<td>Tinctura</td>
<td>Stramonii</td>
<td>Stramonii</td>
<td>Succus Belladonna</td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Nicotiana Tabacum</td>
<td>Enema</td>
<td>Vinum</td>
<td>Tabaci</td>
<td>Tabaci</td>
<td>1254</td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Solanum Dulcamara</td>
<td>Decoctum</td>
<td>Dulcamara</td>
<td>1255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Capsicum annuum</td>
<td>Tinctura</td>
<td>Capsici</td>
<td>1260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Datui'a Stramonium</td>
<td>Extractum</td>
<td>1236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Nicotiana Tabacum</td>
<td>Enema</td>
<td>1241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Capiscum annuum</td>
<td>Tinctura</td>
<td>Capsici</td>
<td>1260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Pulvis Jalapa compositus</td>
<td>1268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Pulvis Scammonii compositus</td>
<td>1274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Pulvis Scammonii cum Calomelane</td>
<td>1274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Confectio Scammonii</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Extractum sive Resina Scammonii</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxviii</td>
<td>Solanaceae</td>
<td>Ipomsea Purga</td>
<td>Mistura Scammonii</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### ORDER xxxviii.—Solanaceae

- **Hyoscyamus niger**
  1. *Tinctura Hyoscymami* 1226
  2. *Extractum Hyoscymami* 1226
- **Atropa Belladonna**
  1. *Extractum Belladonnae* 1236
  2. *Empltastum Belladonnae* 1236
  3. *Unguentum Belladonnae* 1236
  4. *Tinctura Belladonnae* 1236

### ORDER xxxix.—Boraginaceae

- **Anchusa tinctoria** 1262

### ORDER xl.—Convolvulaceae

- **Convolvulus Scammonia** 1263
  1. *Pulvis Scammonii compositus* 1268
  2. *Pulvis Scammonii cum Calomelane* 1269
  3. *Confectio Scammonii* 1269
  4. *Extractum sive Resina Scammonii* 1269
  5. *Mistura Scammonii* 1270
- **Ipomsea Purga** 1270
  1. *Pulvis Jalapa compositus* 1274
  2. *Tinctura Jalapa* 1274
  3. *Extractum Jalapa* 1275

* Other Dietetical, Medicinal, or Poisonous Solanaceae (Potatoes, &c.) 1260
<table>
<thead>
<tr>
<th>Order</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order xli. — Gentianaceae</td>
<td></td>
</tr>
<tr>
<td>Gentiana lutea</td>
<td>1276</td>
</tr>
<tr>
<td>Infusum Gentiana compositum</td>
<td>1276</td>
</tr>
<tr>
<td>Mistura Gentiana composita</td>
<td>1280</td>
</tr>
<tr>
<td>Tinctura Gentiana composita</td>
<td>1281</td>
</tr>
<tr>
<td>Extractum Gentiana</td>
<td>1281</td>
</tr>
<tr>
<td>Agathotes Chirayta</td>
<td>1281</td>
</tr>
<tr>
<td>Infusum Chirettæ</td>
<td>1283</td>
</tr>
<tr>
<td>Erythraea Centaurium</td>
<td>1283</td>
</tr>
<tr>
<td>Menyanthes trifoliata</td>
<td>1284</td>
</tr>
<tr>
<td>* Frasera Walteri</td>
<td>1285</td>
</tr>
<tr>
<td>Order xlii. — Spigeliaceæ</td>
<td>1285</td>
</tr>
<tr>
<td>Spigelia Marilandica</td>
<td>1285</td>
</tr>
<tr>
<td>Infusum Spigelia</td>
<td>1287</td>
</tr>
<tr>
<td>Spigelia Anthelmintica</td>
<td>1288</td>
</tr>
<tr>
<td>Order xliii. — Asclepiadaceæ</td>
<td>1288</td>
</tr>
<tr>
<td>Calotropis gigantea</td>
<td>1288</td>
</tr>
<tr>
<td>Hemidesmus indicus</td>
<td>1288</td>
</tr>
<tr>
<td>Cynanchum Argel</td>
<td>1289</td>
</tr>
<tr>
<td>Cynanchum monspeliacum</td>
<td>1289</td>
</tr>
<tr>
<td>Secamone Alpini</td>
<td>1289</td>
</tr>
<tr>
<td>Order xliv. — Apocynaceæ</td>
<td>1289</td>
</tr>
<tr>
<td>Strychnos Nux-vomica</td>
<td>1290</td>
</tr>
<tr>
<td>Tinctura Nucis-vomica</td>
<td>1306</td>
</tr>
<tr>
<td>Extractum Nucis-vomica</td>
<td>1306</td>
</tr>
<tr>
<td>Strychnia</td>
<td>1306</td>
</tr>
<tr>
<td>Other Medicinal or Poisonous Apocynaceæ</td>
<td>1311</td>
</tr>
<tr>
<td>Order xlv. — Oleaceæ</td>
<td>1312</td>
</tr>
<tr>
<td>Olea europæa</td>
<td>1313</td>
</tr>
<tr>
<td>Ornus europæa</td>
<td>1319</td>
</tr>
<tr>
<td>Order xlvi. — Styraceæ</td>
<td>1322</td>
</tr>
<tr>
<td>Styrax officinale</td>
<td>1323</td>
</tr>
<tr>
<td>Styrax colatus</td>
<td>1327</td>
</tr>
<tr>
<td>Pilule Styracis compositæ</td>
<td>1327</td>
</tr>
<tr>
<td>Styrex Benzoin</td>
<td>1328</td>
</tr>
<tr>
<td>Tinctura Benzoini composita</td>
<td>1331</td>
</tr>
<tr>
<td>Fumigating pastiles</td>
<td>1332</td>
</tr>
<tr>
<td>2. Calycifloræ.</td>
<td></td>
</tr>
<tr>
<td>Order xlvii. — Pyrolaceæ</td>
<td>1332</td>
</tr>
<tr>
<td>Chimaphila umbellata</td>
<td>1332</td>
</tr>
<tr>
<td>Decoctum Chimaphilæ</td>
<td>1334</td>
</tr>
</tbody>
</table>
ORDER XLVIII.—ERICACEÆ

Arctostaphylos Uva-ursi
1. Decoctum Uva-ursi
2. Extractum Uva-ursi
* Gualtheria procumbens

ORDER XLIX.—LOBELIACEÆ

Lobelia inflata
1. Tinctura Lobelœ
2. Tinctura Lobelœ etherea
* Lobelia siphilitica

ORDER L.—COMPOSITÆ

Tussilago Farfara

Inula Helenium

Tribe 3. Senecionidœæ

Anthemis nobilis
1. Infusum Anthemidis
2. Extractum Anthemidis
3. Oleum Anthemidis

Anacyclus Pyrethrum

Artemisia Absinthium

Extractum Artemisia Absinthii

Artemisia Moxa
Tanacetum vulgare
Arnica montana
* 1. Wormseed
2. Artemisia vulgaris
3. Guizotia oleifera
4. Senecio Jacobea

Tribe 4. Cynareœæ

Lappa minor
Cnicus benedictus
* Carthamus tinctorius

Tribe 5. Cichoraceœæ

Taraxacum Dens-Leonis
1. Decoctum Taraxaci
2. Extractum Taraxaci
Lactuca sativa

1. Tinctura Lactucarie

2. Trochisci Lactucarie

Lactuca virosa

* * * Cichorium Intybus

Order li. — Valerianaceæ

Valeriana officinalis

1. Infusum Valerianæ

2. Tinctura Valerianæ

3. Tinctura Valerianæ composita

* * * Other Medicinal Valerianaceæ

Order lii. — Rubiaceæ

Cinchona

History

Botanical species

Description of the barks

1. Cinchona Corona

2. Cinchona Huanuco

3. Cinchona Jaen

4. Cinchona Huamalies

5. Cinchona Calisaya seu Regia

6. Cinchona rubra

7. Cinchona Loxa alba

8. Cinchona de Carthagena dura

9. Cinchona de Carthagena fibrosa

10. Cinchona de cuscò

11. Cinchona aurantiacea de Santa Fé

12. Cinchona nova

13. Red Cinchona with a white micaceous epidermis

Composition

Chemical Characteristics

Ditto — of the goodness of Cinchona

Physiological Effects

Uses

Preparations

1. Infusum Cinchonæ

2. Decoctum Cinchonæ

3. Tinctura Cinchonæ

4. Tinctura Cinchonæ composita

5. Extractum Cinchonæ

6. Quinaæ Disulphas

Cephaelis Ipecacuanha

1. Vinum Ipecacuanæ

2. Syrupus Ipecacuanæ

3. Pulvis Ipecacuanæ compositus

4. Pilulae Ipecacuanæ et Opii

5. Trochisci Morphiae et Ipecacuanæ
CONTENTS.

Uncaria Gambier .......................................................... 1433
Rubia tinctorum .......................................................... 1436
  * 1. Psychotria emetica ............................................. 1439
  2. Richardsonia scabra ............................................. 1439
  3. Coffea Arabica .................................................. 1440

Order liii.—Caprifoliaceae .............................................. 1441
Sambucus nigra .......................................................... 1441
  1. Oleum Sambuci .................................................. 1442
  2. Aqua Sambuci .................................................. 1443
  3. Unguentum Sambuci .............................................. 1443
  4. Succus spissatus Sambuci .......................................... 1443

Order liv.—Araliaceæ .................................................... 1443
Panax ................................................................. 1443

Order lv.—Umbelliferae ................................................... 1444
Carum Carui ............................................................. 1444
  1. Oleum Carui ...................................................... 1445
  2. Spiritus Carui ................................................... 1446
  3. Aqua Carui ...................................................... 1446
Pimpinella Anisum ....................................................... 1446
  1. Oleum Anisi ...................................................... 1448
  2. Spiritus Anisi ................................................... 1448
  3. Aqua Anisi ...................................................... 1449
Foeniculum vulgare ...................................................... 1449
Foeniculum dulce ......................................................... 1450
  1. Oleum Foeniculi ................................................ 1450
  2. Aqua Foeniculi ................................................ 1450
Archangelica officinalis ................................................ 1451
Opoponax Chironium ...................................................... 1452
Ferula Asafoetida ....................................................... 1453
  1. Mistura Asafoetidae ........................................... 1462
  2. Enema fœtidum .................................................. 1462
  3. Tinctura Asafoetidae .......................................... 1462
  4. Pilulae Asafoetidae ........................................... 1462
  5. Pilulae Aloes et Asafoetidae ................................... 1462
  6. Spiritus Ammoniae fœtidus .................................... 1463
  7. Emplastrum Asafoetidae ....................................... 1463
Ferula? (an uncertain species yielding Sagapenum) ................... 1463
  Pilulae Sagapeni composite ....................................... 1464
Dorema Ammoniacum ...................................................... 1464
  1. Mistura Ammoniaci ............................................. 1467
  2. Emplastrum Ammoniaci ........................................... 1468
Anethum graveolens ...................................................... 1468
  1. Oleum Anethi ................................................... 1468
  2. Aqua Anethi ................................................... 1469

VOL. II.
Galbanum officinale                  ...  ...  ...  ...  ...  1469
  1. Tinctura Galbani                  ...  ...  ...  ...  ...  1472
  2. Pilulæ Galbani compositæ            ...  ...  ...  ...  ...  1472
  3. Emplastrum Galbani                  ...  ...  ...  ...  1472

Cumimum Cuminum                   ...  ...  ...  ...  ...  1472
Daucus Carota                ...  ...  ...  ...  ...  1474
  Cataplasma Dauci                  ...  ...  ...  ...  1474

Conium maculatum                  ...  ...  ...  ...  ...  1476
  1. Pulvis Conii                       ...  ...  ...  ...  ...  1487
  2. Tinctura Conii                  ...  ...  ...  ...  ...  1487
  *••• Succus Conii                    ...  ...  ...  ...  ...  1487
  3. Extractum Conii                   ...  ...  ...  ...  ...  1488
  4. Pilulæ Conii compositæ            ...  ...  ...  ...  ...  1490
  5. Unguentum Conii                    ...  ...  ...  ...  ...  1490
  6. Cataplasma Conii                  ...  ...  ...  ...  ...  1490

Coriandrum sativum                  ...  ...  ...  ...  ...  1490
  *••• Other Umbelliferae, Dietetical or Poisonous  ...  ...  ...  ...  1491

ORDER LVI.—Cucurbitaceæ                  ...  ...  ...  ...  ...  1492
Cucumis Colocynthis                ...  ...  ...  ...  ...  1492
  1. Extractum Colocynthidis          ...  ...  ...  ...  ...  1497
  2. Extractum Colocynthidis compositum    ...  ...  ...  ...  1497
  3. Pilulæ Colocynthidis et Hyoscyami  ...  ...  ...  ...  ...  1499
  4. Enema Colocynthidis                  ...  ...  ...  ...  ...  1499

Momordica Elaterium                 ...  ...  ...  ...  ...  1499
  *••• Other Cucurbitaceæ, Dietetical, Medicinal, or Poisonous  ...  ...  ...  ...  1509

ORDER LVII.—MYRTACEÆ                  ...  ...  ...  ...  ...  1510
Melaleuca minor                      ...  ...  ...  ...  ...  1510
Caryophyllus aromaticus              ...  ...  ...  ...  ...  1513
  1. Infusum Caryophylli              ...  ...  ...  ...  ...  1516
  2. Oleum Caryophylli                ...  ...  ...  ...  ...  1516
  3. Tinctura Caryophylli              ...  ...  ...  ...  ...  1517

Eugenia Pimenta                      ...  ...  ...  ...  ...  1518
  1. Oleum Pimentæ                       ...  ...  ...  ...  ...  1520
  2. Spiritus Pimentæ                  ...  ...  ...  ...  ...  1520
  3. Aqua Pimentæ                       ...  ...  ...  ...  ...  1520
  *••• Eucalyptus resinifera(Botany Bay Kino)  ...  ...  ...  ...  ...  1521

ORDER LVIII.—LYTHRACEÆ                 ...  ...  ...  ...  ...  1521
Lythrum Salicaria                   ...  ...  ...  ...  ...  1522

ORDER LOX.—G RANATEÆ                 ...  ...  ...  ...  ...  1523
Punica Granatum                    ...  ...  ...  ...  ...  1523
### CONTENTS.

<table>
<thead>
<tr>
<th>Order LX. — <em>Rosaceae</em></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribe 1. Amygdalæ</td>
<td>1526</td>
</tr>
<tr>
<td>Amygdalus communis</td>
<td>1526</td>
</tr>
<tr>
<td>1. Confectio Amygdlae</td>
<td>1532</td>
</tr>
<tr>
<td>2. Mistura Amygdalce</td>
<td>1532</td>
</tr>
<tr>
<td>3. Oleum Amygdalce</td>
<td>1532</td>
</tr>
<tr>
<td>4. Oleum Amygdalce amara</td>
<td>1534</td>
</tr>
<tr>
<td>Persica vulgaris</td>
<td>1538</td>
</tr>
<tr>
<td>Prunus domestica</td>
<td>1540</td>
</tr>
<tr>
<td>Cerasus Lauro-cerasus</td>
<td>1541</td>
</tr>
<tr>
<td>*Aqua Lauro-Cerasi*</td>
<td>1553</td>
</tr>
<tr>
<td>Tribe 2. Dryadeæ</td>
<td>1543</td>
</tr>
<tr>
<td>Geum urbanum</td>
<td>1543</td>
</tr>
<tr>
<td>Potentilla Tormentilla</td>
<td>1544</td>
</tr>
<tr>
<td>Decoctum Tormentillæ</td>
<td>1545</td>
</tr>
<tr>
<td>Tribe 3. <em>Roseæ</em></td>
<td>1546</td>
</tr>
<tr>
<td>Rosa canina</td>
<td>1547</td>
</tr>
<tr>
<td>Confectio Rose canina</td>
<td>1547</td>
</tr>
<tr>
<td>Rosa gallica</td>
<td>1548</td>
</tr>
<tr>
<td>1. Infusum Rose compositum</td>
<td>1549</td>
</tr>
<tr>
<td>2. Confectio Rose gallicæ</td>
<td>1550</td>
</tr>
<tr>
<td>3. Mel Rose</td>
<td>1550</td>
</tr>
<tr>
<td>4. Syrupus Rose gallicæ</td>
<td>1551</td>
</tr>
<tr>
<td>Rosa centifolia</td>
<td>1551</td>
</tr>
<tr>
<td>1. Syrupus Rose</td>
<td>1552</td>
</tr>
<tr>
<td>2. Aqua Rose</td>
<td>1552</td>
</tr>
<tr>
<td>3. Oleum Rose</td>
<td>1553</td>
</tr>
<tr>
<td>Tribe 4. <em>Pomaceæ</em></td>
<td>1554</td>
</tr>
<tr>
<td>Cydonia vulgaris</td>
<td>1554</td>
</tr>
<tr>
<td>Decoctum Cydoniæ</td>
<td>1556</td>
</tr>
<tr>
<td><strong>1. Cherry-tree gum</strong></td>
<td>1556</td>
</tr>
<tr>
<td>2. Alchemilla arvensis</td>
<td>1556</td>
</tr>
<tr>
<td>3. Bedeguar</td>
<td>1556</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order LXI. — <em>Leguminosæ</em></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Order. Papilionaceæ</td>
<td>1558</td>
</tr>
<tr>
<td>Myrospermum peruiferum</td>
<td>1558</td>
</tr>
<tr>
<td>Myrospermum toluiferum</td>
<td>1562</td>
</tr>
<tr>
<td>1. Tinctura Balsami Tolutani</td>
<td>1564</td>
</tr>
<tr>
<td>2. Syrupus Tolutanus</td>
<td>1564</td>
</tr>
</tbody>
</table>
Cytisus scoparius

1. Infusum Scoparii
2. Decoctum Scoparii compositum
3. Extractum Spartii Scoparii

Glycyrrhiza glabra

1. Decoctum Glycyrrhizae
2. Extractum Glycyrrhizae
3. Trochisci Glycyrrhizae

Astragalus (one or more species yielding Tragacanth)

1. Pulvis Tragacanthae compositus
2. Mucilago Tragacanthae

Mucuna pruriens

Pterocarpus santalinus
Pterocarpus erinaceus

1. Tinctura Kino
2. Pulvis Kino Compositus

Sub-Order 2. Mimosæ

Acacia (several species yielding Gum)

1. Mucilago
2. Mistura Acacia, E.
3. Trochisci Acaciae

Acacia Catechu

1. Infusum Catechu compositum
2. Tinctura Catechu
3. Electuarium Catechu

Sub-Order 3. Caesalpineæ

Andira inermis

Decoctrum Geoffroyæ

Haematoxylon campechianum

1. Decoctum Haematoxyli
2. Extractum Haematoxyli

Tamarindus indica

Cassia (several species yielding Senna)

1. Infusum Sennæ
2. Infusum Sennæ compositum, E.
3. Enema Catharticum
4. Tinctura Sennæ composita
5. Syrupus Sennæ
6. Confectio Sennæ

Cassia Fistula

Confectio Cassiae
### CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copaífera (several species yielding an oleo-resin)</td>
<td>1611</td>
</tr>
<tr>
<td>1. Oleum Copaíba</td>
<td>1618</td>
</tr>
<tr>
<td>2. Gelatine Capsules of Copaíba</td>
<td>1619</td>
</tr>
<tr>
<td>*1. Spartium junceum</td>
<td>1620</td>
</tr>
<tr>
<td>2. Butea frondosa</td>
<td>1620</td>
</tr>
<tr>
<td>3. Indigo</td>
<td>1621</td>
</tr>
</tbody>
</table>

**Order LXII. — Terebinthaceae**

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pistacia Terebinthus</td>
<td>1622</td>
</tr>
<tr>
<td>Pistacia Lentiscus</td>
<td>1623</td>
</tr>
<tr>
<td>Rhus Toxocodendron</td>
<td>1625</td>
</tr>
<tr>
<td>Boswellia thurifera</td>
<td>1626</td>
</tr>
<tr>
<td>Balsamodendron Myrrha</td>
<td>1628</td>
</tr>
<tr>
<td>*1. 1. Elemi</td>
<td>1633</td>
</tr>
<tr>
<td>2. Balm of Gilead</td>
<td>1634</td>
</tr>
<tr>
<td>3. Bdellium</td>
<td>1634</td>
</tr>
</tbody>
</table>

**Order LXIII. — Rhamnaceae**

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhamnus catharticus</td>
<td>1634</td>
</tr>
<tr>
<td>Syrupus Rhamni</td>
<td>1635</td>
</tr>
<tr>
<td>3. Thalamifloræ</td>
<td>1636</td>
</tr>
</tbody>
</table>

**Order LXIV. — Simarubaceae**

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simaruba amara</td>
<td>1637</td>
</tr>
<tr>
<td>*Infusum Simaruba</td>
<td>1638</td>
</tr>
<tr>
<td>Pierœna excelsa</td>
<td>1641</td>
</tr>
<tr>
<td>1. Infusum Quassie</td>
<td>1641</td>
</tr>
<tr>
<td>2. Tinctura Quassie</td>
<td>1641</td>
</tr>
<tr>
<td>3. Tinctura Quassie composita</td>
<td>1641</td>
</tr>
<tr>
<td>*2. Quassia amara</td>
<td>1642</td>
</tr>
</tbody>
</table>

**Order LXV. — Rutaceae**

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruta graveolens</td>
<td>1642</td>
</tr>
<tr>
<td>1. Confectio Ruta</td>
<td>1643</td>
</tr>
<tr>
<td>2. Oleum Ruta</td>
<td>1645</td>
</tr>
<tr>
<td>3. Syrupus Ruta</td>
<td>1645</td>
</tr>
<tr>
<td>4. Extractum Ruta</td>
<td>1646</td>
</tr>
<tr>
<td>Barosma (several species yielding Buchu)</td>
<td>1646</td>
</tr>
<tr>
<td>1. Infusum Buchu</td>
<td>1648</td>
</tr>
<tr>
<td>2. Tinctura Buchu</td>
<td>1649</td>
</tr>
<tr>
<td>Galipea officinalis</td>
<td>1649</td>
</tr>
<tr>
<td>1. Infusum Cusparia</td>
<td>1652</td>
</tr>
<tr>
<td>2. Tinctura Cusparia</td>
<td>1652</td>
</tr>
<tr>
<td>*2. Dictamnus Fraxinella</td>
<td>1652</td>
</tr>
</tbody>
</table>
CONTENTS.

Order lxvi.—Zygophyllaceæ...

1. Mistura Guaiaci...
2. Tinctura Guaiaci...
3. Tinctura Guaiaci compositus...
4. Decoctum Guaiaci...

Order lxvii.—Oxalidaceæ...

Oxalis Acetosella...

Order lxviii.—Vitaceæ...

Vitis vinifera...
1. Potasses Bitartras...
2. Acidum Tartaricum...
3. Trochisci Acidi tartarici...
4. Vinum...
5. Spiritus Vini Gallici...
6. Mistura Spiritūs Vini Gallici...

Order lxix.—Guttiferæ...

Hebradendron cambogioideae...
Pilulae Cambogiae composite...
Canella alba...
Vinum Gentiana...

Order lxx.—Aurantiaceæ...

Citrus medica...
Citrus Bergamia...
Citrus Limonum...
1. Oleum Limonum...
2. Syrupus Limonum...

Citrus Aurantium...
Citrus vulgaris...
1. Infusum Aurantii compositum...
2. Confectio Aurantii...
3. Syrupus Aurantii...
4. Tinctura Aurantii...
5. Aqua Florum Aurantii...

* Eau de Cologne...

Feronia Elephantum...

Order lxxi.—Ternstroemiaceæ...

Thea...

Order lxxii.—Dipteraceæ...

Dryobalanops aromatica...
1. Liquid Camphor...
2. Sumatra or Borneo Camphor...
<table>
<thead>
<tr>
<th>Order</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Order lxxiii.—Byttneriaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Theobroma Cacao</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxiv.—Malvaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Malva sylvestris</td>
<td>...</td>
</tr>
<tr>
<td>Decoctum Malvae compositum</td>
<td>...</td>
</tr>
<tr>
<td>Althaea officinalis</td>
<td>...</td>
</tr>
<tr>
<td>1. Mistura Althae</td>
<td>...</td>
</tr>
<tr>
<td>2. Syrupus Althae</td>
<td>...</td>
</tr>
<tr>
<td>Gossypium herbaceum</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxv.—Linaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Linum usitatissimum</td>
<td>...</td>
</tr>
<tr>
<td>1. Infusum Lini compositum</td>
<td>...</td>
</tr>
<tr>
<td>2. Oleum Lini</td>
<td>...</td>
</tr>
<tr>
<td>3. Farina Lini</td>
<td>...</td>
</tr>
<tr>
<td>4. Cataplasma Lini</td>
<td>...</td>
</tr>
<tr>
<td>Linum catharticum</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxvi.—Caryophyllaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Dianthus Caryophyllus</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxvii.—Polygaleæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Polygala Senega</td>
<td>...</td>
</tr>
<tr>
<td>Decoctum Senegaen</td>
<td>...</td>
</tr>
<tr>
<td>Krameria triandra</td>
<td>...</td>
</tr>
<tr>
<td>1. Infusum Krameriae</td>
<td>...</td>
</tr>
<tr>
<td>2. Extractum Krameriae</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxviii.—Violaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Viola odorata</td>
<td>...</td>
</tr>
<tr>
<td>Syrupus Violæ</td>
<td>...</td>
</tr>
<tr>
<td><em>Ionidium Ipecacuanha, microphyllum et parviflorum</em></td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxix.—Cistaceæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Cistus creticus</td>
<td>...</td>
</tr>
<tr>
<td><strong>Order lxxx.—Crucifereæ</strong></td>
<td>...</td>
</tr>
<tr>
<td>Cardamine pratensis</td>
<td>...</td>
</tr>
<tr>
<td>Cochlearia Armoracia</td>
<td>...</td>
</tr>
<tr>
<td>1. Infusum Armoracie compositum</td>
<td>...</td>
</tr>
<tr>
<td>2. Spiritus Armoracie compositus</td>
<td>...</td>
</tr>
<tr>
<td>Cochlearia officinalis</td>
<td>...</td>
</tr>
<tr>
<td>Sinapis nigra</td>
<td>...</td>
</tr>
<tr>
<td>Cataplasma Sinapis</td>
<td>...</td>
</tr>
<tr>
<td>Sinapis alba</td>
<td>...</td>
</tr>
</tbody>
</table>
### CONTENTS

**Order LXXXI.—Papaveraceae**

Page.

<table>
<thead>
<tr>
<th>Papaver Rhoæas</th>
<th>...</th>
<th>...</th>
<th>1722</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syrupus Rhoædos</td>
<td>...</td>
<td>...</td>
<td>1723</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Papaver somniferum</th>
<th>...</th>
<th>...</th>
<th>1723</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Poppy heads</td>
<td>...</td>
<td>...</td>
<td>1725</td>
</tr>
<tr>
<td>2. Opium</td>
<td>...</td>
<td>...</td>
<td>1726</td>
</tr>
<tr>
<td>Preparation</td>
<td>...</td>
<td>...</td>
<td>1726</td>
</tr>
<tr>
<td>Description</td>
<td>...</td>
<td>...</td>
<td>1727</td>
</tr>
<tr>
<td>Commerce</td>
<td>...</td>
<td>...</td>
<td>1731</td>
</tr>
<tr>
<td>Composition</td>
<td>...</td>
<td>...</td>
<td>1732</td>
</tr>
<tr>
<td>Chemical characteristics</td>
<td>...</td>
<td>...</td>
<td>1738</td>
</tr>
<tr>
<td>Application to medico-legal purposes</td>
<td>...</td>
<td>...</td>
<td>1740</td>
</tr>
<tr>
<td>Estimation of the purity and strength</td>
<td>...</td>
<td>...</td>
<td>1741</td>
</tr>
<tr>
<td>Physiological effects</td>
<td>...</td>
<td>...</td>
<td>1743</td>
</tr>
<tr>
<td>Opium-eating</td>
<td>...</td>
<td>...</td>
<td>1746</td>
</tr>
<tr>
<td>Opium-smoking</td>
<td>...</td>
<td>...</td>
<td>1748</td>
</tr>
<tr>
<td>Modus operandi</td>
<td>...</td>
<td>...</td>
<td>1756</td>
</tr>
<tr>
<td>Uses</td>
<td>...</td>
<td>...</td>
<td>1758</td>
</tr>
<tr>
<td>Administration</td>
<td>...</td>
<td>...</td>
<td>1767</td>
</tr>
<tr>
<td>Antidotes</td>
<td>...</td>
<td>...</td>
<td>1767</td>
</tr>
</tbody>
</table>

#### a. Preparations of Poppyheads.

1. *Decoctum Papaveris*          ... | ... | 1768 |
2. *Syrupus Papaveris*           ... | ... | 1769 |
3. *Extractum Papaveris*         ... | ... | 1769 |

#### b. Preparations of Opium.

1. *Pilulae Opii sive Thebaicæ*  ... | ... | 1770 |
2. *Pilulae Saponis-compositæ*   ... | ... | 1770 |
3. *Pilulae Calomelanos et Opii* ... | [see p. 746] | 1770 |
4. *Pilulae Plumbi Opiate*       ... | [see p. 810] | 1770 |
5. *Trochisci Opii*              ... | ... | 1770 |
6. *Pulvis Creæ compositus cum Opio* ... | ... | 1770 |
7. *Confectio Opii*             ... | ... | 1771 |
8. *Emplastrum Opii*            ... | ... | 1771 |
9. *Extractum Opii purificatum*  ... | ... | 1771 |
| Liquor Opii sedativus          ... | ... | 1772 |
10. *Tinctura Opii*             ... | ... | 1772 |
11. *Enema Opii*                ... | ... | 1773 |
12. *Linimentum Opii*           ... | ... | 1773 |
13. *Vinum Opii*                ... | ... | 1774 |
14. *Tinctura Opii ammoniata*   ... | ... | 1774 |
15. *Acetum Opii*               ... | ... | 1774 |
| Black drop                   ... | ... | 1775 |
16. *Unguentum Galiæ compositum* ... | [see p. 1083] | 1775 |
17. *Tinctura Camphoræ composita* ... | [see p. 1160] | 1775 |
18. *Pilulae Styracis compositæ* ... | [see p. 1327] | 1775 |
19. *Pulvis Ipecacuanaæ compositus* ... | [see p. 1431] | 1775 |
20. *Pilulae Ipecacuanaæ compositæ* ... | [see p. 1433] | 1775 |
21. *Pulvis Kino compositus*    ... | [see p. 1577] | 1775 |
22. *Electuarium catechu*       ... | [see p. 1592] | 1775 |
CONTENTS.

c. Morphia and its Preparations.

1. Morphia
2. Morphiae Acetas
3. Morphiae Hydrochloras
4. Morphiae Muriatis Solutio
5. Trochisci Morphiae
6. Trochisci Morphiae et Ipecacuanhae
7. Morphia Sulphas

ORDER lxxxii. — Menispermaceae
Cocculus palmatus
1. Infusum Calumbae
2. Tinctura Calumbae

Anamirta Cocculus
Unguentum Cocculi

Cissampelos Pareira
1. Infusum Pareira
2. Extractum Pareira

* Other Medicinal Menispermaceae

ORDER lxxxiii. — Magnoliaceae
Drimys Winteri

Drimys Winteri

ORDER lxxxiv. — Ranunculaceae
Ranunculus acris
Ranunculus Flammula
Helleborus niger

Tinctura Hellebore

Delphinium Staphysagria
Delphinia

Aconitum Napellus
1. Tinctura Aconiti
2. Extractum Alcoholicum Aconiti
3. Extractum Aconiti
4. Aconitina

* Helleborus foetidus et viridis, and Aconitum ferox

Class II. The Animal Sub-Kingdom

Division I. Invertebrata.—Invertebral Animals

Subdivision 1.—ACRITA

Class I.—Porifera

Spongia officinalis
Spongia usia
Class II.—Polyphera

Corallium rubrum...  ...  ...  ...  ...  ...  1816

Subdivision 2.—Radiata...  ...  ...  ...  ...  ...  1816
Subdivision 3.—Mollusca...  ...  ...  ...  ...  ...  1816

Class III.—Conchifera

Ostrea edulis...  ...  ...  ...  ...  ...  ...  1817
Testa preparata...  ...  ...  ...  ...  ...  ...  1818

Class IV.—Cephalopoda

Sepia...  ...  ...  ...  ...  ...  ...  1818

Subdivision 4.—Articulata...  ...  ...  ...  ...  ...  ...  1818

Class V.—Annulosa

Sanguisuga (Hirudo)...  ...  ...  ...  ...  ...  ...  1819
History...  ...  ...  ...  ...  ...  ...  ...  1820
Zoology...  ...  ...  ...  ...  ...  ...  ...  1820
Anatomy...  ...  ...  ...  ...  ...  ...  ...  1821
Diseases...  ...  ...  ...  ...  ...  ...  ...  1824
Collection and Commerce...  ...  ...  ...  ...  ...  ...  1825
Mode of biting...  ...  ...  ...  ...  ...  ...  ...  1825
Physiological effects...  ...  ...  ...  ...  ...  ...  ...  1826
Uses...  ...  ...  ...  ...  ...  ...  ...  1830
Mode of application...  ...  ...  ...  ...  ...  ...  ...  1831
After-treatment...  ...  ...  ...  ...  ...  ...  ...  1832
Accidents from leeches in the mucous cavities...  ...  ...  ...  ...  ...  ...  1833

Class VI. Insecta

Order I.—Coleoptera

Cantharis vesicatoria...  ...  ...  ...  ...  ...  ...  1834
1. Acetum Cantharidis...  ...  ...  ...  ...  ...  ...  1847
2. Tinctura Cantharidis...  ...  ...  ...  ...  ...  ...  1847
3. Ceratum Cantharidis...  ...  ...  ...  ...  ...  ...  1847
4. Unguentum Infusi Cantharidis...  ...  ...  ...  ...  ...  ...  1848
5. Emplastrum Cantharidis...  ...  ...  ...  ...  ...  ...  1848
6. Emplastrum Cantharidis compositum...  ...  ...  ...  ...  ...  ...  1849
7. Emplastrum Calefaciens...  ...  ...  ...  ...  ...  ...  1849
8. Pannus vesicatorius...  ...  ...  ...  ...  ...  ...  ...  1849
* Other Coleopterous Vesicants...  ...  ...  ...  ...  ...  ...  1849

Order II.—Hemiptera

Coccus Cacti...  ...  ...  ...  ...  ...  ...  ...  1850

Order III.—Hymenoptera

Apis mellifica...  ...  ...  ...  ...  ...  ...  ...  1853
Mel...  ...  ...  ...  ...  ...  ...  ...  ...  1854
1. Mel despumatum...  ...  ...  ...  ...  ...  ...  1855
2. Oxymel...  ...  ...  ...  ...  ...  ...  ...  1855
CONTENTS.

Cera
1. Emplastrum Cere
2. Emplastrum aromaticum
3. Ceratum
4. Unguentum Cere flave
5. Linimentum simplex

Class VII. Crustacea
Astacus fluviatilis
Cancer Pagurus

Division II. Vertebrata.—Vertebral Animals.

Class VIII. Pisces
Ichthyocolla
Oleum Jecoris Aselli

Order I. Aves
Gallus domesticus
Ovum

Class X. Mammalia

Order I. Cetacea
Physeter macrocephalus
1. Ceratum Cetacei
2. Unguentum Cetacei
3. Ambra grisea

Order II. Ruminantia
Moschus moschiferus
1. Mistura Moschi
2. Tinctura Moschi
Cervus Elaphus

Order III. Pachydermata
Sus Scrofa
Axungia

Order IV. Rodentia
Castor Fiber
1. Tinctura Castorei
2. Tinctura Castorei ammoniata

PAGE.
1855
1857
1857
1857
1858
1858
1858
1858
1858
1858
1858
1859
1859
1865
1868
1868
1869
1871
1872
1872
1874
1875
1875
1875
1877
1879
1883
1883
1884
1886
1886
1886
1887
1891
1891
1891
1891
1891
1891
1892
1893
1893
### List of Woodcuts in Vol. II

<table>
<thead>
<tr>
<th>Figs.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>Structure of the cryptogamia</td>
</tr>
<tr>
<td>133</td>
<td>Fucus vesiculosus</td>
</tr>
<tr>
<td>134</td>
<td>Esculent sea weeds</td>
</tr>
<tr>
<td>135</td>
<td>Cetraria islandica</td>
</tr>
<tr>
<td>136</td>
<td>Rocella tinctoria</td>
</tr>
<tr>
<td>137</td>
<td>Lecanora tartarea</td>
</tr>
<tr>
<td>138</td>
<td>Tripe de Roche</td>
</tr>
<tr>
<td>139</td>
<td>Cladonia rangiferina</td>
</tr>
<tr>
<td>140</td>
<td>Ergotsetia abortifaciens</td>
</tr>
<tr>
<td>141</td>
<td>Agaricus campestris</td>
</tr>
<tr>
<td>142</td>
<td>Morchella esculenta</td>
</tr>
<tr>
<td>143</td>
<td>Tuber cibarium</td>
</tr>
<tr>
<td>144</td>
<td>Poisonous agarici</td>
</tr>
<tr>
<td>145</td>
<td>Fructification of lycopodiacese</td>
</tr>
<tr>
<td>146</td>
<td>A tree fern</td>
</tr>
<tr>
<td>147</td>
<td>Nephrodium filix mas</td>
</tr>
<tr>
<td>148</td>
<td>Rafflesia Arnoldi</td>
</tr>
<tr>
<td>149</td>
<td>Structure of endogens</td>
</tr>
<tr>
<td>150</td>
<td>Flowers of grasses</td>
</tr>
<tr>
<td>151</td>
<td>Saccharum officinarum</td>
</tr>
<tr>
<td>152</td>
<td>Saccharum officinarum purpureum</td>
</tr>
<tr>
<td>153</td>
<td>View of two vacuum pans and their subsidiary apparatus</td>
</tr>
<tr>
<td>154</td>
<td>Hordeum (several species)</td>
</tr>
<tr>
<td>155</td>
<td>Torula and mycoderma cervisiae</td>
</tr>
<tr>
<td>156</td>
<td>Avena sativa</td>
</tr>
<tr>
<td>157</td>
<td>Triticum (several species)</td>
</tr>
<tr>
<td>158</td>
<td>Particles of wheat starch</td>
</tr>
<tr>
<td>159</td>
<td>Secale cereal</td>
</tr>
<tr>
<td>160</td>
<td>Structure of ergot of rye</td>
</tr>
<tr>
<td>161</td>
<td>Secale cornutum</td>
</tr>
<tr>
<td>162</td>
<td>Oryza sativa</td>
</tr>
<tr>
<td>163</td>
<td>Panicum miliaceum</td>
</tr>
<tr>
<td>164</td>
<td>Zea mays</td>
</tr>
<tr>
<td>165</td>
<td>Arum maculatum</td>
</tr>
<tr>
<td>166</td>
<td>Arum colocasia</td>
</tr>
<tr>
<td>167</td>
<td>Particles of Portland arrow-root</td>
</tr>
<tr>
<td>168</td>
<td>Cocos nuicifera</td>
</tr>
<tr>
<td>169</td>
<td>Cucifera thebaica</td>
</tr>
<tr>
<td>170</td>
<td>Sagus rumphii</td>
</tr>
<tr>
<td>171</td>
<td>Particles of sago meal</td>
</tr>
<tr>
<td>172</td>
<td>Particles of potatoe sago</td>
</tr>
<tr>
<td>173</td>
<td>Elais guineensis</td>
</tr>
<tr>
<td>174</td>
<td>Colchicum autumnale</td>
</tr>
<tr>
<td>175</td>
<td>Veratrum album</td>
</tr>
<tr>
<td>176</td>
<td>Asagrea officinalis</td>
</tr>
<tr>
<td>177</td>
<td>Various species of aloë</td>
</tr>
<tr>
<td>178</td>
<td>Aloë socotrina</td>
</tr>
<tr>
<td>179</td>
<td>Xanthorrhoea arboarea</td>
</tr>
<tr>
<td>180</td>
<td>Dracena draco</td>
</tr>
<tr>
<td>181</td>
<td>Magnified view of a section of Jamaica sarsaparilla</td>
</tr>
<tr>
<td>182</td>
<td>Ditto of Honduras sarsaparilla</td>
</tr>
<tr>
<td>183</td>
<td>Tacea pinnatifida</td>
</tr>
<tr>
<td>184</td>
<td>Particles of Tahiti arrow-root</td>
</tr>
<tr>
<td>185</td>
<td>Narcissus tazetta</td>
</tr>
<tr>
<td>186</td>
<td>The Banana</td>
</tr>
<tr>
<td>187</td>
<td>The Plantain</td>
</tr>
<tr>
<td>188</td>
<td>Particles of West Indian arrow-root</td>
</tr>
<tr>
<td>189</td>
<td>Particles of Tous le Mois</td>
</tr>
<tr>
<td>190</td>
<td>Particles of East Indian arrow-root</td>
</tr>
<tr>
<td>191</td>
<td>Round cardamom</td>
</tr>
<tr>
<td>192</td>
<td>Capsules of Malaguetta pepper</td>
</tr>
<tr>
<td>193</td>
<td>Madagascar cardamom</td>
</tr>
<tr>
<td>194</td>
<td>Anomum Chusii</td>
</tr>
<tr>
<td>195</td>
<td>Anomum macrosperrnum</td>
</tr>
<tr>
<td>196</td>
<td>Java cardamom</td>
</tr>
<tr>
<td>197</td>
<td>Malabar cardamoms</td>
</tr>
<tr>
<td>198</td>
<td>Electaria major</td>
</tr>
<tr>
<td>199</td>
<td>Ceylon cardamom</td>
</tr>
<tr>
<td>200</td>
<td>Ovoid China cardamom</td>
</tr>
<tr>
<td>201</td>
<td>Large round China cardamom</td>
</tr>
<tr>
<td>202</td>
<td>Small round ditto</td>
</tr>
<tr>
<td>203</td>
<td>Black cardamom</td>
</tr>
<tr>
<td>204</td>
<td>Vanilla aromatic</td>
</tr>
<tr>
<td>205</td>
<td>Structure of exogens</td>
</tr>
<tr>
<td>206</td>
<td>Cycas revoluta</td>
</tr>
<tr>
<td>207</td>
<td>Pinus sylvestris</td>
</tr>
<tr>
<td>208</td>
<td>Cones of ditto</td>
</tr>
<tr>
<td>209</td>
<td>Cones of pinus pinaster</td>
</tr>
<tr>
<td>210</td>
<td>Branch and cone of pinus pinea</td>
</tr>
<tr>
<td>211</td>
<td>Abies excelsa</td>
</tr>
<tr>
<td>212</td>
<td>Abies picea, balsamea and canadenensis</td>
</tr>
<tr>
<td>213</td>
<td>Preparation of tar</td>
</tr>
<tr>
<td>214</td>
<td>Salix Russelliana</td>
</tr>
<tr>
<td>215</td>
<td>Salix alba</td>
</tr>
<tr>
<td>216</td>
<td>Acorn</td>
</tr>
<tr>
<td>217</td>
<td>Oak apple</td>
</tr>
<tr>
<td>218</td>
<td>Quercus Suber</td>
</tr>
<tr>
<td>219</td>
<td>Ulmus campestris and glabra</td>
</tr>
<tr>
<td>220</td>
<td>Humulus lupulus</td>
</tr>
<tr>
<td>221</td>
<td>Lupulinic grain</td>
</tr>
<tr>
<td>222</td>
<td>Morus nigra</td>
</tr>
<tr>
<td>223</td>
<td>Ficus carica</td>
</tr>
<tr>
<td>224</td>
<td>Structure of a fig</td>
</tr>
<tr>
<td>225</td>
<td>Dorstenia contrajerva</td>
</tr>
<tr>
<td>226</td>
<td>Antiaris toxicaria</td>
</tr>
<tr>
<td>227</td>
<td>Artocarpus incisa</td>
</tr>
<tr>
<td>228</td>
<td>Artocarpus integrifola</td>
</tr>
<tr>
<td>229</td>
<td>Cannabis sativa</td>
</tr>
<tr>
<td>230</td>
<td>Piper nigrum</td>
</tr>
<tr>
<td>231</td>
<td>Piper betle</td>
</tr>
<tr>
<td>232</td>
<td>Euphorbia meloformis</td>
</tr>
</tbody>
</table>
### LIST OF WOODCUTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>Lecame and leaflet of cassia obtusifolia</td>
</tr>
<tr>
<td>326</td>
<td>Argol leaf, flowers, and fruit</td>
</tr>
<tr>
<td>327</td>
<td>Legume and leaflet of tephrosia apolline</td>
</tr>
<tr>
<td>328</td>
<td>Legume of Tumevalia semen—bract of diitio</td>
</tr>
<tr>
<td>329</td>
<td>Leaf of coriaria myrtifolia</td>
</tr>
<tr>
<td>330</td>
<td>Spartium junceum</td>
</tr>
<tr>
<td>331</td>
<td>Butea frondosa</td>
</tr>
<tr>
<td>332</td>
<td>Indigetes tinctoria</td>
</tr>
<tr>
<td>333</td>
<td>Pectis terebinthus</td>
</tr>
<tr>
<td>334</td>
<td>Pectis terebiformis</td>
</tr>
<tr>
<td>335</td>
<td>Balsamodendron myrrha</td>
</tr>
<tr>
<td>336</td>
<td>Balsamodendron gileadense</td>
</tr>
<tr>
<td>337</td>
<td>Vitus venticans</td>
</tr>
<tr>
<td>338</td>
<td>Garcinia mangostana</td>
</tr>
<tr>
<td>339</td>
<td>Butea frondosa</td>
</tr>
<tr>
<td>340</td>
<td>Citrus sinensis</td>
</tr>
<tr>
<td>341</td>
<td>Citrus limonum</td>
</tr>
<tr>
<td>342</td>
<td>Citrus aurantifolia</td>
</tr>
<tr>
<td>343</td>
<td>Citrus australis</td>
</tr>
<tr>
<td>344</td>
<td>Citrus roxburghiana</td>
</tr>
<tr>
<td>345</td>
<td>Gossypium barbadense</td>
</tr>
<tr>
<td>346</td>
<td>Lisium auriculatum</td>
</tr>
<tr>
<td>347</td>
<td>Root of tannia ipecacuanha</td>
</tr>
<tr>
<td>348</td>
<td>Cistas corysca</td>
</tr>
<tr>
<td>349</td>
<td>Echites tuberculosa</td>
</tr>
<tr>
<td>350</td>
<td>Sinapis alba</td>
</tr>
<tr>
<td>351</td>
<td>Sinapis nigra</td>
</tr>
<tr>
<td>352</td>
<td>Canapa of the puppy</td>
</tr>
<tr>
<td>353</td>
<td>Chinese opium pipe and apparatus</td>
</tr>
<tr>
<td>354</td>
<td>Crystal of morphia</td>
</tr>
<tr>
<td>355</td>
<td>Cocculus palmatus</td>
</tr>
<tr>
<td>356</td>
<td>Drage's washer</td>
</tr>
<tr>
<td>357</td>
<td>Ceratonia rubrum</td>
</tr>
<tr>
<td>358</td>
<td>Alimentary canal of the leech</td>
</tr>
<tr>
<td>359</td>
<td>Ventral surface of the leech</td>
</tr>
<tr>
<td>360</td>
<td>Diagram illustrative of the internal anatomy of the leech</td>
</tr>
<tr>
<td>361</td>
<td>Carcinides</td>
</tr>
<tr>
<td>362</td>
<td>Digestive organs of the carcinides vestivatoria</td>
</tr>
<tr>
<td>363</td>
<td>Male genital organs of the carcinides vestivatoria</td>
</tr>
<tr>
<td>364</td>
<td>Female organs of carcinides vestivatoria</td>
</tr>
<tr>
<td>365</td>
<td>Cephalic insects [male and female]</td>
</tr>
<tr>
<td>366</td>
<td>Opuntia cochinillifera</td>
</tr>
<tr>
<td>367</td>
<td>Arctopus scrubolus</td>
</tr>
<tr>
<td>368</td>
<td>Arctopus sturti</td>
</tr>
<tr>
<td>369</td>
<td>A segment of the yolk of an egg</td>
</tr>
<tr>
<td>370</td>
<td>Cymatias ostrichis</td>
</tr>
<tr>
<td>371</td>
<td>Section of the olfactory area showing the vesicles in series</td>
</tr>
<tr>
<td>372</td>
<td>Yolk and its appendages</td>
</tr>
<tr>
<td>373</td>
<td>Polygonal pieces ofchalk forming the rudiments of the shell of the egg</td>
</tr>
<tr>
<td>374</td>
<td>Lateral view of the skull of the Phylacetus macrocephalus</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>344</td>
<td>The four stomachs of the sheep</td>
</tr>
<tr>
<td>345</td>
<td>Moschus moschiferus</td>
</tr>
<tr>
<td>346</td>
<td>Skull of moschus moschiferus</td>
</tr>
<tr>
<td>347</td>
<td>Belly of moschus moschiferus</td>
</tr>
<tr>
<td>348</td>
<td>Vertical section of the musk sac in situ</td>
</tr>
<tr>
<td>349</td>
<td>Musk sac</td>
</tr>
<tr>
<td>350</td>
<td>Musk sac, deprived of its hairy coat to show its muscular coat</td>
</tr>
<tr>
<td>351</td>
<td>Musk sac deprived of its hairy coat and circular muscular fibres</td>
</tr>
<tr>
<td>352</td>
<td>Penis of the moschus moschiferus</td>
</tr>
<tr>
<td>353</td>
<td>Skull and antlers of cerusselaphus</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>354</td>
<td>Ovis ammon</td>
<td>1886</td>
</tr>
<tr>
<td>355</td>
<td>Ovis musimon</td>
<td>1886</td>
</tr>
<tr>
<td>356</td>
<td>Longitudinal section of a test</td>
<td>1888</td>
</tr>
<tr>
<td>357</td>
<td>Skeleton of a test</td>
<td>1891</td>
</tr>
<tr>
<td>358</td>
<td>Castor fiber</td>
<td>1894</td>
</tr>
<tr>
<td>359</td>
<td>Skeleton of the castor fiber</td>
<td>1894</td>
</tr>
<tr>
<td>360</td>
<td>Os penis of the castor fiber</td>
<td>1894</td>
</tr>
<tr>
<td>361</td>
<td>Sexual organs of a male beaver</td>
<td>1895</td>
</tr>
<tr>
<td>362</td>
<td>Castor and oil saces with their appropriate muscles</td>
<td>1895</td>
</tr>
<tr>
<td>363</td>
<td>Castor and oil sace laid open</td>
<td>1896</td>
</tr>
<tr>
<td>364</td>
<td>Relative position of castor and oil saces and pelvis</td>
<td>1896</td>
</tr>
<tr>
<td>365</td>
<td>Sexual organs of a female beaver</td>
<td>1897</td>
</tr>
</tbody>
</table>
II. ORGANISED KINGDOM.

I. The Vegetable Sub-Kingdom.

Division I. Cryptogamia, Linnaeus.—Flowerless Plants.

_Lucyledones, Jussieu.—Cellulares, De Candolle.—Acrogens Lindley._

**Essential Character.**—Substance of the plant usually composed of cellular tissue chiefly, either in a spheroidal or elongated state; spiral vessels or ducts only present in the highest orders. Stem either increasing by an extension of its point, or by a regular or irregular development in all directions from one common point; not increasing perceptibly in thickness or density when once formed. Cuticle generally destitute of stomata. Sexual organs, and consequently flowers, absent. Reproduction taking place either by spores or sporules [spora seu sporulae], which are inclosed in cases called theca [sporangia], or imbedded in the substance of the plants; or else by a mere dissolution of the utricles of cellular tissue; germination occurring at no fixed point, but upon any part of the surface of the spores (Lindley).

**Fig. 132.**

Structure of Cryptogamic Plants.

- a. Longitudinal section of a stem.
- b. Transverse section of a stem.
- c. Stem of a moss with leaves and theca, seed-case.
- d. Leaf of a moss magnified.
- e. Leafy thallus of a lichen with apothecia.
- f. Crustaceous thallus of a lichen with apothecia.
- g. Fungi of the highest tribe.
- h, i. Fungi of the lowest rank.
- k. Confervae magnified.
Order I.—ALGÆ, Juss.—THE SEA-WEED TRIBE.

Algææ, Lindley.

Essential Character.—Leafless, flowerless plants, with no distinct axis of vegetation, growing [with very few exceptions] in water, frequently having an animal motion, and consisting of simple vesicles lying in mucus, or of articulated filaments, or of lobed fronds, formed of uniform cellular tissue. Reproductive matter either altogether wanting, or contained in joints of the filaments, or deposited in theca of various forms, size, and position, caused by dilatations of the substance of the frond. Sporules with no proper integument, in germination elongating in two opposite directions (Lindley).

Properties.—None of the plants of this order are poisonous. A mucilaginous a or gelatiniform matter (carrageenin, pectin) and sugar (mannite) render several species nutritious, emollient, and demulcent. Some Algæ have been found beneficial in serofolous affections and glandular enlargements. The good effects are referrible to iodine b, and in part, perhaps, to alkaline salts. A vermifuge property has been ascribed to some species.

Laennec c tried the influence of an artificial “marine atmosphere” (air impregnated with the vapour of fresh sea-weed) on consumptive patients, and was impressed with an idea of its efficacy; but experience shows that the inhabitants of sea-coasts are as liable to phthisis as those of inland districts.

1. FU'CUS VESICULO'SUS, Linn. D.—SEA WRACK.

Sex. Syst. Cryptogamia, Algæ.

(Herba cum fructu. Ph. Dul.)

History.—Theophrastus d mentions several species of Algæ (φυκος), but he includes under this name Rocella tinctoria. Fucus vesiculosus is sometimes termed Quercus marina, Bladder Fucus, and Common Sea-ware.


Hab. — Sea-shores. Very common every where.

Physical Properties.—Its substance is thickish, flexible, but very tough. Its colour is dark, olivaceous, glossy green, paler at the extremities, becomes black by drying. Its odour is strong; its taste nauseous.

Composition and Characteristics.—It has been analyzed by Stackhouse e, by Gaultier de Claubry f, by John g, and by Fagerstrom h.

b See pp. 232 and 233.
c Treat. on Diseases of the Chest, by Dr. Forbes, p. 369.
g Schweigger's Journ. xiii. 464.
It is composed of Cellular Tissue, Mucilaginous Matter (pectin?) Odorous Oil, Colouring and Bitter Matters, and Salts of Calcium and Sodium (iodide, sulphates, and chloride).

By treating the distilled water of Fucus vesiculosus with ether, a semi-solid white Oil is extracted, which is the odorous principle. The aqueous decoction of this plant is neutral, and contains chloride of sodium, sulphates of soda and lime, and a mucilaginous substance somewhat analogous to pectin. It yields, with chlorine and starch, faint traces only of iodine. But if alcohol be added, by which the mucilage and a part of the sulphates are thrown down, the alcoholic liquor evaporated, and the residue mixed with potash, then calcined, and afterwards treated with hydrochloric acid to disengage hydrosulphuric acid, we may detect iodine in the filtered liquor by the deep blue colour formed on the addition of starch and chlorine. By combustion in the open air, this plant yields an ash, called Kelp (vide p. 551); and by incineration in a covered crucible it gives a charcoal, termed Vegetable Ethiops.

Physiological Effects. — During the winter, in some of the Scottish islands, horses, cattle, and sheep, are fed on it. Its local action is detergent, and perhaps discutient. Its remote effects are probably analogous to those caused by small doses of iodine, modified by the influence of salts of sodium and calcium.

Uses. — Frictions of the plant, with its contained mucus, were employed, with supposed advantage, by Dr. Russell, in glandular enlargements and other scrofulous tumors: the parts were afterwards washed with sea-water. He also gave internally the expressed juice of the vesicles in glandular affections.

Ethiops Vegetabilis; Vegetable Ethiops. — This is prepared by incinerating Fucus vesiculosus in a covered crucible. It is composed of Charcoal, Chloride of Sodium, Carbonate of Soda, Sulphurets of Sodium and Calcium, and traces of an Alkaline Iodide. It has been exhibited in bronchocele and scrofulous maladies. Dr. Russell

---

1 Guibourt, Hist. des Drag. 3d ed. ii. 395.
2 Greville, Alga Brit. xx.
3 Dissertation on the Use of Sea-Water, 5th ed. 1769, pp. 41 and 44.
says, it far exceeds burnt sponge in virtue. It has been employed also as a dentifrice. The dose of it is from ten grains to two drachms.

2. CHONDRAUS CRISPUS, Grec.—CARRAGEEN OR IRISH MOSS.


(Planta, Ofic.)

History.—It was introduced into medicine by Mr. Todhunter, of Dublin. It is sometimes sold as Pearl Moss.

Botany. Gen. Char.—Frond cartilaginous, dilating upwards into a flat, nerveless, dichotomously divided frond, of a purplish or livid red colour. Fructification: subspherical capsules [sporangia?] in the substance of the frond (rarely supported on little stalks), and containing a mass of free seeds [sporules?] (Greville).

Sp. Char.—Frond plane, dichotomous, the segments linear, wedge-shaped. Capsules subhemispherical, imbedded in the disk of the frond (Greville).

Hab.—On rocks and stones on the sea-coast: very common. For dietetical and medicinal uses it is collected on the coasts of Ireland (especially in Clare), washed, bleached (by exposure to the sun), and dried.

Physical Properties.—In the recent state it is purple-brown or purple-red, becoming greenish and ultimately whitish in decay. As met with in commerce, it is dry, crisp, mostly yellowish or dirty white, but intermixed with purplish red portions, inodorous or nearly so, with a mucilaginous taste. It swells up in water. A calcareous meshy crust (consisting of various species of Flustra) is frequently found on the frond.

Composition.—It has been analyzed by Herberger, and by Feuchtwanger.

<table>
<thead>
<tr>
<th>Herberger</th>
<th>Feuchtwanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable jelly ..............</td>
<td>79.1</td>
</tr>
<tr>
<td>Mucus ................................</td>
<td>9.5</td>
</tr>
<tr>
<td>Two resins ....................</td>
<td>6.7</td>
</tr>
<tr>
<td>Fatty matter and free acids.</td>
<td>traces</td>
</tr>
<tr>
<td>Chlorides of sodium and calcium, potash, lime, &amp;c.</td>
<td>traces</td>
</tr>
<tr>
<td>No traces of iodine or bromine could be recognized.</td>
<td></td>
</tr>
</tbody>
</table>

Carrageeni. —The mucilaginous matter (called by some writers Vegetable Jelly, by others Pectin,) appears to me to be a peculiar substance, which I shall term Carrageeni. It is soluble in boiling water, and its solution forms a precipitate with diaacetate of lead and silicate of potash, and, if sufficiently concentrated, gelatinizes on cooling. Carrageeni is distinguished from ordinary gum by its aqueous solution not producing a precipitate on the addition of alcohol; from starch, by its not assuming a blue colour with tincture of iodine; from animal jelly, by tincture of nutgalls causing no precipitate; from peetin, by acetate of

- An anonymous reviewer (Edin. Med. and Surg. Journ. vol. iv. p. 220) states that Chondrus mammillatus in tolerably large quantity is occasionally found in the carrageen of commerce.
- Dierbach, Die neuesten Entd. in d. Mat. Med. 1837.
- American Journal of Science and Arts, xxxvi.
- More recently both brome and iodine have been detected in this plant (Pharmaceutisches Central Blatt, für 1839, S. 159).
lead not throwing down any thing; as well as by no mucic acid being formed by
the action of nitric acid. Dr. Lucae\(^4\) regards carrageenin as more closely
resembling animal jelly than any other substance.

**Chemical Characteristics.**—The presence of carrageenin in the
decoction is demonstrated by the tests just enumerated. No iodine
is recognizable by nitric acid and starch. Oxalate of ammonia de-
tects lime (or calcium) in solution, while nitrate of silver points out
the presence of chlorine. Guibourt\(^5\) could recognize neither sugar
nor magnesia.

**Physiological Effects.**—Chondrus crispus is nutritive, very
digestible, emollient, and demulcent.

**Uses.**—It is a popular remedy for pulmonary complaints (espe-
cially of a phthisical character), chronic diarrhoea and dysentery,
ersofula, rickets, enlarged mesenteric glands, irritation of bladder and
kneys, \&c. As a culinary article it is employed as a substitute for
animal jelly, in the preparation of blanc-mange, jellies, white soup,
\&c.

**Administration.**—It is usually exhibited in the form of decoction
or jelly.

1. **Decoctum Chondri.**—Macerate half an ounce of carrageen in cold
or warm water, during ten minutes; then boil in three pints of water,
for a quarter of an hour. Strain through linen. Milk may be substi-
tuted for water when the decoction is required to be very nutritious.
By doubling the quantity of carrageen a mucilage is procured.
Sugar, lemon juice, tincture of orange-peel, or aromatics, as cinna-
omon or nutmeg, may be employed as flavouring ingredients.

2. **Gelatina Chondri.**—Prepared by concentrating the decoction,
or by employing a larger quantity of carrageen.

3. **Gigartina Helminthocorton, Grev.**—CORSICAN MOSS.

**Sex. Syst.** Cryptogamia, Alge.

(Planta, Offic.)

**History.**—This plant has been in use for several centuries among
the natives of Corsica, as a remedy for intestinal worms. In 1756,
Vaucher sent it to Paris.\(^6\)

**Botany.** **Gen. Char.**—Frond horny or cartilaginous, filiform, cy-
lindrical, irregularly branched. Fructification uniform; spherical,
 sessile capsules containing a globose mass of seeds [sporules?]
(Greville).

**Sp. Char.**—Frond cartilaginous, terete, tufted, entangled. Stem
filiform, creeping: branches setaceous, somewhat dichotomous,
marked indistinctly with transverse streaks.

**Hab.**—The Mediterranean Sea, on the shores of Corsica.

**Physical Properties.**—Under the name of Corsican moss is sold\(^7\)

---

\(^{5}\) Journ. de Chim. Med. viii. 663.
\(^{6}\) J. P. Schwendimann, in Schlegel's Thesaurus Mat. Med. t. iii. p. 181.
in the shops a mixture of various marine vegetables and animals. The essential, though usually smaller, part of the mixture is the Gigartina Helminthocorton; the remainder consists of Corallines, Sertularias, and Ceramiums, to the number of twenty species. Lamouroux states he found the remains of eighty species of marine plants. See also T. C. Martius.

The structure of the frond of Gigartina Helminthocorton is "very peculiar, being exceedingly lax and cellular, with a consistence similar to that of the stems and leaf-stalks of some aquatic herbaceous phænogamous plants, and having the appearance of articulations which do not actually exist". The fructification is scarcely ever seen. The plant has a reddish grey colour externally, but is whitish internally. Its odour is strong, marine, and disagreeable: its taste is saline.

**Composition.** — Bouvier obtained from 100 parts of Corsican moss, Vegetable Jelly, 60.2; Vegetable Fibre, 11.0; Chloride of Sodium, 9.2; Sulphate of Lime, 11.2; Carbonate of Lime, 7.5; Iron, Manganese, Silica, and Phosphate of Lime, 1.7. Straub and Gaultier de Claubray have subsequently detected iodine, but the quantity is small.

**Chemical Characteristics.** — Corsican moss effervesces with acids, owing to the carbonate of lime which it contains. The brown watery infusion is deepened in colour by sesquichloride of iron, and lets fall some brown flocculi. Tincture of galls does not alter it. Nitric acid and starch give no indication of iodine.

**Physiological Effects.** — Its effects are not very obvious. The vegetable jelly must render it nutritive; the iodine and saline matters alterative. Mr. Farr says, that after using the decoction for six or seven days, it acts as a diuretic and diaphoretic, and occasionally produces nausea and giddiness: after some time the stools become darker, present greenish specks, and are sometimes slimy.

**Uses.** — It has been principally celebrated as an anthelmintic against the large round worm (Ascaris lumbricoides). Bremser ascribes its efficacy to chloride of sodium.

In 1822, Mr. Farr brought it forward as a remedy for cancer. He was led to try it from the circumstance of Napoleon Bonaparte having stated to Barry O'Meara that it was used in Corsica for dispersing tumors. Experience does not warrant us in ascribing any benefit to its employment in this disease.

**Administration.** — In powder it is given in doses of a scruple to two drachms, mixed with honey or sugar; but the more usual mode of exhibiting it is in the form of decoction, prepared by boiling from
four to six drachms of Corsican moss in a pint of water; of this the dose is a wine-glassful, three times daily.

OTHER MEDICINAL OR ESCULENT SEA WEEDS.

Fig. 134.

Esculent Sea Weeds.

a, Rhodomenia palmata (or Dulse).
b, Rhodomenia ciliata.
c, Laminaria saccharina.
d, Iridaea edulis.
e, Alaria esculenta.
f, Ulva latissima.

Several species of the inarticulated Algae are occasionally employed, in some parts of the British islands, as articles of food, or as condimentary substances. Taken in this way, they might perhaps prove serviceable in scrofulous affections and glandular enlargements. Besides the species above depicted, the following have also been used: Laminaria digitata (or Tangle, p. 233, fig. 47, d), Porphyra incisata and vulgaris (commonly called Laver), Laurentia pinnatifida (Pepper-dulse), &c. 

Fucus amylaceus or the Ceylon Moss has been, within the last few years, introduced into India and England by M. Previté. As found in commerce it is white, filiform, and fibrous. It has the usual odour of sea weeds. It consists, according to Dr. O'Shaughnessy, of Vegetable Jelly 54.5, True Starch 15, Ligneous fibre 18, Gum 4, Sulphate and Muriate of Soda 6.5, Sulphate and Phosphate of Lime 1, Wax, Iron, and Loss 1. By boiling in water it yields a liquid which gelatinizes on cooling. The decoction or jelly forms an agreeable, light, nourishing, article of food for invalids and children. It may be used as a substitute for farinaceous substances.

ORDER II.—LICHENES, Juss.—THE LICHEN TRIBE.

Lichenaceae, Lind.

Essential Character.—Perennial plants, often spreading over the surface of the earth, or rocks, or trees, in dry places, in the form of a lobed and foliaceous,
or hard and crustaceous or leprous substance, called a thallus, crust, or frond (receptaculum commune). This thallus is formed of a cortical and medullary layer, of which the former is simply cellular, the latter both cellular and filamentous. In the crustaceous species the cortical and medullary layers differ chiefly in texture, and in the former being coloured, in the latter colourless; but in the fruticulose or foliaceous species, the medulla is distinctly floccose, in the latter occupying the lower half of the thallus, in the former enclosed all round by the cortical layer. Reproductive matter of two kinds: 1, sporules (sporulae), lying in membranous tubes (thece) immersed in nuclei of the medullary substance, which burst through the cortical layer, and colour and harden by exposure to the air in the form of little disks (apothecia), which have received different names according to their forms; 2, the separated cells of the medullary layer of the tissue (Lindley, with some additions).

Properties.—The lichens, at least the foliaceous ones, contain a starchy substance (called lecanorin or lichenin), which renders them nutritive, emollient, and demulcent. They also possess a bitter principle (cetrarin), from which they derive tonic properties. Several lichens, by maceration in ammoniacal solutions, develop brilliant colours, which render them valuable as dyes.


Sex. Syst. Cryptogamia, Alge.

(Cetraria, L. E.;—Planta, D.)

History.—The medicinal properties of this plant, (usually termed Lichen islandicus) were probably first known to the natives of Iceland. According to Borrichius, the Danish apothecaries were acquainted with them in 1673. In 1683, IIärne spoke favourably of its effects in hæmoptysis and phthisis.

Botany. Gen. Char. — Thallus foliaceous, cartilagineo-membranaceous, ascending and spreading, lobed-and laciniated, on each side smooth and naked. Apothecia orbicular, obliquely adnate with the margin of the thallus, the lower portion being free (not united with the thallus); the disk coloured, plano-concave, with a border formed of the thallus and inflexed (Hooker).

Sp. Char. — Thallus erect, tufted, olive brown, paler on one side, laciniated, channelled, and dentato-ciliate, the fertile lacinia very broad. Apothecia brown, appressed, flat, with an elevated border (Hooker).

The apothecia are generally wanting on the plant of the shops.

Hab. — Dry mountainous districts of the new and old continents. Although met with in considerable abundance in Scotland, it is never gathered there as an article of commerce.

Physical Characters.—As met with in commerce, Iceland moss is brownish or greyish white, with white farinaceous spots on it, but

---

1 For further details respecting the useful qualities of Lichens, see the Mémoires couronnés en l'Annee 1786, par l'Académie des Sciences, Belles-Lettres et Arts de Lyon, sur l'Utilité des Lichens dans la Medicine et dans les Arts, par MM. G. F. Hoffmann, Amoreux fils, et Willnet.—Lyon, 1787.

2 Murray, App. Medicam. v. 508.
rarely having apothecia. It has little or no odour, and a slightly bitter taste. Its powder (or farina) is whitish grey.

Commerce.—It is imported in barrels and bags from Hamburgh and Gothenburgh, and is said to be the produce of Norway and Iceland. In 1836, 20,599 lbs. paid duty; in 1837, 12,845 lbs.; in 1838, 6179 lbs.; in 1839, 15,933 lbs.; and in 1840, 6462 lbs.

Composition.—It has been analyzed by Berzelius, who obtained the following products from 100 parts:—

1. Lichenin.—The starchy matter or feculoid substance of lichens is somewhat different from ordinary starch. I have been unable to detect any particles analogous in their physical properties to those of other feculas. Payen, however, says he has seen the starch of Iceland Moss united in little balls. Water extracts a starchy substance. But no boiling, however long continued, deprives the insoluble texture of Iceland moss of the property of being tinged blue by iodine, so that lichenin seems to enter into the constitution of the tissues of Iceland Moss. Lichenin is composed, according to Guerin-Vary, of $C_{44}H_{44}O_{20}$.

2. Cetrarin.—The bitter principle of this lichen is white, intensely bitter, soluble in alcohol (especially at a boiling temperature), ether, less so in water, volatile oil, and creosote. It is coloured blue by hydrochloric acid when aided by heat; it combines with alkalis; and forms a red precipitate with the salts of iron, and a greenish one with those of copper.

3. Licheneic Acid.—This is composed of $C_{44}H_{44}O_{20}$. It forms a reddish precipitate with the salts of iron.

Chemical Characteristics.—Iceland moss swells up in cold water, to which it communicates a brownish tint. Boiled in water it yields a liquid which, when sufficiently concentrated, gelatinizes on cooling. The decoction, when cold, forms with iodine a blue compound (iodide of starch); with the sesquichloride of iron, a dingy purplish red (cetrarate and lichenate of iron); with diacetate of lead, a copious whitish precipitate (amidate of lead); with sulphate of copper and caustic potash, a green precipitate (cetrarate of copper).

Physiological Effects. a. On Animals.—In Carniola, pigs, horses, and oxen, are fattened by it. b. On Man.—It is a mucilaginous or demulcent tonic, without any trace of astringency. If the bitter matter (cetrarin) and extractive be removed, it is nutritive, emollient, and demulcent, like ordinary starch, over which it has no advantage. Captain Sir John Franklin and his companions tried it as an article of food, when suffering great privations in America, but its bitterness rendered it hardly eatable.

Uses.—Iceland moss is well adapted to those cases requiring a nutritious and easily-digested aliment and a mild tonic, not liable to disorder the stomach. It has been principally recommended in chronic affections of the pulmonary and digestive organs, particularly phthisis, chronic catarrh, dyspepsia, chronic diarrhoea, and dysentery; but its efficacy has been much exaggerated.

---

1 Ann. de Chim. xc. 277.
2 L’Institut de 1837. p. 145.
3 Gerber, Journ. de Pharm. xxii.
5 Narrative of a Journey to the Shores of the Polar Sea, p. 414. 1823.
ADDITIONAL TEXT.

Administration.—It is best exhibited in the form of decoction. When employed as an alimentary substance merely, the bitter matter should be extracted before ebullition. This is effected by digesting the lichen in a cold weak alkaline solution (composed of water 305 parts, and carbonate of potash 1 part), and afterwards washing it with cold water. It is then to be boiled in water or milk. When the decoction is sufficiently concentrated, it gelatinizes on cooling. It may be flavoured with sugar, lemon peel, white wine, or aromatics, and then forms a very agreeable kind of diet.

DECOCTUM CETRARIE, L.; Decoctum Lichenis Islandici, D.; Decoction of Iceland Moss. (Iceland Moss, 5v.; Water, Ojss.; boil down to a pint, and strain. The Dublin College orders half an ounce of the moss to be digested for two hours in a close vessel with a wine pint of boiling water, then to be boiled for fifteen minutes, and the liquor strained while hot.)—Dose, 1\f3y. to 1\f3iv. every four hours.

2. ROCEL'LA TINCTO'RIA, De Cand. L. E. D.—DYER’S ORCHIL OR ORCHELLA.

Sex. Syst. Cryptogamia, Algæ.

(Lacmus: Thallus preparatus, L.—Lacmus, E.—Litmus, D.)

History.—It is the πορτιον φύκος (Mucus marinus) of Theophrastus. By the moderns it was first employed as a dye at the commencement of the fourteenth century.

Botany. Gen. Char.—Thallus coriaceo-cartilaginous, rounded or plane, branched or laciniate. Apothecia orbicular, adnate with the thallus; the disk coloured, plano-convex, with a border at length thickened and elevated, formed of the thallus, and covering a sublentiform, black, compact, pulverulent powder concealed within the substance (Hooker).

Sp. Char.—Thallus suffrutficose, rounded, branched, somewhat erect, greyish brown, bearing powdery warts. Apothecia flat, almost black and pruinose, with a scarcely prominent border (Hooker).

Hab. — Maritime rocks of the Canaries, Azores, southern coast of England, &c.

Commerce. — It is imported in bags from the Canaries (Canary Weed), the Azores (Western Island Weed, St. Michael’s Weed), Cape de Verde Islands and Mogadore (African or Mogadore Weed). That from the Canaries is the most valuable. In 1838, 567 cwts., in 1839, 6494

---

* Dr. Davidson, in a paper On the Removal of the bitter taste and lichenous odour of Iceland Moss (Jameson's Edinb. New Phil. Journ. vol. xxviii. p. 260, 1840), recommends a solution of caustic potash for extracting the bitter taste of this lichen. A pound of carbonate of potash (rendered caustic by a pound of lime) is sufficient for 28 lbs. of the plant.
* Beckmann, Hist. of Invent. and Discov. vol. i.
Dyer's Orchil.

In 1840, 4175 cwts. of *Rocella tinctoria* and *fuciformis* paid duty.

**Physical Properties.**—Both *Rocella tinctoria* and *fuciformis* are imported as orchil. I have met with the latter species in commerce under the name of *Madeira Weed*. It is distinguished from *R. tinctoria* by its larger size, its paler colour, and its broader flat fronds.

**Composition.**—*Rocella tinctoria* was analyzed by Fr. Nees v. Esenbeck, who found in it a brown resin (soluble in alcohol and ether, and becoming brownish red with ammonia), wax, glutinous matter, insoluble starch, yellow extractive, yellowish brown gummy matter, lichenin, tartrate and oxalate of lime, and chloride of sodium from the adherent sea water.

More recently Dr. Kane has submitted this plant to a very elaborate examination. The following substances, he states, either pre-exist in the lichen or are "produced immediately by the processes employed in its analysis."

1. **Erythryline.** A pale yellowish, often whitish substance, insoluble in water, but easily soluble in alcohol, ether, and alkaline solutions. From its solution in alkaline liquors it is precipitated by an acid. It is altered by boiling water: the liquid is then found to contain amarythrine. It is fusible at 212°. It consists of \( C_{22}H_{16}O_8 \).

2. **Erythrine; Pseudo-erythrin** of Heeren. A crystalline substance, sparingly soluble in cold, abundantly soluble in boiling water. It is very soluble in alcohol and ether. Its formula is \( C_{18}H_{18}O_6 \). It is formed by the action of air on erythryline.

3. **Amarythrine; Erythrine-bitter.** Formed by dissolving erythrine in hot water and exposing for some days to the air. A bitter sweet liquid is obtained of a pale brown colour. Amarythrine consists of \( C_{22}H_{13}O_9 \).

4. **Telerythrine.** A crystalline neutral white substance obtained by exposing semifluid amarythrine for several months to the air. Its formula is \( C_{17}H_{16}O_8 \).

5. **Rocelline Acid of Heeren; Rocelline of Kane.** A fatty crystallizable acid. Kane regards it as \( C_{20}H_{24}O_8 \).

**Chemical Characteristics.**—The aqueous decoction of *Rocella tinctoria* forms a copious precipitate with diacetate of lead, and has its colour deepened by alkalis.DIGESTED IN A WEAK SOLUTION OF AMMONIA, IN A CORKED PHIAL, AT A TEMPERATURE NOT EXCEEDING 130° F., THE PLANT YIELDS A RICH VIOLET-RED COLOUR. This is Hellot's test for the discovery of a colorific property in lichens.

**Preparation of Orchil.**—*Rocella tinctoria* has been introduced into the London Pharmacopeia as the source of litmus; but this substance, though formerly procured from *Rocella*, according to Ferber, is now probably prepared from *Lecanora tartarea*.

Archil or *Orchil* is the only colouring matter prepared from *Rocella tinctoria* in this country. *Blue Orchil* is procured by steep-

---


*b* Phil. Trans. 1810, p. 273.


ing the lichens in an ammoniacal liquor in a covered wooden vessel. Red Orchil is made with the same liquor in common earthen jars placed in a room heated by steam, and called a stove. In one manufactory which I inspected, the ammoniacal liquor was prepared by distillation from a mixture of lime, impure muriate or sulphate of ammonia obtained from gas-works, and water; but I am informed, that some makers still employ stale urine and lime.

The theory of the process is as follows: the erythrine which exists in the lichen absorbs oxygen and ammonia, and forms Orcein; the rocelline absorbs oxygen and forms Erythroleic Acid; these being kept in solution by the excess of ammonia, the whole liquid is of an intensely rich purple tint, and constitutes ordinary orchil (Kane).

Properties.—The liquor sold in the shops as orchil has a deep reddish purple colour and an ammoniacal smell. It is reddened by acids which neutralize the ammonia which it contains.

Composition of Orchil.—According to Kane orchil consists of Orcein, Erythroleic Acid, and Azo-erythrine. To these must be added Ammonia.

1. Azo-erythrine.—This is insoluble in water, in alcohol, and in ether; but it dissolves in alkaline liquors, giving the characteristic port-wine colour. Its formula is C_{22}H_{16}N_{19} + 3 Aq. Its formation may be explained by supposing that one equivalent of Amarythrine C_{22}H_{13}O_{14}, one equivalent of ammonia H_{3}N, five equivalents of atmospheric oxygen O_{5}, and three equivalents of water 3 Aq. form one equivalent of Azoerythrine.

2. Orcein.—A crimson red powder, sparingly soluble in water and in ether, copiously soluble in alcohol. It dissolves in alkaline liquors, forming a magnificent purple. Ordinary Orchil contains an ammoniacal solution of this kind. Kane has described two forms of orcein:—

a. Alphaoorcein consists of C_{18}H_{10}N_{3}.

b. Betaoorcein; Orcein of Robiquet, Dumas, and Liebig. It consists of C_{18}H_{10}N_{18}.

In contact with deoxidizing agents it combines with hydrogen and forms Leneoorcein, composed of C_{18}H_{10}N_{8} + H. Bleached by chlorine it yields Chloroorcein, whose formula is C_{18}H_{10}N_{8} + Cl.

Alpha-orcein is probably formed by the conversion of one equivalent of azoerythrine C_{22}H_{16}N_{19} + 3 Aq. into four equivalents of carbonic acid C_{4}O_{8}, nine equivalents of water H_{9}O_{9}, and one equivalent of alpha-orcein C_{18}H_{10}N_{8}. The latter absorbing three equivalents of oxygen O_{3} becomes Beta-orcein C_{18}H_{10}N_{8}.

3. Erythroleic Acid.—This is a crimson substance distinguished by its semifluid consistence at ordinary temperatures, and its solubility in ether. Dissolved in alkaline solutions it forms a fine purple-coloured liquor. Its formula is C_{26}H_{22}O_{8}. It is probably formed according to Kane by the abstraction of two equivalents of hydrogen from, and the addition of two equivalents of oxygen to, one equivalent of Rocellie acid C_{26}H_{24}O_{6}.

Uses.—Orchil is employed merely as a colouring agent. It is used for dyeing, colouring, and staining.

3. LECANO’RA TARTA’REA, Ach.—TARTAREOUS MOSS.

Sex. Syst. Cryptogamia, Algæ. (Litmus, Offic.)

History.—The manufacture of a colouring matter from this plant was first started at Leith by Dr. Cuthbert Gordon, from whose name the word Cudbear originated.
Botany. Gen. Char.—Thallus crustaceous, spreading, plane, adnate, uniform. Apothecia (patellulæ) orbicular, thick, sessile, and adnate; the disk plano-convex; its border thickish, formed of the crust and of the same colour (Hooker).

Sp. Char.—Crust thick, granulated, and tartareous greyish white. Apothecia scattered; the disk convex, at length plane or tumid yellow-brown, inclining to flesh colour; the border thick, inflexed, at length wavy (Hooker).

Hab.—On rocks in Alpine countries, Norway, Scotland, &c.

Commerce.—It is imported from Norway and Sweden under the name of White Swedish or Tartareous Moss.

Preparation of Cudbear and Litmus.—In this country, Red and Blue Cudbear (in the form both of powder and paste) are prepared from this plant. In Holland, Litmus is made from it, according to Nees and Ebermaier, and Thomson.

Cudbear (Persio) is procured in the manner of orchil, by the action of ammonia. When colour is developed, the decomposed lichen is sold either as paste, or dried and ground into powder.

Litmus (Lacmus, L. E.; Litmus, D.; Lacca caerulea, Lacca musica) is made by the Dutch, and is imported from Holland. Guibourt thinks that it owes its colour to the Crozophora tinctoria. But on a microscopic examination of the litmus cakes of commerce, portions of the epidermis and meso-thallus of some lichen are found. My colleague, Mr. Quekett, who has carefully examined them, cannot decide whether they be the tissues of Rocella or of Lecanora. The precise mode of obtaining litmus is not known; but there is little doubt the process is somewhat analogous to that for making orchil. The lichen is said to be fermented in putrid (distilled?) urine.

Properties of Litmus.—Litmus occurs in small, cubical, light, and friable cakes of a dirty blue colour. Examined by the microscope, we find sporules, and portions of the epidermis and meso-thallus of some species of lichen, moss leaves, silica, &c. When the cakes are thrown into dilute hydrochloric acid, effervescence takes place, and a solution of chloride of calcium is obtained, shewing that they contain carbonate of lime. The blue colouring matter of litmus is soluble in both water and alcohol. It is reddened by acids, but restored by alkalis. Chlorine and the hypochlorites destroy it.

Composition.—The nature and properties of the colouring matters of litmus have been examined by Dr. Kane. From his investigations litmus appears to contain three colouring principles, namely, Erythrolein, Erythrolitmine, and Azolitmine. The characteristic

---

* Hist. des Drog. 3re ed. ii. 143.
blue colour of litmus depends on the combination of the two latter colouring matters with Lime, Potash, and Ammonia. Litmus also contains Lignin, Chalk, and Silica.

1. **Erythrolein.** This is semifluid at ordinary temperatures. It is soluble in alcohol and ether, yielding fine red solutions. With ammonia it forms a magnificent purple. Its formula is \( C_{26} A_{22} O_4 \). It is perhaps derived from Roccelline.

2. **Erythrolitmine.** This is a light red crystalline substance, sparingly soluble in water and in ether, but abundantly soluble in alcohol. It dissolves in a solution of potash or ammonia, forming a blue liquid. Its formula is \( C_{26} H_{22} O_{12} \). It is probably formed by the oxidation of erythrolein.

3. **Azolitmine.** It is a brownish red powder. It is sparingly soluble in water and insoluble in alcohol and ether. Dissolved in a solution of potash or ammonia, it yields blue solutions. Its formula is \( C_{18} H_{19} NO_{19} \). It, therefore, differs from betaorcein in containing additional equivalents of oxygen. It is decolorized by deoxidizing agents yielding Leucolitmine.

4. **Spaniolitmine.** This is not a constant constituent of litmus. It is of a bright red colour, insoluble in alcohol and ether, and very sparingly soluble in water. Alkalis render it blue. Its formula is either \( C_{18} H_{7} O_{16} \), or \( C_{26} H_{11} O_{23} \). It is probably formed from erythrolitmine.

**Uses.**—Litmus is employed as a test for acids and alkalis. The former communicate a red colour to blue litmus: the latter restore the blue colour of reddened litmus.

1. **Tinctura Lacmi ; Tincture of Litmus (Litmus, one part; Water twenty-five parts. M.).** This is chiefly a solution of azolitmine with sometimes spaniolitmine. When kept in a closely-stopped bottle its blue colour sometimes disappears, but is shortly restored on the admission of atmospheric air.

2. **Charta Lacmi ; Litmus Paper.** This is more delicate when made with bibulous or unsized paper, which is to be brushed over with a strong clear infusion of litmus. Faraday\(^a\) recommends the infusion to be prepared from half an ounce of litmus and half a pint of water. The Prussian Pharmacopoeia orders one part of litmus and four parts of water. When carefully dried, litmus paper should be preserved by wrapping it in stiff paper, and keeping it in well-stopped vessels in a dark cupboard.

Blue Litmus Paper (Charta exploratoria caerulea) is prepared as above directed. Reddened Litmus Paper (Charta exploratoria rube-facta) is made with an infusion of litmus which has been feebly acidulated with acetic acid.

\(^a\) Chemical Manipulation.
It has been already stated (p. 68) that several species of Gyrophora (G. pro-boscidea and cylindrica) are employed by the hunters of the Arctic regions of America as articles of food, under the name of Tripe de Roche (fig. 138). Cladonia rangiferina or Rein-Deer Moss (fig. 139) is a well-known example of a nutritive lichen, supporting the animals after whom it is named when no other sustenance can be obtained.

Several lichens are employed as popular remedies for hooping-cough and pulmonary affections. Those usually kept by the herbalist are, Sticta pulmonaria (called Oak Lungs), Scyphophorus pyxidatus (Cup Moss), and Peltidea canina (sold as Ground Liverwort). The first has been used in pulmonary affections. The second has long been celebrated as a remedy for convulsive cough. The third and last one was formerly thought to be a specific for hydrophobia.

Order III.—Fungi, Juss.—The Mushroom Tribe.

Essential Characters.—Plants consisting of cells and fibres, always springing from organized, and generally decayed or decaying substances, not perfected when immersed in water, bearing reproductive sporidia, either externally or internally, naked or inclosed in variously-formed cells, many of which frequently concur in the reproduction of a single individual, varying extremely in substance and duration, generally soft and juicy, sometimes exceedingly hard, with or without a central gelatinous nucleus, or dry and powdery (Berkeley).

Properties.—Extremely variable: some fungi being highly nutritious, others very deleterious. No anatomical characters are known by which the poisonous can be distinguished from the esculent ones. A few species only have been used in medicine, and these are not uniform in their properties. The proximate principles peculiar to this order, which have been examined, are—1, Fungin, a nitrogenous, highly-nutritious, woody matter; 2, Amanitin, the active ingredient of some of the poisonous Agarici; 3, Boletic acid; 4, Fungic acid. Mushroom sugar has been found identical with mannite.

ERGOTÆ'TIA ABORTIFACIENS, Quekett.—THE ABORTIFACIENT ERGOTÆ'TIA.

_Sex. Syst._ Cryptogamia, Fungi. 
(Ergota, Offic.)

**History.**—This fungus was first described and named by my friend and colleague, Mr. Quekett, in a paper read before the Linnean Society, Dec. 4, 1838. An abstract of the paper was published in the London Medical Gazette. Mr. Quekett named the plant _Ergotæ'tia abortans_ (Ergotæ'tia, from Ergot, Fr., Ergota, Ph. Lond., and _æ'tia_, origin; _abortans_, in allusion to its destroying the germinating power of the grain of grasses, and also to the medicinal powers of ergot). Subsequently, at my suggestion, he substituted the word _abortifaciens_ for _abortans_. The sporidia of the plant are depicted by Phæbus. They were also noticed by Phillipar.

**Botany. Gen. Char.**—Sporidia elliptical, moniliform, finally sepa-

**Fig. 140.**

Ergotæ'tia abortifaciens.

A, Sporidia.  
D, Membrane of sporidium laid open.

1, The fungus assuming a radiated form, and beginning to develope sporidia upon its branches in water.

rating, transparent, and containing seldom more than one, two, or three well-defined (greenish) granules.

**Sp. Char.—**Only one species known.

**Hab.**—Floral envelopes, and ovaria of grasses: Europe, America.

Sometimes the sporidia are slightly contracted about their middle. They contain usually one, two, or three, but occasionally as many as ten or twelve, well-defined green granules. The sporidia are, on the average, about 1/400th of an inch long, and 1/6000th of an inch broad. When placed on glass and moistened with water, they

---

readily germinate or produce other plants, though in various ways, as sometimes by emitting tubes (b); by the development of buds (c); and by the formation of septa across their interior (e, f, g, h) (Quekett). This plant belongs to the Coniomycetes of Fries, tribe Mucedines; and to the tribe Sporidesmiae of Berkeley.

By the growth of these fungi upon or within the ovarianium of grasses, a diseased condition of the ovarianium, involving the whole of the embryo, and sometimes partially or wholly the albumen, is produced, called the ergot or spur, which will be described hereafter [vide Gramineæ]. Mr. Quekett has shewn that the sporidia of this fungus are capable of infecting healthy grains of corn, and of ergotizing them.

Properties.—The chemical properties and physiological effects of this fungus are at present quite unknown. We have yet to learn, whether the peculiar properties of ergotized grass depend on the fungi, or on the morbid products of the ovarianium.

OTHER ESCULENT, MEDICINAL, OR POISONOUS FUNGI.

1. Fungi esculenti.—Esculent Fungi.

Fig. 141.

Agaricus campestris.

Fig. 142.

Morchella esculenta.

Fig. 143.

Tuber cibarium.

I have already offered some remarks on the dietetical qualities of fungi (see p. 68).

2. Fungi occasionally used in Médecine.

The internal portion of Polyporus igniarius (Boletus igniarius), commonly called Agaric of the Oak, Touchwood, or Spunk, cut in thin slices, and beaten with a hammer until soft, has been applied, as a styptic, to restrain haemorrhages; but its action is mechanical, like lint: that is, it absorbs the blood, and promotes coagulation. Polyporus fomentarius (real Amadou) has also been used for similar purposes. The substance sold in the shops as Amadon, or German tinder, is prepared from both species, by cutting the fungus in slices, beating, and soaking
it in a solution of nitre. Mr. Wetherfield recommends it as an elastic medium for applying support and pressure, and as a defence to tender and inflamed parts. It does not lose its elasticity like lint. *Polyporus Lariceis* (*P. officinalis, Boletus purgans, or Larch Agaric*) was formerly used as a drastic purgative, in doses of from a scruple to two drachms, and it is still kept by the herbalist. Mr. Butler, of Covent Garden Market, informs me that it is imported from Germany, but that there is very little sale of it. The dust (sporidia) of *Lycoperdon* (*Puff Ball*) was formerly used as a styptic; the smoke is used for stupefying bees.

3. Fungi venenati.—Poisonous Fungi.

**Fig. 144.**

Poisonous Indigenous Agarici of the section Amanita.

- *a, Agaricus vernus, Bull.*
- *b, phalloides, Fries.*
- *c, porphyrius, Fries.*
- *d, vaginatus, Bull.*
- *e, Agaricus nivalis, Grev.*
- *f, f, muscarius, Linn.*
- *g, pantherinus, Dec.*

All poisonous fungi are called by the public *Toadstools.* Those of the genus *Agaricus*, section *Amanita*, are the most important, because the most likely to be confounded with edible species (as with *Agaricus campestris*). The Russians, who eat no less than sixteen species of *Agaricus*, never employ any belonging to the section *Amanita*.

The symptoms produced by poisonous fungi are those indicating gastro-intestinal irritation (nausea, vomiting, purging, and abdominal pain), and a disordered condition of the nervous system (delirium, stupor, blindness, convulsions, muscular debility, paralysis, and drowsiness). In some cases, the power of the vascular system is remarkably depressed, the pulse being small and feeble, the extremities cold, and the body covered with a cold sweat. At one time, local irritation only; at another, narcotism alone is produced.

In some cases the active principle of poisonous fungi seems to be a Volatile acrid principle: in other instances it is a brown, uncrystallizable solid, called by Letellier *amanitin*.

No specific antidote is known. The first object, therefore, is to expel the poison from the stomach and bowels. The subsequent treatment will depend on the nature of the symptoms which manifest themselves, and must be conducted on general principles.

---

* For further information respecting poisonous fungi, consult Christison’s *Treatise on Poisons.*
**Order IV.**—LYCOPODIACEÆ, De Cand.—**THE CLUB-MOSS TRIBE.**

The powder sold in the shops as *Lycopodium*, Witch-meal, or Vegetable Sulphur, is procured from *Lycopodium clavatum* (Common Club-moss). It consists of extremely small pale yellow particles, fig. 145, b (sporules? pollen?) which, in the plant, are contained in two-valved, one-celled capsules, (thece, sporangia? anthers?) lodged in the (fig. 145 a) axillae of the bracteal leaves. It is sometimes employed in medicine as a dusting powder for children; and, in pharmacy, for enveloping pills to prevent their adhesion.

**Order V.**—FILICES, Juss.—**THE FERN TRIBE.**

(Filicales, Lind.)

**Essential Character.**—Herbaceous plants with a perennial rhizome, more rarely having an erect arborescent trunk [when they are called tree ferns, *filices arboreae*; fig. 146]: trunk coated, of a prosenchymatous structure, with the entire cylinder of woody fasciculi divided into two concentric parts, the one narrow, placed between the bark and the wood, the other larger, central, medullary, sending fasciculi of vessels towards the petioles, and communicating with the exterior by means of chinks in the woody cylinder. *Leaves* [*frondes*] scattered upon the rhizome or rosaceo-fasciculate on the apex of the caudex, with circinnate vernation, annual or perennial, the base of the petioles persistent, growing to the caudex; simple or pinnate, entire or pinnatifid, [*equal-veined, the veins composed of elongated cells*], frequently having cuticular stomata. *Sporangia* [*thece*], placed on the veins of the back or margin of the leaves, collected in little naked heaps [*sori*], or covered with a membranous scale [*indusium*], or transmuted margin of the leaf, pedicellate [with the stalk (seta), passing round them in the form of an elastic ring (*annulus*)], or sessile, unilocular, indefinitely dehiscent. *Spores* [*sporules*] numerous, free, globose, or angular, in germination at first elongated in every direction, throwing out radicles downward, and the cauliculus upward.

---

*Endlicher, Genera Plantarum.*
Properties.—The leaves are mucilaginous, and frequently slightly astringent and aromatic. The rhizomes contain starch, usually tannic acid with more or less bitter matter, and sometimes both fixed and volatile oil, with some resin. They are mild astringent tonics. The rhizome of *Nephrodium Filix mas* is celebrated as a vermifuge; that of *Polypodium Caligualu* as a diaphoretic and diuretic in rheumatic and venereal diseases.

*Nephrodium Filix mas*, Richard, E.—Male Shield Fern.

Aspidium Filix mas, L. D.

*Sex. Syst.* Cryptogamia, Filices.

(Hooker)

History.—This plant was known to Theophrastus, Dioscorides, and Pliny. The two first call it πτηπε, the latter Filix mas.

Botany. **Gen. Char.**—Sori roundish, scattered. Indusium orbiculari-reniform, fixed by the sinus.

**Sp. Char**—Fronds bipinnate, pinnules oblong, obtuse serrated, their stalk and midrib chaffy. Sori near the central nerve (Hooker).

The rhizome is large, tufted, and scaly. The leaves grow in a circle to a height of 3 or 4 feet.

**Hab.**—It is an indigenous plant, frequent in woods and in shady banks. It is a native of other parts of Europe, of Asia, of the North of Africa, and of the United States of America.

**Description.**—The subterraneous stem (rhizoma; caudex; fern root, radix filicis, officin.) lies obliquely in the ground. It varies in length and breadth according to its age. For medical purposes it should be from three to six or more inches long, and from half an inch to an inch or more broad. It is almost completely enveloped by the thickened bases of the footstalks of the fallen leaves. These bases (sometimes called tubercles) are arranged closely around the rhizome in an oblique direction, overlapping each other. They are one or two inches long, from three to five lines thick, curved, angular,
brown, surrounded near their origin from the rhizome by two or more shining, reddish yellow, thin, silky scales (ramenta). The radicle fibres (root, properly so called) arise from the rhizome between these footstalks. The fern root of the shops consists of fragments of the dried thickened bases of the footstalks, to which small portions of the rhizome are found adhering, and of the root fibres.

Internally, the rhizome and footstalks are, in the present state, fleshy, of a light yellowish-green colour; but in the dried state, yellowish or reddish white. Iodine colours the fresh rhizome bluish black, indicating the presence of starch; particles of which may be recognized by the microscope. In a transverse section of the rhizome we observe five or six, or more, bundles of woody fibres and scalariform ducts. These bundles are arranged in a circle, are of a reddish white colour in the recent rhizome, but yellow in the dried one.

The dried root has a feeble, earthy, somewhat disagreeable odour. Its taste is at first sweetish, then bitter astringent, and subsequently nauseous, like rancid fat.

**Collection.**—The rhizome should be collected in the month of July, August, or September. The black portions, fibres, and scales, are to be removed, and the sound parts carefully dried and reduced to powder: this is of a yellowish colour, and is to be preserved in well-stoppered bottles. Both the whole rhizome and powder deteriorate by keeping.

Fern buds (*gemma filicis maris*) which are sometimes employed in medicine, are to be collected in the spring.

**Composition.**—Fern rhizome was analysed in 1805 by Vauquelin, in 1821 by Gebhard, in 1824 by Morin, in 1826 by Wackenroder, and by Geiger. Subjoined are the results of the analyses of Geiger and of Morin:

<table>
<thead>
<tr>
<th>Geiger</th>
<th>Morin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green fat oil</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>res.</td>
<td>Fixed oil (stearin and olein)</td>
</tr>
<tr>
<td>Ucrystallizable sugar</td>
<td>Tannin.</td>
</tr>
<tr>
<td>Easily oxidizable tanin</td>
<td>Gallic and acetic acids.</td>
</tr>
<tr>
<td>Gum and salts, with sugar and tanin</td>
<td>Uncrystallizable sugar.</td>
</tr>
<tr>
<td>Ligneous Fibre and starch</td>
<td>Starch.</td>
</tr>
</tbody>
</table>

The anthelmintic property of the rhizome resides in the oil (*oleum filicis maris*). Batso found a peculiar acid (*acidum filiceum*) and an alkali (*filicina*) in the rhizome.

Fern buds contain, according to Peschier, a volatile oil, brown resin, fat oil, solid fatty matter, green colouring principle, a reddish brown principle, and extractive.

---

2. Diss. inaug. in Pfaff’s Syst. d. Mat. Med. 7th Bd. 219.
3. Journ. de Pharm. x. 223.
4. De Anthelmin. regni Vegetab.
7. Quoted by Soubeiran, Nouv. Traité de Pharm. t. ii. p. 159, 2nd Ed.
Characteristics.—The presence of tannic acid in the aqueous decoction of fern rhizome is shown by the sesquisalts of iron producing a dark green colour (tannate of iron), and by a solution of gelatin causing a yellowish precipitate (tannate of gelatin). No indication of the presence of a vegetable alkali in the decoction, can be obtained by tincture of nutgalls. If the rhizome be digested in alcohol, and afterwards boiled in water, the decoction when cold forms, with a solution of iodine, a dingy blue precipitate (iodide of starch).

Physiological Effects.—These are not very obvious; but they are, probably, similar to those caused by other astringents. Large doses excite nausea and vomiting.

Uses.—It is only employed as an anthelmintic. Theophrastus, Dioscorides, Pliny, and Galen, used it as such. The attention of modern practitioners has been directed to it principally from the circumstance of its being one of the remedies employed by Madame Nouffer, the widow of a Swiss surgeon, who sold her secret method of expelling tape-worm to Louis XVI. for 18,000 francs. At the present time fern rhizome is but seldom employed in this country, partly because the efficacy of Madame Nouffer's treatment is referred to the drastics used, and partly because other agents (especially oil of turpentine) have been found more effectual. "It is an excellent remedy," says Bremser, "against Bothriocephalus latus [the tape-worm of the Swiss], but not against Taenia Solium [the tape-worm of this country]; for though it evacuates some pieces of the latter, it does not destroy it."

Administration.—It may be administered in the form of powder, of oil or ethereal extract, or of aqueous decoction. The dose of the recently-prepared powder is from one to three drachms. Madame Nouffer's specific was two or three drachms of the powder taken in from four to six ounces of water in the morning fasting, and two hours afterwards a purgative bolus, composed of calomel ten grains, scammony ten grains, and gamboge six or seven grains. The bolus was exhibited to expel the worm which the fern rhizome was supposed to have destroyed.

The Etherial Tincture of Male Fern Buds (prepared by digesting 1 part of the buds in 8 parts of ether) has been used with success by Dr. Peschier (brother of the chemist of that name), and by Dr. Fosbroke as a vermifuge.

OLEUM FILICIS MARIS: Oil of Male Fern.—The impure oil of fern (called oleum filicis Peschieri, extractum filicis æthereum, seu balsamum filicis), recommended by Peschier, is an ethereal extract, and

\* Trait. contre le Taenia, &c. 1776, quoted by Bremser, Sur les Vers Intest.
\* Journ. gener. de Méd. 1825, p. 375.
is composed, according to its proposer, of fatty matter, resin, volatile oil, colouring matter, extractive, chloride of potassium, and acetic acid. A pound of the rhizome yielded Soubeiran\textsuperscript{2} an ounce and a half of thick black oil, having the aromatic odour of fern. It may also be prepared from the buds as above stated. The dose is from half a drachm to a drachm, in the form of electuary, emulsion, or pills: an hour afterwards, an ounce or an ounce and a half of castor oil should be exhibited. Numerous testimonies of its efficacy have been published\textsuperscript{3}. By substituting alcohol for ether, twelve or thirteen drachms of oil can be obtained from 2\frac{1}{2} lbs. of the rhizome\textsuperscript{3}.

**Division II. Phanerogamia, Auct.—Flowering Plants.**

**Cotyledones, Juss.—Embryonae, Rich.—Vasculares, De Cand.**

Essential Character.—Substance of the plant composed of cellular tissue, woody fibre, ducts, and spiral vessels. Leaves usually present: cuticle with stomata. Flowers with perceptible stamens and pistils. Seeds generally with an embryo enclosed within a spermoderm, furnished with one or more cotyledons.

1. **RHIZANTHÆ, Blume.—RHIZANTHS.**

Essential Character.—Parasitical leafless plants. Stem homogeneous. Vascular system scarcely present. Flowers propagated by the agency of sexes. Seeds having no embryo, but consisting of a homogeneous sporuliferous mass. (Lindley).

**Order VI.—RAFFLESIÆ, Endl.**

In this Order is contained the *Rafflesia Arnoldi* (fig. 148), one of the wonders of the vegetable world. The diameter of its flower is 3\frac{1}{2} feet, the weight 15 lbs. The hollow in its centre is capable of holding twelve pints! It grows in Java, on the stems and roots of *Cissus angustifolia*\textsuperscript{4}.

A decoction of this plant is used in Java as an astringent application in relaxed conditions of the vagina.

\textsuperscript{1} Nouv. Traité de Pharm. ii. 161, 2\textsuperscript{nd} ed.
\textsuperscript{2} Dierbach, Neuesten Entl. in d. Mat. Med. 1\textsuperscript{st} Band, 1837.
\textsuperscript{3} Journ. de Chim. Méd. t. v. 2\textsuperscript{nd} Sér. p. 68.
\textsuperscript{4} Vide Trans. Linn. Society, vol. xiii.
2. ENDOGENAE, De Cand.—ENDOGENS.

Monocotyledones, Juss.

Fig. 149.

Essential Character.—Trunk usually cylindrical, when a terminal bud only is developed, becoming conical and branched when several develope: consisting of cellular tissue, among which the vascular tissue is mixed in bundles, without any distinction of bark, wood, and pith, and destitute of medullary rays; increasing in diameter by the addition of new matter to the centre. Leaves frequently sheathing at the base, and not readily separating from the stem by an articulation, mostly alternate, with parallel simple veins, connected by smaller transverse ones. Flowers usually having a ternary division; the calyx and corolla either distinct or undistinguishable in colour and size, or absent. Embryo with but one cotyledon; if with two, then the accessory one is imperfect, and alternate with the other; radicle usually enclosed within the substance of this embryo, through which it bursts when germinating (Lindley).

Order VII.—GRAMINEAE, R. Brown.—THE GRASS TRIBE.

Essential Character.—Flowers usually hermaphrodite, sometimes monœcious or polygamous; consisting of imbricated bracts, of which the most exterior are called glumes, the interior immediately enclosing the stamens palea, and the innermost at the base of the ovarium scales. Glumes usually two, alternate; sometimes single; most commonly unequal. Palea two, alternate; the lower or exterior, simple; the upper or interior composed of two, united by their contiguous margins, and usually with two keels—together forming a kind of dislocated calyx. Scales two or three, sometimes wanting; if two, collateral, alternate with the palea, and next the lower of them, either distinct or united. Stamens hypogynous, one, two, three, four, six, or more, one of which alternates with the two hypogynous scales, and is, therefore, next the lower palea; anthers versatile. Ovary simple; styles two, very rarely one or three; stigmas feathery and hairy. Pericarp usually
undistinguishable from the seed, membranous. *Albumen* farinaceous; *embryo* lying on one side of the albumen at the base, lenticular, with a broad cotyledon and a developed plumule; and occasionally, but very rarely, with a second cotyledon on the outside of the plumule, and alternate with the usual cotyledon.—*Rhizoma* fibrous or bulbous. *Culms* cylindrical, usually fistular, closed at the joints, covered with a coat of silex. *Leaves* alternate, with a split sheath. *Flowers* in little spikes, called *locustae*, arranged in a spiked, racemed, or panicked manner (*Lindley*).

Properties.—Almost every species is esculent and salubrious. The nutritive property is especially remarkable in the seeds of grasses, which contain *starch*, *gluten*, gum, and sugar. The stems and leaves also contain sugar, mucilage, and starch. Cane-sugar is procured from the stem of a grass. Both stems and leaves are used as food for cattle. Even the subterraneous stems and roots of some species (as *Triticum repens* and *Cynodon Dactylon*) abound in these principles. Considered in a medicinal point of view, the products of the grasses are emollient and demulcent.

To these statements there are a few exceptions, some of which have been already noticed (p. 95.)

Odorous volatile oil is found in some species; as in *Anthoxanthum odoratum*; *Andropogon muricatus*, the fibrous roots of which are sold by perfumers under the Tamool name of *Vittie Vayr*; *Andropogon Schenanthus*, which yields the *Oil of Lemon-grass*; and *Andropogon Calamus aromaticus*, *Royle* (*A. nardoides*, Nees ab Esenb.), from which the *Grass-oil of Numar* is obtained. e

1. SAC'CHARUM OFFICINARUM, Linn. E. D.—THE SUGAR CANE.

*Saccharum officinale*, L.

*Sex. Syst.* Triandria, Digynia.

(Sacchari fæx; *Saccharum*: Succus preparatus, L.—*Saccharum commune*; *Sacchari Fæx*; *Saccharum purum*, E.—Succus concretus, a. non purificatus, b. purificatus; *Syrupus empyreumaticus*, anglice molasses, D.)

History.—The manufacture of sugar is said by Humboldt to be of the highest antiquity in China. Cane sugar was known to the ancient Greeks and Romans, and was considered by them to be a kind of honey. Possibly, Herodotus f refers to it when he says that the Zygantes make honey in addition to that which they get from bees. Theophrastus g calls it *mel in arundinibus*; Dioscorides h terms it σάκχαρον; Pliny i *saccharum*. Humboldt j adopts too hastily, I think, the opinion of Salmasius, that the latter writers meant the siliceous product of the Bamboo, viz., *Tabasheer*; for, in the first place, as they arrange it with honey, it was probably sweet, which tabasheer is not; secondly, the Sanscrit name for sugar is *Sarkura* k;

---

*a* Royle’s Essay on the Antiq. of Hindoo Med. p. 34.
*b* Melpomene, cxiv.
*c* De Melle.
*d* Lib. ii. cap. civ.
*e* Hist. Nat. lib. xii. cap. xvii.
*f* Journ. of Science and Arts, vol. v. p. 15.
*g* Royle’s Essay, p. 88. 
thirdly, a passage in Lucan seems distinctly to refer to the sugar cane—"Quique bibunt tenera dulces ab arundine succos." Surely no one will pretend that the bamboo is a "tenera arundo?"

**BOTANY.** **Gen. Char.**—Spikelets all fertile, in pairs, the one sessile, the other stalked, articulated at the base, two-flowered, the lower floret neuter, with one palea, the upper hermaphrodite, with two paleae. Glumes two, membranous. Palea transparent, awnless, those of the hermaphrodite flower minute, unequal. Stamine three. Ovary smooth. Styles two, long; stigmas feathered, with simple toothletted hairs. Scales two, obscurely two or three-lobed at the point, distinct. Caryopsis smooth (?), loose (?)(Kunth).

**Sp. Char.**—Panicle effuse. Flowers triandrous. Glumes obscurely one-nerved, with very long hairs on the back (Kunth).

The stem is solid, from six to twelve feet high. Leaves flat. Panicle terminal, from one to three feet long, of grey colour, from the long soft hair that surrounds the flower. Palea rose-coloured. Four varieties of the sugar cane are admitted.

- **a** commune, with a yellow stem.
- **b** purpureum (fig. 152), with a purple stem, yielding a richer juice.
- **γ** giganteum, with a very large light-coloured stem.
- **δ** tahitense, from Otaheite, said to make the finest sugar.

**Hab.**—It is cultivated in both Indies. Its native country is uncertain.

**MANUFACTURE OF SUGAR.**

The canes, when ripe, are cut close to the ground, stripped of leaves, and carried in bundles to the mill-house, where they are twice subjected to pressure between iron rollers, placed either vertically or horizontally. The cane-juice thus procured is an opaque liquid, of an olive green colour, saccharine taste, and balsamic odour. Its specific gravity is 1:033 to 1:106. It consists of water, sugar, gum, green fecula, extractive, gluten, acetic and malic acids, acetates of lime and potash, super-malate and sulphate of lime, and lignin in the form of fragments of the cellular and fibrous tissues of the canes.

---

1 Lib. iii. v. 237.
2 References to passages in other ancient authors will be found in the notes to Valpy's edit. of Pliny's *Hist. Nat.* vol. iv. 2193. See also Moseley's *Treatise on Sugar.* Lond. 1799.
3 Porter's *Nat. and Prop. of the Sugar Cane,* p. 28, 1830.
From the mill the juice is conveyed to a copper cauldron, called the clarifier, where it is mixed with lime, and heated. The clear liquor is then drawn off and put into a copper boiler, where it is evaporated and skimmed. It is then conveyed through a series of boilers, the last of which is called the teache. When it has acquired a proper tenacity and granular aspect, it is passed into a wooden cooler, where it is allowed to crystallize or grain. The concrete sugar is then placed in casks (usually sugar hogsheads) with holes in the bottom, each of which is partially closed by the stalk of a plantain leaf. Here the sugar is allowed to drain for three or four weeks. It is then packed in hogsheads and sent to this country under the name of Muscovado or Raw Sugar. The uncrystallized portion is termed Molasses; it is brought to England in casks. In Jamaica a mixture of water and molasses, with the skimmings of the clarifier and evaporating coppers, is fermented, and a vinous liquid thereby obtained, which, by distillation and rectification, yields Rum.

Sugar Refining.—Raw sugar contains several impurities, from which it is freed by refining. The eye recognizes the colouring matter. In an aqueous solution, lime is detected by oxalic acid, which throws down the white oxalate of lime; tannic acid by the dark colour produced on the addition of sesquichloride of iron, and by the precipitate formed by gelatin; glutinous and gummy matter by diacetate of lead; and free acid by litmus. By keeping, strong raw sugar becomes weak, that is, soft, clammy, and gummy. This change Mr. Daniell ascribes to the action of the lime.

The following is an outline of the refining method which I saw.

View of Two Vacuum Pans and their subsidiary Apparatus.

a, a, Charging measures, supplied by pipes, which descend from c, c, the liquor cisterns. d, d, are the vacuum spheroidal pans, the lower half of each being supplied with a jacket, as a case for the steam. At the sides of the neck of each pan are a barometer and thermometer. Below the neck, and just above the horizontal line b, b, is the handle of the proof-stick, which appears like a stop-cock. When the syrup is sufficiently concentrated, it is discharged into the heater, e, e.

Vide pp. 347 and 363.

Quart. Journ. of Science, vi. 38.
practised at a large sugar-house in town:—Raw sugar is dissolved in water by the aid of steam (this process is called a blow-up). The liquid is then heated with bullock's blood (technically called spice), and sometimes with hydrate of alumina (termed finings), and filtered through canvas. The clear liquor is allowed to percolate slowly through a bed of coarse-grained animal charcoal nearly three feet deep, placed on a woollen cloth, supported on a false bottom of basket-work, and contained in a large wooden vessel. The filtered liquor, which is nearly colourless, is conveyed to a copper vessel (Howard’s vacuum-pan), where it is boiled by the aid of steam, under diminished atmospheric pressure. The consistence of the liquid is examined from time to time by taking out a sample by the proof-stick, which is so constructed as not to admit air.

When the requisite degree of concentration has been attained, a valve is opened in the bottom of the vacuum pan, and the syrup allowed to escape into a copper vessel (heater), enveloped by a jacket, so as to enable it to be heated by steam. The syrup is then transferred to conical moulds (made of earthenware or iron), whose orifices are closed by a paper plug, and the next morning, when solidified, these moulds are carried to the curing-floor, when the stoppers are withdrawn and the moulds placed in pots, in order to allow the green syrups to drain off: these are made into an inferior sort of refined sugar (brown lumps). The loaves are then either clayed or sugared. Clayed consists in pouring clay and water on the base of the sugar-loaf: the water slowly percolating through the sugar, a portion of which it dissolves, carries with it the colouring matter and other impurities. Sugaring is effected by substituting a saturated solution of pure sugar (called liquor) for the clay and water: it dissolves the colouring matter but not the pure sugar. The loaves are afterwards dried in a stove, and put in blue paper for sale.

The following may be regarded as an approximation to the produce of 112 lbs. of raw sugar by the above process:

<table>
<thead>
<tr>
<th>Sugar Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refined Sugar</td>
<td>70 lbs.</td>
</tr>
<tr>
<td>Bastard</td>
<td>17 lb.</td>
</tr>
<tr>
<td>Treacle</td>
<td>16 (12 lbs. solid matter)</td>
</tr>
<tr>
<td>Water</td>
<td>4</td>
</tr>
<tr>
<td>Raw Sugar</td>
<td>112</td>
</tr>
</tbody>
</table>

Properties.—Common sugar, when pure, is white and odourless. It is the sweetest of all kinds of sugar. By the slow evaporation of its aqueous solution, it crystallizes: in this state it is called White Sugar Candy (Saccharum candenum album). The crystals are colourless; have, for their form, the oblique rhombic prism; and in consequence have two axes of no double refraction. Their sp. gr. is 1.6065. Common sugar is permanent in the air, and phospho-

1 “Claying Sugar, as they report here, was first found out in Brazil: a Hen having her feet dirty, going over a pot of Sugar by accident, it was found under her tread to be whiter than elsewhere.”—Sloane’s Jamaica, vol. i. p. 61.
2 For further details, consult a paper by Messrs. Gwynne and Young, Brit. Ann. of Med. June 23, and July 14, 1837; also Dr. Ure’s Dict. of Arts, art. Sugar.
rescent in the dark on being struck or rubbed. When heated, it melts, and soon becomes coloured. By this process its tendency to crystallize is diminished or destroyed. Sugar thus altered by heat and flavoured constitutes several preparations of the confectioner; as Barley Sugar (Saccharum hordeatum), &c. If the melted sugar be rapidly and repeatedly extended, it becomes opaque and white: in this state, it is called Penides (Saccharum Penidium). When sufficiently heated, sugar becomes brown, evolves a remarkable odour, loses its sweet taste, and acquires bitterness: in this state, it is called Burnt Sugar or Caramel (Saccharum tostum). Caramel enjoys acid properties, and is composed\(^1\) of \(\text{C}^{12}\text{H}^{18}\text{O}^{18}\). Common sugar is very soluble in water: a saturated solution of it is called Syrup: it is thick, adhesive, and, by drying on paper, forms a kind of varnish. A watery solution of sugar, aided by heat, decomposes some of the metallic salts (as those of copper, mercury, gold, and silver); but several of them (as the diacetate of copper and nitrate of silver) require nearly a boiling temperature to change them. Sugar promotes the solubility of lime in water, and forms both a soluble and an insoluble compound with oxide of lead. It is soluble in alcohol, but not so in ether. A dilute watery solution of common sugar, with a little yeast, undergoes the vinous fermentation.

1. Purified or Refined Sugar (Saccharum, L.; Saccharum purum, E.; Succus concretus purificatus, D.; Saccharum purificatum) is met with in the shops in conical loaves (Loaf Sugar) or truncated cones called lumps (Lump Sugar) of various sizes and degrees of purity. Small lumps are called Titters. The finest refined sugar (Saccharum albissimum) is perfectly white, and is termed double refined; the inferior kind (Saccharum album) has a slightly yellowish tint, and is called single refined. Both varieties are compact, porous, friable, and made up of small crystalline grains.

2. Brown Sugar (Saccharum commune, E.; Saccharum fuscum; Succus concretus non purificatus, D.) occurs in commerce in the form of a coarse powder composed of shining crystalline grains. It is more or less damp and sticky, and has a peculiar smell and a very sweet taste. Its colour is brownish yellow, but varying considerably in intensity. Muscovado or raw sugar has the deepest colour, and is intermixed with lumps. Bastard is a finer kind, prepared from molasses and the green syrups. The Demerara crystal sugar is the finest: its colour is pale yellow, and its crystals are larger and more brilliant than the preceding varieties.

3. Treacle (Fæx Sacchari, L. E.; Syrupus empyreumaticus, anglice Molasses, D.) is the viscous, dark brown, uncrystallizable syrup which drains from the sugar-refining moulds. It is thicker than West Indian molasses, and has a different flavour. Its sp. gr. is generally 1·4; and it contains, according to Dr. Ure, on an average, 75 per cent. of solid matter.

Chemical Characteristics.—Sugar is known by its sweet taste, its solubility in hot and cold water and in alcohol, its being decomposed, with the evolution of charcoal, by sulphuric acid, its conversion into oxalic and other acids by nitric acid, its fusing, charring, emitting a remarkable odour (called the odour of caramel), and inflaming by heat, and, lastly, by its not causing, when pure, any precipitate with acetate or diacetate of lead.

Cane sugar is crystallizable, susceptible of vinous fermentation, and has a strongly sweet taste. Its relation to other sugars has already been pointed out. (See p. 48.)

Composition.—The following is the ultimate composition of sugar:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Eq. Wt</th>
<th>Per Cent</th>
<th>Atom</th>
<th>Eq. Wt</th>
<th>Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>12</td>
<td>72</td>
<td>47.05</td>
<td>Anhydrous Sugar</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>9</td>
<td>5.9</td>
<td>Water</td>
<td>2</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9</td>
<td>72</td>
<td>47.05</td>
<td>Crystallized Sugar</td>
<td>1</td>
</tr>
</tbody>
</table>

Anhydrous Sugar: Anhydrous Sugar: 1:153:89.47
Water: Water: 1:18:10.53
Crystallized Sugar: Crystallized Sugar: 1:171:100.00

Dr. Prout regards sugar as a secondary compound of carbon and water. Dobereiner, on the other hand, views crystallized sugar as a carbonate of hydrocarbon. Dr. Prout found that while, in the different varieties of sugar, the ratios of carbon to the elements of water varied, yet, that the relative quantity of hydrogen to oxygen was always in the proportion to form water. His statement with regard to the composition of different kinds of sugar has been already noticed (see p. 47).

Physiological Effects.—The dietetical qualities of sugar have been already stated (see pp. 48 and 49). It is a generally-received opinion that sugar has a tendency to cause flatulence and pretumoral acidity of the prime vis. Occasionally, perhaps, it may do so, but I have never observed it. Though a dyspeptic myself, and obliged to be careful as to diet, I have never experienced any injurious effects from the use of sugar, of which I am remarkably fond. In a medicinal point of view, sugar is to be regarded as a demulcent and emollient.

Uses.—The dietetical uses of sugar have been before noticed (see p. 49).

Medicinally, sugar is but little employed. In the form of lozenges, sugar candy, &c., it is slowly dissolved in the mouth to allay tickling cough. As a chemical antidote, it has been recommended in poisoning by the salts of copper, mercury, silver, gold, and lead. But any advantage procured by its use, in these cases, is referrible to its demulcent and emollient properties, and not to its chemical influence. The same remark may be made with respect to the benefit said to have been obtained by the use of the juice of the sugar-cane in poisoning by arsenious acid. Powdered white sugar is sometimes sprinkled over ulcers, to remove spongy granulations, denominated proud flesh. The same remedy has also been employed for the removal of specks on the cornea.

In pharmacy the uses of sugar are much more extensive. It serves to preserve, to give flavour, bulk, form, colour, cohesiveness, and consistence; to sub-divide and to suspend oily substances in aqueous liquids. To fulfil one or more of these objects, it is a constituent of syrups, elæosacchara, conserves, electuaries, confections, lozenges,
some pills and powders, &c. Its remarkable power of checking the oxidation of some ferruginous compounds has been already noticed (see pp. 848 and 861).

1. SYRUPUS, L.; Syrupus simplex, E. D.; Syrup; Simple Syrup. (Sugar, lb. x. [xxxix. D.]; Water, Oij. [Oj. D.] Dissolve the sugar in the water by a gentle heat.)—It is used to give flavour, cohesion, and consistence.

2. LIQUOR SACCHARI TOSTI; Caramel; Burnt Sugar.—This is a useful innocuous colouring agent. It is prepared by melting half a pound of brown sugar in an iron pot, and applying heat until the liquid acquires a deep brown colour; then adding a gallon of boiling water.

2. HORDEUM DIS'TICHON, Linn., L. E. D.—COMMON OR LONG-EARED BARLEY.

Sex. Syst. Triandria, Digynia.
(Semina integumentis nudata, L.—Decorticated Seeds, E.—Semina decorticata, D.)

History.—Pliny\(^a\), on the authority of Menander, says, barley was a most ancient aliment of mankind. It was cultivated in Egypt nearly 1500 years before Christ\(^b\). Hippocrates mentions three kinds of barley: they were, probably, \(H.\) vulgare, \(H.\) distichum, \(H.\) hexastichum.

Botany. Gen. Char.—Spikelets three together, the lateral ones usually withered, two flowered, with an upper flower reduced to a subulate rudiment. Glumes two, lanceolate-linear, with subulate awns, flattish, unequal sided, at right angles \([contrariae]\) with the paleæ almost unilateral, turned inwards \([anticae]\), herbaceous, rigid. Paleæ two, herbaceous; the inferior one (turned inwards), concave, ending in an awn; the superior one (turned outward) contiguous to the rachis, bicornate. Stamina three. Ovarium hairy at the apex. Stigma two, sessile, somewhat terminal, feathery. Scales two. entire or augmented by a lateral lobe, usually hairy or ciliated, Caryopsis hairy at the point, oblong, with a longitudinal furrow internally, adherent to the paleæ, rarely free (Kunth).

Sp. Char.—The lateral florets male, awnless: the hermaphrodite ones distichous, close-pressed to the stem, awned (Kunth).

Hab.—A native of Tartary, cultivated in this country along with three other species; viz. \(H.\) vulgare (Spring Barley), \(H.\) hexastichum (Winter Barley), and \(H.\) Zeocitron (Sprat or Battledore).

\(^a\) Hist. Nat. xviii. 14.
\(^b\) Exodus, ix. 31.
Description.—The grains (semina hordei cruda) are too well known to need description. Deprived of their husk by a mill, they form Scotch, hulled, or pot barley (hordeum mundatum). When all the integuments of the grains are removed, and the seeds are rounded and polished, they constitute pearl barley (hordeum perlatum). The farina obtained by grinding pearl barley to powder is called patent barley.

Composition.—According to Einhof 100 parts of ripe barley corns consist of husk 18.75, meal 70.05, water 11.20. The same chemist obtained from 100 parts of barley meal, fibrous matter (composed of gluten, starch, and woody fibre) 7.29, starch 67.18, gum 4.62, uncrystallizable sugar 5.21, gluten 3.52, albumen 1.15, superphosphate of lime with albumen 0.24, water 9.37, loss 1.42. Fourcroy and Vauquelin detected an odorous acrid oil, to which the odour of spirit from raw grain has been ascribed: it resides in the integuments of the grains. The hordein of Proust is said, by Raspail to be nothing but bran more minutely divided than that which remains in the sieve. The grains of barley starch have the same form and appearance as those of wheaten starch: they do not exceed 0.0098 of an inch in size.

Chemical Characteristics.—Iodine forms the blue iodide of starch when added to the cold decoction of barley. Decoction of whole barley has an acrid bitter taste, which it derives from the husk.

Physiological Effects.—The husk of barley is slightly acrid and laxative. Deprived of this (as in Scotch and pearl barley) the seeds are highly nutritious (see p. 64). The aqueous decoction of Scotch or pearl barley is emollient, demulcent, and easy of digestion.

Uses.—Barley water is employed as a demulcent and emollient drink in febrile disorders, pulmonic inflammation, and irritation of

---

c Gmelin's Handb. ii. 1344.
d Chim. Org. ii. 112.
the alimentary canal, whether produced by acrid poisons or other causes.

Administration.—Scotch and pearl barley are used in medicine. Count Rumford says, the entire grains of barley may be employed in broth with equal advantage.

1. **DECOCTUM HORDEI, L. D.; Aqua hordeata; Barley Water.**

(Barley [pearl barley], siss.; Water, Oivss. First wash away, with water, the foreign matters adhering to the barley seeds; then, half a pint of the water being poured on them, boil the seeds a little while. This water being thrown away, pour the remainder of the water, first made hot, on them, and boil down to two pints, and strain, L.—The process of the Dublin Pharmacopoeia is not essentially different).—This is a valuable drink for the invalid in febrile cases and inflammatory disorders, especially of the chest, bowels, and urinary organs. It is usually flavoured with sugar, and frequently with some slices of lemon. It is a constituent of the Enema Aloes, L., Enema Terebinthinae, L., and Decoctum Hordei compositum, L.

2. **DECOCTUM HORDEI COMPOSITUM, L. & D.: Mistura Hordei, E.; Decoctum Pectorale; Compound Decoction of Barley; Pectoral Decoction.**

(Decoction of Barley, Oiv. [Oiv. wine measure, D.]; Figs, sliced, siss. [sij. D.]; Liquorice [root] sliced and bruised, 5v. [5ss. D.]; Raisins [stoned], siss. [sij. D. and Water, O. L.] Boil down to two pints, and strain.—The process of the Edinburgh Pharmacopoeia is essentially the same).—This decoction is emollient, demulcent, and slightly aperient. It is employed in the same cases as the simple decoction.

1. **Byne; Bovq; Maltum; Brasium; Malt.**—This is barley made to germinate by moisture and warmth, and afterwards dried, by which the vitality of the seed is destroyed. When scorched it is called high-dried malt. During the process the quantity of sugar in the seed is increased. Wort (Decoctum seu Infusum Bynes, Brasii vel Malti) is nutritious, and has been used as an antiscorbutic and tonic. Macbride recommended it in scurvy; but it is apt to increase the diarrhoea. As a tonic it has been used in scrofulous affections, purulent discharges, as from the kidneys, lungs, &c. and in pulmonary consumption. The decoction is prepared by boiling three ounces of malt in a quart of water. This quantity may be taken daily.

2. **Cerevisia. Malt Liquor; Beer and Ale.**—A fermented decoction of malt and hops. It is a refreshing and nutritive beverage. Its dietetical and intoxicating properties have been already stated, (see pages 70, 71, and 358). For medicinal purposes Bottled Porter or Stout (Cerevisia Lagenoria) is in general to be preferred. It is used as a restorative in the latter stage of fever, and to support the powers of the system after surgical operations, severe accidents, &c.

3. **Cerevisiae Fermentum, L. D. — Yeast; Barm; Zumin.** The sub-

---

* Essay on Feeding the Poor, p. 291, 1800.
* See also a paper by Dr. Badenoch, Med. Obs. and Inq. vol. v. p. 61.
Fig. 155.

stance termed yeast from Must (Mustum) and Wort during fermentation, partly as a scum, partly as a sediment. Examined by a microscope it is found to consist of globular, ovoid, or somewhat pyriform transparent vesicles (fig. 155, a b). Sometimes they have appeared to me to contain one large granule (as in the mass of vesicles marked a), while at other times a number of very small granules are observed in each vesicle as at b). These different appearances are probably presented by the vesicles at different stages of their development. Turpin \(^1\), who spent a night in a brewery that he might examine the changes which these vesicles suffer during the fermentation of beer, states that on each vesicle one or two buds develop, each of which becomes a vesicle which remains attached to the parent one, and in this way rows of two or three adherent vesicles were produced. The vesicles thus described, Turpin regarded as constituting a new plant, which he called Torula Cervisia (Nat. Ord. Fungi, Subd. Mucedines).

In the deposit from the Porter refrigerator of Hanbury’s brewery I have observed the forms depicted in fig. 155 c, d, e, and f. These constitute the plant called by Desmazieres \(^2\), Mycoderma Cervisic. Turpin regards these as being produced by the granules of the yeast vesicle placed under favourable circumstances \(^3\).

As, then, it is evident that the vesicles found in yeast are organized beings, it has been suggested that the process of vinous fermentation is the immediate consequence of their vegetation. When placed in a saccharine fluid they are supposed to grow at the expense of the sugar, which is partly converted into alcohol, while the plant gives out carbonic acid. According to this view, therefore, fermentation is the consequence of a vital act. By heat and the action of various poisons, the yeast plant loses its vitality, and with it its power of exciting fermentation.

Considered in a chemical point of view, yeast possesses many of the properties of gluten. Independently of the acids and salts which precipitate with it, it is composed of Oxygen, Hydrogen, Carbon, Nitrogen, and Sulphur\(^4\).

Yeast has been administered internally as a tonic and antiseptic in typhoid fevers. Dr. Stoker \(^5\) states, that it usually acts as a mild laxative, improves the condition of the alvine evacuations, and is more effectual in removing petechiae and black tongue than any other remedy. It is admissible where cinchona and wine cannot be employed, on account of the inflammatory symptoms. The dose of it is two table-spoonfuls every third hour, with an equal quantity of camphor mixture. Enemata of yeast and asafoetida are said, by the same writer, to be efficacious against typhoid tympany. Externally yeast is employed in the form of poultice.

1. **Cataplasma Fermenti**, L.; Cataplasma Fermenti Cerevisiae, D.; Yeast

---


\(^2\) Annales des Sciences naturelles, t. x. p. 42, 1827.

\(^3\) For further details respecting these vesicles I must refer the reader to the works already quoted, as well as to the memoirs of MM. Cagniard Latour and Turpin, of Schwann, Keitzing, and Quevenne, referred to on a former occasion (see pp. 346-47, foot note).

\(^4\) Quevenne, Journ. de Pharm. t. xxiv. p. 281.

Poultice. (Flour, lbj.; Yeast of Beer, Oss. Mix, and apply a gentle heat until they begin to swell).—It is applied, when cold, to fetid and sloughing sores as an antiseptic and stimulant: it destroys the fetor, often checks the sloughing, and assists the separation of the dead part. It should be renewed twice or thrice a day. I have frequently heard patients complain of the great pain it causes. The carbonic acid is supposed to be the active ingredient.

2. *CAPATLASMA FECULE CERVISILE*; Poultice of the Grounds of Beer.—(Grounds of Stale Beer; Oatmeal; as much of each as may be required to make a poultice).—It is applied cold twice or thrice a day, in the same cases as the preceding preparation, to which its effects are analogous. Sometimes Maltmeal is substituted for Oatmeal (*Cataplasma Bynes*).

3. *AVE'NA SATI'VA, Linn. L. E. D.—THE COMMON OAT.*

**History.**—The oat is not mentioned in the Old Testament. Theophrastus, Dioscorides, and Pliny, speak of it.

**Botany.** 

*Fig. 156.*

**Avena Sativa.**

a. The white oat. 
b. Siberian or Tartarian oat.


**Hab.**—Cultivated in Europe.

Several varieties are cultivated in this country; viz. the *White Oat*, the *Black Oat*, the *Red Oat*, the *Poland Oat*, the *Friezland or Dutch Oat*, the *Potatoe Oat*, the *Georgian Oat*, and the *Siberian or Tartarian Oat* a.

**Description.**—Oats (*semina avena cruda*) are too well known to need description. When deprived of their integuments they are called *groats* (*semina integumentis nudata, L.; avena excorticata seu grutum*): these, when crushed, are denominated Embden groats.

---

a. *Loudon’s Encyclopaedia of Agriculture.*
Oatmeal (farina ex seminibus, D.) is prepared by grinding the grains. It is not so white as wheaten flour, and has a somewhat bitterish taste.

Composition.—The grains consist, according to Vogel, of meal 66, and bran 34. The dried meal is composed of fixed oil 2.0, bitter matter and sugar 8.25, gum 2.5, grey albuminous matter, 4.3, starch 59, husk and loss 23.95.

Chemical Characteristics.—Iodine forms the blue iodide of starch with the cold decoction of oats.

Physiological Effects.—Oatmeal is nutritive, though less so than wheaten flour. Considered medicinally, groats and oatmeal are nutritious, easily digestible, and yield an excellent diet for the invalid.

Uses.—In medicine we employ gruel prepared from groats or oatmeal, as a mild, nutritious, and easily-digested article of food in fevers and inflammatory affections. In poisoning by acrid substances, it is employed as an emollient and demulcent. It is given after the use of purgatives, to render them more efficient and less injurious. Poultices are sometimes made with oatmeal.

1. DECOCTUM AVENÆ; Water Gruel.—This is prepared by boiling an ounce of oatmeal with three quarts of water to a quart, constantly stirring; strain, and when cold decant the clear liquid from the sediment. Sugar, acids, or aromatics, may be employed for flavouring.

2. PULVIS PRO CATAPLASMATE, D.; Powder for a Poultice.—(Linseed, which remains after the expression of the oil, one part; Oatmeal, two parts. Mix.)—This is an unnecessary formula. Moreover, it is a bad one; for linseed-meal should be prepared from unpressed flax seed.

3. CATAPLASMA SIMPLEX, D.; Simple Poultice. (Made with the above powder and boiling water. The poultice should be smeared over with olive oil).—Used as an emollient application to allay pain and promote suppuration.

4. TRITICUM VULGARE, var. β, HYBER'NUM, Kunth.—COMMON WHEAT.

Triticum hybernum, L. D.—Triticum vulgare, E.

Sex. Syst. Triandria, Digynia.

(Farina; farina seminum: Amylum; seminum, fecula, L.: Amylum; fecula of the seeds, E.: Farina seminum, D.)

History.—In the earlier ages it was an esteemed article of food, and is frequently spoken of by Hippocrates. Pliny describes several kinds of it.

* See p. 64 for its dietetical properties.
* Cullen, op. cit.
* t muti ii.
* De Dieta.
COMMON WHEAT.

Botany. Gen. Char.—Spikelets three or many flowered: the fructiferous rachis generally articulated, flowers distichous. Glumes two, nearly opposite, almost equal, awnless or awned: the upper one bicarinate; the keels more or less aculeato-ciliate. Stamina three. Ovary pyriform, hairy at the apex. Stigmas two, terminal, sub-sessile, feathery; with long, simple, finely-toothed hairs. Scales two, generally entire and ciliated. Caryopsis externally convex, internally concave, and marked by a deep furrow, distinct, or adhering to the paleae (Kunth).

Sp. Char.—Spike four-cornered, imbricated; with a tough rachis. Spikelets generally four-flowered. Glumes ventricose, ovate, truncate, mucronate, compressed below the apex, round, and convex at the back, with a prominent nerve. Flowers awned or awnless. Grains loose (Kunth).

a. aestivum: annual; glumes awned.
b. hybernum: biennial; glumes almost awnless.

Hab.—It is a native of the country of the Baschkirs, and is cultivated in Europe.

Besides the above two varieties, no less than five other kinds of Triticum have been cultivated for their grain.

Fig. 157.

Triticum.—Wheat.

a, T. vulgare, s. aestivum.
b, T. vulgare, b. hybernum.
c, T. turgidum, (compositum).
d, T. turgidum.
e, T. polonicum.
f, T. Spelta.
g, T. monococcum.

description.—Wheat (semina tritici) is reduced by grinding and sifting in mills into flour (farina; seminum farina, L. D.; farina tritici) and bran (furfur tritici). The same wheat yields several qualities of flour, distinguished as firsts, or fine flour; seconds; and thirds, or middlings.

Composition.—The following are the constituents of several kinds of wheat.

Vauquelin, Journ. de Pharm. viii 333.
The substance commonly termed gluten is a compound of vegetable albumen, which is insoluble in alcohol, of mucin, soluble in hot alcohol, and of glutin or gliadine, soluble both in hot and cold alcohol.

**Chemical Characteristics.**—The cold decoction of wheat-flour forms, with tincture of iodine, the blue iodide of starch. If wheat-flour be made into a paste, with water, and then kneaded under a stream of water until the liquid runs off colourless, the residue in the hand is gluten. The water, on standing, deposits starch; but retains in solution gum, sugar, and some phosphatic salts. Nitric acid gives wheat-flour a fine orange-yellow colour. Recently-prepared tincture of guaiacum forms a blue colour with good wheat-flour.

**Manufacture of Starch.**—Starch is procured by steeping wheat-flour in water for one or two weeks, during which time acetous fermentation takes place. The acid liquor (sours) is drawn off, and the impure starch washed on a sieve, to separate the bran. What passes through is received in large vessels, termed frames. Here the starch is deposited. The sour liquor is again drawn off, and the slimes removed from the surface of the starch, which is to be again washed, strained, and allowed to deposit. When, by these processes, the starch has become sufficiently pure, it is boxed, that is, it is placed in wooden boxes perforated with holes and lined with canvas, where it drains. It is then cut in square lumps, placed on bricks, to absorb the moisture, and dried in a stove. While drying it splits into prismatic pieces, similar to grain tin, or columns of basalt. The greater part of the starch used for stiffening linen (called Poland and glaze starch) is coloured blue by finely-powdered smalt, or by indigo. This is not adapted for medicinal purposes. White (sometimes called French) starch should be employed. A fine variety of this is termed patent white starch.

Starch may also be procured by the action of a solution of a caustic alkali (soda or potash) on wheat-flour or rice meal, by which the gluten is dissolved.²

**Properties of Starch.**—Pure wheat starch (amylum) is white and almost odourless and tasteless. Examined by the microscope it is found to consist of particles varying considerably in size; the

---

² See the specification of Jones’s patent in the Repertory of Patent Inventions, April, 1841.
smallest and the largest predominating, the intermediate ones being scarcest. Their shape is for the most part rounded. Their surface is uneven. The hilum is surrounded by concentric rings, but is very indistinct, until a gentle heat is applied to the water in which the particles are placed. Sometimes it is indicated by a round spot or a line: the rings may be traced to the edge of the particle. The particles crack, when heated, at the edges. If the particles be made to roll over in water, they are observed to be oblate spheroids, one of the flattened faces perhaps being somewhat more convex than the other. Viewed edgeways (fig. 158 a.) a black line is observed: this perhaps arises from the edge being out of focus.

Boiled in water, wheat starch yields a mucilage, which, when sufficiently concentrated, forms a jelly (hydrate of starch) in cooking. With iodine the decoction when cold forms the blue iodide of starch, the colour of which is destroyed by alkalis and by heat.

**Composition of Starch.**—Wheat starch has the following composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per cent.</th>
<th>F. Marcelet</th>
<th>Prout.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>7</td>
<td>42</td>
<td>43.75</td>
<td>42.80</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>6</td>
<td>6</td>
<td>6.25</td>
<td>6.35</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6</td>
<td>48</td>
<td>49.7</td>
<td>50.85</td>
</tr>
</tbody>
</table>

Wheat Starch ........... 1 .... 96 .... 100:00 .... 100:1 .... 100:00

Prout’s table of the composition of starchy substances has been already given (see p. 47).

**Physiological Effects.**—Wheat surpasses all other cereal grains in its nutritive qualities, in consequence of containing more gluten. It yields the finest, whitest, and most digestible kind of bread. Flour is employed in medicine to form emollient and demulcent preparations.

Wheat-starch, though highly nutritious, is not employed alone as an article of food. Its taste is somewhat disagreeable, and it is more difficult of digestion than other starchy substances.

**Uses.**—Wheat-flour is rarely used in medicine. It is occasionally sprinkled over burnt or scalded parts, and is a constituent of some poultices, as the Yeast Poultice (p. 904). Mixed with water, so as to form a thin mucilage, it may be employed as a chemical antidote in some cases of poisoning, as by the bichloride of mercury, sulphate of copper, iodine, &c. It is used in pharmacy for enveloping pills.

Starch powder is used as a dusting powder to absorb acrid secretions and prevent excoriations. It is used as an emollient and demulcent clyster in inflammatory conditions of the large intestines, and as a vehicle for the formation of other more active enemata. It is an antidote for poisoning by iodine, and is sometimes given in combination with this substance to prevent its local action (vide p. 247).
It enters into the composition of the *Pulvis Tragacanthae compositus*, Ph. L.

**DECOCTUM AMYLI, L.; Mucilago Amyli; Decoction or Mucilage of Starch.** (Starch, iv. [iv. D.]; Water, Oj. Rub the starch with the water gradually added, then boil for a short time)—It is sometimes used alone, as an enema in dysentery, irritation of the rectum, &c. It is a constituent of the *Enema Opii, L.*

1. **Panis Triticeus. Wheaten Bread.**—Crumb of Bread (*Mica Panis*) is sometimes used in the formation of pills; but is objectionable for this purpose, on account of the pills thus made becoming excessively hard by keeping. Furthermore, in some cases, the constituents of bread decompose the active ingredients of the pills. Thus the chloride of sodium of bread decomposes nitrate of silver. Crumb of bread is most valuable for the preparation of poultices. The *Bread and Water Poultice* is prepared by covering some crumb of bread in a basin with hot water: after it has stood for ten minutes, pour off the excess of water, and spread the bread about one-third of an inch thick on soft linen, and apply to the affected part. Sometimes lint dipped in oil is applied beneath the poultice. Decoction of poppy, or Goulard's water, may be substituted for common water.

This is a valuable application to phlegmonous inflammation. A *Bread and Milk Poultice*, to which lard is sometimes added, is also used to promote suppurating; but it should be frequently renewed, on account of its tendency to decompose. Both poultices are used in the treatment of irritate ulcers. *Toasted Bread* (*Panis tostus*) is used in the preparation of *Toast-water* (*Infusum Panis tostit*), a mild, agreeable drink in febrile disorders, and in some dyspeptic cases. *Brown or Bran Bread* (*Panis furfuraceus*) is used by persons troubled with habitual costiveness: it acts as a slight laxative. It sometimes causes flatulency and acidity. *Biscuit* (*Panis biscoctus*) is used by some dyspeptics as a substitute for fermented bread. *Sea biscuit* (*Panis nauticus*) is preferred by some.

(The dietetical properties of bread have been before noticed, see pp. 64-65.)

2. **Furfur Tritici. Bran.**—Decoction or infusion of bran is sometimes employed as an emollient foot-bath. It is also taken internally as a demulcent in catarrhal affections. Its continued use causes a relaxed condition of bowels.

5. **Seca'łe Cere'ālē, Linn.**—**COMMON RYE.**

**Sex. Syst.** Triandria, Digynia.

(Semina, Offic.)

**History.**—Rye is mentioned in the Old Testament.

**Botany.** Gen. Char.—*Spikelets* two-flowered. *Florets* sessile, distichous, with the linear rudiment of a third terminal one. *Glumes* two, herbaceous, keeled, nearly opposite, awnless or awned. *Pales* two, herbaceous; the lower one awned at the point, keeled, unequal sided, broadest and thickest on the outer side; the upper shorter and bicarinate. *Stamina* three. *Ovarium* pyriform, hairy. *Stigmata* two, nearly sessile, terminal, feathery, with long, simple, finely-toothed hairs. *Scales* two, entire, ciliate. *Caryopsis* hairy at the point, loose (*Kunth*).

Sp. Char.—*Glumes and awns* scabrous (*Kunth*).

Secale cereale.

1. *a*, ovaryum, with its hairs, *b*; *c*, *e*, the plumose stigmata; *f, f*, position of paleae; *g*, receptacle.
2. mature grain, with the embryo at the base and the remains of the stigmata at the top.
3. *f, f*, paleae; *g*, receptacle.
4. entire plant.

**Hab.**—The Caucasian-Caspian desert. Cultivated in Europe.

**Composition.**—The grains consist, according to Einhof, of meal, 65·6; husk, 24·2; and moisture, 10·2. The meal is composed of uncrystallizable sugar, 3·28; gum, 11·09; starch, 61·07; husky matter (woody fibre), 6·38; gluten, soluble in alcohol, 9·48; albumen, 3·28; undetermined acid and loss, 5·62.

**Chemical Characteristics.**—A cold decoction of rye forms with iodine the blue iodide of starch.

**Physiological Effects.**—Rye-flour is nutritive, but less so than wheat-flour. (See p. 64.)

**Use.**—Rye-bread is in common use among the inhabitants of the northern parts of Europe, but in this country is rarely employed. Rye-pottage (*Pulmentum vel Jusculum secalinum*) is said to be a useful article of diet in consumptive cases.

6. Secale cornutum.—Spurred Rye or Ergot.

(Ergota, L. E.)

**History.**—No undoubted reference to ergot is found in the writings of the ancients. The disease produced by it is supposed to be referred to in the following passage:—“1089. A pestilent year, especially in the western parts of Lorraine, where many persons became putrid, in consequence of their inward parts being consumed by St. Anthony’s fire. Their limbs were rotten, and became black like coal. They either perished miserably; or, deprived of their

---

7 Gmelin, Handb. d. Chemie, ii. 1343.
8 Pearson, Pract. Synop. of the Mat. Alim. 91.
patridid hands and feet, were reserved for a more miserable life. Moreover many cripples were afflicted with contraction of the sinews [nerorum contractio]."

The first botanical writer who notices ergot is Lonicera. It seems to have been employed by women to promote labonr pains long before its powers were known to the profession. Camerarius in 1683 mentions that it was a popular remedy in Germany for accelerating parturition. In Italy and France also it appears to have been long in use.

Botany.—The nature and formation of ergot are subjects on which botanists have been much divided in opinion.

1. Some regard ergot as a fungus growing between the glumes of grasses in the place of the ovary. Otto von Münchhausen; Schrank; De Candolle; Fries; Wigges; and Berkeley have adopted this opinion, and have described ergot as a fungus under the name of Spermoedia Clavus. Fries (Clavaria Clavus, Münch.; Neckerion Clavus, De Cand.) Fries and Berkeley, however, evidently entertain some doubts respecting its nature; for the first adds to the generic character of Spermoedia "Semina granenum morbosum," and the second says, "it appears to be only a diseased state of the grain, and has scarcely a sufficient claim to be admitted among fungi as a distinct genus."

Against this opinion may be urged the circumstance noticed by Tessier, that a part only of the grain may be ergotized. Moreover, the scales of the base of the ergot, the frequent remains of the stigma on its top, and the articulation of it to the receptacle, prove that it is not an independent fungus, but an altered grain.

2. Some regard ergot as a diseased condition of the ovary or seed. The arguments adduced against the last opinion are in favour of the present one. Though a considerable number of writers have taken this view of the nature of ergot, there has been great discordance among them as to the causes which produced the disease.

a. Some have supposed that ordinary morbific causes, as moisture combined with warmth, were sufficient to give rise to this diseased condition of the grain. Tessier and Willdenow appear to have been of this opinion.

b. Some have ascribed the disease to the attack of insects or other animals. Tillet, Fontana, Rédé, and Field supported this view, which, I may add, has subsequently been satisfactorily disproved.

Extract from the works of Siegbert, in the Recueil des Histor. des Gaules et de la France, tom. viii. p. 239. A passage somewhat similar to the above, with the addition of the following, "the bread which was eaten at this period was remarkable for its deep violet colour," is quoted by Bayle (Biblioth. Therap. tom. iii. p. 374), from Mezeray, Abrégé Chronologique. But I cannot find the passage in the first and best edition of Mezeray's Abrégé Chron. 3 vols. 1769; or in his Histoire de France; or in his Mémoires Hist. et Critiques. Whether or not it be in the second and less perfect edition of Mezeray's Abrégé Chronologique, I am unable to decide, not having seen this work.

The etymology of the word ergot is very doubtful. Whiter (Etymologicum Universale, ii. 594) thinks that it is derived from arguo, and is attached to such terms as urgeo. It was anciently written argot.

 Extract from the works of Sigebert, in the Recueil des Histor. des Gaules et de la France, tom. viii. p. 239.

a. Some have supposed that ordinary morbific causes, as moisture combined with warmth, were sufficient to give rise to this diseased condition of the grain. Tessier and Willdenow appear to have been of this opinion.

b. Some have ascribed the disease to the attack of insects or other animals. Tillet, Fontana, Rédé, and Field supported this view, which, I may add, has subsequently been satisfactorily disproved.
Some, dissatisfied with the previously assigned causes of the disease, have been content with declaring ergot to be a disease, but without specifying the circumstances which induce it. Mr. Bauer, who closely watched the development of ergot during eight years (1805-13), and has made some beautiful drawings of it in different stages, arrived at this conclusion; as also Phoebus.

Others have referred the disease to a parasitic fungus. This opinion, which must not be confounded with that entertained by De Candolle and others (vide supra), has been adopted and supported by Léveillé, in 1826, by Dutrochet, Smith, and by Quekett.

The statements of Léveillé, Phillipar, Smith, and Quekett, leave, I think, but little doubt that ergot is a disease of the grain caused by the presence of a parasitical fungus. This view is supported by the observations of Wiggers—that the white dust (sporidia, Quek.) found on the surface of ergot will produce the disease in any plant (grass?) if sprinkled in the soil at its roots. Mr. Quekett has infected grains of corn by immersing them in water in which the sporidia of the Ergotetia abortifaciens were contained. The plants which were produced by the germination of the grains were all ergotized. Phæbus, who has most accurately depicted these sporidia, denies that they are spores, on the ground that they are of variable size, and enclose other smaller bodies. But these objections deserve no attention, for, in the first place, by calling these bodies sporidia, we avoid deciding whether they are sporangia or spori; and, secondly, the sporidia of other plants, of the fungic nature of which botanists entertain no doubt, also enclose smaller bodies (sporidiola, Berk.)

Mr. Quekett, who has most carefully examined the development of ergot, says that the first appearance of the ergot is observed by the young grain and its appendages becoming covered with a white coating, composed of multitudes of sporidia (fig. 140 a, p. 886) mixed with minute cobweb-like filaments. (Ergotetia abortifaciens, see p. 886, fig. 140 H. I.) This coating extends over all the other parts of the grain, cements the anthers and stigmas together, and gives the whole a mildewed appearance. When the grain is immersed in water, the sporidia fall to the bottom of the liquid. A sweet fluid, at first limpid, afterwards viscid, is found in the affected flower at this stage, and, when examined by the microscope, is found to contain the sporidia just referred to. Phillipar says this fluid oozes from the floral centre; and Mr. Quekett, who at first thought that it had an external origin, is now convinced that it escapes from the ergot or the parts around it.

If we examine the ergot when about half-grown (fig. 160), we...
find it just beginning to show itself above the paleæ, and presenting a purplish black colour. By this time it has lost in part its white coating, and the production of sporidia and filaments has nearly ceased. At the upper portion of the grain, the coating now presents a vermiciform appearance, which Léveillé describes as constituting cerebriform undulations. These are beautifully depicted in Mr. Bauer's drawings (fig. 160, A, D, E). Léveillé regards this terminal tubercle of the grain as a parasitical fungus, which he calls the *Sphacelia Segetum*. But these undulations are merely masses of sporidia: for if a little be scraped off with a knife, then moistened, and examined by the microscope, we find nothing but myriads of sporidia. The ergot now increases in a very rapid manner.

**Fig. 160.**

*A. Side view of a longitudinal section of an infected grain, soon after fertilization, when the disease makes its first external appearance: magnified eight times in diameter. B. Front view of a section of the above infected grain, cut at letter a: magnified sixteen times in diameter. C. Ditto, cut at letter b: magnified sixteen times in diameter. D. Side view of an unripe but advanced ergotized grain, at the upper part of which is the tuberculated portion having a vermiciform appearance, and constituting the fungus (*Sphacelia Segetum*) of Leveillé. E. Longitudinal section of the grain. F. A full-grown ergot, within its floret, magnified twice its diameter.*

The mature ergot (fig. 160, A,) projects considerably beyond the paleæ. It has a violet-black colour, and presents scarcely any filaments and sporidia.

The number of grains in each spike which become ergotized varies considerably: there may be one only, or the spike may be covered with them. Usually, the number is from three to ten.

Besides rye, many other grasses (Phœbus has enumerated 31...
species) are subject to this alteration, called the spur or ergot. In the summer of 1838 nearly all the grasses growing in Greenwich marshes were found ergotized. Professor Henslow found it in wheat which had been sent to the miller. But the disease is not confined to the Gramineae, the Cyperaceae are also subject to it, and perhaps also Palmaceae.

To the agriculturist, an important subject of inquiry is the predisposing causes of ergot.

Very little of a satisfactory nature has, however, been ascertained on this point. One fact, indeed, seems to have been fully established, viz. that moisture, which was formerly thought to be the fertile source of the spur, has little, if any, thing, to do with it.

Commerce.—Ergot is imported from Germany, France, and America. Mr. Butler, of Covent Garden Market, tells me that about 1½ tons were imported in the year 1839. The duty is five shillings per cwt.

Description of the Ergot.—Spurred rye, or ergot (ergotum), consists of grains which vary in length from a few lines to an inch, or even an inch and a half, and whose breadth is from half a line to four lines. Their form is cylindrical or obscurely triangular, with obtuse angles, tapering at the extremities (fusiform), curved like the spur of a cock, unequally furrowed on two sides, often irregularly cracked and fissured. The odour of a single grain is not detectable, but of a large quantity is fishy, peculiar, and nauseous. The taste is not very marked, but is disagreeable, and very slightly acrid. The grains are externally purplish brown or black, somewhat glaucous, moderately brittle, the fractured surface being tolerably smooth, and whitish or purplish white. Their sp. gr. is somewhat greater than that of water, though when thrown into this liquid they usually float at first, owing to the adherent air. The lower part of the grain is sometimes heavier than the upper.

When examined by the microscope,
the glaucous condition of the grains is found to depend on the presence of numerous sporidia of the Ergotæia abortifaciens. The violet coat is made up of longitudinally-elongated cells. The tissue of the internal portion of the ergot is composed of the rounded cellular tissue, the cells having the form and regularity of the cells of the normal or healthy albumen, though they are smaller. In each of these cells are from one to three rounded bodies, which, Mr. Quekett states, are globules of oil, for they are lighter than water, are not made blue by iodine, but are soluble in ether. If the structure of ergot be examined after the grains have been dried and remoistened, the tissue presents a most irregular appearance.

Phoebus regards the inner substance of the ergot as the altered albumen, for the embryo does not appear to be formed. The violet coat he considers to be the external (or external and internal) degenerated seed-coat. The little heart-shaped body (Mützchen) at the top of the ergot (fig. 160, f.) he regards as the remains of the degenerated and elevated pericarp, together with some other more external parts of fructification, cemented together by the violet-whitish mass (sporidia, Quek.) This mass, he observes, is obviously a new formation, originating from the already-described saccharine fluid. But Mr. Quekett has shown the body, at the top of the ergot, to be the remains of the hairy crown of the grain, of the stigmata, and withered elevated pericarp.

Deterioration.—The ergot of rye is fed on by a little acarus, which is about one-fourth the size of the cheese-mite. This animal destroys the interior of the ergot, and leaves the grain as a mere shell. It produces much powdery excrementitious matter (Quekett). In four months, 7½ ounces of this fecal matter of the acarus were formed in seven pounds of ergot. I have some ergot which has been kept for four years in a stoppered glass vessel without being attacked by the acarus, and it has all the characteristics of good ergot. It is advisable, however, not to use ergot which has been kept for more than two years.

Composition.—Ergot was analyzed, in 1816, by Vauquelin¹; in 1817, by Pettenkofer²; in 1826, by Winkler³; in 1829, by Maas⁴; in 1831, by Wiggers⁵; and more recently by Chevallier⁶. The results obtained by Chevallier were analogous to those of Wiggers.

**Vanquelin's Analysis.**

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale yellow matter, soluble in alcohol, and tasting like fish-oil.</td>
<td></td>
</tr>
<tr>
<td>White bland oil, very abundant.</td>
<td></td>
</tr>
<tr>
<td>Violet colouring matter, insoluble in alcohol, soluble in water.</td>
<td></td>
</tr>
<tr>
<td>A fixed acid (phosphoric?)</td>
<td></td>
</tr>
<tr>
<td>Vegetable (ammonium)</td>
<td></td>
</tr>
<tr>
<td>Vegeato-animal or nitrogenous matter, prone to putrefaction, and yielding ammonia and oil by distillation.</td>
<td></td>
</tr>
<tr>
<td>Free ammonia, disengaged at 212° F.</td>
<td></td>
</tr>
</tbody>
</table>

**Viggers's Analysis.**

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergotin</td>
<td>125</td>
</tr>
<tr>
<td>Peculiar fixed oil</td>
<td>35-89</td>
</tr>
<tr>
<td>White crystallizable fat</td>
<td>1-05</td>
</tr>
<tr>
<td>Cerein</td>
<td>0-76</td>
</tr>
<tr>
<td>Fungin</td>
<td>40-19</td>
</tr>
<tr>
<td>Vegetable ammonium</td>
<td>7-70</td>
</tr>
<tr>
<td>Peculiar saccharine matter</td>
<td>1-55</td>
</tr>
<tr>
<td>Gummy extractive, with red colouring matter</td>
<td>2-33</td>
</tr>
<tr>
<td>Albumen</td>
<td>1-45</td>
</tr>
<tr>
<td>Superphosphate of potash</td>
<td>4-42</td>
</tr>
<tr>
<td>Phosphate of lime, with trace of iron</td>
<td>0-29</td>
</tr>
<tr>
<td>Silica</td>
<td>0-14</td>
</tr>
<tr>
<td>Ergot</td>
<td>102-20</td>
</tr>
</tbody>
</table>

¹ Phoebus, p. 101.
³ Ann. Chim. iii. 337.
⁴ Buchner's Repert. iii. 65.
⁵ Christison, On Poisons, 3d ed. 831.
⁶ Schwartze, Pharm. Tabell. 2d Ausg. 140.
⁷ Phoebus, Gifte der Köche, 102.
1. Ergotin was procured by digesting ergot with ether, to remove the fatty matter, and then in boiling alcohol. The alcoholic solution was evaporated, and the extract treated by water. The ergotin remained undissolved. It was brownish red, with an acid bitter taste, and, when warmed, had a peculiar but unpleasant odour. It was soluble in alcohol, but insoluble in water or ether. It proved fatal to a hen. Nine grains of it were equal to an ounce and a half of ergot. It appears then, that though a poisonous principle, it is probably not the agent which acts on the uterus, for the latter is soluble in water, whereas ergotin is not. It is possible, however, that it may be rendered soluble in water by combination with some other body.

2. Oil of Ergot.—As this is now used in medicine, its properties will be described hereafter (see p. 927.).

There are no good grounds for suspecting the existence of either hydrocyanic acid or phosphate of morphia in ergot, as supposed by Pettenkofer.

Chemical Characteristics.—Ergot is inflammable, burning with a clear yellowish white flame. The aqueous infusion or decoction of ergot is red, and possesses acid properties. Both acetate and diacetate of lead cause precipitates in a decoction of ergot. Iodine gives no indication of the presence of starch. Nitrate of silver causes a copious precipitate soluble in ammonia, but insoluble in nitric acid. Tincture of nutgalls also produces a precipitate (tannate of ergotin?). Alkalis heighten the red colour of the decoction.

Physiological Effects.—Great discrepancy is to be found in the accounts published respecting the influence of spurred rye on man and animals. While the majority of experimenters or practical observers concur in assigning to it energetic powers, others have declared it harmless.

a. On Vegetables.—Schiübler and Zeller have tried its effects on plants, and I infer from their statements that they found it poisonous.

b. On Animals.—Accidental observation and direct experiment concur in showing that in most instances spurred rye acts as a poison to the animal economy. But, as Phœbus correctly observes, we cannot call it a violent poison, since drachms and even ounces are required to destroy small animals (e. g. rabbits and pigeons).

It has proved poisonous to flies, leeches, birds (geese, ducks, pigeons, common fowls, &c.), and mammals (dogs, cats, pigs, sheep, rabbits, &c.) Birds and mammals refuse to take it even mixed with other kinds of food. Diez gives the following as the symptoms produced by it in dogs who are compelled to swallow it:—"Great aversion to the ergot, discharge of saliva and mucus from the mouth, vomiting, dilatation of the pupil, quickened respiration and circulation, frequent moanings, trembling of the body, continual running round, staggering gait, semi-

---

r Marx, Die Lehre v. d. Giften, ii. 107.
s Quoted by Phœbus, op. cit. p. 106.
paralysis of the extremities, especially the hinder ones, sometimes diarrhoea; sometimes hot anus, increased formation of gas in the alimentary canal; faintness and sleepiness, with great thirst, but diminished appetite, remained. Death followed under gradually increasing feebleness, without being preceded by convulsions. To the less constant symptoms belong inflammation of the conjunctiva, and the peculiar appearance of turning round in a circle from right to left." Similar observations as to its injurious operation have been made by Robert. In some cases, abscess and gangrene of various parts of the body, with dropping off of the toes, and convulsions, have been noticed. A strong decoction injected into the vein of a dog caused general feebleness, paralysis of the posterior extremities, vomiting, and death.

But there are not wanting cases apparently shewing that spurred rye has no injurious action on animals. The most remarkable and striking are those related by Block. In 1811, twenty sheep ate together nine pounds of it daily for four weeks without any ill effects. In another instance, twenty sheep consumed thirteen pounds and a half daily, for two months, without injury. Thirty cows took together twenty-seven pounds daily, for three months, with impunity; and two fat cows took, in addition, nine pounds of ergot daily, with no other obvious effect than that their milk gave a bad caseous cream, which did not yield good butter. These statements furnish another proof to the toxicologist that the ruminants suffer less from vegetable poisons than other animals.

Another interesting topic of inquiry is the action of ergot on the gravid uterus of mammals. Chapman says "it never fails, in a short time, to occasion abortion." We have the testimony of Percy and Laurent, that a decoction injected into the veins of a cow caused the animal to calve speedily; and in one out of three experiments, Mr. Combes has stated, the ergot caused the abortion of a bitch. Diez found that it caused uterine contractions in dogs, rabbits, and sows. Large doses given to bitches induced an inflammatory condition of the uterus, and destroyed both mother and her young. However, in opposition to these statements, we have the evidence of Chatard, Warner, Villeneuve, and others, who failed in producing abortion with it.

I am indebted to Mr. Youatt, Veterinary Surgeon to the Zoological Society, and Editor of the Veterinarian, for the following note respecting the effects of ergot on animals:

"I have, for the last six or seven years, been in the habit of administering the ergot of rye to quadrupeds in cases of difficult or protracted parturition, in order to stimulate the uterus to renewed or increased action. In the monogastric, if I may venture to use the

---

1 Christison, op. cit. p. 832.
2 Gaspard, Journ. de Phys. expér. ii. 35.
3 Phoebus, op. cit. p. 107.
4 Elem. of Therap. i. 483, 4th ed.
5 Neal, Researches respecting Spar or Ergot of Rye. p. 90.
6 Phoebus, p. 106.
7 Neal, op. cit.
term, I have never known it fail of producing considerable effect, even when the uterus had been previously exhausted by continued and violent efforts. In the *ruminant*, with its compound stomach or stomachs, I have witnessed many a case of its successful exhibition. I have had recourse to it in the cow, the sheep, and the deer, both foreign and domestic. Parturition has not always been accomplished, from false presentation or other causes, but the uterus has in every case responded—it has been roused to a greater or less degree of renewed action. On the other hand, there are cases recorded by veterinary practitioners, in which it has been given in very large quantities without producing the slightest effect. I have always attributed this to a certain degree of forgetfulness of the construction of the stomachs of ruminants. If the medicine, as is too often the case, is poured hastily down, and from a large vessel, it breaks through the floor of the oesophagean canal and falls into the rumen, and there it remains perfectly inert. But if it is suffered to trickle down the oesophagean canal, although a portion of it may still enter the rumen, the greater part will flow on through the oesophagean canal and the manyplies into the fourth or villous stomach, and produce the desired effect."

\* \* \*

\gamma. On Man.—These may be noticed under two heads: 1, effects of single doses; 2, effects of its continued use as an article of food.

1. In single or few doses.—Hertwig a, Lorinser b, Jorg c, and Diez d, who have endeavoured to ascertain the effects of ergot by experiment, agree in stating that, in doses of from half a drachm to two drachms, nausea, inclination to vomit, dryness of the throat, great thirst, aversion to food, uneasiness or actual pain in the abdomen, occasionally alvine evacuations, weight and pain in the head, giddiness, in some cases stupor and dilatation of pupils, have resulted from its use. It deserves, however, to be noticed, that these effects have not been noticed by some experimenters e.

The effects produced by the use of single or a few doses of ergot may be conveniently arranged under four heads.

a. Effects on the uterine system. (Uterine contractions.)—The action of spurred rye on the uterus when labour has actually commenced, is usually observed in from ten to twenty minutes after the medicine has been taken, and is manifested by an increase in the violence, the continuance, and the frequency of the pains, which usually never cease until the child is born; nay they often continue for some minutes after, and promote the speedy separation of the placenta and the firm contraction of the uterus in a globular form. The contractions and pains caused by ergot are distinguished from those of natural labour by their continuance; scarcely any interval

---

a Sundelin, Heilmittel. i. 513, 3th Aufl.


d Phebus, op. cit.

e Keil, Diss. inaug. de Secali Cornuto, Berol. 1822, quoted in Sundelin, Heilmittel.; also, Dr: Chapman, Elem. of Therap. vol. i. p. 488, 4th ed.
can be perceived between them, but a sensation is experienced of one continued forcing effort. If from any mechanical impediment (as distortion) the uterus cannot get rid of its contents, the violence of its contraction may cause its rupture, as in the cases alluded to by Dr. Merriman, Mr. Armstrong, and Mr. Coward.

Ergot sometimes fails to excite uterine contractions. The causes of failure are for the most part conjectural. The quality of the ergot, peculiarities on the part of the mother, and death of the foetus, have been assigned as such. The two first will be readily admitted; but why the remedy should be altogether inert “where the foetus has been for some time dead, and putrefaction to any extent taken place” cannot be readily explained. Its occasional failure has been urged by Dr. Hamilton as an argument in favour of his notion that ergot acts “in no other way than by influencing the imagination.” But on the same ground the sialogogue power of mercury might be denied. Dr. Hamilton’s erroneous estimate of the powers of ergot is referrible to a want of experience of its use; for he admits that he has only had two opportunities in practice of making a fair trial of it.

There is usually much less hemorrhage after delivery, when ergot has been employed, than where it has not been exhibited. The lochial discharges are also said to be less: but this is certainly not constantly the case. Moreover, it has been asserted “that the menstrual discharge has not recurred after the use of the ergot in certain cases of protracted parturition.” But the inference intended to be conveyed here, viz. that ergot caused the non-recurrence, is not correct; at least, I am acquainted with several cases in which this effect did not follow the employment of spurred rye, and I know of none in which it did.

Ergot has been charged with causing the death of the child; but the charge has been repelled by some experienced practitioners as being devoid of the least foundation. “The ergot,” says Dr. Hosack, “has been called in some of the books, from its effects in hastening labour, the pulvis ad partum; as it regards the child, it may with almost equal truth be denominated the pulvis ad mortem, for I believe its operation, when sufficient to expel the child, in cases where nature is alone unequal to the task, is to produce so violent a contraction of the womb, and consequent convolution and compression of the uterine vessels, as very much to impede, if not totally to interrupt, the circulation between the mother and child.” However, Dr. Chapman strongly denies this charge, and tells us that in 200 cases which occurred in the practice of himself and Drs. Dewees and James, the ergot was used without doing harm in any respect; and he adds, “no one here believes in the alleged deleterious influence of the article on the
Ergot of Rye.

It is not improbable, however, where the impediment to labour is very great, that the violent action of the uterus may be attended with the result stated by Dr. Hosack. Dr. F. H. Ramsbotham has suggested that the poisonous influence of ergot may be extended from the mother to the fetus, as in the case of opium. He also states that of 36 cases in which he induced premature labour by puncturing the membranes, 21 children were born alive; while in 26 cases of premature labour induced by ergot only, 12 children only were born alive. This fact strongly favours the notion of the deleterious influence of the ergot on the fetus.

Given to excite abortion, or premature labour, ergot has sometimes failed to produce the desired effect. Hence many experienced accoucheurs have concluded, that for this medicine to have any effect on the uterus it was necessary that the process of labour should have actually commenced. But while we admit that it sometimes fails, we have abundant evidence to prove that it frequently succeeds; and most practitioners, I think, are now satisfied that, in a large number of cases, it has the power of originating the process of accouchement. Cases illustrating its power in this respect are referred to by Bayle; and others are mentioned by Waller, Holmes, Ramsbotham, Müller, and others.

The action of ergot on the unimpregnated uterus is manifested by painful contractions frequently denominated "bearing-down pains," and by the obvious influence which it exercises over various morbid conditions of this viscus; more particularly by its checking uterine hemorrhage, and expelling polypous masses. Tenderness of the uterus, and even actual metritis, are said to have been induced by ergot.

3. Effects on the Cerebro-Spinal System. (Narcotism.)—Weight and pain in the head, giddiness, delirium, dilatation of pupil, and stupor, are the principal symptoms which indicate the action of ergot of rye on the brain. Dr. Maunsell has published five cases (viz. two which occurred to Dr. Churchill, one to Dr. Johnson, and two to Dr. Cusack), in which delirium or stupor resulted from the use of ergot (in half drachm and two drachm doses), and was accompanied by great depression of pulse. Trousseau and Pidoux found that, under the repeated use of ergot, dilatation of pupil was the most common symptom of cerebral disorder. It began to be obvious in from twelve to twenty-four hours after the commencement of the use of the medicine, and sometimes continued for several days after its

---

2 Ibid. June 15, 1839.
3 Bayle, Bibl. Therap. iii. 550.
8 Dierbach, Neuesten Entd. in d. Mat. Med. i. 139. 1837.
12 Traité de Thérap. i. 546.
cessation. The cerebral disorder is frequently preceded by the uterine contractions, and usually remains for some time after these have subsided.

γ. Effects of ergot on the circulatory system.—I have known increased frequency and fulness of pulse, copious perspiration, and flushed countenance, follow the use of ergot during parturition. But in most instances the opposite effect has been induced; the patient has experienced great faintness, the pulse has been greatly diminished in both frequency and fulness, and the face has become pale or livid. In one case, mentioned by Dr. Cusack, the pulse was reduced from 120 to 90. Dr. Maunsell has referred to four other cases. These effects on the circulatory system were accompanied with cerebral disorder, of which they were probably consequences. Similar observations, as to the power of ergot to diminish the frequency of the pulse, have been noticed by others.

ζ. Other effects of ergot.—Nausea and vomiting are not uncommon consequences of the exhibition of ergot when the stomach is in an irritable condition. Various other symptoms have been ascribed to the use of ergot, such as weariness of the limbs and itching of the skin.

2. Effects produced by the continued use of ergot as an article of food (Ergotism, Fr.; Raphania, Linn. Vog. Cull. Good; Convulsio raphania, and Eclampsia typhodes, Sauv.; Morbus spasmodicus, Rothm.; Morbus convulsivus, malignus, epidemicus, cerealis, &c. Alt.; Kriebelkrankheit, or the creeping sickness, Germ.)—Different parts of the continent, e.g. France (especially in the district of Sologne), Silesia, Prussia, Bohemia, Saxony, Denmark, Switzerland, and Sweden, have been, at various periods, visited with a dangerous epidemic (known by the names above mentioned), which affected, at the same time, whole districts of country, attacking persons of both sexes and of all ages. So long back as 1597 (Tissot) the use of ergotized rye was thought to be the cause of it. Various circumstances have appeared to prove the correctness of this opinion, which has been further confirmed by the effects of ergot on animals, as well as by the occurrence of a disease similar to, if not identical with, ergotism, in consequence of the use of damaged wheat. Yet several intelligent writers have not acquiesced in this view; and the circumstances mentioned by Trouseau and by Dr. Hamilton, are certainly calculated to throw some doubts over the usually-received opinion.

Ergotism assumes two types, the one of which has been denominated the convulsive, the other the gangrenous ergotism. Whether these arise from different conditions of the ergot, or from peculiarities

---

* Merriman, Synopsis, pp. 201 & 203, 1838; Trouseau and Fidoux, Traité de Thérap. i. 547.
* Tissot, Phil. Trans. vol. iv.; Rothman, Am. Acad. vi. 430.
* Trousseau and Fidoux, op. cit. i. 547.
* Tissot, Phil. Trans. vol. iv.; Rothman, Am. Acad. vi. 430.
* Mémo. de la Soc. Roy. de Méd. i. 1777.
* Phil. Trans. for 1762; Henslow, op. supra cit.
* Traité de Thérap. i. 527.
on the part of the patient, or from the different quantity of the ergot taken, we are hardly prepared now to say. In convulsive ergotism the symptoms are, weariness, giddiness, contraction of the muscles of the extremities, formication, dimness of sight, loss of sensibility, voracious appetite, yellow countenance, and convulsions, followed by death. In the gangrenous ergotism there is also experienced formication; that is, a feeling as if insects were creeping over the skin, voracious appetite, coldness and insensibility of the extremities, followed by gangrene.

Uses.—To Dr. Stearns, of the United States, is due the credit of introducing ergot of rye to the notice of the profession as an agent specifically exciting uterine contractions. In 1814 a paper was published by Mr. Prescot, on the effects of it in exciting labour-pains, and in uterine hemorrhage. It was not employed in England until 1824. The following are the principal uses of it:

1. To increase the expulsatory efforts of the womb in protracted or lingering labours.—When the delay of delivery is ascribable solely to the feeble contractions of the uterus, ergot is admissible, provided, first, that there be a proper conformation of the pelvis and soft parts; secondly, that the os uteri, vagina, and os externum, be dilated, or readily dilatable, and lubricated with a sufficient secretion; and, lastly, that the child be presenting naturally, or so that it shall form no great mechanical impediment to delivery. A natural position of the head is not an absolute essential for the use of ergot, since this medicine is admissible in some cases of breech presentation. The circumstances which especially contra-indicate or preclude the use of this medicine are those which create an unusual resistance to the passage of the child: such are, disproportion between the size of the head and of the pelvis, great rigidity of the soft parts, and extraneous growths. Moreover, "earliness of the stage" of labour is laid down by Dr. Bigelow as a circumstance contra-indicating the use of ergot. The proper period for its exhibition is when the head of the child has passed the brim of the pelvis. Some practitioners assert that a dilated or lax condition of the os uteri is not an essential requisite for the exhibition of ergot. It has been contended that one of the valuable properties of this medicine is to cause the dilatation of the uterine orifice, and cases are not wanting to confirm these statements.

2. To hasten delivery when the life of the patient is endangered by some alarming symptom.—Thus, in serious hemorrhages occurring during labour, after the rupture of the membranes, and where the placenta is not situated over the os uteri, the ergot is especially indicated. It has also been employed to accelerate delivery in puerperal convulsions. Five successful cases of its use are recorded by Bayle;
on the authority of Waterhouse, Mitchell, Roche, Brinkle, and Godquin. But the narcotic operation of ergot presents a serious objection to its use in cerebral affections.

3. To provoke the expulsion of the placenta when its retention depends on a want of contraction of the uterus.—In such cases ergot has often proved of great advantage. When the hemorrhage is excessive the ergot must not be regarded as a substitute for manual extraction, since, during the time required for its operation, the patient may die from loss of blood. In retention of the placenta from spasmodic or irregular contraction of the uterus, as well as from morbid adhesion, ergot is improper or useless.

4. To provoke the expulsion of sanguineous clots, hydatids, and polypi from the uterus.—Coagula of blood collected within the womb after delivery may sometimes require the use of ergot to excite the uterus to expel them, as in the case mentioned by Mackenzie. Ergot is also valuable in promoting the expulsion of those remarkable formations called uterine hydatids, and which are distinguished from the acephalocysts of other parts of the body by their not possessing an independent life, so that when separated from their pedicles they die. A successful case of the use of ergot in this affection has been published by Dr. Macgill. In uterine polypus, ergot has been exhibited with the view of hastening the descent of the tumor from the uterus into the vagina, so as to render it readily accessible for mechanical extirpation; for it is well known, that until this is effected, the patient is continually subject to hemorrhage, which, in some cases, proves fatal. In some instances ergot has caused the expulsion of a polypus.

5. To restrain uterine hemorrhage, whether puerperal or non-puerperal.—Ergot checks hemorrhage from the womb, principally, if not solely, by exciting contraction of the muscular fibres of this viscus, by which its blood-vessels are compressed and emptied, and their orifices closed. The experience of physicians and surgeons in all parts of the civilized world has fully and incontestibly established the efficacy of ergot as a remedy for uterine hemorrhage. Maisonneuve and Trousseau have shewn that the beneficial influence of ergot is exerted equally in the unimpregnated as in the impregnated state; proving, therefore, that the contrary statement of Prescott and Villeneuve is incorrect. Even in a case of cancer of the uterus they have found it check the sanguineous discharge. In females subject to profuse uterine hemorrhages after delivery, ergot may be admini-

---

\(^{a}\) Dr. Blundell, *Lancet*, 1827-8, vol. ii. 239; \(^{b}\) Bayle (*Bibl. Thérap.* vol. iii. 541) has recorded nine cases, from Balardimi, Bordol, Davies, Duchâteau, and Morgan; and many others will be found in the medical journals.


\(^{e}\) Neal, *Researches*, p. 88.

\(^{f}\) *Acephalocystis racemosa*, H. Cloq.


\(^{h}\) Bayle, *op. cit.* p. 471.


\(^{k}\) See the list of cases in Bayle’s *Bibl. Thérap.* iii. 543.

\(^{l}\) *Bull. de Thérap.* t. iv.; also, Trousseau and Pidoux, *Traité de Thérap.* i. 540.
ERGOT OF RYE.

925

tered as a preventive, just before the birth of the child. Even in placenta presentations, a dose or two of ergot may be administered previously to the delivery being undertaken. To restrain excessive discharge of the lochia or catamenia, this remedy is sometimes most beneficial.

6. To provoke abortion, and to promote it when this process has commenced and is accompanied with hemorrhage.—Under certain circumstances the practitioner finds it expedient to produce abortion: as in serious hemorrhage during pregnancy, and in deformed pelves which do not admit the passage of a full-grown fetus. In such cases the ergot may be employed with great advantage. When abortion has already commenced, ergot may be employed, to quicken the process and check hemorrhage.

7. In leucorrhæa and gonorrhœa.—Ergot was first given in leucorrhœa by Dr. M. Hall; and was subsequently employed by Dr. Spajrani with success; and in eight cases by Dr. Bazzoni, seven of these were cured by it. Dr. Negri published seven successful cases of its use. Its efficacy has been confirmed by many other practitioners. Dr. Negri also used it with apparent benefit in gonorrhœa, in both the male and female. He concludes that "secale cornutum has a peculiar action on the mucous membranes; but if exhibited when there is a state of acute inflammation, their morbid secretions may be considerably increased; on the contrary, when a more chronic form of inflammation does exist, the secale cornutum may have a beneficial influence in arresting their preternatural discharge."

8. In hemorrhages generally.—The power possessed by ergot of exciting uterine contractions, readily explains the efficacy of this agent in restraining sanguineous discharges from the womb; but we can in no way understand how hemorrhage from other organs can be influenced by it. We are not, however, to deny the therapeutic power of a medicine merely because we cannot explain its modus medendi, though we are justified in requiring abundant proofs ere we admit it. It must be acknowledged, that a considerable number of cases have been published in proof of the power possessed by ergot of checking hemorrhages from other organs (as the nose, gums, chest, stomach, and rectum) than the uterus. But having found it unsuccessful in my own practice, seeing that in the hands of others it has also failed, and knowing how difficult it is to ascertain the influence of remedies on hemorrhages, I think further evidence is required to prove the anti-hemorrhagic powers of ergot.

9. In amenorrhœa.—Some few cases have been published tending
to show that ergot possesses emmenagogue properties. It appears to me to be more calculated to cause than to relieve amenorrhoea.

10. In other diseases.—Ergot has been employed in various other diseases with apparent success; viz. intermittent fever, paraplegia, &c.

Administration.—Ergot is usually given in the form either of powder or infusion. The decoction, less frequently the tincture, and still more rarely the extract, are also used. Latterly the etherial oily extract and oil have been used.

1. Pulvis Secalis Cornuti. Pulvis Ergotæ.—This powder is only to be prepared when required for use. The dose of it, for a woman in labour, is twenty grains; to be repeated at intervals of half an hour for three times; for other occasions (as leucorrhoea, hemorrhages, &c.) five to ten or fifteen grains, three times a day: its use should not be continued for any great length of time. It may be taken mixed with powdered sugar. It has had the various names of pulvis parturiens (more correctly parturificaciens), pulvis ad partum, pulvis partum accelerans, obstetrical powder, &c.

2. Infusum Secalis Cornuti. Infusum Ergotæ.—Ergot, bruised, 3j.; boiling water, 7jiv.; macerate until cold, in a slightly covered vessel, and strain. The dose, for a woman in labour, is one-third or one half of this, to be repeated, at intervals of half an hour, until the whole be taken. Sugar, aromatics (as nutmeg or cinnamon), or a little wine or brandy, may be added to flavour it.

3. Decoctum Secalis Cornuti. Decoctum Ergotæ.—Ergot, bruised, 3ss.; water, 3vj. Boil for ten minutes in a lightly covered vessel, and strain. The dose is one-third of the strained liquor, to be repeated, at intervals of half an hour, until the whole be taken.

4. Tinctura Secalis Cornuti. Tinctura Ergotæ.—Ergot, bruised, 3ss.; rectified spirit, 3vj.; digest for four days, and strain. The dose, in lingering labours, is a teaspoonful. This is the formula of Dr. Robert. A tincture is recommended by Carus. At Apothecaries' Hall, London, tincture of ergot is prepared by digesting ergot, 5ij. in proof spirit, 0j. Another formula has been published:—Ergot, bruised, 3j.; boiling water, 5ij. Infuse for twenty-four hours, and add rectified spirit, 3ss. Digest for ten days. Half a drachm of this tincture is said to be equivalent to ten grains of the powder. One or two spoonfuls of a tincture of ergot (prepared by digesting 3ss. of ergot in 5ij. of rectified spirit) mixed with water, has been recommended as an injection into the uterus in difficult labour. It is to be introduced between the head of the child and the neck of the uterus.

---

b Neal, Researches, p. 79.
a Dierbach, op. cit. p. 444.
j Bayle, op. cit. p. 548.
a Dierbach, Neuesten Entde. in d. Mat. Med. i. 147. 1838.
1 Lehrb. d. Gynäkologie, i. 286. 1827.
5. OLEUM ERGOT : Oil of Ergot.—The liquid sold in the shops under the name of pure oil of ergot is obtained by submitting the ethereal tincture of ergot (which is procured by percolation, see p. 366), to evaporation by a very gentle heat. Its colour is reddish brown. Mr. Wright states that this depends on the age of the ergot, and that when obtained from recent specimens it is not unfrequently entirely free from colour. Its taste is oily and slightly acrid. It is lighter than water, and is soluble in alcohol and in solutions of the caustic alkalis. It is probably a mixture of several proximate principles.

I made a guinea-pig swallow a fluidrachm of it: the only obvious effect was copious and frequent diuresis. Two fluidrachms diffused through water and injected into the jugular vein of a dog, caused trembling of the muscles, paralysis of the hind, and great weakness of the fore, legs, which lasted for more than two days. The respiration and action of the heart were exceedingly rapid. The saliva streamed copiously from the mouth. The pupil was strongly dilated before the experiment, and no obvious change in it was induced by the oil. Mr. Wright found the oil very energetic. A drachm, he states, injected into the jugular vein caused dilatation of the pupil, feeble, slow, and intermittent action of the heart, deep and interrupted respiration, general paralysis, insensibility to punctures, and death in two hours and forty minutes.

According to evidence adduced by Mr. Wright the oil possesses the same influence over the uterus as that of the crude drug; that is, it occasions powerful uterine contractions. To produce this effect it should be given in doses of from 20 to 50 drops in any convenient vehicle, as cold water, warm tea, or weak spirit and water.

The essential solution of ergot used by Mr. Lever to promote uterine contraction, is essentially a solution of the oil of ergot. It was prepared by digesting $\frac{3}{4}$iv. of powdered ergot in $\frac{1}{4}$ir. of ether during seven days. The tincture was submitted to spontaneous evaporation, and the residue dissolved in $\frac{1}{3}$ij. of ether. The dose of this solution is from $\frac{3}{4}$xxv. to $\frac{3}{4}$xxx. on a lump of sugar.

Antidote.—The proper treatment to be adopted in a case of poisoning by an overdose of ergot has not been accurately determined. The first object would be, of course, to evacuate the poison from the alimentary canal by the use of emetics or purgatives. As chlorine decomposes ergotin, Phæbus recommends the employment of chlorine water. In the absence of this, nitrohydrochloric acid (properly diluted) might be exhibited. The subsequent treatment should be conducted on general principles.

OTHER DIETETICAL OR MEDICINAL CEREALIA.

1. Rice (Oryza sativa, fig. 162) is the ordinary sustenance of many oriental nations. Being less laxative than the other cereal grains, it is frequently prescribed by medical men as a light, digestible, uninjurious article of food in diarrhoea and dysentery; and in consequence it is, with the public, a reputed drying and astringent agent. Various ill effects, such as disordered vision, &c. have


**Lond. Med. Gaz. N. S. vol. ii. for 1839-40.**
been ascribed to the use of rice; but without any just grounds. Neither does there appear to be any real foundation for the assertions of Dr. Tytler, that malignant cholera (which he calls morbus oryzeus!) is induced by it.

Fig. 162.  
Fig. 163.  
Fig. 164.

Oryza sativa.  
Panicum miliaceum.  
Zea Mays.

2. Common Millet (Panicum miliaceum, fig. 163,) and Italian Millet (Setaria italicca), are cultivated in Italy as articles of food.

3. Maize or Indian Corn (Zea Mays, fig. 164) is nutritive; but being deficient in gluten, is not adapted for manufacture into bread. It is apt to occasion diarrhoea in those unaccustomed to it. In America, Asia, and some parts of Europe, it is used largely for human sustenance.

Order VIII.—ACORACE.A, Lindl.—THE SWEET FLAG TRIBE.

Essential Character.—Flowers hermaphrodite, surrounded with scales. Spathe leafless, not rolled up. Stamens complete, opposite the scales, with two-celled anthers turned inwards. Ovaries distinct. Fruit baccaete, finally juiceless. Seeds albuminous, with the embryo in the axis.—Rhizome jointed. Leaves ensiform, embracing each other in the bud (Schott).

Properties.—Acorus Calamus is the only plant of the family whose properties are known.

---

Bontius, Account of the Diseases, Nat. Hist. of the East Ind. translated into English, p. 126, 1769; and Bricheteau, in Tortuelle’s Elém. d’Hygiène, 4me. éd.


Dunglison, Elem. of Hygiène, p. 289.

COMMON SWEET FLAG.  

AC'ORUS CAL'AMUS, Linn. L. E.—COMMON SWEET FLAG.
Sex. Syst. Hexandria, Monogynia.
(Rhizoma, L.—Rhizome, E.)

**History.**—This is probably the ἄκορον of Dioscorides¹. Dr. Royle says that in Persian works ἀκορόν is given as its Greek appellation, It must not be confounded with the καλαμὸς ἄρωματικὸς of Dioscorides, which, according to Dr. Royle², is Andropogon Calamus aromaticus. Royle (vide p. 895).

**Botany.**—Gen. Char.—*Flowers arranged upon a spadix. Spatha none. Perianth of six pieces or scales, inferior. Stigma sessile. Capsule indehiscent.* (Hooker.)

Sp. Char.—Anticipate [two-edged] scape rising much above the spadix. (Hooker.)

*Rhizome* thick, rather spongy, with many long roots, aromatic, like every part of the herbage, but much more powerfully so. *Leaves* erect, two or three feet high, bright green, near an inch broad. *Stalk* like the leaves, except being thicker below the *spadix*, and not quite so tall. *Spadix* about a foot above the root, a little spreading, two or three inches long, tapering, covered with a mass of very numerous, thick-set, pale green *flowers*, which have no scent, except when bruised. A very narrow wavy membrane may be observed at the base of the spadix, which, perhaps, ought to be taken into the generic character as a spathe (Smith).—Perennial: flowers in June.

**Hab.**—It is a native of this country, growing in watery places about the banks of rivers, and is very plentiful in the rivers of Norfolk, whence the London market is supplied. It grows also in other countries of Europe, in Asia, and in the United States.

**Description.**—The dried underground stem (*rhizoma, L.; radix acori veri seu radix calami aromatici, Offic.*) occurs in the shops in flattened pieces four or five inches long, and about as broad as the thumb; jointed, somewhat curved, of a spongy or corky texture internally; of a yellowish brown or fawn colour externally, and buffy, with a slight roseate hue, internally. Their fracture is short; their upper surface is marked transversely with the vestiges of the leaves which were attached to it; the lower surface has numerous dark points, surrounded by small light-coloured elevated circles, from which the roots arise. Their taste is warm and bitter; their odour is aromatic. In Germany, the rhizome is usually peeled before drying it (*rhizoma decorticata*); but the operation is unnecessary and wasteful. In this state the rhizome is greyish white and easily pulverizable.

The rhizome should be gathered in spring or late in the autumn, and dried quickly.

The rhizome of the Yellow Water Iris (*Iris Pseudo-acorus*) is said to be sometimes substituted for that of the true Acorus.

¹ Lib. i. cap. 2.
Composition.—The fresh rhizome was analysed by Trommsdorf, who obtained the following results:—Volatile oil, 0·1; soft resin, 2·3; extractive, with a little chloride of potassium, 3·3; gum, with some phosphate of potash, 5·5; starchy matter (like inulin), 1·6; woody fibre, 21·5; and water, 65·7. Meissner found traces of copper in the ashes.

The active constituents are the oil, the resin, and the extractive.

Oil of the common sweet flag (called in the shops oleum calami aromatici) is obtained by distilling the fresh rhizome with water. Its odour is similar to, though less agreeable than, that of the rhizome. Its colour is yellow. It is bought by snuff-makers, so that it is used, I presume, for scenting snuff. It is also employed in the preparation of aromatic vinegar (see p. 403).

Chemical Characteristics.—Iodine blackens the rhizome (especially when it has been boiled), thereby indicating the presence of starch. The cold decoction of the rhizome forms, with a solution of iodine, the blue iodide of starch. Acetate and diacetate of lead, and protonitrate of mercury, cause precipitates with the decoction. These precipitates consist principally of metallic oxides or subsalts and the substance called extractive. Nitrate of silver produces a precipitate (chloride of silver), which is insoluble in nitric acid, but soluble in ammonia. The decoction reddens litmus.

Physiological Effects.—It is an aromatic stimulant and mild tonic. Vogt arranges it with the excitantia volatilia, and regards it as approaching angelica root on the one hand, and cascarilla and angustura barks on the other.

Uses.—It is rarely employed by medical practitioners, though it might be frequently substituted, with good effect, for the more costly oriental aromatics. It is a useful adjunct to other stimulants and tonics. It has been employed in continued asthenic fevers accompanied with much prostration of strength and greatly weakened digestive power. For the cure of ague, the dried root powdered is used by the country people in Norfolk. It is well adapted for dyspeptic cases accompanied with, or dependent on, an atonic condition of the digestive organs, and is especially serviceable in gouty subjects. It has also been used as a local agent, viz. in the formation of aromatic baths, poultices, and gargles, as an application to foul-conditioned ulcers, &c.

Administration.—In powder, the rhizome may be given in doses of from a scruple to a drachm. The infusion is perhaps the most eligible preparation: it is made by digesting 3ij. of the rhizome in 3xij. of boiling water; the dose is two or three table-spoonfuls. The decoction is an objectionable preparation, as the oil of the rhizome is dissipated by boiling. The tincture (Ph. Bor.) is procured by digesting 3ij. of the rhizome in 3xij. of spirit (sp. gr. 0·900); the dose is a tea-spoonful.

930 ELEMENTS OF MATERIA MEDICA.

Lehrb. d. Pharmakodyn, i. 434, 2nd Aufl.
Order IX.—ARACEÆ, Schott, Lindl.—THE ARUM TRIBE.

Fig. 165. Arum maculatum.  

a, The spathe.  
b, The spadix.

Fig. 167. Particles of Portland Arrow-root.

Arum maculatum (Wake-Robin or Cuckow-pint, fig. 165) is the only indigenous plant of the order. Every part of it is acrid; but, by drying or heating, it loses this property. From the underground tubers is manufactured, in the island of Portland, a feculent substance, called Portland Arrow-root or Portland Sago 7. The substance which I have received under this name is a white amylaceous powder. Examined by the microscope the particles are found to be exceedingly small. They are circular, mullar-shaped, or polyhedral. The angular appearance of some of them probably arises from compression. The hilum is circular, and apparently lies in a small depression. It cracks in a linear or stellate manner.

Arum Colocasia (fig. 166) is cultivated in Egypt for the nutritious matter got from the tubers. Arum esculentum is cultivated in the West Indies for a similar purpose.

Order X.—PALMÆ, Juss.—THE PALM TRIBE.

Fig. 168. Cocos nucifera.

a, shews the 1 valved spathe, with branched spadix.  
b, The fruit, a fibrous drupe.

Fig. 169. Cucifera thebaica or Doum Palm, remarkable for its dichotomous stem.

Essential Character.—Flowers hermaphrodite, or frequently polygamous. Perianth six-parted, in two series, persistent; the three outer segments often smaller, the inner sometimes deeply connate. Stamens inserted into the base of the perianth, usually definite in number, opposite the segments of the perianth, to which they are equal in number, seldom three; sometimes, in a few polygamous genera, indefinite in number. Ovary one, three-celled, or deeply three-lobed; the lobes or cells one-seeded, with an erect ovule, rarely one-seeded. Fruit baccate or drupaceous, with fibrous flesh. Albumen cartilaginous, and either ruminated or furnished with a central or ventral cavity; embryo lodged in a particular cavity of the albumen, usually at a distance from the hilum, dorsal and indicated by a little nipple, taper or pulley-shaped; plume included, scarcely visible; the cotyledonous extremity becoming thickened in germination, and either filling up a pre-existing cavity, or one formed by the liquefaction of the albumen in the centre.—Trunk arborescent, simple (fig. 168), occasionally shrubby and branched (fig. 169), rough with the dilated half-sheathing bases of the leaves or their scars. Leaves clustered, terminal, very large, pinnate or flabelliform, plaited in vernation. Spadix terminal, often branched, enclosed in a one or many valved spathe (fig. 168 o). Flowers small, with bractlets. Fruit occasionally very large. (R. Brown, 1810.)

Properties.—The stems of many palms (e.g. Sagus lexis and farinifera, Saguerus, Rumphii, Phoenix farinifera, and Caryota urens) yield a feculent matter, called Sago. By incision into the spathe at the top of the stems of some (e.g. Cocos nucifera, Caryota urens, and Saguerus Rumphii), a saccharine liquor, termed Sweet Toddy, is procured, which, when fermented, constitutes Palm Wine, and yields by distillation Arrack or Rack (see p. 364). A waxy substance exudes from the stems of some (e.g. Ceroxylon Andicola). The fruits of the palms want uniformity in their properties: thus, some are oily (e.g. Ela'is), some are saccharine and nourishing (e.g. Phoenix dactylifera), some are acrid (e.g. Caryota urens and Saguerus Rumphii), others are astringent (e.g. Latania borbonica), or acid (e.g. Calamus Rotang). The seeds, likewise, are not uniform: those of Cocos nucifera are oleaginous, while those of Areca Catechu are astringent.

I. SA’GUS RUM’PHII, Wild. L.—THE MALAY OR RUMPHIUS’S SAGO-PALM.

Sagus farinifera, Garfn.
Sex. Syst. Monoecea, Hexandria.

Properties.—The stems of many palms (e.g. Sagus lexis and farinifera, Saguerus, Rumphii, Phoenix farinifera, and Caryota urens) yield a feculent matter, called Sago. By incision into the spathe at the top of the stems of some (e.g. Cocos nucifera, Caryota urens, and Saguerus Rumphii), a saccharine liquor, termed Sweet Toddy, is procured, which, when fermented, constitutes Palm Wine, and yields by distillation Arrack or Rack (see p. 364). A waxy substance exudes from the stems of some (e.g. Ceroxylon Andicola). The fruits of the palms want uniformity in their properties: thus, some are oily (e.g. Ela’is), some are saccharine and nourishing (e.g. Phoenix dactylifera), some are acrid (e.g. Caryota urens and Saguerus Rumphii), others are astringent (e.g. Latania borbonica), or acid (e.g. Calamus Rotang). The seeds, likewise, are not uniform: those of Cocos nucifera are oleaginous, while those of Areca Catechu are astringent.

C. Bauhin, Pinax.
Berry backwardly imbricated with cartilaginous scales. Seed solitary. Embryo lateral. (Roxburgh.)

Sp. Char.—Arboreous, armed, with strong straight spines. Leaves pinnate. (Roxburgh.)

The stature of this tree seldom exceeds thirty feet. Before maturity, and previous to the formation of the fruit, the stem consists of a thin hard wall, about two inches thick, and of an enormous volume of tissue (commonly termed the medulla or pith), from which the farina, called sago, is obtained. As the fruit forms, the farinaceous medulla disappears, and when the tree attains full maturity, the stem is no more than a hollow shell. The utmost age of the tree does not exceed thirty years.

Hab.—Peninsula of Malacca and the Malay Islands. It is an inhabitant of low marshy situations.

2. SAGUS LAE'VIS, Rumph.—THE UNARMED SAGO-PALM.

S. laevis, Jack, in Comp. Bot. Mag. i. 266; S. inermis, Roxb.


Sp. Char.—Arboreous, unarmed. Embryo lodged in or near the apex of the seed. Leaves pinnate. (Roxburgh.)

Hab.—Sumatra, Borneo, and the islands between them. Grows spontaneously in low swampy lands.

3. SAGUE'RUS RUM'PHII, Roxb.—RUMPHIUS'S WINE SAGO-PALM.

Palma Indica vinaria secunda, Saguerus, sive Gomutus Gommuto, Rumph.


Sp. Char.—The only species.

Hab.—Islands eastward to the Bay of Bengal.
MANUFACTURE OF SAGO.—A farinaceous substance, called sago, is said to be obtained from two species of Cycas (vide Cycadaceœ). But the sago of English commerce is obtained from one or more palms. All the three just mentioned (viz. Sagus Rumphii and lævis, and Saguerus Rumphii) yield it. Dr. Roxburgh says, the granulated sago met with in Europe is got from Sagus lævis. Marsden, on the other hand, says the Sagus Rumphii yields the sago of the shops. The manufacture of sago varies somewhat in different localities. In the Moluccas it is procured as follows:—When the tree is sufficiently mature, it is cut down near the root, and the trunk subdivided into portions of six or seven feet long, each of which is split into two parts. From these the medullary matter is extracted, and, with an instrument of bamboo or hard wood, is reduced to powder, like sawdust. This is mixed with water, which is then strained by a sieve. The filtered liquor deposits the farina, which, after two or more edulcorations, is fit for use. This is raw sago meal.

For exportation, the finest meal is mixed with water, and the paste rubbed into small grains of the size and form of coriander seeds. Within the last few years, the Chinese of Malacca have invented a process by which they refine sago so as to give it a fine pearly lustre. The quantity of sago afforded by the sago-palm is prodigious. Five and six hundred pounds is not an unusual produce for one tree.

DESCRIPTION OF SAGO.—Sago occurs in commerce in two states, pulverulent and granulated.

1. Pulverulent Sago; Sago Meal: Sago Flour (Farina Sagu).—This is imported in the form of a fine amylaceous powder. It is whitish, with a buffy or reddish tint. Its odour is faint, but somewhat unpleasant and musty. Examined by the microscope it is found to consist of oval, more or less ovate, particles; many of which appear as if truncated, so that they are more or less mullar-shaped. Some of them resemble in form a caoutchouc bottle cut off at the neck. From their strong lateral shading they are obviously convex. Many of the particles are more or less broken. Most of them have an irregular or tuberculated surface. The hilum, when perfect, is circular; it cracks in the form of a single slit, or of a cross, or in a stellate manner. The surface of the particles presents the appearance of a series of concentric rings or annular lines, which, however, are much less distinct than in potato starch. These lines are indicative of the concentric layers of which each particle is composed.

2. Granulated Sago (Grana Sagu).—Of this there are two kinds, pearl sago, and common brown sago.

---

In the Edinburgh Pharmacopœia it is said to be the "Farina from the interior of the trunk of various Palmaceœ and species of Cycas."

Hist. of Sumatra.

Crawfurd, Hist. of the Indian Archipelago, vol. i. 383 et seq. and vol. iii. 348.
a. **Pearl Sago (Sagu perlatum).**—This occurs in small hard grains not exceeding in size that of a pin's head, inodorous, and having little taste. They have a brownish or pinkish yellow tint, and are somewhat translucent. By the aid of a solution of chloride of lime they can be bleached and rendered perfectly white (bleached pearl sago). I am informed that the dealers pay seven pounds per ton for the bleaching of it. Bleached pearl sago resembles some samples of potato sago which I have met with, and which is sold as genuine palm sago. Pearl sago swells up in cold water. Examined by the microscope, it is found to consist of the same kind of particles as sago meal, but all ruptured, and presenting very indistinct traces of rings. These peculiarities are doubtless produced by the process of granulation.

b. **Common or Brown Sago (Sagu fuscum)** occurs in larger grains. That which I have usually met with consists of grains about the size of those of pearl barley; but I have received from Dr. Douglas Maclagan, of Edinburgh, a sample of some nearly as large as grey peas. Common sago is whitish or brownish white: the same grain being whitish on one part of its surface, and brownish on another. Examined by a microscope, the grains of common sago are found to consist of particles like those of pulverulent sago, perhaps somewhat more broken and less regular in their shape.

**Adulteration.**—Potato sago is sometimes sold for white or bleached pearl sago. The fraud can be distinguished by the microscope. The largest particles of potato sago are larger than those of palm sago; moreover, the particles of potato sago are more regularly oval and ovate, more distinctly ringed, smoother, and less broken than those of genuine sago. When their circular hilum cracks it frequently forms two slightly diverging rents (see fig. 173). I have two varieties of potato sago, one in grains, about the size of those of pearl sago (pearl potato sago), the other in larger sized grains, received from Professor Guibourt, who tells me it is made near Paris (see Potato Starch).

**Commerce.**—The quantity of sago on which duty was paid in 1840 was 26,895 cwts. It is brought from Singapore, in bags, &c. The quantity imported into France, in 1834, was 41,312 lbs.

**Composition.**—Sago has not been analyzed; but its composition is presumed to be analogous to that of other starchy bodies (p. 47).

**Chemical Characteristics.**—Sago possesses the characteristics of ordinary starch. A cold decoction forms a blue compound (iodide of starch) with iodine. A filtered infusion (prepared with cold distilled water,) of pulverulent sago, or of brown sago, undergoes no change of colour on the addition of a tincture of iodine. But a similar infusion of pearl sago becomes blue with iodine. This evidently depends on the latter having been submitted to some process by which the starch-globules have become broken. The cold infusion

---

**Fig. 173.**

**Particles of Potato Sago.**

---

\[ Trade List. \]

\[ Planche, Journ. de Pharm. xxiii. 116. \]
of brown sago is rendered milky by nitrate of silver, diaacetate of lead, and protonitrate of mercury; but the cold infusions of pulverulent and of pearl sago are scarcely affected by these tests.

**Physiological Effects.**—It is nutritive and easy of digestion, and is an important article of food in some parts of the East. “The Malay sago palm,” says Dr. Roxburgh, “is the tree, the pith of which is the staff of life to the inhabitants of the Moluccas.”

**Uses.**—Sago puddings are occasionally brought to table. But the principal use of sago is to yield a light, nutritious, easily digestible, and non-irritating article of food for the invalid, in febrile and inflammatory cases. For this purpose it should be boiled in water (in some cases milk is preferred), the solution strained, and flavoured with sugar and spices, or even with a little white wine, when the use of this is not contra-indicated.

4. ARE'CA CAT'ECHU, Linn. E.—CATECHU PALM.

**Sex. Syst.** Monoeica, Hexandria.

**Semen.**—Extract of the kernels, E.—Carbo seminis, Offic.)

**History.**—Areca nuts are not mentioned in the writings of the ancient Greeks and Romans. Avicenna speaks of them under the name of Fufel.

**Botany.**


**Sp. Char.**—Trunk straight and slender, from forty to fifty feet high. Fronds pinnate; leaflets compound, linear, opposite, premorse. Spathe erect, ramous. Male flowers hexandrous. Seed of a roundish conic form, and obtuse. (Roxburgh.)

**Hab.**—Cultivated in all the warmer parts of Asia.

**Description and Uses of the Seeds.**—The fruit of the Catechu palm is about the size and shape of a small egg, yellowish, and smooth. Within the fibrous pericarp is the seed (Areca nut; Betel nut; Pinang nut). This is about the size of a nutmeg, roundish conical, flattened at the base, hard, horny, inodorous, externally reddish brown, internally brown with whitish veins. The principal part of the seed is the ruminate albumen, at the base of which is the embryo. According to Morin, these seeds are composed of tannin (principally), gallic acid, glutin, red insoluble matter, fixed oil, gum, oxalate of lime, lignin, &c. With lime and the leaves of Piper Betel, these nuts form the celebrated masticatory of the East, called betel. They are usually cut into four equal parts; one of which is rolled up with a little lime in the leaf of the Piper Betel, and the whole chewed. The mixture acts as a sialogogue, and tinges the saliva red. The Indians have an idea that by this means the teeth are fastened, the gums cleansed, and the mouth cooled. Peron was
convinced that he preserved his health, during a long and difficult voyage, by the habitual use of the betel, while his companions, who did not use it, died mostly of dysentery. In this country, areca-nut charcoal is used as a tooth-powder. I know of no particular value it can have over ordinary charcoal, except, perhaps, that derived from its greater hardness.

**Manufacture of Palm Catechu.**—From the seeds is obtained an astringent extract, which constitutes two (or perhaps more) kinds of the substance called catechu in the shops. It is largely procured in Mysore, about Sirah, in the following manner:—"Areca nuts are taken as they come from the tree, and boiled for some hours in an iron vessel. They are then taken out, and the remaining water is inspissated by continued boiling. This process furnishes Kassu, or most astringent terra japonica, which is black, and mixed with paddy husks and other impurities. After the nuts are dried, they are put into a fresh quantity of water, boiled again, and this water being inspissated, like the former, yields the best or dearest kind of catechu, called Coury. It is yellowish brown, has an earthy fracture, and is free from the admixture of foreign bodies."¹

**Properties of Palm Catechu.**—None of the commercial extracts, called catechu, are distinguished by any name referring to the catechu palm; and the description hitherto given of palm catechu is too slight and vague to enable us to recognize it with certainty.

**OTHER MEDICINAL PRODUCTS OF PALMACEÆ.**

1. **Palm Oil (Oleum Palmae)** is imported from the western coast of Africa, principally from Guinea, where it is procured by expression from the fruit of the Elais guineensis (fig. 174). It has a solid consistence, a rich orange-yellow colour, a sweetish taste, and an agreeable odour, somewhat similar to that of the rhizome of the Florentine orris. By exposure to light it is bleached. It consists of Oleine, Margarine, and about two-thirds of its weight of Palmitine. The last-mentioned substance is a white solid fat, composed of palmitic acid (\(C_{16}H_{31}O_2\)) and glycerine. The Africans use palm oil as butter. It is emollient and demulcent, like the other fixed oils, but is rarely employed in medicine. By the public it is occasionally employed by way of friction in bruises, sprains, &c. It is a constituent of the common black bougie. Its ordinary use in this country is in the manufacture of yellow soap (see p. 566). It readily becomes rancid. It may be bleached by the solar rays, by sulphuric acid, or by chlorine.

¹ Dr. Heyne, *Tracts, Historical and Statistical, on India.*

² For an account of the varieties, properties, composition, effects, and use of catechu, vide *Acacia Catechu, Butea frondosa,* and *Nanaea Gumbir.*
2. The term Dragon's Blood (Sanguis Draconis) is applied in commerce to certain resinous substances which are mostly obtained from some palms of the genus Calamus. But the term is also applied to a product of the Dracena Draco [vide Liliaceae], as also to a substance obtained from the Pterocarpus Draco [vide Leguminosae]. Lieut. Wellstead says, that in Socotra, Dragon's blood exudes spontaneously from the stem of a tree. Dragon's blood is now never used in medicine in this country. The following are the kinds of it which I have met with:

a. Dragon's blood in the reed; Dragon's blood in sticks; Sanguis Draconis in baculis.—This occurs in dark reddish brown sticks, of from twelve to eighteen inches long, and from a quarter to half an inch in diameter, enveloped with the leaf of the Talipat palm (Corypha umbraculifera), and bound round with slender slips of cane (probably the stem of Calamus petreus). It is supposed to be obtained from a species of Calamus, perhaps C. Draco.

b. Dragon's blood in oval masses; Dragon's blood in drops; Sanguis Draconis in lachrymis, Martins.—This occurs in reddish brown lumps of the size and shape of an olive, enveloped with the leaf of Corypha umbraculifera or Corypha Licuala, which thus connects them together in a row, like the beads of a necklace. This kind is rare in English commerce. It is obtained, according to Rumphius, by rubbing or shaking the fruit of Calamus Draco in a bag. A resinous exudation is by this means separated, and is afterwards softened by heat, and made up in these masses.

c. Dragon's blood in powder.—This is a reddish powder of very fine quality, imported from the East Indies. It is probably the dust obtained from the fruit of the C. Draco, in the way just described.

d. Dragon's blood in the tear. Sanguis Draconis in granis, Martins.—It occurs in irregular pieces, not exceeding the size of a horsebean. T. W. C. Martins says, pieces of the fruit of the Calamus Rotang are frequently found intermixed. This kind is inferior in quality. It occurs in large masses, which, when broken, present a heterogeneous appearance. Other varieties of Dragon's blood are described, but I have never met with them.

Dragon's blood is composed of red resin (called draconin), 90.7; fixed oil, 2.0; benzoic acid, 3.0; oxalate of lime, 1.6; phosphate of lime, 3.7. It is inert, or nearly so, but was formerly reputed an astringent. It is a constituent of some tooth-powders and tinctures, but is never prescribed by medical practitioners. Its principal consumption is for colouring spirit and turpentine varnishes.

Order XI.—Melanthaceae, R. Brown.—The Colchicum Tribe.

Essential Character.—Perianth inferior, petaloid, in six pieces, or, in consequence of the cohesion of the claws, tubular; the pieces generally involute in restoration. Stamens six; anthers mostly turned outwards. Ovary three-celled, many seeded; style trifid or three-parted; stigma undivided. Capsule generally divisible into three pieces; sometimes with a loculicidal dehiscence. Seeds with a membranous testa; albumen dense, fleshy. (R. Brown.)

Properties.—Poisonous: operation acro-narcotic. This is well shewn in the genera Colchicum, Veratrum, and Asagraea. MM. Pelletier and Caventou extracted what they considered to be veratria from each of these genera. According to Hesse and Geiger the active principle procured from Colchicum is colchicina.
1. **Colchicum autumnale**, Linn. L. E. D.—**The Common Meadow Saffron.**

**Sex. Syst.** Hexandria, Trigynia.

(Cormus et semina, L. E.—Bulbus et semina, D.)

**History.**—Dioscorides speaks of *Colchicum* (κολχικόν), and says it grows in Messenia and at Colchis. From the latter place it received its name. Dr. Sibthorp found three species of Colchicum in Greece, viz. *C. autumnale*, *C. montanum*, and *C. variegatum*. The first of these he considers to be the Colchicum of Dioscorides. It is the species admitted into the *Pharmacopoeia Graecae*, printed at Athens in 1837.

**Botany. Gen. Char.**—Perianth single, tubular, very long, rising from a spatha; limb campanulate, six-partite, petaloid. [Stamens six, inserted into the throat of the tube. Ovarium three-celled. Styles three, filiform, long. Stigmas somewhat clavate.] Capsule three-celled; cells united at the base. (Hooker, with some additions.)

**Sp. Char.**—Leaves plane, broadly lanceolate, erect (Hooker).

**Root fibrous. Cormus** (improperly called root or bulb) ovate, fleshy, large, covered with a loose brown membrane. The leaves are produced in the spring along with the fruit, and disappear before the flower appears. Flowers several, lilac or pale purple, arising from the cormus by a long, narrow, white tube. Fruit oblong, elliptical, composed of three cells, which may be regarded as distinct capsules, with intermediate fissures. Seeds small, spherical, with a rough brown testa, and large fleshy strophiola; internally they are white, and consist of a minute embryo lodged in a horny elastic albumen. The flowers appear in September, and the fruit the following spring or summer.

**Hab.**—Moist rich meadows in many parts of England and in various countries of Europe.

**Collection.**—The activity of the cormus varies at different seasons of the year. It is greatest about the months of July and August, that is, between the withering of the leaves and the sprouting forth of the flower. At this period the new cormus is fully developed, and has not exhausted itself by the production of the flower. But many of the cormi brought to market have already pushed forth their flowers, which are broken off, so as to prevent the circumstance from being

---

Lib. iv. cap. 84.

observed. "I have seen many culls," says Dr. Lindley, "sent to town in this state, which nevertheless found a ready sale, and at the best price." The seeds should be gathered when fully ripe. The London market is principally supplied from Gloucestershire, but partly also from Hampshire and Oxfordshire.

Description.—The cormus, commonly called the bulb or root, when gathered at the proper season, is about the size of a chestnut, and somewhat resembles in external appearance the bulb of the common tulip (Tulipa Gesneriana); which, as well as other liliaceous bulbs, are distinguished from the cormus of Colchicum by being composed of laminae or scales, whereas the cormus of Colchicum is solid. It is rounded on one side, flattened on the other, where is perceived the fibrous germ of a new cormus, which, if allowed to grow, shoots up and bears the flower, while the old cormus wastes, becomes insipid, and inert. It is covered by two coats, an inner reddish yellow one, and an external brown one. Internally, the cormus is white, fleshy, solid, contains a milky juice, is very feculent, and has an acrid bitter taste. "Before drying the cormus, it should be cut transversely in thin slices, the dry coats being previously removed." The slices are to be quickly dried, in a dark airy place, with a heat not exceeding 170° F. Dr. A. T. Thomson recommends the slices to be dried upon clean white paper, without artificial heat, but the time required for this is an objection to it in practice. The dried slices (radix siccata, Offic.) should be about the eighth or tenth of an inch thick, rounded, oval, with one notch only on one part of their circumference (not fiddle-shaped), inodorous, of a greyish-white colour, and an amylaceous appearance.

The seeds (semina) are about the size of those of white mustard, odourless, and have a bitter acrid taste. Their other qualities have been described above.

Composition.—The Colchicum cormus was analyzed in 1810 by Melandri and Moretti, in 1818 by Stoltze, and in 1820 by Pelletier and Caventou.

Analysis of Pelletier and Caventou.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Stoltze's Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cormus gathered in March.</td>
</tr>
<tr>
<td>Fatty matter com. Olein, Stearin, posed of Volatile acid.</td>
<td>trace</td>
</tr>
<tr>
<td>Supergallate of ceroxatia.</td>
<td>0°94</td>
</tr>
<tr>
<td>Yellow colouring matter.</td>
<td>0°41</td>
</tr>
<tr>
<td>Gum.</td>
<td>5°91</td>
</tr>
<tr>
<td>Starch. Insulin in abundance.</td>
<td>1°30</td>
</tr>
<tr>
<td>Lignin.</td>
<td>0°51</td>
</tr>
<tr>
<td>Ashes, a minute quantity.</td>
<td>7°46</td>
</tr>
<tr>
<td>Colchicum cormus.</td>
<td>2°32</td>
</tr>
<tr>
<td>Extractive, soluble in potash.</td>
<td>0°51</td>
</tr>
<tr>
<td>Water</td>
<td>8°04</td>
</tr>
<tr>
<td>Colchicum cormus.</td>
<td>89°90</td>
</tr>
</tbody>
</table>

* Flora Medicina, p. 589.
* Ph. Lond.
* Ditto, p. 344.
* Bull. de Pharm. vol. ii. p. 217.
* Journ. de Pharm. vi. 364.
**Veratria** will be described hereafter (vide *Asagraea officinalis*).

The existence in colchicum seeds of a new principle, called *colchicina*, *colchicia*, or *colchicine*, has been announced by Geifer and Hesse. It was prepared by digesting colchicum seeds in boiling alcohol; this dissolved a supersalt, which was precipitated by magnesia, and the precipitate treated with boiling alcohol. By evaporation, colchicina was deposited. The following are said to be its properties:—It is a crystallizable alkaline substance, without odour, but having a bitter taste. Its hydrate is feebly alkaline, but neutralizes acids, and forms crystallizable salts, having a bitter taste. It is soluble in water, and the solution precipitates the solution of chloride of platinum. Nitric acid colours colchicina deep violet, which passes into indigo blue, and quickly becomes, first green, and then yellow. Concentrated sulphuric acid colours it yellowish brown.

Colchicina is said to be distinguished from veratria by the following characteristics:—1st, it is soluble in water, whereas veratria is not; 2dly, it is crystallizable, whereas pure veratria is not; 3dly, it does not possess the acridity of veratria; and it differs from the latter in this, that when applied to the nose it does not excite sneezing, whereas the least portion of veratria occasions a most convulsive sneezing.

Colchicina is a powerful poison. One-tenth of a grain, dissolved in weak spirit, killed a young cat in about twelve hours. The symptoms were salivation, diarrhoea, vomiting, a staggering gait, cries, convulsions, and death. The stomach and intestines were violently inflamed, and had extravasated blood throughout their whole course.

The above statements require confirmation.

**Chemical Characteristics.**—A cold decoction of the fresh corms forms a deep blue precipitate (*iodide of starch*) with a solution of iodine. Sesquichloride of iron communicates a faint bluish tint (*gallate of iron*) to the decoction. Acetate and diacetate of lead, and protonitrate of mercury, form white precipitates with the cold decoction. Nitrate of silver produces a precipitate which is at first white, but becomes in a few minutes black. Tincture of nutgalls produces a slight dirty-looking precipitate, which is somewhat diminished by the effect of heat. Pelletier and Caventou regard this precipitate as a mixture of the tannates of starch and inulin (and of veratrin?). When heated to 122° F. the tannate of starch dissolves, but not that of inulin. Fresh prepared tincture of guaiacum with a few drops of acetic acid produces a cerulean blue colour with the fresh cormus, indicating the presence of gluten.

**Physiological Effects.**


b. *On Animals.*—Colchicum is a poison to animals. It acts as a local irritant, reduces the force of the circulation, and causes inflammation of the alimentary canal. Animals, for the most part, refuse to feed on it. It has, however, been eaten by deer and cattle, and proved poisonous to them. It is said to prove injurious at spring-time only. Moreover, we are told that when dried it may be eaten in hay with impunity. Storck and Kratochwill gave it to dogs, on whom it acted as an acid poison, and caused death. Sir E. Home in-
jected 160 drops of a vinous infusion of colchicum into the jugular vein of a dog: all power of motion was instantly lost, the breathing became slow, the pulse hardly to be felt. In ten minutes it was 84, in twenty minutes 60, in an hour 115, with the respiration so quick as hardly to be counted. In two hours the pulse was 150, and very weak. The animal was purged, vomited, and very languid: he died in five hours. On dissection, the internal coat of the stomach was found inflamed, in a greater or less degree, universally. From this experiment it appears that the action of colchicum on the alimentary canal is of a specific kind.

In opposition to the above statements it deserves notice that Orfila\(^5\) has frequently given to dogs, in the month of June, two or three cormi without perceiving any sensible effects; from which he infers, that climate and season of the year have great influence on their deleterious properties.

It has been said that horses eat colchicum with impunity; but it is probable that this statement is erroneous. Withering\(^4\) states, on the authority of Mr. Woodward, that, “in a pasture in which were several horses, and eaten down nearly bare, the grass was closely cropped, even under the leaves, but not a leaf bitten.”

Some further information on the effects of colchicum on dogs will be found in Sir C. Scudamore’s *Treatise on Gout and Rheumatism*, 3d ed. p. 477, 1819.

\(\gamma\). *On Man.*—In small and repeated doses colchicum has a tendency to promote the action of the secreting organs, especially of the intestinal mucous membrane. The kidneys, the skin, and the liver, are less certainly and obviously affected by it. The most constant effects observed from the use of larger doses are nausea, vomiting, and purging. Reduction of the frequency of the pulse is a common, though not an invariable effect. Mr. Haden\(^1\) was, I believe, the first to direct attention to the advantages to be taken of this effect in the treatment of inflammatory diseases. In some experiments made on healthy individuals by Dr. Lewins\(^3\), debility, a feeling of illnėss, and headache, were experienced. This feeling of debility is not, however, to be referred to the evacuations produced; for, as Dr. Barlow\(^k\) has observed, the number of motions is sometimes considerable without any proportionate depression of strength ensuing. “I have known,” says Dr. B. “even twenty stools occasioned by a single dose of colchicum, the patient not complaining of the least debility.” The action of colchicum on the secretory apparatus is not confined to that of the alimentary canal: after the use of three or four full doses of this medicine copious sweating is often produced, especially when the skin is kept warm. On other occasions the kidneys are powerfully acted on. In one case, mentioned by Dr. Lewins, seventy drops of *Vinem Colchici* caused the discharge of upwards of a pint of bile by vomiting. Violent salivation resulted in a case recorded in an

---

\(^{5}\) *Toxicol. Gen.*

\(^{4}\) *Brit. Plants*, ii. 462, 7th ed. 1830.

\(^{1}\) *Pract. Observ. on the Colchicum autumnale*, 1820.


American journal. Chelius, of Heidelberg, asserts, that, in gout and rheumatism, colchicum occasions a striking increase in the quantity of uric acid contained in the urine: in one case it was nearly doubled in the space of twelve days. But this effect is by no means constant, as Dr. Graves has pointed out. Indeed, it not unfrequently happens, in acute rheumatism, when the urine is loaded with uric acid or the urates, that the use of colchicum diminishes the quantity of these matters in the urine; so that it would seem rather to prevent the formation of uric acid in the system than to provoke its elimination.

Under some circumstances colchicum acts as anodyne: thus in gouty and rheumatic cases it sometimes speedily relieves the pain in a most surprising manner.

In excessive or poisonous doses colchicum acts as a powerful poison. In a case related by Mr. Fereday, where two ounces of the wine of the seeds of colchicum were swallowed, the symptoms were acute pain in the bowels, coming on in about an hour and a half after taking it, vomiting, acute tenesmus, small, slow, and feeble pulse, cold feet, and weakness of limbs. The nausea, vomiting, and pain in the stomach, continued with undiminished violence, the pulse became also imperceptible and intermitting, the urine was suppressed, the respiration hurried, purging of copious liquid stools came on, and loss of sight for a minute or two after getting out of bed. The patient died forty-seven hours after swallowing the poison. On a post-mortem examination, the skin of most parts of the body was found to be covered with a purple efflorescence: no inflammation was observed in the alimentary canal; two red patches were found, one in the stomach, and the other in the jejunum. These were produced by the effusion of a small quantity of blood, in the one case, between the muscular and mucous coats; in the other, between the peritoneal and muscular coats. Ecchymosed spots were observed on the surface of the lungs, of the heart, and of the diaphragm. More recently a case of poisoning by a decoction of the seeds has been recorded; as also by the leaves of this plant.

In Mr. Fereday's case the only indications of an affection of the nervous system were weakness of the limbs, the temporary loss of sight, and the slowness and feebleness of the pulse.

It is deserving of notice, that in this case, also in another related by Chevallier, likewise in a third mentioned by Mr. Dillon, and in Mr. Haden's case, no convulsions were observed; and in the three first cases no insensibility. In the last case, however, Mr. Haden mentions that at "ten p.m. she fell into an apoplectic kind of sleep, which terminated in death before morning." It is remarkable that convulsions are ascribed to veratria by Ma-

---

1 Wood and Bache's United States Dispensatory, 3d. ed.
3 Ibid. vol. vii. p. 548.
5 Journ. de Chim. Méd. t. vi. 2e Série, p. 503.
6 Ibid. viii. 331.
8 Maje ndie's Formulary, by C.T. Haden.
944  ELEMENTS  OF  MATERIA  MEDICA.

gendie,  and  to  colchicina  by  Geiger  and  Hesse.  In  one  case  of  fatal
poisoning  from  an  ounce  and  a  half  of  the  tincture  of  colchicum* delirium  occurred.

The  above  account  of  the  effects  of  colchicum  applies  both  to  the
cormi,  the  seeds,  and  the  leaves.  The  flowers  are  likewise  poisonous,
and  a  fatal  case  from  their  use  is  mentioned  by  Dr.  Christison".  They  have  been  recommended  for  medicinal  use.

Uses.—The  following  are  the  principal  diseases  in  which  the
Meadow  Saffron  has  been  employed:—

1.  In  Gout.—The  circumstances  which  of  late  years  have  led  to  the
extensive  employment  of  colchicum  in  gout  are  the  following:—

About  seventy  years  ago,  M.  Husson,  a  military  officer  in  the  service
of  the  king  of  France,  discovered,  as  he  informs  us,  a  plant  possessed
of  extraordinary  virtues  in  the  cure  of  various  diseases.  From  this
plant  he  prepared  a  remedy  called  *Eau  Médicinale*,  which  acquired
great  celebrity  for  abating  the  pain  and  cutting  short  the  paroxysm
of  gout*.  Various  attempts  were  made  to  discover  the  nature  of  its
active  principle.  In  1782,  MM.  Cadet  and  Parmentier  declared  that
it  contained  no  metallic  or  mineral  substance,  and  that  it  was  a
vinous  infusion  of  some  bitter  plant  or  plants.  Alyon"  asserted  that
it  was  prepared  with  Gratiola;  Mr.  Moore^  that  it  was  a  vinous
infusion  of  white  hellebore  with  laudanum;  Mr.  Wantv  that  it  was  a
vinous  infusion  of  Colchicum.  Although  most  writers  have
adopted  Mr.  Want's  opinion,  we  should  bear  in  mind  that  the  proofs
hitherto  offered  of  its  correctness,  viz.  analogy  of  effect,  cannot  be
admitted  to  be  conclusive,  as  is  well  shewn  by  the  fact,  that  they
have  been  advanced  in  favour  of  the  identity  of  other  medicines  with
the  *Eau  Médicinale*.

The  power  of  Colchicum  to  alleviate  a  paroxysm  of  gout  is  ad-
mitted  by  all;  but  considerable  difference  of  opinion  exists  as  to  the
extent  of  this  power,  and  the  propriety  of  employing  it.  Sir  Everard
Home 7,  from  observation  of  its  effects  on  his  own  person,  regarded  it
as  a  specific  in  gout,  and  from  experiments  on  animals  concluded
that  its  beneficial  effects  in  this  malady  are  produced  through  the
circulation.

Dr.  Paris 8  observes—"As  a  specific  in  gout  its  efficacy  has  been
fully  ascertained:  it  allays  pain,  and  cuts  short  the  paroxysm.  It
has  also  a  decided  action  upon  the  arterial  system,  which  it  would
appear  to  control  through  the  medium  of  the  nerves."  But  if  by  the
word  specific  is  meant  a  medicine  infallibly,  and  on  all  patients,  pro-
ducing  given  salutary  effects,  and  acting  by  some  unknown  power
on  the  disease,  without  being  directed  by  indications 9,  undoubtedly
Colchicum  is  no  specific  for  gout.

---

2  Treat,  on  Poisons,  3d  ed.  p.  792.
3  Dr.  E.  G.  Jones,  An  Account  of  the  Remark.  Effects  of  the  *Eau  Médicinale*  d'Husson  in  the  Gout.
4  Elem.  de  Chimie.
5  Two  Letters  on  the  Composition  of  the  *Eau  Médicinale*,  2d  ed.  1811.
7  Phil.  Trans.  1816.

That Colchicum alleviates a paroxysm of gout I have before mentioned; but that alleviation is palliative, not curative. It has no tendency to prevent a speedy recurrence of the attack; nay, according to Sir Charles Scudamore, it renders the disposition to the disease much stronger in the system. Furthermore, by repetition its power over gouty paroxysms becomes diminished.

The *modus medendi* of Colchicum in gout is an interesting though not very satisfactory part of our inquiry. I have already stated that some regard this remedy as a specific, that is, as operating by some unknown influence. Others, however, and with more propriety, refer its therapeutical uses to its known physiological effects. "Colchicum," says Dr. Barlow, "purges, abates pain, and lowers the pulse. These effects are accounted for by assigning to it a cathartic and sedative operation, and it is this combination perhaps to which its peculiar virtues are to be ascribed." The fact that a combination of a drastic and a narcotic (as elaterium and opium, mentioned by Dr. Sutton, and white hellebore and laudanum, recommended by Mr. Moore, has been found to give, in several cases of gout, marked and speedy relief, seems to me to confirm Dr. Barlow's opinion. The idea entertained by Chelius, and adopted by Dr. G. Hume Weatherhead, that colchicum relieves gout by augmenting the quantity of uric acid in the urine, is not supported by fact, as I have already mentioned. Whether it acts by preventing the formation of uric acid in the system I am not prepared to say.

In acute gout occurring in plethoric habits, blood-letting should precede the use of Colchicum. This medicine should then be exhibited in full doses, so as to produce a copious evacuation by the bowels, and then the quantity must be considerably diminished. Though purging is not essential to the therapeutical influence of Colchicum, it is admitted by most that, in a large number of cases at least, it promotes the alleviation of the symptoms. Hence, many practitioners recommend its combination with saline purgatives, as the sulphate of magnesia. Sir Charles Scudamore has experienced "the most remarkable success from a draught composed of *Magnesia*, gr. xv. ad xx.; *Magnes. Sulphat.* 5j. ad 5ij.; *Aceti Colchici*, 5j. ad 5ij.; with any distilled water the most agreeable, and sweetened with any pleasant syrup, or with 15 or 20 grains of *Extract. Glycyrrhiza*.

2. In Rheumatism.—The analogy existing between gout and rheumatism has led to the trial of the same remedies in both diseases. But its therapeutical powers in the latter disease are much less marked than in the former. Rheumatism may affect the fibrous tissues of the joints, the synovial membrane, the muscles or their aponeuritic coverings, the periosteum, or the neurilemma, constituting thus five forms of the disease, which may be denominated respectively the

---

*Treat. on Gout and Rheumatism, 3d ed. p. 197.
*Treat. on Gout*, p. 201.
*Treat. on Headaches, p. 88. 1835.*
fibrous, or ligamentous; the synovial, arthritic, or capsular; the muscular; the periosteal; and the neuralgic forms of rheumatism. Of these colchicum is said to produce its best effects in the synovial form. It is remarkable, however, that in all the severe cases of this variety of rheumatism which have fallen under my notice, the disease has proceeded unchecked, or was scarcely relieved by the use of colchicum. In one instance, that of my much-lamented friend, the late Dr. Cummin (whose case is noticed by Dr. Macleod, in the Lond. Med. Gaz. xxi. 358), the disease proved fatal by metastasis to the brain. In another melancholy but not fatal case, the gentleman has lost the sight of both his eyes, and has both knee-joints rendered stiff. In neither of these cases was colchicum of the slightest avail.

Of the mode of administering colchicum in "rheumatic gout," recommended by Mr. Wigan, I have no experience. He gives eight grains of the powder in some mild diluent every hour until active vomiting, profuse purging, or abundant perspiration, take place; or at least till the stomach can bear no more. The usual quantity is eight or ten doses; but while some take fourteen, others can bear only five. Though the pain ceases, the more active effects of the colchicum do not place for some hours after the last dose. Thus administered, Mr. Wigan declares colchicum "the most easily managed, the most universally applicable, the safest, and the most certain specific, in the whole compass of our opulent Pharmacopœia." But its use in these large doses requires to be carefully watched.

3. In Dropsy.—Colchicum was used in dropsy with success by Störck. It has been employed in dropsical cases with the two-fold view of purging and promoting the action of the kidneys. Given in combination with saline purgatives, I have found it beneficial in some cases of anasarca of old persons.

4. In inflammatory diseases generally. — Colchicum was recommended as a sedative in inflammatory diseases in general by the late Mr. C. T. Haden. He used it as an auxiliary to blood-letting for the purpose of controlling arterial action; and gave it in the form of powder, in doses of six or seven grains, three or four times daily, in combination with purgatives, in inflammatory affections of the lungs and their membranes, and of the breasts and nipples. In chronic bronchitis it has also been found useful by Dr. Hastings.

5. In fevers. — The late Mr. Haden, and more recently Dr. Lewin, have spoken favourably of the use of colchicum in fever. In my opinion it is only admissible in those forms of the disease requiring an active antiphlogistic treatment. In such it may be useful as an auxiliary to blood-letting and cathartics.

6. In various other diseases.—For expelling tape-worm, colchicum

---

b Dr. Macleod, Lond. Med. Gaz. xxi. 120.
2 Libelles.
3 Præct. Observ. on the Colchicum autumnale. 1830.
4 TREAT. on Inflammation of the Mucous Membrane of the Lungs. 1820.
has been found efficacious by Chisholm and Baumbach. In some chronic affections of the nervous system, as chorea, hypochondriasis, hysteria, &c. Mr. Raven \(^6\) employed it with advantage. In humoral asthma, and other chronic bronchial affections, I have found it of great service, especially when these complaints were accompanied with anasarcurous swellings.

**ADMINISTRATION.**—The cormi and seeds of meadow saffron have been employed in substance, in a liquid form, and in the state of extract.

1. **PULVIS CORMI COLCHICI.**—Dose, from two to eight or nine grains. To preserve it Mr. Wigan recommends it to be kept mixed with sugar.

2. **PULVIS SEMINUM COLCHICI.**—Dose the same as that of the cormus. The seeds are to be preferred to the cormi, as being more uniform in their properties.

3. **TINCTURA [SEMINUM] COLCHICI, L. Ed.; Tinctura seminum Colchici, D.** (Meadow Saffron seeds bruised [ground finely in a coffee-mill, Ed.], 3v. (5ij. D.); Proof Spirit, Oij. (Oij. wine measure, Dub.) Macerate for fourteen days, and strain, L. "Percolation is much more convenient and speedy than digestion, E.)—Dr. Williams\(^6\) objected to this preparation as being "turbid, unpalatable, and disposed to precipitation." The same writer\(^4\) also asserts, that the active property of the seeds resides in their husk or cortical part, and, therefore, protests against bruising them. But were his assertion correct (and it is most improbable that the embryo is devoid of activity), bruising them cannot destroy or injure their activity. The average dose is from $\frac{1}{4}$ss. to $\frac{1}{2}$ij. I have repeatedly given $\frac{1}{2}$ij. at a dose without any violent effect. Dr. Barlow, who prefers this to the other preparations of colchicum, advises that in gout a drachm, a drachm and a half, or two drachms of the tincture, should be given at night, and repeated the following morning. If this quantity fail to purge briskly, a third dose may be administered the ensuing night. Externally, the tincture has been employed as a liniment, to relieve rheumatic, gouty, venereal, and other pains.

4. **TINCTURA [SEMINUM] COLCHICI COMPOSITA, L.; Spiritus Colchici ammoniatus, L. 1824.** (Meadow Saffron seeds, 3v.; Aromatic Spirit of Ammonia, Oij. Macerate for fourteen days, and strain). Dose, $\frac{1}{2}$xx. to $\frac{1}{2}$ij. — This preparation was recommended by Dr. Williams as being "of greater value when acidity or flatulence prevails, than the Vin. sem. Colchici, and better adapted to the palates of those who object to the flavour of white wine." It is seldom employed. Mr.

Brande says, doubts are entertained as to the propriety of employing ammonia in it.

5. **VINUM SEMINUM COLCHICI.**—No formula for this exists in any of the British pharmacopoeias. The following is Dr. Williams's formula:—Meadow Saffron seeds, dried, 3ij.; Sherry Wine, Oij. (wine measure). Macerate for eight or ten [fourteen] days, occasionally agitating, then filter. The average dose is f3ss. to f5j. I have given it to the extent of f5ij. Dr. Williams says it may be gradually increased to f5ij.

6. **VINUM [CORMI] COLCHICI, L. E.** (Meadow Saffron cormus, dried and sliced, 3viij. Sherry Wine, Oij. Macerate for fourteen [seven, E.] days, [express strongly the residuum, E.] and strain).—Average dose, f3ss. to f5j.—Sir E. Home thought that the second and subsequent deposits which take place from this wine, contain the principle which acts on the stomach and bowels, while that which cures the gout is retained in permanent solution. But Sir C. Scudamore found the sediment to be inert.

7. **ACETUM [CORMI] COLCHICI, L. E. D.** (Fresh Meadow Saffron cormus, sliced, 5j.; Distilled Vinegar, f3xvj.; Proof Spirit, f3j. Macerate the meadow saffron cormus with the vinegar, in a covered glass vessel, for three days; afterwards press and strain the liquor, and set it by, that the dregs may subside: lastly, add the spirit to the clear liquor).—Though the Colleges order the fresh cormus to be used, druggists frequently prepare it with the dried, on account of the impossibility of procuring the fresh at all seasons of the year. Hence it is to be regretted that the Colleges have directed the latter to be employed, as it leads to variation in the mode of preparation. In practice, one part of the dried cormus may be considered equal to three parts of the fresh: for Mr. Battley says the cormus loses about 67 per cent. of its weight in drying; and Mr. Bainbrigge obtained 2 lbs. 15 ozs. of dried slices from 8 lbs. of fresh cormi. The proof spirit used in preparing the acetum is for the purpose of checking decomposition. By the action of the acetic acid on the colchicina of the cormus, an acetate of this alkaloid is obtained. Sir C. Scudamore regards an acetic preparation of colchicum as milder than the wine or tincture made with the same relative weights of cormi and liquids, though it is a most efficient preparation in gout. He advises, as I have before mentioned, that it should be given in combination with magnesia, by which its acid menstruum is destroyed (acetate of magnesia being formed), and the active principle of the colchicum left in the most favourable state for administration. The average dose is from f5ss. to f5ij.

---

8 Dict. of Mat. Med. 1839.
1 Phil. Trans. 1837.
" Treatise on Gout, 3d edit. p. 513.
w Haden, Practical Observations on Colch. autumn. p. 77.
x Observations on the Use of Colchicum.
8. **EXTRACTUM [CORMI] COLCHICI ACETICUM, L. F.**—(Fresh Meadow Saffron cormus, lb. j.; Acetic [pyrroligneous, *Ed.*] acid, f iiiij.) Bruise the cormus gradually sprinkled with the acetic acid, then press out the juice, and evaporate it in an earthen vessel which is not glazed with lead [over the vapour bath, *Ed.*] to a proper consistence) —This compound contains the acetate of colchicina. It is a very favourite remedy in the treatment of gout and rheumatism, and was introduced into practice by Sir C. Scudamore. Dr. Paris observes that he has "found it useful in promoting healthy discharges of bile." He occasionally combines it with blue pill, calomel, or potassio-tartrate of antimony. The dose is from gr. j. to gr. iiij. twice or thrice a day.

9. **EXTRACTUM COLCHICI CORMI, L.**—(Fresh Meadow Saffron cormus, lb. j. Bruise the cormus, sprinkled with a little water, in a stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence.) —This is a favourite preparation with Dr. Hue, of St. Bartholomew's Hospital, in the early stage of acute rheumatism. The dose is gr. j. every four hours.

10. **OXYMEL [CORMI] COLCHICI, D.**—(Fresh Cormus of Meadow Saffron, cut into thin slices, 3½; Distilled Vinegar, Oj. (wine measure); Clarified Honey, by weight, lb. iiij.) Macerate the meadow saffron with the vinegar in a glass vessel for two days; to the liquor, strongly expressed from the cormus and filtered, add the honey, and then boil down the mixture to the consistence of a syrup, frequently stirring it with a wooden rod.) —The active principle of this preparation is apt to be injured by boiling, and hence its strength is uncertain. It is used in gout, rheumatism, dropsy, and humoral asthma. The dose is 3½j. gradually increased to 5j. or more, twice in the day.

11. **SUCCUS COLCHICI;** *Preserved Juice of Colchicum.* —The mode of preparing and preserving vegetable juices has been already described (see p. 365). Mr. Bentley informs me that from one cwt. of very fine cormi gathered at the end of August, and well bruised and pressed, he obtained four imperial gallons and 3½xij. of a light fawn-coloured juice. This juice becomes darker coloured by exposure to the air. After standing forty-eight hours the spirit is added to it. A large quantity of fecula is deposited, and the liquor acquires a paler tint. Exposure to light appears to render it somewhat paler. The smallest dose of Mr. Bentley's succus colchici is five minimis. 

**ANTIDOTE.** — *See Veratum album.*

2. **HERMODAC'TYLUS, Auct.** — **HERMODACTYL.**

**History.** — Among the later Greek and the Arabian physicians, a medicine called hermodactyl (ἠρμοδάκτυλος, from Ἑρμῆς, Mercury or Hermes; and δάκτυλος, finger).
a finger) was in great repute as a remedy for arthritic diseases. It was first mentioned by Alexander of Tralles who flourished A. D. 560. Paulus of Egina, who lived A. D. 650, Avicenna, Serapion, and Mesne, also speak of it. It is deserving of especial notice, that under the name of Surugen or Hermodactyl, Serapion comprehends the κολχικών and εφήμερον of Dioscorides, and the ἑρμοδάκτυλος of Paulus.

**Natural History.**—The cormi brought from Oriental countries in modern times under the name of hermodactyls, answer to the descriptions given of the ancient substance bearing this name. I am, therefore, induced to believe them to be identical with the latter. Their resemblance to the cormi of Colchicum autumnale leads me to reject the notion of Matthiolius, at one time entertained by Linnaeus, and adopted by Martius, that they are produced by Iris tuberosa. That they are the underground stems of some species of Colchicum can scarcely, I think, be doubted by any one who carefully examines them. Notwithstanding the statements of Mr. Want and of Sir H. Halford, I cannot admit hermodactyls to be the cormi of Colchicum autumnale, though this is the only species of Colchicum admitted into the new Greek Pharmacopoeia. Though resembling the latter in several circumstances, they possess certain distinctive peculiarities. Some of the most eminent pharmacologists of Europe (e.g. Guibourt, Goebel, Geiger, Geoffroy, &c.) also regard them as distinct. The Colchicum illyricum, mentioned in many works as yielding hermodactyl, is unknown to modern botanists. The cormus of Colchicum byzantinum is too large to be confounded with hermodactyl. Colchicum variegatum has been supposed by several botanists and pharmacologists to be the source of hermodactyl, but further evidence is required to establish the opinion. This plant is a native of Sicily, Crete, Greece, and Portugal. Dr. Sibthorp found it on Helicon, Parnassus, and other mountains of Greece. It is not improbable, I think, that Colchicum bulbocodiodes may yield hermodactyl, which Dale tells us is brought from Syria. For Dr. Lindley informs me that this species of Colchicum was found by Colonel Chesney near the Euphrates, where it was very common, flowering in March. The cormi were not brought over. Iris tuberosa was not found there. Forskål found Colchicum montanum (which Sprengel, in his Syst. Veg. regards as identical with C. bulbocodiodes) at Kurma, in Arabia.

**Description.**—Mesne says that hermodactyl is either long, like the finger, or round. Of the round, he adds, there are three kinds,—the white, the red, and the black, the white being the best. Through the kindness of my friend, Professor Royle, I have had the examination of two kinds of hermodactyl, procured by him in the bazaars of Northern India, brought, he thinks, from Surat or Bombay, and probably imported there from the Red Sea.

1. *Tasteless Hermodactyl.* Sorinjan sheeran (i.e. sweet sorinjan), Royle. *Hermodactylus, Auct. nostrae ætatis.*—In their general form, these cormi resemble those of Colchicum autumnale. They are flattened, cordate, hollowed out or grooved on one side, convex on the other. At their lower part (forming the base of the heart) is a mark or disk for the insertion of the root fibres. Their size varies: the specimens I have examined were from $\frac{3}{4}$ to $\frac{1}{2}$ inches in length or height, 1 to $\frac{1}{4}$ inches in breadth, and about $\frac{1}{4}$ an inch in depth. They have been deprived of their coats, are externally dirty yellow or brownish, internally white, easily broken, farinaceous, opaque, odourless, tasteless, or nearly so, and worm-eaten. They agree precisely with hermodactyls furnished me by Professor.

---

1 Lib. xi.
2 Opera, lib. iii. cap. 78.
3 Lib. ii. cap. 532.
4 De simplicibus, cap. 194.
7 Pharmacognosie, 42.
9 On the Treatment of Gout.
10 Prod. Pl. Greece, ii. 250.
11 Pharmacologia, p. 245, ed. 3rd.
12 Fl. Egypt. Arab. p. 77.
Guibourt. They are readily distinguished from the cormi of Colchicum autum- nale by the following characters, which are correctly stated by Geoffroy:—They are not rugose, are white internally, are moderately hard, easily broken, and form a whitish powder; whereas the dried cormi of Colchicum autum- nale are rugose, softer, and have a reddish or greyish tint both internally and externally.

2. Bitter Hermodactyl. Sorinjan tulkh (i.e. bitter sorinjan,) Royle. Bulbs of another Colchicum. ? Bulbs of another Colchicum. ? ? Hermodactylus rubeus et niger (Avicenna and Mesue). The cormi of this variety are distinguished from the preceding by their bitter taste, their smaller size, and by having externally a striped or reticulated appearance. Their colour for the most part is darker; in some specimens it is blackish. One cormus is ovate-cordate; 1 inch in height or length, $\frac{3}{4}$ of an inch broad, and about $\frac{1}{2}$ of an inch thick, grooved or hollowed on one side, convex on the other; of a brownish yellow colour, semi-transparent, has a horny appearance, and is marked by longitudinal stripes, indicating a laminated structure. A second is opaque, amylaceous, reticulated externally, white internally, less flattened, and of a remarkable shape, the concave or hollow side of the cormus being continued half an inch below the mark for the attachment of the root fibres. The other cormi are of the size and shape of a large orange pip, but flattened or grooved on one side; some of them are worm-eaten, and one is blackish brown externally.

Composition. — Lecanu analysed hermodactyls (the tasteless variety), and obtained the following results:—Starch (forming the principal constituent of the hermodactyl), fatty matter, yellow colouring matter, gum, supermalates of lime and potash, and chloride of potassium.

Is the absence of veratria or colchicina to be ascribed to the cormi having undergone decomposition by keeping? No inulin was detected.

Chemical Characteristics. — Both the tasteless and bitter hermodactyls are blackened by tincture of iodine, shewing the presence of starch. A cold decoction of the bitter variety produced an intense blue precipitate (iodide of starch) with a solution of iodine. Tincture of galls, and solutions of protinrate of mercury, and of diacetate of lead, caused a cloudiness in the cold decoction.

Effects and Uses. — No modern experiments have been made to determine the activity of hermodactyl. The tasteless variety is probably inert, or nearly so: but the bitter variety, I suspect, possesses some activity. Is its operation analogous to that of the cormus of Colchicum autumnae?

Speaking of the treatment of gout and arthritis, Paulus says, “some, in the paroxysms of all arthritic diseases, have recourse to purging with hermodac- tylus; but it is to be remarked, that the hermodactylus is bad for the stomach, producing nausea and anorexia, and ought, therefore, to be used only in the case of those who are pressed by urgent business; for it removes rheumatism speedily, and after two days at most, so that they are enabled to resume their accustomed employment”.

3. VERA TRUM ALBUM, Linn. L. E. D.—WHITE HELLEBORE.

Sex. Syst. Polygamia, Monoeica.

(Radix, L. D.—Rhizoma, E.)

History. — This is, I think, the ἔλεβορος λευκὸς of Dioscorides, and probably, therefore, of other ancient writers, as Hippocrates and Theophrastus. On this point, however, considerable difference of opinion has existed. Schulze, while he acknowledges the great similitude between Veratum album, Linn. and the white hellebore of Dioscorides, is of opinion that the true hellebore (both white and

---

1 Trait. de Mat. Méé. t. ii. p. 79.
2 Goebel, Pharm. Waarenh. p. 271.
3 Journ. de Pharm. xi. 350.
4 Adams's Translation, vol. i. p. 357.
5 Diss. inaug. sist. Toxicol. Veteram, Hale, 1788.

VOL. II.
black) of Theophrastus is wholly lost. And Dr. Sibthorp\(^a\) regards *Digitalis ferruginea* as the white hellebore of Dioscorides, an opinion from which Sir J. Smith, the editor of the Prodromus, expresses his dissent\(^b\). The term *veratrum* is said by Lemery to be derived from *vere atrum* (truly black), in reference to the colour of the rhizome; but this etymology is improbable.

**Botany.**

**Gen. Char.** — *Flowers* polygamous. *Perianth* six-parted; segments broad, concave, imbricating, nearly equal, striated, not excavated at the base. *Stamens* six, equal, inserted into the base of the segments; *filaments* subulate; *anthers* reniform, with confluent cells. *Ovary* with three diverging stigmas. *Capsule* three-horned, separating into three many-seeded follicles. *Seeds* compressed, winged at the apex. (Lindley.)


**Fig. 176.**

*Veratrum album*, Linn. var. *albiflorum*.

\(a\) *Prod. Fl. Græc. i. 439.

\(b\) For some interesting information respecting the ancient hellebore, consult Dierbach, *Arzneimittel d. Hippocrates*, p. 107.
WHITK HELLEBORE.  953

brown fine undulating line from a thick woody ring, in which the root fibres take their origin. On the outside of this is a narrow but compact, brown, epidermoid coat. The odour of the dried rhizome is feeble; the taste is at first bitter, then acrid. By keeping, the rhizome is apt to become mouldy.

COMPOSITION.—White hellebore rhizome was analyzed in 1820 by MM. Pelletier and Caventou, who obtained the following results:—

1. Fatty matter (composed of olein, stearin, and a volatile [cevadic?] acid), supergallate of veratria, yellow colouring matter, starch, ligneous matter, and gum. The ashes contained much phosphate and carbonate of lime, carbonate of potash, and some traces of silica and sulphate of lime, but no chlorides. They could not obtain the volatile [cevadic?] acid in a crystalline form.

2. Veratria (See p. 960).

3. Barytin. This has been so called in consequence of its being precipitated from its solution in acetic or phosphoric acid by sulphuric acid or the sulphates, like baryta.

3. Jervin. So called from Jerva, the Spanish name for a poison obtained from the root of white hellebore. It is a crystalline substance, which forms, with sulphuric, nitric, and hydrochloric acids, difficultly soluble compounds.

Chemical Characteristics.—A decoction of the rhizome underwent, on the addition of a solution of gelatin, no change, shewing the absence of tannic acid; but with the sesquichloride of iron, it became olive green (gallate of iron). With tincture of galls it became slightly turbid (tannates of veratria and starch). With acetate and diacetate of lead, and protonitrate of mercury, it formed copious precipitates. The rhizome left after the decoction had been prepared from it, became, on the addition of a solution of iodine, black (iodide of starch).

Physiological Effects.

a. On Vegetables.—Not ascertained.

b. On Animals generally.—" The best account of its effects is contained in a thesis by Dr. Schabel, published at Tübingen, in 1817. Collecting together the experiments previously made by Wepfer, Courtou, Viborg, and Orfila, and adding a number of excellent experiments of his own, he infers that it is poisonous to animals of all classes—horses, dogs, cats, rabbits, jackdaws, starlings, frogs, snails, and flies; that it acts in whatever way it is introduced into the system—by the stomach, windpipe, nostrils, pleural membrane of the chest, or external wounds, or the veins; that it produces in every instance symptoms of irritation in the alimentary canal, and injury of the nervous system; and that it is very active, three grains of the extract applied to the nostrils of a cat having killed it in sixteen hours."
γ. On Man.—Its local action is that of a powerful acrid. Applied to the Schneiderian membrane, it excites violent sneezing. Epistaxis even is said to have been induced by it. Its operation when swallowed, or placed in contact with the skin, is also that of an energetic irritant.

Its remote action is on the secretory apparatus, the stomach and intestines, and the nervous system. In small and repeated doses it promotes secretion from the mucous surfaces, the salivary glands, the kidneys, and the uterus, and increases the cutaneous exhalation. In larger doses it causes vomiting, purging, pain in the abdomen, tenesmus, and occasionally bloody evacuations, and great prostration, of strength. In some instances a few grains even have had these effects. Schabel says there is no substance which so certainly and promptly provokes vomiting; and Horn employed it as a sure emetic. In addition to the local action which it exercises, when swallowed, on the stomach and intestines, it possesses a specific power of influencing these viscera: for Etmuller has seen violent vomiting result from the application of the rhizome to the abdomen; and Schröder observed the same occurrence where the rhizome was used as a suppository. In excessive doses it operates as a narcotico-acrid poison, producing gastro-intestinal inflammation and an affection of the nervous system. The symptoms are, violent vomiting and purging (sometimes of blood), tenesmus, burning sensation of the mouth, throat, oesophagus, stomach, and intestines, constriction of the throat, with a sense of strangulation, griping pain in the bowels, small, and in some cases almost imperceptible pulse, faintness, cold sweats, tremblings, giddiness, blindness, dilated pupils, loss of voice, convulsions, and insensibility, terminating in death. A cutaneous eruption has in some instances followed the use of white hellebore.

I am indebted to Dr. Wm. Rayner, of Stockport, for notes of three cases of poisoning by infusion of white hellebore. The symptoms resembled those just mentioned, except that there was no purging. All three cases rapidly recovered.

Hutchinson remarked, that when death did not occur, palpitation and intermitting pulse, besides dyspeptic and nervous symptoms, remained for some time. These effects were not observed in Dr. Rayner’s cases.

In its action on the system, Veratrum album is more closely related to cebadilla and meadow saffron than to any other medicinal agents. It is more acrid and less stupifying than Helleborus niger, with which it has been so frequently compared both by ancients and moderns. Orfila ascertained by experiment on animals that it is more active as a poison than the last-mentioned substance. It exercises no known chemical influence over the tissues by which it is distinguished from the mineral irritants, as baryta and emetic tartar, with which Schabel compared it.

---

3 Greding, Sämtll. med. Schrift. Th. 1, S. 179.
7 Archiv, B. x. H. i. S. 161.
5 Opera omnia, tom. ii. pt. 2, p. 144.
6 Orfila, Toxicol. Gén.
6 Schwartze’s Pharm. Tab. 2e Ausg.
6 Toxicol Gén.
USES.—It is but rarely employed, principally on account of the alleged uncertainty of its operation. But from the few trials which I have made with it, I suspect this uncertainty is much exaggerated, and is principally referrible to the varying lengths of time which the rhizome has been kept after its removal from the earth, for, like colchicum, it deteriorates by keeping. The following are the principal cases in which it has been employed:—

1. In affections of the nervous system, as melancholia, mania, and epilepsy. As an emetic, purgative, and promoter of the secretions generally, we can easily understand that it may prove occasionally beneficial.

2. In chronic skin diseases, as herpes, Dr. C. Smyth gave the tincture internally with benefit. As external applications, the decoction and ointment are used in scabies (hence the Germans call the rhizome Kratzwurzel, i.e. itch-root), tinea capitis, &c.; but their use is not quite free from danger.

3. In gout it was given in combination with opium, by Mr. Moore, as a substitute for, or in imitation of, the Eau Médicinale. The dose, in a paroxysm of gout, was from forty minims to two drachms of a mixture composed of three parts of Vin. Veratri albi and one part of liquid laudanum.

4. In amaurosis and chronic affections of the brain occurring in torpid habits, it is employed as an errhine or sternutatory (hence its German name, Niesswurzel, i.e. sneeze-root). It is usually diluted with some mild powder. The German snuff called Schneeberger is said to contain it.

5. To destroy pediculi, the decoction is used as a wash.

6. As an emetic, it was employed by Horn.

ADMINISTRATION.—The following are the principal modes of exhibition:—

1. PULVIS VERATRI; White Hellebore Powder.—The dose of this at the commencement should not exceed one or two grains. This quantity will sometimes occasion nausea and vomiting; but Greding found that in some cases eight grains, and, in a few instances, a scruple of the bark of the rhizome in powder were required to excite vomiting. As an errhine, not more than two or three grains, mixed with eight or ten of some mild powder (as starch, liquorice, Florentine orris, or lavender) should be employed at one time. It is a constituent of the Unguentum Sulphuris compositum (see p. 461).

2. VINUM VERATRI, L. Tinctura Veratri albi; Tincture of White Hellebore. (White Hellebore, sliced, 3vij.; Sherry Wine, Oij. Macerate for fourteen days, and strain).—As a substitute for Colchicum in gout and rheumatism, the dose is ten minims twice or thrice
daily. This quantity is to be gradually increased. A full dose acts as an emetic and cathartic.

3. **DECOCTUM VERATRI, L. D.; Decoction of White Hellebore.**
(White Hellebore, bruised, 5x.; Distilled Water, Oij.; Rectified Spirit, 3ij.) Boil the hellebore in the water down to a pint, and when it is cooled add the spirit).—This preparation is only used as an external application in skin diseases (scabies, lepra, tinea capitis, &c.), and to destroy pediculi. When the skin is very irritable, the decoction will sometimes require dilution. If the surface to which it is applied be denuded, absorption of the veratria may occur, and constitutional symptoms be thereby induced; hence it is a dangerous application, especially to children.

4. **INGUENTUM VERATRI, L. D.; Ointment of White Hellebore.**—
(White Hellebore, powdered, 3ij.; Lard, 3viij.; Oil of Lemons, 4xx. Mix., L.—The Dublin College omits the oil of lemons.)—This ointment is used in the treatment of the itch as a substitute for the disagreeable, though far more effective, sulphur ointment. Like the decoction, there is danger of the absorption of the active principle of the rhizome when the ointment is applied to raw surfaces; it is, therefore, an unfit remedy for children.

Astringent solutions have been recommended; and in one case, which fell under my notice, infusion of nutgalls seemed to give relief. The supposed benefit has been referred to the union of tannic acid with veratria, by which the solubility and activity of the latter are diminished; but Schabel found that three drachms of a tincture of white hellebore, given with infusion of galls, to a cat, proved fatal in twenty minutes. Hahnemann recommends coffee, both as a drink and in clyster. Demulcent liquids, and in some cases opiates, may be useful. The other parts of the treatment must be conducted on general principles. Stimulants will be usually required on account of the failure of the heart's action.

4. **ASAGRÆ'A OFFICINALIS, Lind.—SPIKE-FLOWERED ASAGRÆA.**
Veratrum officinale, Schlecht; Helonias officinalis, Don, L. E.
Sex. Syst. Hexandria, Trigynia.
(Semina; Sabadilla, L.—Sabadilla; Fruit of Veratrum Sabadilla of Helonias officinalis, and probably of other Melanthaceae, E.)

History.—This plant was described by Schlechtendahl, afterwards by Mr. Don, and subsequently by Dr. Lindley. The seeds were known to Monardes in 1573. They were called Sabadilla, or Cevadilla, or more properly Cebadilla (from the Spanish Cebada, barley), on account of the supposed resemblance of the inflorescence of the plant to that of Hordeum.
Botany. Gen. Char. — Flowers polygamous, racemose, naked. Perianth six-partite; segments linear, veinless, almost equal, with a nectariferous excavation at the base, equal to the stamens. Stamens alternately shorter; anthers cordate, as if unilocular, after dehiscence shield-shaped. Ovaries three, quite simple, attenuated into an obscure stigma. Follicles three, acuminate, papery; seeds scimitar-shaped, corrugated, winged. — Bulbous herbs, with grass-like leaves, and small, pale, densely-racemed flowers. (Lindley.)

Sp. Char. — The only species known.

Leaves linear, acuminate, subcarinate, roughish at the margin, four feet long, and three lines broad. Scape round, about six feet high. Raceme, a foot and a half long, very dense, very straight, spiciform. Flowers white, with a bractea at the base. Anthers yellow.

Hab. — Eastern side of the Mexican Andes, near Barranca de Tioselo (Schiede). Neighbourhood of Vera Cruz (Hartweg).

Description. — The cebadilla, cevadilla, or sabadilla of the shops (sabadilla; semina sabadillae mexicanæ) comes from Vera Cruz and Mexico. It consists of the follicles (some containing seeds, others empty), loose seeds, stalks, and abortive flowers of the Asagréa officinalis, and perhaps of Veratrum Sabadilla also.

The follicles, commonly termed capsules, rarely exceed, or even equal, half an inch in length, and are about one line or a line and a half in diameter. They are ovate-oblong, acuminate. Their colour is pale yellowish-brown, or reddish grey. The coat of each is thin, dry, and of a papery consistence. Each fruit is composed of three follicles mutually adherent towards the base, open at the superior and internal part. The receptacle, fruitstalk, and the remains of the dried and withered calyx, are usually present in the cebadilla of the shops. Seldom more than one or two, though sometimes three, seeds are found in each follicle.

The seeds are two or three lines long, scimitar-shaped, pointed, blackish brown, shiny, wrinkled or corrugated, slightly winged. Internally they are whitish or horny. Embryo straight, next the hilum, lodged in fleshy albumen. They have little odour, but a bitter, acrid, persistent taste.

Composition. — Two analyses of cebadilla have been made about the same time (1819); one by Meissner 1; and a second by Pelle-tier and Caventou 2. The following are the results:—

---

1 Schweigger's Journ. f. Chem. xxxi. 187.
2 Journ. de Pharm. vi. 353.
<table>
<thead>
<tr>
<th>Meissner's Analysis</th>
<th>Pelletier and Caventou's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty matter (olein and stearin)</td>
<td>Fatty matter composed of</td>
</tr>
<tr>
<td></td>
<td>Olein.</td>
</tr>
<tr>
<td>Wax (myricin)</td>
<td>Stearin.</td>
</tr>
<tr>
<td>Sabadillina (veratria)</td>
<td>Cevadic acid.</td>
</tr>
<tr>
<td>Resin (soluble in ether)</td>
<td>Wax.</td>
</tr>
<tr>
<td>Hard resin (insoluble in ether)</td>
<td>Supergallate of veratria.</td>
</tr>
<tr>
<td>Bitter extractive with the acid which is united to the</td>
<td>Yellow colouring matter.</td>
</tr>
<tr>
<td>sabadillina</td>
<td>Starch.</td>
</tr>
<tr>
<td>Sweet extractive</td>
<td>Lignin.</td>
</tr>
<tr>
<td>Extractive separable by alkalis</td>
<td></td>
</tr>
<tr>
<td>Gum</td>
<td></td>
</tr>
<tr>
<td>Vegetable jelly (phyteumacolla) with chlorides of</td>
<td></td>
</tr>
<tr>
<td>potassium and vegetable salty of potash</td>
<td></td>
</tr>
<tr>
<td>Oxalate of lime combined with bassorin</td>
<td></td>
</tr>
<tr>
<td>Lignin</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Cebadilla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cebadilla.</td>
</tr>
</tbody>
</table>

The ashes contained oxide of copper.

1. **Cevadic or Sabadillic Acid.**—This is a crystalline, fusible, volatile, fatty acid, having an odour analogous to butyric acid. It is soluble in water, alcohol, and ether. It is obtained by the saponification of the oil of cebadilla (fatty matter). Cevadate of ammonia causes a white precipitate with the persalts of iron. The composition of this acid is unknown.

**Oil of cebadilla** given me by Mr. Morson is green, lighter than water, and has a faint, somewhat rancid taste.

2. **Veratric Acid,** of Merck a. —This is a crystalline, fusible, volatile acid, soluble in alcohol, slightly so in water, but insoluble in ether. According to Schroetter it consists of \( C_{16} H_{24} O_7 \) + \( aq \).

3. **Resin.** —The two resins found by Meissner, but overlooked by Pelletier and Caventou, are probably endowed with activity. Couerbe obtained from cebadilla seeds, sabadillina, resin of veratria, and gum resin of sabadillina.

**Resin of veratria** (veratrin, Courbe) is a brown solid, fusible at 365°. Insoluble in ether (by which it is distinguished from veratria), and in water. It combines with acids, but neither saturates them, nor forms with them any crystallizable salts. It consists of \( C_{28} H_{18} N \). Its action on the animal economy has not been determined.

**Gum resin of sabadillina** (resinigomme, Courbe; monohydrate of sabadillina, Alter.) is a reddish solid, soluble in water and alcohol, but slightly so in ether. It saturates acids, but does not form crystalline compounds with them. Alkalis throw it down from its saline combinations. It consists of \( C_{28} H_{18} N \). Hence it differs from anhydrous sabadillina in containing an atom more water. Furthermore it is distinguished from this alkali in not being crystallizable.

Sabadillina is said, by Simon a, to be merely a compound of resinate of soda and resinate of veratria. Dr. Turnbull found it inferior in activity to veratria.


**Chemical Characteristics.** —The brownish coloured decoction of cebadilla reddens litmus, owing to the presence of free acid. Sesquichloride of iron deepens the colour of the decoction, and causes an olive brown precipitate. Alkalis deepen, whilst acids diminish, the colour of the decoction (by their action on the yellow colouring matter, Pelletier). Acetate and diacetate of lead, protionate of mercury, and sulphate of copper, form precipitates in the decoction. Oxalate of ammonia renders it turbid (oxalate of lime).

---

a Pharmaceutisches Central-Blatt füür. 1839, S. 235.

Nitrate of silver forms a coloured precipitate, which is, for the most part, soluble in nitric acid: the insoluble portion is chloride of silver. Solutions of iodine and tincture of mutgalls have no obvious effect.

**Physiological Effects.**

a. On Vegetables.—Not ascertained.

b. On Animals.—Are similar to those of Veratrum album. Cebadilla has proved poisonous to dogs and cats.

γ. On Man.—The action is probably similar to, though more acrid than, white hellebore. The effects of small and repeated doses have not been satisfactorily ascertained. Large and poisonous doses cause burning and pain in the throat and stomach, nausea, vomiting, purging, prostration of strength, convulsions, delirium, and sometimes a cutaneous eruption. Even the external application of the powder has caused dangerous effects. Plenck tells us of a young man who was rendered temporarily insane by the application of powder of cebadilla to the head. Lentin says an infant, whose nurse had sprinkled the powder in its hair, died in convulsions.

Rubbed on the skin, the tincture causes a stinging sensation similar to that produced by veratria. After its use for some days, a slight eruption appears on the skin. Rubbed over the cardiac region, it in some instances reduces the frequency and force of the pulse in a marked degree. The alcoholic extract has nearly the same effects, when taken internally, as veratria. It also induces sensations of heat and tingling on the surface of the skin, and sometimes acts as a diuretic.

Uses.—Cebadilla has been employed internally, as an anthelmintic, in both thread-worms and tape-worms. Dr. Turnbull has given the extract with benefit in painful rheumatic and neuralgic affections. Though it is applicable in all the maladies for the relief of which veratria has been recommended, it is rarely administered by the mouth.

Externally the powder of the seeds has been used to destroy pediculi; hence the Germans called the seeds Läusesaamen, or lice-seeds. But it cannot be applied with safety to children, and especially when the skin is broken. I have already referred to the dangerous consequences of its employment. The tincture has been used as a rubefacient in chronic rheumatism, and, rubbed over the heart, in some cases of nervous palpitation. It may, in fact, be employed as a cheap though efficient substitute for the tincture of veratria.

But the principal use of the seeds, for which indeed they have been introduced into the Pharmacopoeia, is for yielding veratria.
Administration.—The following are the preparations of Cebadilla which have been employed in medicine.

1. Pulvis Sabadillæ.—Pulvis contra pediculos; Poudre de Cupucin; Powder of Cebadilla.—The dose for an adult is from two to six grains; gradually increased. In one case of tape-worm, half a drachm was taken daily for fourteen days.

2. Tinctura Sabadillæ.—Saturated Tincture of Cebadilla, Turnbull. (Cebadilla seeds, freed from their capsules and bruised, any quantity; Rectified Spirit, as much as will cover them. Digest for ten days).—Used as a rubefacient liniment in chronic rheumatism and paralysis. It is rubbed over the heart in nervous palpitation.

3. Extractum Alcoholicum Sabadillæ; Alcoholic Extract of Cebadilla.—Evaporate the saturated tincture, with a very gentle heat, to a proper consistence. Dose, 1-6th of a grain, gradually increased. It is given, in the form of pill, in rheumatic and neuralgic cases.

4. Veratrim, L. E.; Veratrine; Veratrina, Thomson; Sabadillina, Meissner.—This vegetable alkaloid was discovered about the same time (1819), by Meissner in Germany, and by Pelletier and Caventou in France. Couerbe probably was the first who obtained it pure.

Preparation.—The following process for making veratrum, contained in the London Pharmacopœia, is nearly identical with that described by Soubeiran, and is a modification of one given by Couerbe.

"Take of Cebadilla, bruised, lb.ij.; Rectified Spirit, cong. iii.; Diluted Sulphuric Acid; Solution of Ammonia; Purified Animal Charcoal; Magnesia; each as much as may be sufficient. Boil the Cebadilla with a gallon of the spirit, for an hour, in a retort to which a receiver is fitted. Pour off the liquor, and boil what remains with another gallon of spirit and the spirit recently distilled, and pour off the liquor; and let it be done a third time. Press the Cebadilla, and let the spirit distil from the mixed and strained liquors. Evaporate what remains to the proper consistence of an extract. Boil this three or more times in water, to which a little diluted sulphuric acid has been added, and with a gentle heat, evaporate the strained liquors to the consistence of a syrup. Into this, when cold, put the magnesia to saturation, frequently shaking them; then press, and wash. Let this be done twice or thrice: then dry what remains, and digest with a gentle heat in spirit two or three times, and as often strain. Afterwards let the spirit distil. Boil the residue in water, to which a little sulphuric acid and animal charcoal are added, for a quarter of an hour, and strain. Lastly, the charcoal being thoroughly washed, cautiously evaporate the mixed liquors until they have the consistence of a syrup, and drop into them as much ammonia as may be sufficient to throw down the veratrina. Separate this, and dry it."

The process of the Edinburgh Pharmacopœia is as follows:—

"Take any convenient quantity of Cevadilla: pour boiling water over it in a covered vessel, and let it macerate for 24 hours; remove the Cevadilla, squeeze it, and dry it thoroughly with a gentle heat. Beat it now in a mortar, and separate
the seeds from the capsules by brisk agitation in a deep narrow vessel. Grind
the seeds in a coffee-mill, and form them into a thick paste with rectified spirit.
Pack this firmly in a percolator, and pass rectified spirit through it till the spirit
ceses to be coloured. Concentrate the spirituous solutions, by distillation, so
long as no deposit forms, and pour the residuum, while hot, into twelve times its
volume of cold water. Filter through calico, and wash the residuum on the filter
so long as the washings precipitate with ammonia. Unite the filtered liquid with
the washings, and add an excess of ammonia. Collect the precipitate on a filter,
washing it slightly with cold water, and dry it first by imbition with filtering
paper, and then in the vapour bath. A small additional quantity may be got by
concentrating the filtered ammoniacal fluid, and allowing it to cool.

"Veratria thus obtained is not pure, but sufficiently so for medicinal use From
this coloured substance it may be obtained white, though at considerable
loss, by solution in very weak muriatic acid, decolorization with animal charcoal,
and re-precipitation with ammonia."

THEORY.—The following statement applies to the process of the
London College, and is perhaps correct as far as it goes:—Cebadilla
yields to rectified spirit veratria in combination with a vegetable acid.
When the alcoholic extract is treated with water and sulphuric acid,
an impure solution of the sulphate of veratria is obtained. Magnesia
decomposes this, unites with the sulphuric and vegetable acids, and
sets free the alkaloid, which is taken up by rectified spirit. The ex-
tract obtained by distilling off the spirit is then boiled in water with
sulphuric acid and animal charcoal: the acid unites with the alkaloid,
while the charcoal abstracts colouring matter. Ammonia being
added to the strained solution, combines with the sulphuric acid, and
occasions a precipitate, which, when dried, constitutes commercial
or medicinal veratria (veratria, L. and E.)

By Couerbe's process, a drachm of commercial veratria may, it is said,
be procured from one pound of cebadilla.

Commercial veratria was said by Couerbe to be composed of pure
veratria, sabadillina, resin of veratria (veratrin, Couerbe), and gum-
resin of veratria (resinigomme, Couerbe). These are separated from
each other by the successive action of water, ether, and alcohol, as
shewn by the following table:—

Commercial
Veratria

1. Sabadillina, which crystallizes on cooling.
2. Resin of Veratria, left in the cold solution.
3. Veratria, soluble in ether.
4. Gum-resin of veratria, insoluble in ether, but soluble in alcohol.

The nature of sabadillina has been already pointed out (p. 958).

PROPERTIES.—Commercial veratria is pulverulent, odourless, and
greyish or brownish white. All the samples I have tasted were bitter
and acrid, and produced a feeling of numbness and tingling when
applied to the tongue. But pure veratria is an almost white, friable,
solid, having the aspect of a resin: it is uncrystallizable, odourless,
having a very acrid taste, without any mixture of bitterness. It is fusible
at 240° F. It is sparingly soluble in ether, readily so in alcohol,
scarcely so in cold water. It possesses alkaline properties: thus, it
restores the blue colour of reddened litmus, and saturates acids. Its
salts crystallize with difficulty: indeed the sulphate and hydrochlorate
alone have been obtained in the state of crystals; the other salts have
a gummy aspect. Both the hydrochlorate and sulphate are soluble in water.

**Characteristics.**—Veratria is known by the following characters:—Its alkalinity, its combustibility, its uncrystallizability, the difficult crystallizability of its salts, its solidity at ordinary temperatures, its ready solubility in alcohol, its being almost insoluble in water, but sparingly soluble in ether, and by the intense red colour which it assumes when mixed with strong liquid sulphuric acid (see Salicin). Nitric acid renders commercial veratria reddish, and forms a yellow solution with it (see Morphia and Narcolina) A solution of veratria in dilute acetic acid produces a whitish precipitate (tannate of veratria) with ammonia, and an intense red colour with concentrated sulphuric acid. Carbazotic acid does not occasion a precipitate (see p. 180). To these chemical peculiarities must be added those characteristics derived from its physiological effects:—A minute portion of veratria causes violent sneezing, and a small quantity of a solution of four grains of veratria in a fluidrachm of rectified spirit, rubbed on the wrist or forehead, produces, within three or four minutes, heat and tingling.

The London College gives the following characters of veratria:—Dissolves but slightly in water, more soluble in alcohol, but most in sulphuric ether. It has no smell, and a bitter taste. It is to be cautiously administered.

**Composition.**—The following is the composition of pure veratria, according to Courbe:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Courbe.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>34</td>
<td>70.83</td>
<td>70.786</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>22</td>
<td>7.64</td>
<td>7.636</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>4.86</td>
<td>5.210</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6</td>
<td>16.67</td>
<td>16.368</td>
</tr>
<tr>
<td>Veratria</td>
<td>1</td>
<td>100.00</td>
<td>100.000</td>
</tr>
</tbody>
</table>

**Physiological Effects. a. On Animals.**—Magendie has shown that the local action of veratria is that of an irritant. Placed in the nostrils of a dog the acetate of veratria provoked violent and continued sneezing. When introduced into the intestinal canal it caused inflammation. Applied to parts whence absorption goes on actively (as the pleura and tunica vaginalis), it occasions tetanus and death in a few minutes. Forcke gave moderate and gradually increased doses (1/8 to 1/4 of a grain) of veratria for 20 days. It caused vomiting, and occasionally foaming at the mouth. The stools continued hard. Dr. Bardsley observed vomiting and giddiness (reeling) produced in animals to whom he gave veratria.

β. On Man.—Applied to the nose a minute quantity excites excessive sneezing. Rubbed on the skin in the form of ointment, it causes a sensation of heat and tingling (called by Dr. Turnbull electrostimulation). This effect is not confined to the part and its immediate neighbourhood where the application has been made: for somewhat similar sensations are occasionally experienced in distant parts.

---

1. Formulare, p. 162, 8th ed.
Taken internally, in small or medicinal doses, veratria excites a feeling of warmth in the stomach and bowels, which extends to the chest and extremities. Tingling and various anomalous sensations (as of a current of hot or cold air or water passing over the skin) are perceived in various parts of the body. Nausea and vomiting are occasionally excited by a full dose. On the secretions and exhalations its action is not very uniform. It frequently produces perspiration, and not unfrequently diuresis. Forcke mentions increased secretion of saliva and of tears produced without the contact of the veratria either with the conjunctiva or mouth. The bowels are for the most part confined, so that purgatives are not unfrequently required during the use of it. Yet in some cases veratria has caused copious bilious evacuations. In some instances it has promoted, in others diminished, the appetite. Forcke mentions that a pustular eruption is sometimes induced by it. Dr. Bardsley generally found the pulse become slower and depressed after the use of veratria.

I am not acquainted with any cases of poisoning in the human subject by excessive doses of veratria. Vomiting and convulsions would probably be induced.

Uses.—Veratria is employed externally or internally: sometimes in both ways at the same time. It has been tried in the following cases:

a. In neuralgia it has been used by Dr. Turnbull, Dr. Ebers of Breslau, and Dr. Forcke. It is applied in the form of ointment, containing from twenty to forty grains of veratria to an ounce of lard. The frictions are to be continued until the heat and tingling caused by the veratria have acquired a considerable degree of intensity. Though, according to my own experience, it fails to give relief in a large majority of cases, yet in some few its effects are highly beneficial, and in none is it injurious. As a remedy for neuralgia, it is, however, far inferior to Aconitum and its alkali Aconitina.

b. In some nervous diseases (Neuroses, Cull.)—Veratria has been extensively used in this class of diseases, but for the most part empirically. If it possess any therapeutical power, "a more extended experience is required to establish its claim to our regard." Among the maladies against which it has been used (in some instances internally, but mostly externally) are,—nervous palpitation, paralysis, hooping-cough, epilepsy, hysteria, hypochondriasis, &c.

c. In rheumatism and gout.—Dr. Bardsley gave it internally in rheumatism, but with no remarkable results. Externally it has been employed in the form of ointment by Sir C. Scudamore and Dr. Turnbull. It should not be applied while the inflammation is of an active kind. It would appear to be best adapted for the neuralgic forms of rheumatism.

d. In dropsy.—Dr. Bardsley administered it internally in dropsy,
but says it possesses "no particular claims to the attention of the profession." Ebers employed veratria endermically, and also, in the form of ointment, epidermically. It acted as a diuretic, and gave relief.

**Administration.**—The ordinary veratria of the shops is administered in doses of one-sixth of a grain, three times a day. On account of its acridity it should not be given in solution, but in the form of pills.

a. **Piliulce Veratria; Veratria Pills; Turnbull.**—Veratria, gr. j.; Extract of Hyoscyamus; Liquorice powder, aä gr. xij. Let 12 pills be made, of which one may be taken every three hours.

b. **Tinctura Veratria; Veratria Embrocation; Turnbull.**—Veratria, 3j.; Rectified Spirit, 5j. Dissolve. This embrocation is sometimes used as a substitute for the ointment. Magendie (Formulaire) directs a tincture of veratria to be prepared by dissolving four grains of the alkali in an ounce of alcohol. Of this from 10 to 25 drops are taken, in a cup of broth, as a substitute for the tincture of colchicum.

c. **Unguentum Veratria; Veratria Ointment; Turnbull.**—Veratria, 5ss.; Olive Oil, 3j.; Prepared Lard, 3j. M.

The sulphate and tartrate of veratria (prepared by saturating veratria with sulphuric or tartaric acid) are sometimes used instead of the uncombined alkali. The dose and mode of administration are the same as for the latter.

**Antidote.**—*Vide Veratum album.*

**OTHER MEDICINAL MELANTHACEÆ.**

The fruit and seeds of *Veratrum Sabadilla*, Ph. Ed. are said to be brought from the Antilles, under the name of *Cebudilla* (*Semina Sabadillæ Caribææ*), but I have never met with them. *V. Sabadilla* is a native of Mexico and the Antilles. Its leaves are radical, oval-oblong, obtuse, ribbed. Its stem is almost leafless. The panicle is nearly simple. The flowers have short pedicels, and are nodding. The rhizome of *Veratrum viride* is used in the United States as a substitute for that of *Veratrum album*.

**Order XII.**—**LILIACEÆ, Lindl.**—**THE LILY TRIBE.**

**Essential Character.**—Calyx and corolla confounded, coloured, regular, occasionally cohering in a tube. Stamens six, inserted into the sepals and petals; anthers opening inwards. Ovary superior, three-celled, many-seeded; style one; stigma simple or three-lobed. Fruit succulent, or dry and capsular, three-celled. Seeds packed one upon another in one or two rows; embryo with the same direction as the seed, in the axis of fleshy albumen, or uncertain in direction and position.—Roots fibrous or fasciculate. Stem none, except a bulb; or tuberous, or creeping, or erect, or arborescent. Leaves with parallel veins, membranous, not articulated with the stem; either sessile or with a narrow leafy petiole. (Lindley.)

**Properties.**—Not uniform.

---

*See Forchse. op. supra cit.*
History.—Neither Aloe plants nor the inspissated juice of their leaves are mentioned by Hippocrates or Theophrastus; but both are described by Dioscorides and Pliny. 

Botany. Gen. Char.—Perianth tubular, six-cleft, fleshy, nectariferous at the base, the sepals of the same form as the petals, and closely imbricating them. Stamens hypogynous, as long as the perianth, or even longer. Capsule membranous, scarious, three-corned, three-celled, three-valved, with a loculicidal dehiscence. Seeds numerous, in two rows, roundish or angular. (Lindley.)—Succulent plants.

Species.—The following species furnish the greater part of the substance called in the shops aloe:—

1. *Aloë vulgaris*, Lam. D.—'Ālōy, Dioscor. Sibth. Stem woody, simple, cylindrical, short. Leaves fleshy, amplexicaul, first spreading, then ascending, lanceolate, glaucous green, flat above, convex below, armed with hard, distant, reddish spines, perpendicular to the margin; a little mottled with darker colour; the parenchyma slightly coloured brown, and very distinct from the tough leathery cuticle. Scape axillary, glaucous reddish, branched. Spike cylindrical-ovate. Flowers at first erect, then spreading, afterwards pendulous, yellow, not larger than the stamens. (Lindley.)—Beneath the epidermis of the leaves, in peculiar parallel vessels, is found a brownish-yellow, bitter, resinous juice. This plant is a native of the East Indies and Barbary, and is cultivated in the West Indies, Italy, Sicily, and Malta. It yields Barbadoes Aloe. *A. vulgaris* has been subdivided by some botanists into *A. abyssinica* and *A. barbadensis*.

2. *Aloë socotrina*, Lam. De Cand.—Stem woody, straight, one and a half feet high or more, naked below, where it is strongly

---

b Lib. iii. cap. xxv.  
marked with the scars of leaves. Leaves amplexicaul, ascending, ensiform, green, curved inwards at the point, convex below, rather concave above, marked with numerous small white marginal serratures, the parenchyma abounding in a bright brownish-yellow juice. Raceme cylindrical, unbranched. Flowers scarlet at the base, pale in the middle, green at the point. Stamens unequal, three of them longer than the flowers. (Lindley.)—The leaves contain, in peculiar vessels, a yellow juice, which, when exposed to the air, becomes violet, and ultimately brown. This juice is more copious and bitter than that of Aloë vulgaris. Aloë socotrina is said to be a native of the island of Socotra, and to yield socotrine (and real hepatic?) aloes; but further evidence is required to establish these statements. Lieut. Wellstead says, the hills on the west side of this island are covered for an extent of miles with aloe plants; and he observes, that it is not likely, at any future period, that the whole quantity will be collected which might be required.

3. Aloë spicatæ, Thunb. L. D.—Stem three to four feet high, as thick as a man’s arm. Leaves thick, fleshy, broad at the base, gradually narrowing to the point, channelled, full two feet long, distantly toothed, with a few white spots; their parenchyma almost colourless. Spike a foot long, very compact, with the flowers campanulate and horizontal. The three petals broader, ovate, obtuse, white, with a triple green line, the sepals narrower, less concave. Stamens much longer than the perianth. The flowers are filled with a purplish honey. (Lindley.)—This species is a native of the interior of the Cape of Good Hope, and contributes to yield Cape Aloes.

Preparation.—The finest kind of aloes is obtained by evaporating the juice which flows spontaneously from the transversely-cut leaves. This juice is lodged in vessels running longitudinally beneath the epidermis. The exudation of it is promoted by dipping the leaves in hot water. But if pressure be employed the proper aloetic juice becomes mixed with the mucilaginous liquid of the leaves, and thus an inferior kind of aloes is obtained. A still commoner variety is procured by boiling the leaves, from which the juice has been previously allowed to escape, in water.

In the island of Socotra the leaves are plucked at any period, and by any one who chooses to take the trouble; and after being placed in a skin, the juice is allowed to exude from them.

In Barbadoes the aloes is best procured in the month of March. It is obtained as follows:—Every slave hath by him three or four
ALOES.

portable tubs. The leaves being cut near the roots, are thrown into these, with their broken ends downwards; and as the leaves are full of large longitudinal veins or vessels, they yield an easy passage to the juice (which is of a greenish yellow colour) to drip out. This being boiled for about five hours in a copper or kettle, the watery particles evaporate, and the remainder comes to a consistency and thickening as sugar doth when sufficiently boiled. The way to know when it is enough boiled is, to dip a stick in the liquor, and observe whether the aloe sticking to it, when cold, breaks short: if it doth, then it is boiled to perfection, and fit to be poured into gourds or calabashes, or other vessels, for use! Dr. Wright says, that in Jamaica, the leaves contained in hand-baskets or nets, are boiled in water, and the strained liquor evaporated to a proper consistence, and then poured into gourds or calabashes.

Mr. George Dunsterville, surgeon of Algoa Bay, and lately one of my pupils, has furnished me with the following information respecting the manufacture of Cape aloes. "A shallow pit is dug, in which is spread a bullock's hide or sheep's skin. The leaves of the aloe plants in the immediate vicinity of this pit are stripped off, and piled up on the skin, to variable heights. These are left for a few days. The juice exudes from the leaves, and is received by the skin beneath. The Hottentot then collects in a bucket or other convenient article the produce of many heaps, which is then put in an iron pot capable of holding 18 or 20 gallons. Fire is applied to effect evaporation, during which the contents of the pot are constantly stirred to prevent burning. The cooled liquor is then poured into wooden cases of about three feet square by one foot deep, or into goatskins, and thus is fitted for the market. In the colony, aloes realizes about 2½d. to 3½d. per lb." Mr. Dunsterville also informs me, that the Hottentots and Dutch boors employ indiscriminately different species of Aloë in the preparation of Cape aloes. He adds that "The Cape aloes, which is usually prized the highest in the English market, is that made at the Missionary Institution of Bethelsdorp (a small village about nine miles from Algoa Bay, and chiefly inhabited by Hottentots and their missionary teachers). Hence it is called Bethelsdorp Aloes. Its superiority arises, not from the employment of a particular species of Aloë, for all species are indiscriminately used, but from the greater care and attention paid to what is technically called 'the cooking of the aloes,' that is, the evaporation, and to the absence of all adulterating substances (fragments of lime-stone, sand, earth, &c.) often introduced by manufacturers."

Description and Varieties.—I am acquainted with seven varieties of aloes, namely Socotrine, Hepatic, Barbadoes, Cape, Mocha, Caballine, and Indian.

1. Socotrine Aloes. (Aloe socotrina; Aloë socotorina and Aloë

---

1 Hughes, Nat. Hist. of Barbadoes, p. 154. This account is further confirmed by that of Mr. Millington, Lond. Med. Journ. vol. viii. p. 422.
A few years ago this kind of aloes was brought by way of Smyrna, and hence was frequently termed *Turkey Aloes.* But since the expiration of the charter of the East India Company it is usually brought by way of Bombay. It comes over in skins§ contained in casks (holding from 11 to 15 cwt. each), kegs, and chests. Its consistence and colour are subject to considerable variation. The exterior portion of each skinful is usually hard, but the internal portion is frequently soft or even semiliquid.

The hardened portions vary in colour in different parts of the same mass; sometimes they are garnet red, at other times much paler, and when quite dry are golden red, and yield a golden yellow powder. By exposure to the air the colour is deepened. The fracture of fine selected pieces is smooth, glassy, and conchoidal; but Socotrine aloes of excellent quality often breaks with a roughish fracture. The finest kind of Socotrine aloes which I have met with had the semitransparent red colour observed when we break a fine tear of myrrh. Thin films of pure and hardened Socotrine aloes are usually translucent or nearly transparent. The odour of fresh broken pieces (especially when breathed on), is very fragrant, and is much stronger in recent and soft specimens. The same agreeable odour is obtained by heating the aloes on a point of a knife in a candle. By distillation with water we obtain a liquid having the same odour, but free from any bitter taste. When fresh, Socotrine aloes possesses considerable acidity, and Mr. Hennell informs me, that in the preparation of the Compound Extract of Colocynth he has frequently observed the fatty acid of the soap set free by the acid of the Socotrine aloes.

When a package of Socotrine aloes arrives at a druggist warehouse, it is usually garbled or sorted. The finest, clear, and hard pieces are separated for sale. The soft portions are placed upon slabs or in shallow tin trays, or other vessels, and exposed to a very gentle heat to harden them (*hardened Socotrine aloes*), and at the same time to preserve the favourite colour of this kind of aloes. Mr. Whipple, who has had great experience in these matters, informs me, that “the loss would be frightful, if after selecting or separating the clean aloes, the skins were not washed and the aloes obtained by subsequent evaporation.”

In the Edinburgh Pharmacopoeia the following characters are assigned to the *Aloe socotrina*:

“In thin pieces, translucent, and garnet red; almost entirely soluble in spirit of the strength of sherry. Very rare.”

But Socotrine aloes as imported is not “in thin pieces;” this character being given to it in the garbling process, or by drying

---

§ I have received from Dr. D. Maclagan, Lecturer on Materia Medica in Edinburgh, two specimens of aloes, one marked “True Sociotrine Aloes garnet red in their fragments;” the other “Aloes given to me at True Socotrine, rough fracture nearly garnet red in their fragments. Included under *Aloe indica,* Ed. Pharm.” Both kinds are Socotrine aloes.

I am informed that they are the skins of the Gazelle.
the soft portions in thin layers as above mentioned. Translucency and a garnet red colour are qualities not possessed by many fine specimens of Socotrinc aloes. The alcoholic strength of sherry is subject to variation, and, therefore, the statement of the College as to the solubility of Socotrinc aloes is not very definite. Lastly, as to Socotrinc aloes being very rare, I may observe that Mr. Hennell, of Apothecaries' Hall, informs me (Dec. 21, 1841), that he will be happy to take an order for 500 lbs. of it.

The impure and dirty pieces of Socotrinc aloes are sometimes melted and strained (Strained Socotrinc Aloes) by which its colour and odour are impaired, and its other qualities somewhat altered. Socotrinc aloes has long been regarded as the best kind of aloes, though its commercial value is now below that of Barbadoes aloes. It is, I suspect, inferior in activity.

Socotrinc aloes is mentioned by Avicenna and Mesne, both of whom regarded it as the best kind. By Fée, and some other continental writers, it is confounded with Cape aloes.

The aloes prepared in the island of Socotra is probably procured from Aloë socotrina. In 1833, the quantity exported from this island was 83 skins, or 2 tons. But a much larger quantity might be procured if required. Sir Whitelaw Ainslie says that the greater part of the extract now sold under the name of Socotrinc aloes is prepared in the kingdom of Melinda.

Two samples (one of which I have in my museum) brought direct from the island of Socotra, by a friend of Professor Royle, are largely intermixed with foreign substances, as sand, skins, &c.

2. Genuine Hepatic Aloes: Liver-coloured Socotrine Aloes (Aloë hepatica vera. Aloe indica E. &c.). I have never met with any description of this kind; and I suspect continental writers confound it with the foregoing variety. In English commerce it is always regarded as distinct.

It is brought to us from Bombay (hence it is sometimes called Bombay or East India Aloes) in skins, contained in casks holding from 200 to 300 pounds. Its odour is very much the same as that of the Socotrine kind, or perhaps it is a little less fragrant. It is distinguished from the latter by its opacity and its liver colour. I have a sample of this aloes quite soft or semi-liquid. The similarity of the odour of Socotrine and hepatic aloes leads to the suspicion that they are obtained from the same plant; and which is further confirmed by the two being sometimes brought over intermixed, the Socotrine occasionally forming a vein in a cask of the hepatic aloes. By digestion in rectified spirit of wine, a yellowish granular powder (in appearance something like lycopodium) is obtained, which is insoluble in...
water, alcohol, ether, and dilute sulphuric acid, but is readily soluble in a solution of caustic potash, forming a red-coloured liquid.

3. Barbadoes Aloes: *Aloes in gourds* (*Aloë barbadensis*, Ph. Ed.)—This is the kind denominated by most continental writers (as Geiger, Theod. Martius, Pfaff, Fée, and others), *Hepatic Aloes* (*Aloë hepatica*), but its colour is not constantly that of the liver. It is imported from Barbadoes or Jamaica in gourds, weighing from 60 to 70 pounds, or even more than this. It varies in colour from a dark brown or black (*brown or black Barbadoes aloes*) to a reddish brown or liver colour (*liver-coloured or hepatic Barbadoes aloes*): even in the same gourd a difference of colour is occasionally observed. The fracture also varies, sometimes being dull, at other times glossy. Its unpleasant odour, (which is much increased by breathing on it) will always distinguish it from the foregoing kinds. Its powder is of a dull olive-yellow colour. This kind of aloes is obtained from the *Aloë vulgaris*.

4. Cape Aloes (*Aloë capensis*: *A. lucida* of Geiger).—This kind is imported, as its name indicates, from the Cape of Good Hope. It is brought over in chests and skins, the latter being preferred, as the aloes contained therein are usually purer and more glossy. It has a shining resinous appearance, is of a deep brown colour, with a greenish tint, and has a glossy or resinous fracture; its edges, or thin laminae, viewed by transmitted light, have a yellowish red or ruby colour; its odour is stronger and more disagreeable than the Barbadoes aloes; its powder is greenish yellow. Some of the commoner kinds of Cape aloes have a rough fracture. The finest kinds of Cape aloes is called *Bethelsdorp aloes* (see p. 967).

Occasionally it has been imported of a reddish brown colour, like that of the liver, and opaque (*liver-coloured or hepatic Cape aloes*). Some years since an experienced dealer bartered 3lbs. of Cape aloes for 1lb. of what he thought to be the genuine hepatic aloes, but which turned out to be a fine sort of Cape aloes. I presume this is the kind which Professor Guibourt, to whom I sent a specimen of it, terms *Aloës hépatique faux*. Its odour, when breathed on, instantly detects it.

Cape aloes is procured from *Aloë spicata*, and perhaps also from other species, as *A. arborescens*, Mill., *A. Commelina*, Willd., *A. mirtiformis*, Willd.*

5. Fetid, Horse or Caballine Aloes. (*Aloë caballina*).—I have never met with any aloes under this name in English commerce. From Prof. Guibourt I have received two substances, which he denominates *Aloës Caballin*.

a. One is *impure or foot Cape aloes*.

b. The other is in black, opaque masses. Its fracture is uniform. It is difficult to pulverize, adheres to the pestle, gives a greenish powder, has very little odour, and yields a dark brown decoction. It is probably an extract prepared by boiling the leaves in water.

---

*Hist. des Drog. simpl. t. ii. p. 418, 3me éd.*

*Lindley, Flora Médica.*
Professor Guibourt says Caballine aloes is procured either in the countries which furnish ordinary aloes, or in Spain or Senegal.

6. Mocha Aloes (Aloe de Mochâ).—Under this name I found in a drug warehouse, where it had lain for many years, an impure kind of aloes, in large irregular masses, opaque, and black externally, intermixed with sand, strings, &c. In its brittleness, odour, and the pale colour of its decoction, it resembles Cape aloes. The interior of the mass is not uniform: in some places it is dark and opaque, somewhat like Barbadoes aloes, in other places it resembles Socotrine aloes, and here and there we find portions having the transparency and resinous appearance of Cape aloes. Recently this kind of aloes has been imported under the name of Mocha aloes from Muscat, in chests containing nearly 2 cwt. each.

7. Indian Aloes (Aloc indica; not the Aloc indica of the Edinburgh Pharmacopeia).—Through the kindness of Professor Royle, I have examined four kinds of aloes brought from the interior of India:

a. Aloes from Northern India.—Is dull, black, and brittle, and has little odour. It came from the northern parts of India, where it is common in the bazaars. It is probably the kind which Ainslie says resembles Barbadoes aloes.

b. Guzerat Aloes.—Is dark, more gummy in its appearance and feel, more difficult to fracture. It came from Guzerat.

c. Salem Aloes.—In blackish masses. It was brought from Salem. It is distinguished from all the preceding by the numerous large air cavities observed in its interior. Its odour is analogous to that of Socotrine aloes. Its price is marked one anna and nine pice [about twopence-halfpenny] per pound.

d. Trichinopoly Aloes.—Resembles Cape aloes in its brittleness, odour, and colour, but is more opaque. Its price is marked two annas [about threepence] a pound.

These aloes are probably the produce, in part at least, of Aloe indica; a species with reddish flowers, common in dry situations in the north-western provinces of India, and which, if known to Roxburgh, was included by him in the A. perfoliata, Linn. and perhaps also of A. vulgaris, or the plant mentioned by Rheede.

Composition.—Aloes has been analysed by Trommsdorf, by Bouillon-Lagrange and Vogel, by Braconnot, and by Winkler.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(incip. 75)</td>
<td>51.25</td>
<td>61.25</td>
</tr>
<tr>
<td></td>
<td>Resin</td>
<td>6.25</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>Vegetable albumen</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Gallic acid</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>Aloes</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

* Hist. des Drog. ii. 419.
* Mr. Whipple tells me, that in dissolving and straining Mocha aloes, he has never found less than 25 per cent. of impurities (sand, stones, &c.).
* Mat. Ind. vol. ii. p. 10.
* Royle, Bot. of the Himalayan Mountains.
* Hirts, Malath, ii. t. 3.
* Ibid., p. 155.
* Journ. de Physique t. lxxxiv. p. 334. 1817.
1. **Aloesin**, Pfaff, (*Saponaceous Matter; Extractive; Bitter Principle*). This is the principal constituent of aloes. It is contained in the cold infusion of aloes, and also in a decoction which has cooled; it may be obtained from either by evaporation. Thus procured it is a brown and bitter mass, readily soluble in water, but difficultly so in spirit of wine. In pure alcohol or ether it is said to be insoluble, or nearly so. Besides carbon, hydrogen, and oxygen, it contains nitrogen, for it yields ammonia by destructive distillation, and furnishes carbazotic acid when treated by nitric acid. Aloesin is probably a mixture or compound of various proximate principles. Obtained as above, Braconnot says it contains some of the *puce-coloured principle*, which may be removed by oxide of lead.

2. **Resin**.—The substance which deposits from a decoction of aloes as it cools is usually denominated resin. Braconnot says it is a mixture of aloesin and *puce-coloured principle*; while Berzelius regards it as apotheme combined with unaltered extract. It is transparent, brown, fusible, soluble in alcohol, ether, and alkaline solutions, The *puce-coloured principle* of Braconnot is an odourless and tasteless powder, combustible, but not fusible; and is prepared by digesting aloes with water and oxide of lead: a compound of the puce principle and the oxide is procured, which is to be washed and decomposed by weak nitric acid: the oxide is dissolved, and the puce principle left. From Braconnot's observations, this principle seems to be rather oxidized extractive (*apothème*, Berz.) than resin.

3. **Vegetable Albumen**.—This term is applied to a substance insoluble in both water and alcohol.

4. **Aloetic Acid**.—This is the acid which Trommsdorf supposed to be *gallic acid*. A solution of aloes reddens litmus, darkens ferruginous solutions, but does not precipitate gelatin: hence Trommsdorf assumed the presence of gallic acid. But while gallic acid causes a blue colour with the persalts of iron, infusion of aloes produces an olive brown one. Furthermore, if excess of diacetate of lead be added to the infusion, and sulphuretted hydrogen be passed through the filtered liquor, to throw down the excess of lead, the boiled and strained liquor possesses the property of becoming olive brown on the addition of sesquichloride of iron. Hence it appears to me that the acid is a peculiar one, and I have accordingly termed it *aloetic acid*. It must not be confounded with an acid obtained by the action of nitric acid on aloes, and which has also been termed aloetic acid. (See p. 973.)

Meissner has given the name of *Aloine* to a supposed alkali in aloes. Its solution was brown, and acted as an alkali on reddened litmus paper. With sulphuric acid, aloine formed a crystalline salt.

Winkler regards aloes as a neutral vegetable salt, composed of two peculiar basic substances (viz. a non-bitter resin, and a bitter substance), and an acid, viz. a colouring, non-bitter matter.

Fabroni obtained a fine violet colour from the recent juice of the Aloe, which has been proposed as a dye for silk. It is formed by the action of the oxygen of the air on the juice.

**Chemical Characteristics.**—Aloes is almost completely soluble in boiling water. The cold decoction of Cape aloes is much paler coloured than that of any other kind of aloes. Barbadoes aloes yields the deepest coloured decoction. When the decoction of aloes cools, the substance called resin is deposited. The clear solution reddens litmus, strikes a deep olive brown tint (*aloetate of iron*) with sesqui-chloride of iron, is deepened in colour by alkalis, but is unchanged by gelatin. Diacetate of lead forms a copious yellow precipitate with it.
When aloes is heated with nitric acid, nitrous fumes are evolved, and the principles of which aloes consist are oxidized. The residuum has an intensely bitter taste, and is termed Artificial Aloe-bitter (Künstliches Aloebitter). It is probably a mixture of several principles.

The products of the action of nitric acid on aloes have occupied the attention of several distinguished chemists; but the results of their experiments, though highly interesting, are not uniform. Braconnot and Chevrel examined the reaction. The former applied the term aloetic acid to the residual solid; which Liebig subsequently declared to be a mixture of nitric or nitrous acid, carbazotic acid, and a peculiar, non-acid, resinous red matter. Boutin has more recently examined the reaction of nitric acid on aloes, and he states the products to be polychromatic acid (the aloetic acid of Braconnot) composed, according to Pelouze, of $\text{C}_5\text{H}_2\text{N}_2\text{O}_13$, oxalic acid, carbazotic acid, and cyanide. Schunk states that by the action of nitric acid on aloes, he obtained four peculiar acids, viz. aloetic acid, aloeresinic acid, chrysammic acid, $\text{C}_5\text{H}_2\text{N}_2\text{O}_12 + \text{Aq.}$, and chrysolepic acid, $\text{C}_12\text{H}_2\text{N}_3\text{O}_13 + \text{Aq.}$

**Physiological Effects.**

**α. On Vegetables.**—Not ascertained.

**β. On Animals.**—Aloes is the ordinary purgative for solipedes (the horse, the ass, the zebra, &c.) as it is both safe and sure. In horses, previously prepared by two or three bran-mashes to soften the dung, the dose is from five to seven drachms. It acts slowly, requiring from eighteen to forty-eight hours for its operation. Mr. Youatt informs me that aloes is a valuable purgative for the dog, in doses of from one to three drachms, and with the addition of from one to three grains of calomel. Barbadoes aloes is preferred by veterinarians, as being more effective than Cape aloes, in the ratio of about seven to five. Aloes proves purgative to oxen, sheep, and pigs, but, as in the other cases, it operates slowly. Moiroud injected into the veins of a horse four drachms of aloes dissolved in water with a little alcohol, and the next day an ounce more, without any other effect than the evacuation of a large quantity of urine. The dung, however, was enveloped by a thin pellicle formed by altered intestinal mucus. This was collected and analyzed subsequent to the death of the animal (which followed three days after the injection): it offered scarcely any traces of the constituents of the bile.

**γ. On Man.**—Taken internally in small doses, aloes acts as a tonic to the alimentary canal, assisting the digestive process, strengthening the muscular fibres, and promoting the secretions, especially that of the liver, which organ it is thought specifically to influence. In large doses it acts as a purgative. There are, however, some peculiarities attending its cathartic operation deserving of notice. In the first place, these effects are not so speedily produced as by some other purgatives; for eight, twelve, and sometimes twenty-four hours.
The purgative effects of aloes do not arise merely from their local action on the alimentary canal, since this effect is sometimes produced when the medicine has been neither swallowed nor given by the rectum. Thus Monro primus tells us, that the tincture of aloes applied to a caries of the bone produced purging; and it is said that an aloetic pill used as a stimulant to an issue had a similar effect; lastly, applied to a blistered surface it has the same operation. So that the purgative action of aloes appears to be of a specific kind.

According to Dr. Wedekind, the operation of aloes depends on the increased secretion of bile, which is produced by the specific action of this medicine on the liver. He founds this opinion on the results of various experiments. Thus he says, that if aloes be added to purgatives (a laxative infusion and sulphate of soda), whose operation is speedy, its effects do not take place for some hours after those caused by the other purgatives; and he also asserts, that the evacuations in the second purging differ from those of the first both in appearance and smell. Moreover, he found that as long as the stools were white or gray in icterus, the aloes did not purge even when exhibited in large doses; but the purgative effect supervened immediately after the faecal matter began to contain bile, proving that the presence of bile in the intestinal canal is a necessary condition of the purgative effect of aloes. But in Moiroud's experiment above quoted, no effect seemed to be produced on the hepatic secretion.

In all probability, the increased secretion of bile, the irritation about the rectum, the disposition to hemorrhoids, and the vascular excitement of the sexual organs, all of which are said to be produced by aloes, are the effects of a stimulant action exerted by this medicine.
over the venous system of the abdomen, and especially of the pelvis.

Dr. Greenhow \(^w\) ascribes a diuretic effect to aloes, and his statement is corroborated by Moiround's experiment.

Socotrine aloes is said not to be so apt to occasion hemorrhoids as the Barbadoes kind. Some years since, Dr. Clutterbuck instituted numerous experiments at the General Dispensary, Aldersgate Street, which I witnessed, to determine the effects of the different kinds of aloes, but scarcely any difference in their operation on the human subject was perceptible. However, it is probable that Cape aloes is less powerful in its action on man, as it is on the horse, than the Barbadoes kind. But the difference is less obvious in the human subject, on account of the comparative smallness of the dose required to produce the purgative effect.

As a purgative, aloes holds an intermediate rank between rhubarb and senna. Vogt \(^x\) places it between jalap and rhubarb. From rhubarb it is distinguished by its more stimulant influence over the large intestines and the pelvic organs: from senna by its feebler action as a purgative, by its slow operation, and by its tonic influence when given in small doses. It irritates less powerfully than either jalap or scammony; further, its influence over the blood-vessels of the pelvic viscera is greater than these.

Use.—The uses of aloes may be readily inferred from the remarks already made. It is evidently not adapted for those cases in which a speedy effect is required; and it is, therefore, useless to add it to purgatives to quicken their operation. It is well fitted for cases of costiveness where there is a scanty secretion of bile, and for torpid conditions of the large intestines, especially when attended with deficient uterine action. Some of the ill effects ascribed to the use of aloes are probably imaginary, and others are much exaggerated.\(^y\) It is, however, advisable to avoid the use of this purgative in inflammatory conditions and organic diseases of the liver, in biliary calculi, in mechanical impediments to the passage of the blood through the branches of the portal veins, in hemorrhage from any of the pelvic organs (as the uterus and rectum), in irritation of the rectum, prostate gland, or bladder, in pregnancy, &c. For we have many other equally efficient purgatives, to the use of which, in these cases, no ill consequences have been ascribed. While, therefore, I concur with Dr. Fothergill \(^z\) in advising that the exhibition of aloes should be avoided when the menses are about to cease, I am not prepared to admit that "the piles, strangury, immoderate discharges of the menses, racking pains in the loins, representing labour pains, and other similar complaints," are frequently induced by this medicine. On the contrary, I suspect this catalogue of the evils of aloetic purges to be much overcharged. "Aloetic medicines," says Dr. Denman \(^\alpha\),

---

\(^x\) Pharmakodynamik, Bd. ii. S. 334, 2" Aufl.
\(^\alpha\) Introd. to the Pract. of Midwifery.
are forbidden during pregnancy, lest they should do mischief by
their supposed deobstruent qualities; but they are cheap and conve-
niently given in the form of pills, and I have not observed any bad
effects from them." The emaciation, stricture of the rectum, and
enteritis, referred by Dr. Greenhow to the long-continued use of
aloetic medicines, ought doubtless to be ascribed to other causes.

The following are some of the cases in which the use of aloes has
been advised:

1. In loss of appetite, and dyspepsia, depending on a debilitated
condition of the digestive organs, accompanied by costiveness, but
unattended with any signs of local irritation, aloes may be given in
small doses as a stomachic.

2. In habitual costiveness, depending on deficiency of bile, or on a
sluggish condition of the large intestines—particularly in hypochon-
driacal or studious persons, or in those whose habits or occupations
are sedentary—aloes, given in sufficient doses to purge, will be found
a very useful medicine. A torpid state of the colon, with large fecal
accumulation, is not unusual in females. In such the use of aloes is
often attended with much benefit.

3. To excite the menstrual discharge aloes is frequently employed.
It has been supposed that by determining an afflux of blood to the
pelvic organs, aloes would stimulate the uterine vessels, and thus
relieve deficient menstruation connected with atomic conditions of the
uterus. But it often fails: indeed Dr. Cullen says that it rarely succeeds.

4. To reproduce the hemorrhoidal discharge aloes has been fre-
quently employed in large doses. Serious affections of the head, or
of other parts, have sometimes disappeared on the occurrence of the
hemorrhoidal flux; and, therefore, in persons who have been subject
to this discharge, but in whom it has stopped, it is advisable to
attempt its re-establishment, with the view of relieving other more
serious disorders.

5. To promote the secretion of bile where a deficiency of this fluid
does not arise from hepatic inflammation—as in some forms of jaun-
dice which are unconnected with biliary calculi, inflammation, me-
chanical obstruction of the ducts, &c.

6. In cerebral affections.—The compound decoction of aloes is a
most valuable stimulating purgative for elderly persons in whom a
tendency to apoplexy exists, especially in cold and phlegmatic habits.
It will frequently be necessary to conjoin other cathartics, as the
infusion of senna.

7. As an anthelmintic, a decoction of aloes, used as an enema, has
been efficacious in the small thread-worm (Ascaris vermicularis).

Administration.—On account of its nauseous taste, aloes is fre-
quently given in the form of pill (pilula aloeticce, offic.) One or two
grains seldom fail to produce one stool, which seems to be merely an

---

\[ b \text{ Land. Med. Gaz. vol. xix. p. 270.} \]
\[ c \text{ Copland, Dict. Pract. Med. art. Colon, torpor of.} \]
\[ d \text{ Treat. of the Mat. Med.} \]
evacuation of what may be supposed to have been present for the time in the great intestines (Cullen). The ordinary dose is five grains; but ten, fifteen, or even twenty grains are sometimes given.

4. **Pilulæ Aloës Compositæ, L. D.; Pilulæ Aloes, E.; Compound Pills of Aloes.**—(Aloes [hepatic, D.], powdered, 3i.; Extract of Gentian, 3ss.; Oil of Caraway, 3xl.; Syrup, as much as may be sufficient, L. D. Beat them together until incorporated.—The Edinburgh College orders of Socotrine Aloes, and Castile Soap, equal parts; Conserve of Red Roses, a sufficiency. Beat them into a proper pill mass. This pill may be also correctly made with the finer qualities of East Indian Aloes, as the Socotrine variety is very scarce; and many, not without reason, prefer the stronger Barbadoes Aloes. E.)—The addition of Syrup, ordered by the London and Dublin Colleges, is unnecessary and improper, for the aloes and extract react on each other, and become so soft, that not unfrequently some powder is necessary to give the mass a proper consistence. This pill is a valuable purgative in habitual costiveness. Dose, five to fifteen grains.

5. **Pilulæ Aloës Cum Myrrha, L. D.; Pilulæ Aloës et Myrrhae, E.; Pilulae Rufi, offic.; Pills of Aloes and Myrrh; Rufus’s Pills.**—(Aloes [hepatic, D.; Socotrine or East Indian, E.], 3i. [four parts, E.]; Saffron [one part, E.], Myrrh, of each 3i. [two parts, E.]; Syrup [Conserve of Red Roses, E.], as much as may be sufficient. Rub the aloes and the myrrh separately to powder; then beat the whole together until incorporated.)—Used as a purgative in chlorosis and amenorrhea. Dose, ten to twenty grains.

6. **Pilulæ Aloës et Assafoetida, E.; Pills of Aloes and Asafoetida.**—(Aloes [Socotrine or East Indian], Assafoetida, and Castile Soap, equal parts. Beat them, with Conserve of Red Roses, into a proper pill mass.)—Used in dyspepsia attended with flatulence and costiveness. Dose, ten to twenty grains.

7. **Pilulæ Aloës et Ferrii, E.; Pills of Aloes and Iron.**—(Sulphate of Iron, three parts; Barbadoes Aloes, two parts; Aromatic Powder, six parts; Conserve of Red Roses, eight parts. Pulverize the aloes and sulphate of iron separately; mix the whole ingredients, and beat them into a proper mass, which is to be divided into five-grain pills.)—A valuable emmenagogue in atonic amenorrhea and chlorosis. Dose, one to three pills.

8. **Pulvis Aloës Compositus, L. D.—Compound Powder of Aloes.**—(Aloes [hepatic, D.], 3ss.; Guaiacum Resin, 3i.; Compound Powder of Cinnamon, 3ss. Rub the aloes and the guaiacum resin, separately, to powder; then mix them with the compound powder of cinnamon).—Purgative and sudorific. Seldom used. Dose, ten to twenty grains.


Duncan: Edinburgh Dispensatory.
978  ELEMENTS OF MATERIA MEDICA.

7. DECOCTUM ALOES COMPOSITUM, L. D.; Decoctum Aloes, E.; Compound Decoction of Aloes.—(Extract of Liquorice, 3vij. [3ss. E.]; Carbonate of Potash, 3i. [9ii. E.]; Aloes, [hepatic, D. or socotrine, E.] powdered; Myrrh, powdered; Saffron, of each 5iss. [3i. E.]; Compound Tincture of Cardamom, f3vij. [f3iv. E.]; Distilled Water, Oiss. [f3xvi. E.].) Boil down the liquorice, carbonate of potash, aloes, myrrh, and saffron, with the water, to a pint [f3xi. E.] and strain; then add the compound tincture of cardamom.)—A most valuable preparation. A mild cathartic, tonic, antacid, and emmenagogue. Used in the before-mentioned cases, in doses of f5ss. to f3ij. Acids, acidulous salts, and most metallic salts, are incompatible with it. If it be desirable to conjoin chalybeats with it, either the Ferri Potassium-tartras, L. (p. 863), or the Ammonia Ferro-tartras (p. 867), may be added to the cold decoction without undergoing decomposition.

8. EXTRACTUM ALOES PURIFICATUM, L.; Extractum Aloeîs Hepaticæ, D.; Purified Extract of Aloes. — Aloes powdered, 3xv, Boiling Water, Cong. j. Macerate for three days with a gentle heat; afterwards strain, and set by, that the dregs may subside. Pour off the clear liquor, and evaporate it to a proper consistence).—A most unnecessary preparation. It is intended to deprive the aloes of the substance called resin, on which its irritating and griping qualities have been erroneously supposed to depend. Dose, five to fifteen grains.


10. TINCTURA ALOES COMPOSITA, L. D.; Tinctura Aloes et Myrrhae, E.; Elixir Proprietatis of Paracelsus, Compound Tincture of Aloes.—(Aloes, [Socotrine or Indian, E.] coarsely powdered, 3iv.; Saffron, 3ij.; Tincture of Myrrh, Oij. Macerate for fourteen [seven, E.] days, and strain, L. The Dublin College omits the saffron. This tincture cannot be well prepared by percolation, E.):—Purgative, stomachic, emmenagogue. Used in cold, sluggish habits. Dose, 5ss. to 3ij.

11. VINUM ALOES, L. D. E.; Tinctura Sacra. Wine of Aloes.—Aloes [Socotrine, D.] rubbed to powder, 3ij.; Canella, powdered, 5iv.; Sherry Wine, Oij. [Oiss. and Proof Spirit Oj. wine measure, D.] Macerate for fourteen days, frequently shaking, and strain. The Edinburgh College uses Aloes (Socotrine or East Indian), 5iss.; Cardamom seeds ground; Ginger in coarse powder, of each 5iss.; Sherry, Oij. Digest for seven days, and strain through linen or calico). Wine of aloes is purgative in doses of f5ss. to f3ij.: stomachic in doses of f5j. to f5ij.

12. ALOE COLATA; Strained Aloes (Melt Aloes in a metallic vessel
heated by steam or hot water, and strain through a hair or wire sieve). By this process aloes is deprived of foreign matters with which it is frequently mixed. Its physical properties suffer some change. Its colour for example is deepened.

Aloes is a constituent of several other preparations, (as Extractum Colocynthidis composite, L. D., Pilulae Colocynthidis, E.; Pilulae Rhei composite, L. E.; Pilulae Cambogiae, E., Pilulae Cambogiae composite, L. D.; Pilulae Sagapeni composite, L.; Tinctura Rhei et Aloes, E.) which will be described hereafter.

2. SQUIL'LA MARIT'IMA, Steinheil, E.—THE SEA ONION, OR OFFICINAL SQUILL.

Scilla maritima, Linn. L. D.

Sex. Syst. Hexandria, Monogynia.

(Bulbus recens, L. Bulbus, D. Bulb, E.)

History.—The Egyptians worshipped a bulbous plant called by Lucian Κρόμμων, and which Pauw asserts to be the squill, and further suggests that it was the red variety (? Squilla Pancration var. a. Bulbo rufo, Steinheil). Pythagoras is said to have written a volume on the medicinal properties of squill, and to have invented the acetum scillae. Hippocrates employed squill (σκίλλα) internally, externally, and as a pessary.

Botany. Gen. Char.—Sepals three, coloured, spreading. Petals very like them, and scarcely broader. Stamens six, shorter than the perianth; filaments smooth, somewhat dilated at the base, acuminate, entire. Ovary three-parted, glandular and melliferous at the apex; style smooth, simple; stigma obscurely three-lobed, papillose. Capsule rounded, three-cornered, three-celled. Seeds numerous, in two rows, flattened with a membranous testa. (Lindley, from Steinheil.)


Bulb roundish-ovate, half above ground. The leaves appear after the flowers: they are broad, lanceolate, twelve to eighteen inches long. Scape about two feet high, terminated by a dense long raceme.

Hab.—Shores of the Mediterranean, viz. Spain, France, Sicily, Africa, &c. Navarino has long been celebrated for its squills. In its native soil the plant flowers about August.

Description.—The fresh bulb (bulbus recens, L.; radix recens, offic.) is pyriform, of the size of the fist to that of a child’s head, and is composed of thick, fleshy, smooth, shiny scales, attenuated at their edges, closely applied over each other, and attached to a conical disk (a rudimentary stem) which projects inferiorly, and gives origin

---

1 Phil. Diss. on the Egypt. and Chinese, vol. i. p. 130, 1795.
3 De victis ratione.
4 De acerbis.
5 De Nat. Mul.
to the root fibres, the remains of which are to be frequently found in the bulbs of commerce. The outer scales are usually dry, thin, coloured, membranous, or papery. By cracking the inner or fleshy scales, numerous spiral vessels may be drawn out. On submitting the cuticle of the scales to a microscopic examination, numerous acicular crystals (raphides) are perceived in cells, which are distinguished from the surrounding angular cells, by being larger and elliptical. The *pulvis scillae*, offic. contains nine or ten per cent. of these crystals.

Two kinds of squills, both abounding in an acrid juice, and having a very bitter taste, are met with in commerce; viz. the white (*squilla alba*), and the red (*squilla rubra*), both of which are so called from the colour of the scales. The white is preferred in England.

In the London Pharmacopoeia the fresh bulbs are directed to be preserved in dry sand; and, before drying them, the dry rind is to be removed; they are then to be cut transversely into thin slices, and dried as quickly as possible with a gentle heat.

Dried squill (*radix scilla siccata*, offic.) is, however, for the most part imported, in consequence of the duty being no higher for this than for the recent bulb. It occurs in white or yellowish white, slightly diaphanous pieces, which, when dry, are brittle, but when moist are readily flexible. As their affinity for moisture is great, they should be preserved in well-stoppered bottles, or in a very dry place.

Squill is imported from Malta, and other countries of the Mediterranean. Also from Petersburgh and Copenhagen.

**Composition.**—The more recent analyses of squill are those of Vogel, in 1812, and of Tilloy, in 1826. Buchner, in 1811, examined the juice of the fresh bulb.

<table>
<thead>
<tr>
<th>Vogel's Analysis of Squills, dried at 212° F.</th>
<th>Tilloy's Analysis of dried and fresh Squills.</th>
<th>Buchner’s Analysis of fresh Squill bulb juice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scillitin with some sugar ..................</td>
<td>Acrid bitter resinous extractive (<em>Scillitin</em>).</td>
<td>Peculiar bitter extractive 9-47</td>
</tr>
<tr>
<td>Tannin .....................................</td>
<td>Uncrystallizable sugar.</td>
<td>Mucilage ................. 3-09</td>
</tr>
<tr>
<td>Gum ........................................</td>
<td>Gum.</td>
<td>Gelatinous matter (Tartrate) 0-94</td>
</tr>
<tr>
<td>Woody fibre, and some citrate (and perhaps tartrate) of lime 30</td>
<td>Fatty matter.</td>
<td>gumacanthin ? 0-04</td>
</tr>
<tr>
<td>Acid volatile matter ........................</td>
<td>F iquant, very fugaceous matter.</td>
<td>Phosphate of lime .... 0-3</td>
</tr>
<tr>
<td>Loss .......................................</td>
<td>Squill bulb.</td>
<td>Fibrous matter .......... 3-38</td>
</tr>
<tr>
<td>............................................</td>
<td>...................................................</td>
<td>Water .................. 79-01</td>
</tr>
<tr>
<td>Squill bulb ................................</td>
<td>...................................................</td>
<td>Astringent Acid ........ braces</td>
</tr>
<tr>
<td>............................................</td>
<td>...................................................</td>
<td>Loss .................. 4-40</td>
</tr>
<tr>
<td>............................................</td>
<td>...................................................</td>
<td>Squill juice .......... 100-60</td>
</tr>
</tbody>
</table>

1. **Acrid, volatile? matter.**—It is well known that squill, in the recent state, is very acrid, and, when applied to the skin, causes irritation, inflammation, and even vesication. By drying, the greater part of this acridity is got rid of; and hence the acrid principle is usually described as being of a volatile nature, and, in confirmation of its volatility, Athanasius states, that two ounces of water distilled from fresh squills caused the death of a dog in six hours. However, by others, its volatility is denied; and Vogel says, that six ounces of

---

1 Is the red kind the *Squilla Puncture* var. a. *Dillo Rusta*, Steinh. ii
2 *Trade List*, Sept. 11, and Nov. 20, 1838.
4 Journ. de Pharm. xii. p. 635.
water distilled from fresh squills had no effect on dogs. Buchner states, that besides the bitter scillitin, squill contains, according to his experiments, another principle, which is combined with phosphate of lime, and which is capable of exciting itching and inflammation. This acid matter may be easily decomposed, but is not volatile, as is generally supposed.

2. Scillitin (Scillitite, Thomson).—The substance to which Vogel gave the name of Scillitin is a whitish transparent deliquescent substance, which, when dry, has a resinous fracture, and may be easily rubbed to powder. Its taste is bitter, and subsequently sweetish. It readily dissolves in water, spirit of wine, and acetic acid. The substance sold in the shops under the name of Scillitin is a thick treacle-like liquid. Landerer obtained crystals of Scillitin. He says they possessed alkaline properties.

3. Raphides (Phosphate of Lime?) The acicular crystals found in the cuticle of the scales of the bulb, as before mentioned, probably consist of phosphate of lime. These perhaps are the needle-like crystals obtained by Vogel by evaporating the juice of the bulb, and which he regarded as citrate of lime.

Chemical Characteristics.—An aqueous decoction of squills is pale, and very bitter. Sesquichloride of iron communicates an intense purplish blue colour (gallate of iron) to it. Gelatin has scarcely any effect on it. Nitrate of silver forms a white precipitate (chloride of silver) soluble in ammonia, but insoluble in nitric acid. Oxalate of ammonia renders the decoction turbid, and after some time causes a white precipitate (oxalate of lime). Diacetate of lead and protonitrate of mercury form precipitates in the decoction. Tincture of nutgalls has no effect on it. Starch is not recognizable in it by iodine. Alkalis heighten the colour of the decoction.

Physiological Effects, a. On Vegetables.—Not ascertained.

b. On Animals.—An ounce of powdered squill acts as a diuretic on horses and other large animals; the same effect is produced on smaller animals by half a drachm. When the dose is large, squill acts as a poison. It first causes local irritation; then its active principle becomes absorbed, affects the nervous system, and thereby quickens the respiration, causes convulsions, and death. Hillefeld mentions paralysis produced in a rabbit by nineteen grains of powdered squill. Emmert and Hoering state that squill juice introduced into the abdominal cavity, became absorbed.

g. On Man.—In small doses it acts as a stimulant to the excretory organs. Thus it promotes secretion from the mucous membranes (especially the bronchial and gastro-intestinal) and the kidneys. Its most marked effect is that of a diuretic. Its expectorant effects are less obvious and constant. Sometimes, when it fails to act on the kidneys, it increases cutaneous exhalation. Its influence on secreting organs is probably to be referred to the local stimulus communicated to their vessels by the active principle of squill in its passage out of the system, for Emmert and Hoering have shown that the juice is absorbed, so that squills may be regarded as an acid even for these

---

\[ a \] Toxikologie, 310.
\[ c \] Moiroud, Pharm. Vétér.
\[ d \] Ornith, Toxicol. Gén.
\[ e \] Marx, Die Lehre von d. Giften, vol. ii.
\[ f \] Meckel's Archiv, S. 4, Hefl 4, S. 527.
\[ g \] Op. cit.
remote parts. When it proves diuretic in dropsies, it usually pro-
motes the absorption of the effused fluid—an effect which is, I think,
indirect, and a consequence of the diuresis. But Sundelin observes
of squill, that it promotes the secretion of urine less by its local irri-
tation of the kidneys, than by its general excitement of the absorbent
apparatus.

By the continued use of squill in gradually increased doses, it
disturbs the functions of digestion and assimilation.

In full medicinal doses, squill excites nausea and vomiting. Pur-
ing, also, is not unfrequently produced. When squill proves emetic
or purgative, its diuretic operation is much less obvious—a circum-
stance which Cullen refers to the squill being prevented reaching
the blood-vessels and kidneys. Home, however, alleges that the
diuretic effects are not to be expected unless there be some operation
on the stomach. But the operation on the stomach may be, as Cullen
suggests, a mere test of the activity of the squills. However, that
the effect of squill, in strong doses, is not confined to the alimentary
canal, is proved by the fact, that when the vomiting and purging
were present, the pulse has been observed to be reduced in frequency,
often to forty beats per minute (Home).

In excessive doses, squill acts as a narcotico-acrid poison, and
causes vomiting, purging, griping pain, strangury, bloody urine, con-
vulsions, inflammation and gangrene of the stomach and intestines.

Considered with reference to its diuretic effect, squill is comparable
with foxglove. But it exceeds the latter in its stimulant influence
over the urinary organs. On the other hand, foxglove is characterized
by its powerfully sedative effect on the vascular system; for though
squill has, in some instances, reduced the frequency of the pulse, this
effect is by no means common. Squill, says Vogel, preponderates in
its action on the inferior or vegetative [organic] life; foxglove, on the
other hand, in its action on the higher or animal life.

Uses.—The principal uses of squill are as an emetic, diuretic, and
expectorant.

1. As a diuretic in dropsies.—It is applicable to those cases of
dropsy requiring the use of stimulating or acrid diuretics, and is im-
proper in inflammatory cases. It is an unfit remedy for dropsy com-
plicated with granular kidney or vesical irritation; but when these
conditions are not present, it is adapted for torpid leucophlegmatic
subjects. Hence, it is more serviceable in anasarca than in either
ascites or hydrothorax. It should be given so as to excite a slight
degree of nausea (not vomiting), as recommended by Van Swieten.

By this means its absorption is promoted. The acetate or bitartrate
of potash may be conjoined. Calomel is usually regarded as a good

---

Treat. of the Mat. Med. p. 337.
Clinical Experiments, p. 387, 1783, 3d ed.
Vogel, Journ. de Phys. lxxv. 194.
Pharmakodyn. ii. 343, 2nd Aufl.
Comment. upon Boerhawe's Aphorisms, vol. xii. p. 133.
adjunct for promoting the the diuretic influence of squill. When it does not purge it is beneficial, but its tendency to affect the bowels is an objection to its use.

2. As an expectorant in chronic pulmonary affections admitting of the use of a substance stimulating the capillary vessels of the bronchial membrane. Thus, in chronic catarrh, humid asthma, and winter cough, it is often employed with considerable benefit. It is of course improper in all acute cases accompanied with inflammation or febrile disorder. In old persons it is often combined with the tinctura camphorae composita, and with good effect. The oxymel or syrup of squill may be given to relieve troublesome chronic coughs in children.

3. As an emetic it is occasionally used in affections of the organs of respiration requiring or admitting of the use of vomits. Thus, the oxymel is given, with the view of creating sickness and promoting expectoration, to children affected with whooping-cough; and sometimes, though with less propriety, in mild cases of croup. The great objection to its use is the uncertainty of its operation: in one case it will hardly excite nausea, in another it causes violent vomiting. Furthermore, it is of course highly objectionable as an emetic for delicate children with irritable stomachs, on account of its acrid properties, and the irritation it is capable, in these cases, of setting up.

**Administration.**—The following are the preparations of squills usually employed:

1. **Pulvis Scille, D.; Powdered Squill.** — The directions of the Dublin College for the preparation of this are as follows:—Remove the membranous integuments from the bulb of the squill, cut it into slices, and dry with an inferior heat (between 90° and 100° F.); then reduce them to powder, which ought to be kept in glass bottles with ground stoppers. The bulb loses about four-fifths of its weight by drying: so that six grains of the dry powder are equal to half a drachm when fresh. Powdered squill readily attracts water from the atmosphere, and becomes soft and mouldy; hence the necessity of preserving it in stoppered bottles and in a dry place. It is usually administered in the form of pill. The dose of the powder, as an emetic, is from six to fifteen grains; ten grains being the average. As an expectorant or diuretic we should commence with one grain, and gradually increase the dose until slight nausea is excited.

2. **Pillule Scille Composita, L. D.; Pilulce Scille, E. Compound Squill Pills.**—(Squill, fresh dried and powdered, 3ij.; Ginger, powdered [3ij. D.]; Ammoniacum, powdered, each 3ij.; Soap, 5ij.; Syrup [Molasses, D.] as much as may be sufficient. Mix the powders together; then beat them with the soap, and add the syrup [molasses, D.] so as to obtain a proper consistence. The Edinburgh College takes of powdered Squill, five parts; powdered Ammoniac, and Ginger, and Spanish Soap, each four parts; Conserve of Red Roses, two parts; and forms them into five-grain pills.)—Expectorant and diuretic. Principally used in chronic bronchial affections. Dose from five to twenty grains. It readily spoils by keeping.
3. TINCTURA SCILLÆ, L. D. E.; Tincture of Squills.—(Squill, fresh dried [in coarse powder, E.] 5v.; Proof Spirit, Oij.; macerate for fourteen days, and strain, L. The directions of the Dublin College do not essentially differ from these. “Prepare this tincture by percolation, as directed for tincture of cinchona, but without packing the pulp firmly in the percolator. It may likewise be obtained by the process of digestion from the sliced bulb.” E.)—Expectorant and diuretic. Used in chronic bronchial affections. Dose mx. to fss.

4. ACETUM SCILLÆ, L. D. E.; Vinegar of Squills.—(Squill, fresh dried, 5xv. [5vij. D.]; Distilled Vinegar, Ovj. [Oii. D. wine measure]; Proof [rectified, D.] Spirit, Oss. [f5iv. D.] The relative proportions used by the Edinburgh College are the same as those of the London College, except that one-tenth less spirit is employed. Macerate the squill with the vinegar, with a gentle heat, in a covered vessel, for twenty-four hours [seven days, D. Ed.]; afterwards press out [the liquor] and set it by, that the dregs may subside; lastly, add the spirit to the clear liquor.)—A most ancient preparation. Expectorant and diuretic. Used in chronic pulmonary affections and dropsies under the regulations before described. Dose 5ss. to 5ss. in some aromatic water. It is a constituent of the Mistura Cascarilla composita, Ph. L.

5. OXYMEL SCILLÆ, L. D.; Syrupus Scillae, E.; Oxymel of Squills. Syrup of Squills.—(Honey [despumated] Ibiij.; Vinegar of Squill, Oiss. Boil down in a glass vessel, with a slow fire, to a proper consistence, L. D.—Vinegar of Squills, Oij.; Pure Sugar, Ibjij. Dissolve the sugar in the vinegar of squills with the aid of a gentle heat and agitation, E.)—Used as an expectorant in chronic catarrhs and asthma, in doses of f3j. or f5j. As an emetic it is sometimes given to children affected with hooping-cough or croup, in doses of a teaspoonful repeated every quarter of an hour until vomiting occurs.

Antidote.—No antidote is known. The first object, therefore, in a case of poisoning, is to evacuate the stomach; the second, to allay the inflammatory symptoms which may supervene.

5. AL’LIUM SATIVUM, Linn., L. E. D.—COMMON OR CULTIVATED GARLIC.

Sex. Syst. Hexaadria, Monogyinia.

(Bulbus, L. D.—Bulb, E.)

History.—This plant was well known to the ancients. The Greeks called it σκόμορος. It was used by Hippocrates.

Botany. Gen. Char. — Flowers umbellate, with a membranous spathe. Perianth six-parted, permanent, equal. Stamens inserted into the base of the perianth; filaments either all alike, or every one tricuspidate, with the anther on the middle point. Style subulate; stigma simple. Capsule usually obtusely three-cornered or
three-lobed, depressed, three-celled, bursting into three valves through the dissepiments, and containing two or one black angular seed in each cell. (Lindley.)


**Description.**—The bulb (bulbus), is composed of cloves, each furnished with its proper envelopes. Its odour is strong, irritating, and characteristic: its taste is acrid.

**Composition.**—Cadet analyzed garlic. He found the constituents to be acrid volatile oil, extractive (a little), gum, woody fibre, albumen, and water. The ashes contained alkaline and earthy salts. Bouillon-Lagrange has detected, besides these, sulphur, starch, and saccharine matter.

Oil of Garlic has a very acrid taste, a strong smell, and yellow colour. It is heavier than water, and is soluble in alcohol. It contains sulphur, and hence, in burning, produces sulphurous acid. According to Cadet, 20 lbs. of garlic yielded only six drachms of essential oil. It strikes a black colour when rubbed with oxide of iron. It is a powerful irritant, and when applied to the skin causes irritation. The Hindoos, according to Dr. Ainslie, prepare a stimulating expressed oil from garlic, which they give internally in ague, and use externally in palsy and rheumatism.

**Physiological Effects.**—Garlic is a local irritant. When swallowed it operates as a tonic and stimulant to the stomach. Its volatile oil becomes absorbed, quickens the circulation, occasions thirst, and is thrown out of the system by the different excretories; the activity of which it promotes, and to whose excretions it communicates its well-known odour. Large doses occasion nausea, vomiting, and purging. Puhlmann says the expressed juice has proved fatal.

**Uses.**—Employed by the cook as a flavouring ingredient in various made-dishes, sauces, &c. Rarely used by the medical practitioner. Internally it has been exhibited as a stimulant and stomachic in enfeebled digestion; as an expectorant in old chronic catarrhs; as a diuretic in atonic dropsies; and as an anthelmintic. Externally it has been employed as a resolvent in indolent tumors; as a local irritant or rubefacient applied to the feet to cause revulsion from the head or chest; as an antispasmodic liniment (composed of oil and garlic juice) in infantile convulsions; as a remedy for some cases of deafness, a clove or a few drops of the juice being introduced into the ear.

**Administration.**—A clove may be swallowed either entire, or, more conveniently, cut into small pieces. The dose of the fresh bulbs is one or two drachms. The expressed juice mixed with sugar, the infusion of garlic, and a syrup, are sometimes employed.

---

\(^{c}\) De Candolle, *Bot Gall.*


\(^{e}\) *Journ. de Pharm.* t. ii. p. 358.

\(^{f}\) *Materia Indica,* i. 151.

\(^{g}\) Quoted by Wibmer, *Die Wirk. d. Arzneim.*
4. AL'LIUM CE'PA, Linn. D.—THE ONION.

Sex. Syst. Hexandria, Monogynia,
(Bulbus, D.)

History.—The onion was known and used in the most ancient times. It was employed in medicine by Hippocrates. An onion taken from the hand of an Egyptian mummy, perhaps 2000 years old, has been made to grow.


Loudon enumerates eighteen varieties deserving of culture.

Hab.—Egypt. Cultivated in kitchen gardens.

Description.—The bulb (bulbus) is tunicated. When cut, it evolves an acrid principle, having a well-known odour, and a powerful action on the eyes, causing a flow of tears. Its taste is sweet and acrid. Onion juice is colourless, but by exposure to the air becomes reddish.

Composition.—According to Fourcroy and Vauquelin the onion contains an acrid volatile oil, uncrystallizable sugar, gum, woody fibre, albumen, acetic and phosphoric acids, phosphate and citrate of lime, and water.

Volatile Oil of Onions.—This is acrid, piquant, colourless, and, like that of garlic, contains sulphur.

Physiological Effects.—Analogous to those of garlic, but milder. By boiling onions, the volatile oil is dissipated, and the bulb is deprived of its irritating qualities, and becomes a mild esculent substance.

Uses.—Extensively used as an article of food and as a condiment. It is very rarely employed in medicine, but is adapted to the same cases as garlic. Raw onions are occasionally taken as an expectorant, with advantage, by elderly persons affected with winter cough.

Administration.—A roasted onion is sometimes employed as an emollient poultice to suppurating tumors, or to the ear to relieve earache. The expressed juice has been given to children, mixed with sugar, as an expectorant.

OTHER DIETETICAL, MEDICINAL, OR POISONOUS LILIACEÆ.

1. The Crown Imperial (Fritillaria imperialis) is said to be a narcotic poison, though Orfila could not recognise any acridity in it.

2. The recent bulb of the Common White Lily (Lilium candidum) has been used as a diuretic in dropsies. The boiled bulb is employed as an emollient cataplasm.

3. Various species of Allium, besides those already mentioned, are cultivated for culinary purposes: as, A. Por'rum, the Leek; A. ascalon'icum, the Shallot; A. Schan'oprasum, the Chive; A. Scorodo'prasum or Rocambole. Their virtues are analogous to those of the onion and garlic.

---

986 ELEMENTS OF MATERIA MEDICA.

4. AL'LIUM CE'PA, Linn. D.—THE ONION.

Sex. Syst. Hexandria, Monogynia,
(Bulbus, D.)

History.—The onion was known and used in the most ancient times. It was employed in medicine by Hippocrates. An onion taken from the hand of an Egyptian mummy, perhaps 2000 years old, has been made to grow.


Loudon enumerates eighteen varieties deserving of culture.

Hab.—Egypt. Cultivated in kitchen gardens.

Description.—The bulb (bulbus) is tunicated. When cut, it evolves an acrid principle, having a well-known odour, and a powerful action on the eyes, causing a flow of tears. Its taste is sweet and acrid. Onion juice is colourless, but by exposure to the air becomes reddish.

Composition.—According to Fourcroy and Vauquelin the onion contains an acrid volatile oil, uncrystallizable sugar, gum, woody fibre, albumen, acetic and phosphoric acids, phosphate and citrate of lime, and water.

Volatile Oil of Onions.—This is acrid, piquant, colourless, and, like that of garlic, contains sulphur.

Physiological Effects.—Analogous to those of garlic, but milder. By boiling onions, the volatile oil is dissipated, and the bulb is deprived of its irritating qualities, and becomes a mild esculent substance.

Uses.—Extensively used as an article of food and as a condiment. It is very rarely employed in medicine, but is adapted to the same cases as garlic. Raw onions are occasionally taken as an expectorant, with advantage, by elderly persons affected with winter cough.

Administration.—A roasted onion is sometimes employed as an emollient poultice to suppurating tumors, or to the ear to relieve earache. The expressed juice has been given to children, mixed with sugar, as an expectorant.

OTHER DIETETICAL, MEDICINAL, OR POISONOUS LILIACEÆ.

1. The Crown Imperial (Fritillaria imperialis) is said to be a narcotic poison, though Orfila could not recognise any acridity in it.

2. The recent bulb of the Common White Lily (Lilium candidum) has been used as a diuretic in dropsies. The boiled bulb is employed as an emollient cataplasm.

3. Various species of Allium, besides those already mentioned, are cultivated for culinary purposes: as, A. Por'rum, the Leek; A. ascalon'icum, the Shallot; A. Schan'oprasum, the Chive; A. Scorodo'prasum or Rocambole. Their virtues are analogous to those of the onion and garlic.

---

986 ELEMENTS OF MATERIA MEDICA.

4. AL'LIUM CE'PA, Linn. D.—THE ONION.

Sex. Syst. Hexandria, Monogynia,
(Bulbus, D.)

History.—The onion was known and used in the most ancient times. It was employed in medicine by Hippocrates. An onion taken from the hand of an Egyptian mummy, perhaps 2000 years old, has been made to grow.


Loudon enumerates eighteen varieties deserving of culture.

Hab.—Egypt. Cultivated in kitchen gardens.

Description.—The bulb (bulbus) is tunicated. When cut, it evolves an acrid principle, having a well-known odour, and a powerful action on the eyes, causing a flow of tears. Its taste is sweet and acrid. Onion juice is colourless, but by exposure to the air becomes reddish.

Composition.—According to Fourcroy and Vauquelin the onion contains an acrid volatile oil, uncrystallizable sugar, gum, woody fibre, albumen, acetic and phosphoric acids, phosphate and citrate of lime, and water.

Volatile Oil of Onions.—This is acrid, piquant, colourless, and, like that of garlic, contains sulphur.

Physiological Effects.—Analogous to those of garlic, but milder. By boiling onions, the volatile oil is dissipated, and the bulb is deprived of its irritating qualities, and becomes a mild esculent substance.

Uses.—Extensively used as an article of food and as a condiment. It is very rarely employed in medicine, but is adapted to the same cases as garlic. Raw onions are occasionally taken as an expectorant, with advantage, by elderly persons affected with winter cough.

Administration.—A roasted onion is sometimes employed as an emollient poultice to suppurating tumors, or to the ear to relieve earache. The expressed juice has been given to children, mixed with sugar, as an expectorant.

OTHER DIETETICAL, MEDICINAL, OR POISONOUS LILIACEÆ.

1. The Crown Imperial (Fritillaria imperialis) is said to be a narcotic poison, though Orfila could not recognise any acridity in it.

2. The recent bulb of the Common White Lily (Lilium candidum) has been used as a diuretic in dropsies. The boiled bulb is employed as an emollient cataplasm.

3. Various species of Allium, besides those already mentioned, are cultivated for culinary purposes: as, A. Por'rum, the Leek; A. ascalon'icum, the Shallot; A. Schan'oprasum, the Chive; A. Scorodo'prasum or Rocambole. Their virtues are analogous to those of the onion and garlic.
4. *Squil'la Pancre*-tion. Steinh. (Πεπόντος, Dioscorides) is said by Steinheil to yield a small bulb of a reddish colour, found in commerce under the name of squill.

5. The root of *Ale'tris Fari'no'sa* is used in the United States as a tonic.

6. *Erythronium ame-rica'num* is emetic.

7. The fresh rhizome of *Solomon's Seal* (*Convallaria Polygona'tum*) is a popular application to bruised parts (the eye, for example), to remove the marks.

8. *Xanthorrh'e'a hast-ytle* and *X. arbo'rea*, natives of New Holland, yield resinous substances. That obtained from the first species somewhat resembles gamboge, and is called *yellow gum* [resin] of New Holland. It has been described by Mr. Kite⁷, who used it in several diseases. More recently Dr. Fish⁸ has used it in the form of tincture, with opium, in *fluxus hepaticus* and diar-rhoea. Mr. Johnston⁹ says, this resin contains more oxygen than any other resinous substance hitherto analysed. Its composition is \(C_{40}H_{20}O_{12}\). A red resin, probably from *X. arbo'rea* (fig. 180), has been recently imported under the name of *black-boy gum*.

9. The young shoots of *Aspa'ragus officina'lis* are well-known articles of food. They are diuretic, and communicate a peculiar odour to the urine. *Aspara-ramide* (formerly called *asparagin*) is contained in this plant. Its composition is \(C_8H_5NO_5 + NH_2\).

10. *Drac'e'na Dra'co* (fig. 117), a native of the Canary Islands and of the East Indies, yields a substance called Dragon's blood. One of these trees growing at Orotava has long been celebrated for its great size and age. Next to the Baobab trees (*Adansonia digitata*), it is regarded as one of the oldest inhabitants of the earth ⁸.
**Order XIII.—Smilaceae, Lindl.—The Smilax Tribe.**

**Essential Character.**—Flowers hermaphrodite or dioecious. Calyx and corolla confounded, inferior six-parted. Stamen six, inserted into the perianth near the base; seldom hypogynous. Ovary three-celled, the cells one, or many seeded: *style* usually trilocular; *stigmas* three. Fruit a roundish berry. Albumen between fleshy and cartilaginous; embryo usually distant from the hilum.

—Herbaceous plants or under shrubs, with a tendency to climb. Stems woody. Leaves reticulated. (Lindley.)

**Properties.**—Those of Smilax are alone known.

**SMILAX, Linn.—Several Species of Smilax Yielding Sarsaparilla.**

Smilax officinalis, L.; and probably other species, E.; Smilax Sarsaparilla, D. (Radix dicta Sarza seu Sarsaparilla.)

**History.**—Sarsaparilla first appeared in Europe in 1530, and was employed as an antivenereal remedy*. The Spanish term Zarzaparilla (from zarza a bramble, and parilla a vine) signifies a thorny vine.

**Botany. Gen. Char.** — Dioecious. Perianth six-parted, nearly equal, spreading. Male flowers: stamens six; anthers erect. Female flowers: perianth permanent; ovary three-celled, the cells one-seeded; *style* very short; *stigmas* three. Berry one to three-seeded. Seeds roundish; albumen cartilaginous; embryo remote from the hilum.

**Species.**—The following species yield at least part of the sarsaparilla of commerce:—

1. Smilax officinalis, Kunth, L. E.—Stem twining, shrubby, prickly, quadrangular, smooth; the young shoots are unarmed and almost round. Leaves ovate-oblong, acute, cordate, netted, five to seven-nerved, coriaceous, smooth, a foot long, and four to five inches broad; the young ones are narrow, oblong, acuminate, and three-nerved. Petioles smooth, an inch long, bearing two tendrils above the base. Flowers and fruit unknown.—Grows in New Granada, on the banks of the Magdalena, near Bajoreque. This is called Zarzaparilla by the natives, who transmit large quantities to Carthagena and Mompox; whence it is shipped for Jamaica and Spain*. It is probably the source of Jamaica, and perhaps also of Lima and Honduras sarsaparillas.

2. Smilax medica, Schlecht.—Stem angular, armed at the joints with straight prickles, with a few hooked ones in the intervals. Leaves shortly acuminate, smooth, five to seven-nerved; inferior ones, cordate, auriculate-hastate; upper ones cordate-ovate. Peduncle axillary, smooth, about an inch long. Inflorescence an eight to twelve-flowered umbel. Fruit red, size of a small cherry; contains one to three reddish-brown seeds. Embryo cylindrical, lodged in horny albumen*.—Schiede found it on the Eastern slope of the

---

1 R. Brown, Prodromus, p. 293.
Mexican Andes. It is carried from the villages of Papantla, Taspan, Nautla, Misantla, &c. to Vera Cruz, under the name of Zarzaporilla, and is there introduced into the European market. The roots are gathered all the year long, dried in the sun, and then tied in bundles for sale. This species yields Vera Cruz sarsaparilla.

3. *Smilax siphilitica*, Willd.—Stem round, strong, with two to four straight prickles at the knots. Leaves oblong-lanceolate, three-nerved, coriaceous, smooth, and shining.—Humboldt and Bonpland discovered it in New Granada, on the river Cassiquiare, between Mandavala and San Francisco Solano. Von Martins found it in the Brazils at Yupurá and Rio Negra. It yields Brazilian sarsaparilla.

4. *Smilax sarsaparilla*, Linn. D.—Stem prickly, somewhat quadrangular. Leaves ovate-lanceolate, cuspidate, almost five-nerved, beneath glaucous (Willdenow).—It is a native of Virginia, and other southern states of the American union. There is no evidence that it yields any of the sarsaparilla of the shops. Yet Th. Martins (Pharmakognosie) ascribes the Vera Cruz variety, which, he says, sometimes comes over under the name of American sarsaparilla, to it.

Description.—The roots of the preceding, and perhaps of other species, constitute the Sarsaparilla or Sarza of the shops. These are imported, made up in bundles, formed either of the spirally folded roots (sarsaparilla rotunda), as in the Jamaica and Lima varieties, or of unfolded parallel roots (sarsaparilla longa), as in the Brazilian variety. Attached to the roots are, in some varieties (as the Lima and Vera Cruz kinds), portions of the rhizome and aerial stem; these constitute what druggists call the chump. On the aerial stem are frequently found the aculei or prickles.

The roots are usually several feet long, about the thickness of a writing quill, wrinkled more or less longitudinally, with root-fibres in greater or less abundance attached to them. Their colour varies, being more or less red or brown, frequently with a grayish tint. Greater or less care in drying, time of year when collected, soil, and many other circumstances, doubtless modify the colour. The taste of the root is mucilaginous, and slightly acrid. The acridity is only perceived after chewing the root for a few minutes. The odour is somewhat earthy.

The radices or runners are composed of two parts, the cortex and medullary. (See figs. 182 and 183.) The cortex consists of—1st, the cuticle or epidermis; 2dly, a layer of elongated cellular tissue, which I shall call the subcuticular tissue; 3dly, a layer of hexagonal cellular tissue. The last-mentioned layer is red in Jamaica sarsaparilla; but in the Honduras variety it is thick, white, and amylaceous. The medullary consists of—1st, a ring of elongated cellular

---

"Linnaea, iv. 576, quoted from Lindley's *Fl. Med.*
* Reise in Brasilien, * Bd. iii."
tissue analogous to the subcuticular tissue; 2dly, a woody zone, composed principally of reticulated ducts; 3dly, a central tissue analogous to medulla or pith, consisting of hexagonal cellular tissue, which frequently abounds in starch. The apertures seen in the woody zone, on a transverse section of the root, are the cut extremities of ducts. In structure, then, sarsaparilla root much resembles an exogenous stem, except that it has no medullary rays. The starch globules are small, and are frequently united in masses of three or four; when of four, the masses have a tetrahedral form.

Quality.—It is not easy to lay down criteria of the goodness of sarsaparilla; for, on the one hand, in the absence of a correct knowledge of the active principle of this root, we have no chemical tests on which we can rely; and, on the other hand, the immediate and obvious effects of sarsaparilla are so slight that we are unable to ascertain by experience the relative value of different samples. In the drug trade, Jamaica sarsaparilla is esteemed the best; but though I do not doubt the correctness of this opinion, I confess I am unacquainted with any accurate comparative experiments on which it is founded.

The colour of the root is not to be absolutely depended on; but roots having a deep orange-red tint are preferred. Taste perhaps is the best criterion: the more acrid and nauseous the taste, the better is the quality of the root. This test has been much insisted on by Dr. Hancock. Many druggists prefer mealy sarsaparilla, that is, sarsaparilla whose cortex is brittle and powdery, and which, on being fractured transversely, throws out a white dust. But this quality, which is so obvious in Honduras sarsaparilla, depends on the presence of starch; and, instead of being a test of goodness, is to be regarded as the reverse. The quantity of extract yielded by a given weight of the root has been much depended on by Mr. Battley and Mr. Pope as a test of goodness; both these writers have asserted the superiority of Jamaica sarsaparilla, because it yields a larger quantity of extract. But though a sarsaparilla which yields very little extract cannot be regarded as good, yet it does not follow, especially in the absence of comparative trials, that a sarsaparilla which yields the most abundant extract is necessarily the best, since the quantity may arise from the presence of mucilage and other inert matters. The beard is another criterion of goodness: the greater the quantity of root fibres (technically called beard) the better the sarsaparilla.

1. Jamaica Sarsaparilla, offic.; Red-bearded Sarsaparilla (Radix Sarzæ jamaicensis). The roots are folded and made up in bundles (sarsaparilla rotunda) of about a foot or half a yard long, and four or five inches broad. These bundles are neither trimmed nor closely packed. They consist of long, slender runners, furnished with numerous small fibrous rootlets (called the beard). Its cortex is brownish, but with an orange-red tint, which distinguishes

it from other kinds of sarsaparilla, and has given rise to its name of red sarsaparilla. The cortex is reddish, and when examined by the microscope is found to contain some starch globules. The medullium has frequently a reddish tint. When chewed, Jamaica sarsaparilla tinges the saliva. Its taste is not remarkably mucilaginous, but slightly bitter, and after a few minutes slightly acrimonious. Its decoction is deepened in colour by a solution of iodine; but no blue is perceptible. Its powder is pale reddish brown, and when rubbed with water and tincture of iodine becomes blue, but less intensely so than the powder of the Honduras variety. It yields a larger quantity of extract than the other varieties: its extract is perfectly soluble in cold water. From three pounds of average quality about one pound of extract may be obtained (Hennell; also Battley); but from the same quantity of root of very fine quality, nearly one pound and a quarter of extract may be procured (Hennell). 874 grains of the cortical portion of the root yielded 484 grains of extract (Battley). According to Mr. Pope, the cortex yields five times as much as the medullium.

Jamaica sarsaparilla is not the produce of the island whose name it bears, but, as I am informed, of the Mosquito shore on the eastern coast of Honduras and of St. Juan, from whence it is brought to England by way of Jamaica. Occasionally it is brought from Guatemala.

In the collection of Materia Medica at Apothecaries' Hall, London, is a sample of sarsaparilla grown in Jamaica. Its colour is pale cinnamon brown. Internally it is mealy. Jamaica sarsaparilla is perhaps the root of *Smilax officinalis*.

2. Brazilian Sarsaparilla: Lisbon, Portugal, or Rio Negro Sarsaparilla (*Radix Sarsae brasiliensis*). This is usually exported from Maranham. It is brought over unfolded, tied in cylindrical bundles (*sarsaparilla longa*) of from three to five feet long, and about a foot in diameter. It is free from chump. It has fewer longitudinal wrinkles than the Jamaica kind, fewer radicles, especially at one end; has a reddish-brown colour, and abounds in amylaceous matter, both in the cortex and pith. Its decoction is much paler coloured than the Jamaica variety.

Martius* says it is the produce of *Smilax siphilitica*, and is gathered all the year round. After being dried over a fire, the roots are tied up in bundles with a flexible stem called *Timbotitica*; and to prevent them being worm-eaten, they are preserved in the gables of

---

*Reise*, Bd. iii. S. 1280.
the houses, where they are exposed to smoke. Dr. Hancock\(^d\) has denied that the "Rio Negro Sarsa" is the produce of *S. siphilitica*, because he found no auxiliary spines on a portion of stem adhering to the roots, and Dr. Lindley\(^c\) has admitted the correctness of the inference. But until we know the extent of stem examined, we are not authorised, I conceive, to adopt Dr. Hancock's conclusion; for in the same bale of apparently the same kind of sarsaparilla, we frequently find portions of stem (not exceeding three or four inches in length), some of which have prickles, others are without them, and there is not the least ground for supposing them to have been procured from different species. Professor Guibourt, who has described \(^a\) a second kind of Caraccas sarsaparilla as devoid of prickles, tells me that he has since met with them in other samples of the same kind of sarsaparilla.

3. **Lima Sarsaparilla (Radix Sarvae de Limae)**. Originally imported from Lima, but is now frequently brought from Valparaiso, and sometimes from Costa Rica. I know of one importation of 99,000 lbs. from the latter place. It has a close resemblance to Jamaica sarsaparilla, for which I am told it is extensively sold, but it yields a smaller quantity of extract. It is imported folded (*sarsaparilla rotunda*) in bundles of about three feet long, and nine inches in diameter, with the attached *chump* contained in the interior of the bundle. Its colour is brown or greyish brown. Occasionally a few roots are found in the bale of good Lima sarsaparilla, which, as well as their rhizome and stem, are light clay-coloured. The stems are square and prickly; the prickles are few and small, except in the clay-coloured variety. It is probably the produce of *Smilax officinalis*.

Occasionally a knobby root, (*rhizome ?*) like the *radix Chinea*, with a round stem, and long, smooth, wiry, brown root-fibres, is found in a bale of Lima sarsaparilla. A transverse section of the stem presents, to the naked eye, a structure somewhat similar to that of the common cane. I have received the same root (under the name of *Salsepareille-Squine de Macaraibo*) from Professor Guibourt, who found it in Caraccas sarsaparilla.

4. **Honduras Sarsaparilla; Mealy Sarsaparilla (Radix Sarvae de Honduras)**. Is imported from Belize and other parts of the Bay of Honduras. The roots are folded and formed into bundles (*sarsaparilla rotunda*), two or three feet long, in the interior of which are found roots of inferior quality, stones, clumps of wood, &c. The roots or runners are furnished with but few rootlets. The colour is dirty or greyish brown. The cortex consists of a thin epidermis, within which is a thick, white, amyloaceous layer, which gives to this variety its remarkable *mealy* appearance when broken. This cortical portion readily cracks transversely, and shells off, leaving the medullullum, which is thinner than in the Jamaica kind. The taste of the root is amyloaceous, and ultimately somewhat acrid. Its decoction becomes

\(^b\) Hist. des Drog. i. 578.  
\(^c\) Fl. Medica, p. 397.
intensely blue by the addition of a solution of iodine. Its powder is fawn-coloured, and when rubbed with water and tincture of iodine, becomes intensely bluish black. From five pounds of the root of fine quality about one pound of extract may be produced (Hennell). A sample, examined by Mr. Battley, yielded six and a half ounces of extract from three pounds of root, which is about ten and a half ounces from five pounds: 874 grains of the cortical portion of the root yielded 230 grains of extract (Battley). In one operation, in the laboratory of a friend of mine, 170 lbs. of root yielded 45 lbs. of extract. According to Mr. Pope, the cortex yields twice as much extract as the meditullium.

5. Vera Cruz Sarsaparilla (Radix Sarzce de Vera-Cruz). This is occasionally imported from Vera Cruz, but is seldom met with in the drug-market. The roots are unfolded (sarsaparilla longa) and have the chump attached. They are thin, tough, of a light greyish-brown colour, and devoid of starch in the cortex. Mr. Pope terms this variety, “lean, dark, and fibrous.” The roots or runners give off very few rootlets. It yields a deep-coloured decoction, which is unchanged by a solution of iodine.

Vera Cruz sarsaparilla is the produce of Smilax medica.

I have received from Professor Guibourt the following kinds of sarsaparilla:—

1. Caraccas Sarsaparilla, Guib.* Of this there are two kinds, both of which have portions of the rhizome and aerial stem attached to them. One kind (la première sorte) occasionally presents spines on the aerial stem. The other (la seconde sorte) comes from Macaraibo (Maracaibo?). Professor Guibourt tells me he found, about three years ago, a bale of this second kind, one half of which was made up of the root above referred to, which he calls Salsepareille-Squine de Macaraibo, and which he thinks ought rather to be regarded as a China root (Squine, Fr.) than a sarsaparilla.

Caraccas sarsaparilla has considerable resemblance to the Lima sarsaparilla of English commerce.

2. Peruvian Sarsaparilla, Guib. (MS.) “The tuberosities possess a yellow colouring principle, and the stems are rather spongy than ligneous.” This kind also appears to me to be closely allied to, if not identical with, Lima sarsaparilla.

3. Brazilian, called Portugal, Sarsaparilla, Guib. h Accompanying this is a portion of the stem of some monocotyledonous plant (Timbotitica) used in tying the roots in bundles. The sample sent me by Professor Guibourt has some resemblance to what I have above called Vera Cruz sarsaparilla; but the quantity is too small to draw any accurate conclusion from it.

* Hist. des Drog. t. ii. p. 577.
§ Hist. des Drog. t. i. p. 578.
4. Brazilian Sarsaparilla en Souches, Guib. (MS.) This, I think, is identical with our Vera Cruz sarsaparilla. "I thought at first," says Professor Guibourt, "that it came from the Brazils, because it appeared to me identical with that which constitutes the sarsaparilla called Portugal. But a druggist tells me he has received it wholly under the name of Tampico Sarsaparilla."

5. Mexican, called Honduras, Sarsaparilla, Guib. This is not the Honduras sarsaparilla of English druggists. Its colour is paler and yellowish. The roots are more shrivelled, the cortical part is tougher; and, when broken, does not give out a white dust, in consequence of being deficient in the white amylaceous layer which is so abundant in the Honduran variety of our commerce.

The sarsaparilla which Guibourt (MS.) regards as the washed Honduran kind (Salsepareille Honduras lavée ? Guib.), appears to me to be a distinct species.

6. Jamaica Sarsaparilla, Guib. This is not Jamaica sarsaparilla of English druggists. It appears to me to be very similar to the Salsepareille Honduras lavée, Guib. Both kinds have a roseate amylaceous cortex.

7. Woody Sarsaparilla, Guib.

8. Unknown Sarsaparilla, Guib. (MS.) "It approaches Caraccas sarsaparilla."

Composition. — Sarsaparilla was analyzed by Cannobio; by Pfaff; by Batka; and by Thubeuf.

Cannobio’s Analysis.  

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter acrid resin</td>
<td>2.8</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>5.5</td>
</tr>
<tr>
<td>Starch</td>
<td>34.2</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>27.8</td>
</tr>
<tr>
<td>Loss</td>
<td>9.7</td>
</tr>
<tr>
<td>Sarsaparilla [Honduras?]</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Pfaff’s Analysis.  

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsamic resin</td>
<td>2.0</td>
</tr>
<tr>
<td>Acrid extractive</td>
<td>2.5</td>
</tr>
<tr>
<td>Extractive similar to cinchona</td>
<td>3.7</td>
</tr>
<tr>
<td>Common extractive</td>
<td>9.4</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>1.4</td>
</tr>
<tr>
<td>Starch</td>
<td>trace</td>
</tr>
<tr>
<td>Alburnen</td>
<td>2.2</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>75.0</td>
</tr>
<tr>
<td>Moisture</td>
<td>3.0</td>
</tr>
<tr>
<td>Loss</td>
<td>6.8</td>
</tr>
<tr>
<td>Sarsaparilla [Vera Cruz]</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Batka’s Analysis.  

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A crystalline matter</td>
<td>(parallinic acid)</td>
</tr>
<tr>
<td>2. A colouring crystaline matter</td>
<td></td>
</tr>
<tr>
<td>3. An essential oil</td>
<td></td>
</tr>
<tr>
<td>4. Gum</td>
<td></td>
</tr>
<tr>
<td>5. Bassorin</td>
<td></td>
</tr>
<tr>
<td>6. Starch</td>
<td></td>
</tr>
<tr>
<td>7. Albumen</td>
<td></td>
</tr>
<tr>
<td>8. Extractiform matter</td>
<td></td>
</tr>
<tr>
<td>9. Gluten and gladine</td>
<td></td>
</tr>
<tr>
<td>10. Fibrous and cellular tissue</td>
<td></td>
</tr>
<tr>
<td>11. Lactic acid</td>
<td></td>
</tr>
<tr>
<td>12. Acetic acid</td>
<td></td>
</tr>
<tr>
<td>Sarsaparilla.</td>
<td></td>
</tr>
</tbody>
</table>

Thubeuf’s Analysis.  

1. A crystalline substance (salseparine)
2. A colouring matter
3. A resinous matter
4. Ligneous matter
5. Starch
6. Chloride potassium
7. Nitrate potash
8. Fixed aromatic thick oil
9. Waxy substance

1. Oil of Sarsaparilla.— Berzelius states that 100 lbs. of the root yield about 3/4 of volatile oil; but there must be some error in this statement.

The following experiments were made by a friend, a manufacturing chemist, who gave me the products for examination. 140 lbs. of Jamaica sarsaparilla were distilled, by steam heat, at twice, with 220 gallons of water. 50 gallons of a milky liquor were obtained, which were again submitted to distillation until 20 gallons had passed over. 20 lbs. of common salt were added to the distilled product, and heat being applied, 3 gallons were drawn over. The liquor was milky, held in solution carbonate of ammonia, and contained a few drops of a volatile

---

7. Ibid. xx. 682, 1834.
8. Traité de Chim. t. vi. p. 211.
oil, which was heavier than water, was soluble in rectified spirit, and had the odour and acrid taste of sarsaparilla. 100 lbs. of Jamaica sarsaparilla were distilled with 100 gallons of water. The distilled liquor was acid, and formed a white precipitate with solutions of acetate of lead. It was re-distilled: the liquor that first passed over was not ammoniacal, but towards the end of the process became so.

2. Smilacin.—Discovered in 1824 by Palotta, who termed it pariglin. Folchi, about the same time, also procured it, and gave it the name of smilacin. Thupeuf, in 1831, called it salseparin. In 1833, Batka announced that the active principle of this root was an acid, which he termed parallinic acid. Lastly, in 1834, Poggiale shewed the identity of these different substances.

It is procured by decolorizing a concentrated hot alcoholic tincture of sarsaparilla by animal charcoal. The tincture deposits, on cooling, impure smilacin, which may be purified by repeated solution and crystallization. Soubeiran has proposed a more economical process.

It has been frequently asserted, that the active principle of sarsaparilla resides in the cortical portion only of the root; but Poggiale asserts that the medullum is not inert.

Smilacin is a white, crystallizable, odourless, and, in the anhydrous state, almost tasteless substance; very slightly soluble in cold water, more so in boiling water, and depositing from the latter by cooling. Its solution has the bitter acrid taste of sarsaparilla, and froths on agitation. It is soluble in alcohol, ether, and oils. It does not combine with acids to form salts. Strong sulphuric acid colours it red, then violet, and lastly yellow. It dissolves in cold and pure hydrochloric acid; the solution becomes red and afterwards gelatinous, when heated. It is soluble in strong nitric acid; if the solution be heated, nitrous gas escapes; and by evaporation a solid residuum is obtained, which is soluble in boiling water, from which it precipitates in white flocks, as the liquid cools.

Smilacin is closely allied to, if it be not identical with, saponin. Now, as the latter is readily converted into an acid (esculic acid), so probably is the former: hence, perhaps, the parallinic acid of Batka may not be absolutely identical with smilacin, but bear the same relation to it that esculic acid does to saponin.

Smilacin has the following composition:

<table>
<thead>
<tr>
<th></th>
<th>Poggiale</th>
<th>Henry</th>
<th>Petersen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean of 12 analyses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>62.53</td>
<td>62.84</td>
<td>62.80</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>8.07</td>
<td>9.76</td>
<td>9.14</td>
</tr>
<tr>
<td>Oxygen</td>
<td>28.40</td>
<td>27.49</td>
<td>28.06</td>
</tr>
</tbody>
</table>

Anhydrous Smilacin 100’00
[Parallina] 100’00

Poggiale gives the following formula for its atomic constitution, C8 H7 O3; while O. Henry assumes C9 H9 O3, and Petersen C9 H8 O3. As no definite compound of smilacin has been obtained, these formulae are of little value. Thupeuf says that hydrated [crystallized] smilacin contains 8:56 water.

Cullerier gave it to nine syphilitic patients. In doses of six grains the stomach readily supported it; but nine grains caused weight at the stomach and nausea. It appeared to relieve the patients’ symptoms, and, in one case, seemed to effect a cure. According to Palotta, pariglin, in doses of from two to thirteen grains, acts as a debilitant, reducing the circulation, sometimes producing constriction of the esophagus, and exciting nausea and diaphoresis. He thinks it might be useful in chronic rheumatism, skin diseases, &c.

3. Starch.—The large quantity of starch found in Honduras sarsaparilla must render this variety nutritive. In the Jamaica and Vera Cruz varieties the quantity is very small.

---

6 Journ. de Pharm. x. 543.
7 Journ. de Chim. Méd. x. 577.
8 Nouv. Traité de Pharm. ii. 166.
9 Journ. de Pharm. xx. 682.
* Thomson, Org. Chem. 279.
4. **Resin and Extractive.**—These principles require further examination. On them probably depends a part, at least, of the medicinal properties of sarsaparilla.

**Chemical Characteristics.**—A decoction of sarsaparilla froths greatly when shaken. It scarcely, if at all, reddens litmus. Diacetate of lead, and protonitrate of mercury, cause precipitates. Alkalis deepen the colour of the decoction. Solution of iodine forms a copious blue precipitate (iodide of starch) in the decoction of both Honduras and Lisbon sarsaparilla. Sesquichloride of iron slightly deepens the decoction (in different degrees in different specimens), and in some cases causes a flocculent precipitate, which subsides slowly. A strong decoction of Honduras sarsaparilla forms a copious precipitate (starch) on the addition of alcohol.

**Commerce.**—The following are the quantities of sarsaparilla on which duty (sixpence per lb.) was paid for the last six years:

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1833</td>
<td>122,413 lbs.</td>
</tr>
<tr>
<td>1836</td>
<td>125,140</td>
</tr>
<tr>
<td>1837</td>
<td>101,298 lbs.</td>
</tr>
<tr>
<td>1838</td>
<td>121,888</td>
</tr>
<tr>
<td>1839</td>
<td>117,522 lbs.</td>
</tr>
<tr>
<td>1840</td>
<td>121,814</td>
</tr>
</tbody>
</table>

The countries from which sarsaparilla was imported in 1831 are thus stated in a parliamentary return:

<table>
<thead>
<tr>
<th>Country</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portugal</td>
<td>16,110 lbs.</td>
</tr>
<tr>
<td>Italy and the Italian Islands</td>
<td>107</td>
</tr>
<tr>
<td>British Northern Colonies</td>
<td>71</td>
</tr>
<tr>
<td>British West Indies</td>
<td>45,063</td>
</tr>
<tr>
<td>United States of America</td>
<td>29,122</td>
</tr>
<tr>
<td>Mexico</td>
<td>48,254</td>
</tr>
<tr>
<td>Guatemala</td>
<td>14</td>
</tr>
<tr>
<td>Brazil</td>
<td>31,972</td>
</tr>
<tr>
<td>Peru</td>
<td>11,141</td>
</tr>
<tr>
<td><strong>Total import</strong></td>
<td><strong>176,854</strong></td>
</tr>
<tr>
<td><strong>Retained for home consumption</strong></td>
<td><strong>107,410</strong></td>
</tr>
</tbody>
</table>

**Physiological Effects.**

a. **On Vegetables.**—Not ascertained.

b. **On Animals.**—Not ascertained.

g. **On Man.**—Imperfectly determined; no experiments having been made to ascertain its physiological effects.

To the taste, sarsaparilla is slightly acrid, and somewhat nauseous. Diaphoresis is by far the most common effect of its internal use. When the skin is kept cool, diuresis is not unusual. But in estimating the diaphoretic or diuretic power of sarsaparilla, we must take into consideration the amount of liquid in which the medicine is usually taken, and the other medicines which are frequently conjoined with it: for in many instances the diaphoresis or diuresis is referable rather to these than to sarsaparilla.

In several cases I have given the powder of this root in very large doses, in order to ascertain its effects. Nausea, vomiting, and temporary loss of appetite, were alone observed.

Dr. Hancock says, that on one patient, an African, an infusion of four ounces of Rio Negro sarsa acted as a narcotic, producing nausea, great prostration of strength, torpor, and unwillingness to

---

*Trade List for 1835-6-7-8-9-40.*  
*Statement of the Imports and Exports for 1831.*  
move. The pulse was scarcely altered, unless it were a little retarded. Though the effects here stated agree, to a certain extent, with those ascribed to smilacin, they cannot be regarded as the ordinary effects of this root.

In some conditions of system, especially those of a cachectic kind, sarsaparilla acts as a powerful and valuable alterative tonic. Its continued use is often attended with improvement of appetite and digestion, augmentation of strength, increase of flesh, the production of a more healthy tone of mind, and the palliation, or, in some cases, complete disappearance, of various morbid symptoms—as eruptions, ulcerations, pains of a rheumatic character, &c. Sarsaparilla differs in several respects from the bitter vegetable tonics. Though it is not devoid of, yet it does not, as they do, abound in a bitter principle. It is not adapted for the cure of intermittents, or of simple debility. But its best effects are seen in those depraved conditions of system which the public, and even some medical men, ascribe to the presence of a morbid poison, or to a deranged condition of the fluids. Hence it is frequently denominated a purifier of the blood. Those who do not adopt the pathological notion here referred to, call it an alterative.

Those varieties of sarsaparilla which abound in starch (as the Honduras kind) possess demulcent and nutritive properties.

Uses.—By many practitioners sarsaparilla is considered to possess no remedial properties; by others it is regarded as a medicine of great efficacy. Considering that more than 100,000 lbs. of it are annually consumed in this country, the number of those who entertain the latter opinion cannot be small. It has been justly remarked by Mr. Lawrence, that physicians have no confidence in it, and surgeons a great deal. I think that this fact is readily explained by the circumstance, that physicians are much less frequently called in to prescribe for those forms of disease, in the treatment of which, surgeons have found sarsaparilla so efficacious.

Many practitioners have doubted or denied its remedial activity on what, it must be admitted, are very plausible grounds; viz. that the root possesses very little taste and no smell; that by the ordinary mode of using it, it produces very slight, if any, obvious effects on the animal economy; and that it has failed in their hands to relieve or cure diseases in which others have asserted they found it effectual. They are, therefore, disposed to refer any improvement of a patient's health, under the long-continued use of sarsaparilla, either to natural changes in the constitution, or to the influence of the remedial means with which the sarsaparilla was conjoined. But I would observe, that hitherto no experiments have been made to ascertain what effects the long-continued employment of sarsaparilla may give rise to in the system of a healthy man, and we are not warranted in assuming that none would result because none are observable from the employment of a few doses. Moreover, it is to be remembered

that some of our most powerful poisons prove the most efficacious remedies, when given in such small doses that they excite no other obvious effect on the system than the removal of morbid symptoms. Witness the beneficial influence of the minute doses of arsenious acid in lepra. Furthermore, no one has ascribed to sarsaparilla the power of a specific, and its warmest advocates admit its occasional failure. But so often has it been found, that various diseases, which had resisted all other tried remedial means, and were gradually increasing, became stationary, and afterwards subsided, under the use of sarsaparilla, that a large majority of British surgeons, including the most eminent of the present day, have been compelled to admit its therapeutic power.

As no obvious relationship exists between its known physiological effects and its apparent therapeutic agency, an argument has been raised against its medicinal activity, on the ground that we cannot explain its methodus medendi; but, for the same reason, we might refuse to admit the power of cinchona to cure ague. Mr. Lawrence* justly observes, that, although we cannot point out the manner in which a remedy operates, we are not, on that account, to withhold our confidence in its power. It is enough for us, in medical science, to know that certain effects take place. In point of fact, we are in many cases unable to distinguish the modus operandi of medicines—the manner in which their influence is produced.” The most plausible explanation of the agency of alterative medicines is that offered by Müller, and which I have before had occasion to notice (p. 103). It assumes that these remedies cause changes in the nutritive fluids (the chyle and blood), and thereby produce slight chemical alterations in organs morbidly changed in composition, by which already existing affinities are annulled, new ones induced, and the vital principle enabled to effect the further restoration and cure. This hypothesis may be used to explain the remedial influence of sarsaparilla.

Sarsaparilla has been found especially serviceable in the following maladies:

1. In inveterate venereal disease.—It is beneficial principally when the malady is of long continuance, and the constitution is enfeebled and emaciated, either by the repeated attacks of the disease, or by the use of mercury. In such cases it is, as Sir William Fordyce correctly observed, “the great restorer of appetite, flesh, colour, strength, and vigour.” When the disease resists, or is aggravated by, the use of mercury, sarsaparilla evinces its most salutary powers. It is given to relieve venereal pains of a rheumatic character; to remove venereal eruptions; to promote the healing of ulcers of the throat; and to assist in the cure when the bones are affected. In recent chancre, or bubo, it is of little use; nor does it appear to possess the least power of preventing secondary symptoms. We cannot ascribe to it “the

---

b Physiology, vol. i. pp. 59 and 363.
SARSAVARILLA.

same anti-syphilitic properties—that is, the same power of arresting or curing the venereal disease—that experience warrants us in attributing to mercury⁴. Sarsoparilla is sometimes given alone, but more frequently with other remedies: as with stimulating diaphoretics (mezereon, sassafras, and guaiacum), or with mercurials in small or alterative doses, or with acids (especially the nitric), or with alkaline substances (as potash or lime), or with the bitter tonics. It is difficult to lay down concise rules to guide us in the selection of these adjuncts. In venereal pains and eruptions, sudorifics, the copious use of warm diluents and warm clothing, are especially applicable, and should be conjoined with sarsaparilla. In scrofulous constitutions, with enlarged glands, it will be for the most part advisable to avoid the use of mercury. In such I have seen the alkalis most serviceable. When extreme debility is present, the bitter tonics and nitric acid are often added to sarsaparilla with benefit.

2. In chronic rheumatism sarsoparilla is often advantageously conjoined with powerful sudorifics and anodynes (as opium or hyoscyamus), especially when any suspicion exists as to the venereal origin of the disease.

3. In obstinate skin diseases benefit is frequently obtained by the use of sarsoparilla. Its employment is not confined to cutaneous affections of one particular elementary form, since it is given with good effect in papular, vesicular, pustular, and tubercular skin diseases, of a chronic kind, when they occur in enfeebled and emaciated constitutions. Though, in these cases, its value principally depends on its tonic and alterative effects, its diaphoretic operation is to be encouraged by the use of diluents, warm clothing, &c.

4. In cachectic conditions of the system generally, sarsoparilla may be given, often with the best effects, and never with any ill consequences, save that of occasionally producing slight nausea. Indeed, one of the great advantages of sarsoparilla over many other alteratives and tonics, is, that although it may fail in doing good, it never does any harm beyond that of now and then causing slight disorder of stomach. In chronic abscesses, attended with profuse discharge, diseases of the bones, obstinate ulcers, chronic pulmonary affections accompanied with great wasting of the body, enlarged glands, and various other maladies connected with a depraved state of the system, sarsoparilla is often a very useful medicine.

ADMINISTRATION.—Sarsoparilla is administered in substance, and in the form of infusion, decoction, extract, and syrup.

1. Pulvis Sarze; Powdered Sarsoparilla.—The ordinary dose of this is from half a drachm to one or two drachms. Half an ounce frequently nauseates, and in some cases gives rise to vomiting. Powder of Jamaica sarsoparilla is to be preferred to that of other varieties. It is redder than that of the Honduras kind, and produces a much less intense blue colour when rubbed with water and tincture of

⁴ Lawrence, op. cit. p. 769; see also Mr. Pearson's Observations on the Effects of various Articles of the Materia Medica in the Cure of Lues Venerea, p. 39. 1800.

VOL. II.
iodine. I have been informed that some druggists employ, in the preparation of the powder, the roots from which the extract has been prepared. This fraud may be detected by the powder being almost devoid of taste, macerating it in water, and carefully comparing the infusion with one prepared from an unadulterated sample.

2. **INFUSUM SARSAPARILLÆ COMPOSITUM, D.** Compound Infusion of Sarsaparilla. — (Sarsaparilla root previously cleansed with cold water and sliced, \( \frac{3}{4} \); Lime Water, Oij. [wine measure].) Macerate for twelve hours in a covered vessel, with occasional agitation, and strain.)—According to Mr. Battley, lime water is not so good a solvent for the constituents of sarsaparilla root as distilled water: for 874 grains of the root lost only 140 grains by maceration in lime water; whereas the same quantity of root lost 175 grains in distilled water. The dose of his infusion is from \( \text{f}3\text{iv.} \) to \( \text{f}3\text{vij.} \) two or three times a day.

3. **DECOCTUM SARZÆ, L. E.** Decoctum Sarsaparilla, D.; Decoction of Sarsaparilla. — (Sarza, sliced [in chips, E.]; and cleansed with cold water, D.], \( \approx \text{iv.} \) D.); Boiling water, Oiv. [wine measure, D.]. Macerate for four hours, in a vessel lightly covered, near the fire, then take out and bruise the sarsaparilla. When bruised return it to the liquor, and again macerate in the same manner for two hours; afterwards boil down to two pints, and strain.)—An objection has been taken to this, as well as to all preparations of sarsaparilla made by boiling, that the heat employed volatilizes or decomposes the active principle of the root. "An infusion of sarsaparilla," says Soubeiran, "which is odorous and sapid, loses both its odour and taste by boiling for a few minutes: these changes speak but little in favour of the decoction. On the other hand, it is known that the fibrous parts of vegetables always give less soluble matters to water, when treated by decoction; and if it be added, that sarsaparilla is completely exhausted by hot water, I cannot see what advantages the decoction can possess over preparations made by other methods." Without denying the injurious effects of long boiling, and, therefore, the superiority of preparations made without it, I cannot admit that either the decoction or extract of sarsaparilla is inert. No objection, however, exists to the substitution of an infusion for a decoction. But it is advisable to employ a somewhat larger quantity of the root, and to have it crushed before macerating it. The proportions of root and water, in the above preparation, are such that one ounce of the decoction contains the extractive of one drachm only of the root. Hence the extract or syrup is usually conjoined. An infusion or decoction of Jamaica sarsaparilla produces little or no blue colour with tincture of iodine: whereas the corresponding preparations of Honduras sarsaparilla (the kind usually met with, cut in small split lengths, in the shops) becomes bluish black on the addition of a solution of iodine. The dose of Decoctum Sarzæ is \( \text{f}3\text{iv.} \) to \( \text{f}3\text{vij.} \) three or four times daily.

---


* Nouv. Traité de Pharm. t. ii. p. 168.*
4. **DECOCTUM SARZÆ COMPOSITUM**, L. E.  
Decoctum Sarsaparillae compositum, D.; Compound Decoction of Sarsaparilla.—(Decoction of Sarsaparilla, boiling hot, Oiv. [wine measure, D.]; Sassafras, sliced and bruised; Guaiacum-wood shavings; Liquorice-root, bruised, of each 5x. (§j. D.); Mezereon [bark of the root], 5ij. [§ss. E.] Boil for a quarter of an hour, and strain.)—This preparation is an imitation of the celebrated Lisbon Diet Drink. The objections made to the use of ebullition in preparing the simple decoction, apply equally to the present preparation. The additions are for the most part valueless. The guaiacum-wood is useless, water not being able to dissolve the resin. The volatile oil contained in the sassafras-wood is in part dissipated by the boiling. The mezereum, an active agent, is used in such small quantity, that it can confer but little medicinal power. The liquorice is employed merely to communicate flavour. An improvement in the present formula would be to omit the guaiacum, to increase the quantity of sarsaparilla and mezereum, to substitute maceration for decoction, and to add oil of sassafras. The dose of the officinal preparation is from f§iv. to f§vi. three or four times a day. The syrup or extract is usually conjoined with it. During its use the skin should be kept warm.

5. **SYRUPUS SARZÆ**, L. E.  
Syrupus Sarsaparillae, D.; Syrup of Sarsaparilla.—(Sarza, sliced, 5xv. [lj. D.]; Boiling Water, Cong. j. [wine-measure, D.]; Sugar, 5xv. Macerate the sarsaparilla in the water for twenty-four hours; then boil down to four pints, and strain the liquor while hot; afterwards add the sugar, and evaporate to a proper consistence.)—Simonin has successfully prepared the syrup by the percolation method.

This I conceive to be a very unnecessary preparation; for as Dr. A. T. Thomson justly observes, “it can be much better and more easily supplied by rubbing up a few grains of the extract with some simple syrup.” It is, however, frequently prescribed as an adjunct to the decoction. Prepared with Jamaica sarsaparilla it is not liable to ferment, and its flavour is somewhat agreeable, being very analogous to that of West Indian molasses. Mr. Brande1 says, that the above syrup is not of sufficient strength to render it an effective form of sarsaparilla; and that it ought to be of such strength that one ounce is equal to a pint of the simple decoction: of this f§ss. or f§vi. may be taken two or three times a day, diluted with about two parts of water. A few drops of solution of potassa sometimes prevents its disagree-ment with the stomach.

The Syrup of Sarsaparilla of the United States Pharmacopoeia is intended to represent the famous French *Sirop de Cuisinier*. It is prepared with proof spirit, which extracts the acrid principle of the root without taking up the inert fecula; and the tincture being evaporated, to get rid of the alcohol, is made into syrup. By this means the long-continued boiling is avoided. As the editors of the United

---

1 *Journ. de Pharm.* xx. 110.  
3 *Dict. of Mat. Med.*
States Dispensatory speak most confidently of the remedial value of this preparation, I subjoin the formula for its preparation, taken from the American Pharmacopoeia:

**Syrup of Sarsaparilla, U. S.—** "Sarsaparilla, bruised, lb. iij.; Guaiacum wood, rasped, 3iij.; Red Roses; Senna; Liquorice root, bruised, each, 3ij.; Oil of Sassafras; Oil of Anise, each, vij.; Oil of Partridge-berry [Gualtheria procumbens, an astringent aromatic] mlij.; Sugar, lb. viij.; Diluted Alcohol, Ox. [wine measure]."

"Macerate the Sarsaparilla, Guaiacum wood, Roses, Senna, and Liquorice root, in the diluted Alcohol for fourteen days; then express and filter through paper. Evaporate the tincture, by means of a water-bath, to four pints and a half; then add the Sugar, and dissolve it, so as to form a syrup. With this, when cold, mix the Oils previously triturated with a small quantity of syrup." The dose is f3ss. (equivalent to somewhat less than 5j. of the root), taken three or four times a day.

6. **EXTRACTUM SARZAE, L. Extractum Sarsaparillae, D.** Extract of Sarsaparilla. (Sarsaparilla, sliced, lb. iiss. [lb. j. D.]; Boiling [distilled, L.] Water, Cong. ij. [Cong. j. wine-measure, D.]) Macerate for twenty-four hours, then boil down to a gallon [four pints, D.], and strain the liquor while hot; lastly, evaporate to a proper consistence. Dose 5ss. to 3ij.

7. **EXTRACTUM SARZAE FLUIDUM, E. Extractum Sarsaparillae fluidum, D.** Fluid Extract of Sarsaparilla, offic. — Sarsaparilla, sliced [in chips, E.] lb. j.; [Boiling, E.] Water, Ovij. [Oxij. wine measure, D.] Let them boil together for an hour, and pour off the liquor; then add twelve pints of water, and repeat the boiling and pouring off. Press strongly the liquor from the remaining material, set aside the mixed liquors that the fæces may subside; then evaporate the mixture by continual boiling down to thirty ounces, and two ounces of rectified spirit. D. "Digest the root for two hours in four pints of the water; take it out, bruise it, replace it in the water, and boil for two hours; filter and squeeze out the liquid; boil the residuum in the remaining two pints of water, and filter and squeeze out this liquor also; evaporate the united liquors to the consistence of thin syrup; add, when the product is cool, as much rectified spirit as will make in all sixteen fluid ounces. Filter.—This fluid extract may be aromatized at will with various volatile oils or warm aromatics." E.)

Jamaica sarsaparilla should be used in the preparation of the extract. Honduras and other inferior kinds of sarsaparilla are to be avoided. The chumps so frequently used by pharmaceutical chemists should be rejected. The small root fibres, commonly called the beard, of Jamaica sarsaparilla, are to be preferred, as containing less starch and woody fibre, and a large quantity of the cortical layer. I am informed that they yield a much greater quantity of extract than the runners. Steam heat must be employed to effect the evaporation of the decoction, and the temperature employed should little if at all exceed 212° F. When the concentrated decoction (especially of the Honduras kind) is allowed to cool, as at night, a kind of fermentation is readily set, and gas is copiously evolved. The fluid extract is to be preferred to the ordinary more consistent preparation. The quantity of extract obtained from different kinds of sarsaparilla has been already noticed. For further information on this point I must refer
the reader to the papers of Mr. Battley; Mr. Pope; and M. Thubeuf.

Extract of Jamaica sarsaparilla, when rubbed on white paper or porcelain, exhibits a reddish tint not observable in the extract of the Honduras kind. The flavour and odour are also characters which assist in distinguishing well-prepared extract. Rubbed up with water it is almost completely soluble, and the solution, which should be clear, by standing deposits scarcely any thing. The dilute solution should not become blue on the addition of a solution of iodine.

Extract of sarsaparilla is declared by many writers to be an inert and useless preparation; but the assertions are, for the most part, founded rather on theoretical than practical considerations. I have extensively used it, and believe that when properly prepared from Jamaica sarsaparilla, it is a most valuable and efficient remedy; and the enormous quantity of it which is consumed by the profession generally (including some of the most eminent of its members), is a proof that many others entertain a similar opinion of it. It is given in doses of from half a drachm to two or three drachms three or four times a day. It should be rubbed down with water, and flavoured by the tincture of orange-peel, or by some volatile oil (as the oil of cloves, allspice, lemon, or cinnamon). Alkalis render its flavour somewhat disagreeable, though they frequently increase greatly its remedial powers.

8. EXTRACTUM SARZÆ COMPOSITUM. Compound Extract of Sarsaparilla.—Not in any Pharmacopoeia, though kept in the shops. It is made by mixing, with extract of sarsaparilla, an extract prepared by evaporating a decoction of mezereon bark, liquorice root, and guaiacum shavings, and a small quantity of oil of sassafras. This preparation is employed as a convenient substitute for the compound decoction of sarsaparilla. The dose of it, and the mode of exhibition, is the same as of the simple extract. Three quarters of an ounce of the compound extract are equal to a pint of the compound decoction.

OTHER MEDICINAL SMILACEÆ.

1. The China Root of the shops (Radix Chinee orientalis) is the produce of Smilax China (Linn.), and is said to come from the province of Onansi, in China. It occurs in large, ligneous, knotty pieces, of from three to eight inches long, and an inch or two thick. Externally it has a grayish-brown colour, and internally a light flesh or yellowish-white colour. It is inodorous, and has a slightly astringent taste. It appears to consist of extractive, tannic acid, colouring matter, starch, and woody fibre. It was introduced into Europe in 1535 as an infallible remedy for the venereal disease, and obtained great celebrity in consequence of the benefit which the Emperor Charles the Fifth is said to have derived from it in gout. Its effects are not very obvious, but it is said to be diaphoretic. It tinges the sweat. It has been used in the same maladies as sarsaparilla; viz. venereal diseases, rheumatism, gout, obstinate skin diseases, &c. It is given in the form of decoction.
The *American China root* (*Radix China Americana*) is brought from Mexico, and is said to be the produce of *Smilax Pseudo-China*.

2. *Smilax Aspera* is used in the south of Europe as a substitute for sarsaparilla; but the substance sold in London under that name is brought from India, and is the produce of *Hemidesmus indicus*, and will be described hereafter.

**ORDER XIV.—IRIDACEÆ, Lindl.,—THE CORNFLAG TRIBE.**

**Irideæ, Juss.**

**Essential Characters.**—Calyx and corolla superior, confounded, their divisions either partially cohering, or entirely separate, sometimes irregular, the three petals being sometimes very short. *Stamens* three, arising from the base of the sepals; *filaments* distinct or connate; *anthers* bursting externally lengthwise, fixed by their base, two-celled. *Ovary* three-celled, cells many-seeded; *style* one; *stigmas* three, often petaloid, sometimes two-lipped. *Capsule* three-celled, three-valved, with a loculicidal dehiscence. *Seeds* attached to the inner angle of the cell, sometimes to a central column, becoming loose; *albumen* corneous, or densely fleshy; *embryo* enclosed within it.—*Herbaceous* plants, or very seldom *under-shrubs*, usually smooth; the hairs, if any, simple. *Roots* tuberous or fibrous. *Leaves* equitant, distichous in most genera. *Inflorescence* terminal, in spikes, corymbs, or panicles, or crowded. *Bracts* spathaceous, the partial ones often scarious; the *sepals* occasionally rather herbaceous (*Lindley*).

**Properties.**—The underground stems and roots usually abound in *fecula* and mucilage; but these nutritive substances are generally combined with an acrid principle, which excludes their employment as articles of food. However, *Moraea edulis*, *M. sisyrinchium*, *Gladiolus edulis*, and a species of *Tigridia*, have been used as esculent substances. The rhizomes of several species of *Iris* (as *I. Pseud-acorus*, *I. germanica*, *I. sibirica*, and *I. versicolor*) are remarkable, especially in the fresh state, for their acridity, in consequence of which some of them have been used as purgatives, dialogues, or errhines, or for issue-peas. The rhizomes of some species (as *I. florentina* and *I. germanica*) have an agreeable smell. The colour and the odour of the saffron are to be regarded as part of the petaloid qualities of the stigmata of *Crocus*. The effects of this medicine on the nervous system are regarded by De Candolle as similar to those of [certain odorous] flowers.

**Crocus Sativus, Allioni, L. E. D.,—THE SAFFRON CROCUS.**

**Sex. Syst.** Triandria, Monogynia. (Stigmata exsiccata, L. Stigmata, E. D.)

**History.**—Saffron is mentioned in the Old Testament. Homer speaks of the *Crocus* (κρόκος). Hippocrates employed saffron in uterine and other maladies. The word *Saffron* (zafaran, Avicenna) is of Arabic origin.

**Botany.**—*Gen. Char.*—Perianth [coloured], with a slender tube twice as long as the limb; limb six-partite, equal, erect. [*Stamens* three, inserted into the tube; *anthers* sagittate.] *Stigmas* three, thick, convoluted, generally crested. *Capsule* under ground, elevated by a short peduncle from the root, which peduncle elongates after the decay of the flowers, and the capsules appear above ground. (Hooker, with some additions.)

---

*a* Essai sur les Propriétés Méd.
*b* Solomon's Song, iv. 14.
*c* Biod, xiv. 346.
Sp. Char.—*Stigmas* protruded, drooping, in three deep linear divisions. (Hooker.)

*Cormus* roundish; its brownish coats reticulated, separating superioitly into distinct parallel fibres. *Leaves* linear, with a white central stripe, and surrounded at their base with long membranous sheaths. *Flowers* light purple, shorter than the leaves, with a two-valved membranous spathe. *Anthers* pale yellow. *Stigmas* deep orange-coloured.

**Hab.**—A native of Asia Minor. Now naturalized in England, France, Spain, and some other European countries. It is a doubtful native of the Eastern parts of Europe. It is said to have been introduced into Spain by the Arabs. It flowers in September and October.

**Preparation.**—The flowers are gathered in the morning, and the stigmata, with part of the style, plucked out for use, the rest of the flower being thrown away. The stigmata are then dried on paper, either by means of portable kilns over which a hair-cloth is stretched, or in a room by the sun. When dried between paper under the pressure of a thick board and weights, the saffron is formed into cakes now no longer to be met with.

**Description.**—Two kinds of saffron are kept in the shops, viz. *hay saffron* and *cake saffron*.

1. **Hay Saffron.** (*Crocus in fono.*)—Consists of the stigmas with part of the style, which have been very carefully dried. They are from an inch to an inch and a half long, thin, brownish red; the upper portion, (stigma) is expanded, notched at the extremity; the lower portion, which constitutes part of the style, is called by Th. Martius *Fominelle*: it is narrow, capillary, yellowish. The odour is penetrating, aromatic, and, of large quantities, narcotic. The taste is bitter, somewhat aromatic. When chewed, saffron tinges the mouth and the saliva yellow. I find by careful examination that one grain of good commercial saffron contains the stigmata and styles of nine flowers; hence 4,320 flowers are required to yield one ounce of saffron.

2. **English Saffron** (*Crocus anglicus*) is no longer found in commerce.

3. **Spanish Saffron** (*Crocus hispanicus*) constitutes the best saffron of the shops. It is imported from Gibraltar (principally), Cadiz, Denia, Santander, and Malaga. From the concurrent accounts of pharmacologists it would appear that formerly Spanish saffron was spoiled by being dipped in oil to preserve it. But the saffron now imported from Spain has not been subjected to this treatment. Occasionally, Spanish, as well as any other kind of saffron, is oiled by the dealers to give it an appearance of freshness, but this fraud is, I suspect, usually performed in this country.

4. **French Saffron** (*Crocus gallicus*) is usually considered in commerce to be of second quality. It is the produce of Gatinais (*Gatinais saffron*) and Orléanais, which comprehend part of the departments of Seine-et-Marne and Eure-et-Loire, and the whole of the department of Loiret. The saffron of Angoulême is the worst. French saffron is shipped for England at Calais, Boulogne, and Havre. Besides the preceding, several other varieties of saffron are mentioned by

9 Dillon, Travels through Spain.
10 Douglas, Phil. Trans. for 1728.
12 Pharmacogn.
13 Guibourt, Histoire des Drog. ii. 254.
pharmacologists, but they are not distinguished in English commerce, and I am unacquainted with them. Such are Austrian, Bavarian, Oriental, and the Sicilian saffron (C. austriacus, bavaricus, orientalis, and siciliensis) mentioned by Murray, Geiger, and others. From the Customs report it appears that saffron is occasionally imported from Hamburgh, Antwerp, Genoa, Naples, and Bombay. But I am ignorant of its place of growth and quality. According to Gussone, Crocus odoratus yields Sicilian saffron. Dioscorides considered the saffron of Corycus (a mountain of Cilicia, in Asia Minor, now called Curcu,) to be the best, and that of Lycia and Olympus to be of second quality; while Cyrenaic saffron, as well as that from Centuripinum (Centorbe) in Sicily, he declares to be the worst.

2. Cake Saffron. (Crocus in Placenta).—Formerly this was compressed hay saffron. But the cakes now met with in the inferior shops are composed of Safflower (Carthamus tinctorius) and gum-water, made into a paste, and rolled out on a tin plate with a rolling-pin into oval cakes of 11 inches long, 10 inches broad, and about one-tenth of an inch thick. These are dried on brown paper in a stove. They are shining, and of a brownish red colour. I can detect neither saffron nor marigolds (Calendula officinalis) in them. Their price is about one-fifth of that of good hay saffron. I am informed, by a maker of cake saffron, that there is only another person besides himself by whom this substance is made in London.

Adulteration.—The only adulteration practised on saffron, which has come under my notice, is that of mixing safflower with saffron, and this I have met with once only. It must have been effected abroad, since the druggist who pointed it out to me bought the saffron in bond, and did not discover the fraud until the saffron had been for some time in his warehouse. The pieces of safflower readily escape the eye of a superficial observer. If rubbed with the moistened finger on paper, they produce a slightly yellow mark only, whereas genuine saffron causes a very intense orange-yellow stain. The fraud may also be detected by infusing the suspected saffron in hot water, when the florets of the safflower may be readily distinguished from the stigmas which constitute saffron.

I am informed that old and dry saffron is sometimes oiled, to give it the appearance of freshness. The stain communicated to the fingers, or white blotting paper, when such saffron is compressed, readily detects the fraud.

Fibres of smoked beef and the petals of the officinal marigold are said to have been used for adulterating saffron. But there is no fear of these adulterations now. Such frauds would be readily detected by the eye, especially when the suspected saffron has been infused in hot water.

Commerce.—The quantity of saffron on which duty (of 1s. per lb.) is paid is about 5,000 lbs. per annum. The places from which it is imported have been already mentioned. It is brought over in cases, barrels, and boxes.
Composition.—Saffron was analyzed in 1811 by Vogel and Bouillon-Lagrange, and in 1818 by Aschoff.

<table>
<thead>
<tr>
<th>Vogel and Bouillon-Lagrange</th>
<th>Aschoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>7.5</td>
</tr>
<tr>
<td>Wax</td>
<td>0.5</td>
</tr>
<tr>
<td>Polychroite</td>
<td>65.0</td>
</tr>
<tr>
<td>Gum</td>
<td>63.0</td>
</tr>
<tr>
<td>Soluble albumen</td>
<td>6.5</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>10.0</td>
</tr>
<tr>
<td>Water</td>
<td>10.0</td>
</tr>
<tr>
<td>Balsamic matter, soluble in ether and alcohol</td>
<td>—</td>
</tr>
<tr>
<td>Saffron</td>
<td>100.0</td>
</tr>
</tbody>
</table>

1. Volatile Oil of Saffron. (Oleum Croci.)—Obtained by distilling saffron with water. It is yellow, heavier than water, has a burning, acrid, somewhat bitter taste, and is slightly soluble in water. By keeping, it becomes white, solid, and lighter than water. On it depends probably the medicinal properties of saffron.

2. Colouring Matter: Polychroite (so called from πολύς, many, and χρώμα, colour, in consequence of its being susceptible of numerous changes of colour).—By digesting the aqueous extract of saffron in alcohol, and evaporating the tincture to dryness, a substance is obtained which Bouillon-Lagrange and Vogel called polychroite, but which Henry has separated into volatile oil and a bitter red substance (polychroite properly so called). Pure polychroite is pulverulent, bitter, scarlet-red, odourless, slightly soluble in cold water, much more so in hot water, readily soluble in alcohol and oils (both fixed and volatile), slightly soluble in ether. Sulphuric acid turns it blue, then lilac. Nitric acid makes it green, but the colour is very fugitive. The hypochlorites destroy the yellow colour of a solution of polychroite.

Chemical Characteristics.—An aqueous infusion of saffron gives no indication of starch on the addition of a solution of iodine. The hypochlorites bleach it. Sulphuric and nitric acids act on it as on polychroite above mentioned. Acetate of lead causes no precipitate. By evaporation, the infusion yields an extract from which alcohol removes the colouring matter and leaves a gummy substance.

Physiological Effects.—Formerly saffron was considered to be cordial, aromatic, narcotic, and emmenagogue. Some have accused it of causing laughing delirium; others have ascribed to its use great mental dejection; and several have declared that they have seen inmoderate uterine hemorrhage produced by it, which, in the case referred to by Riverius, is said to have terminated fatally. But modern experience has proved that most of these statements are erroneous. Alexander swallowed four scruples of saffron without perceiving any obvious effects therefrom; and Wibmer took a drachm without observing the slightest effect.

1. Bull. de Pharm. iv. 89.
By the long-continued use of saffron, the colouring particles become absorbed, and tinge the secretions, especially the urine and perspiration. In some instances the foetus in utero has been stained by it. The failure of Alexander to detect the yellow tinge in his secretions arose probably from the short time he had been using this medicine. Mr. Gibson gave a considerable quantity of saffron to a pigeon, which thereby had its faeces tinged, yet no perceptible alteration was produced in its bones.

Headache, prostration of strength, apoplexy, and even death, have been ascribed to the inhalation of the vapour arising from large quantities of saffron; and perhaps correctly so, for it is well known that the odours of other plants (as the rose, the pink, &c.) act on some individuals as narcotic poisons.

Uses.—Saffron is employed, especially on the continent, as a flavouring and colouring ingredient in various culinary preparations, articles of confectionery, liqueurs, &c. It was used by the ancients as a perfume as well as a seasoning agent.

In the modern practice of medicine it is used chiefly as a colouring ingredient. It is a popular remedy for assisting the eruption of exanthematous diseases; on the same principle, I suppose, that bird-fanciers give it to birds when moulting. It was at one time esteemed as an antispasmodic in asthma, hysteria, and cramp of the stomach; and was formerly used as an emmenagogue, and to promote uterine contractions and the lochial discharge. Lastly, it has been employed as a stimulant to the nervous system in hypochondriasis.

Administration.—It may be given in doses of from ten grains to a drachm in the form of powder or pill. It is popularly used in the form of infusion, or tea.

1. SYRUPUS CROCI, L. E.—(Saffron, 5x.; Boiling Water, Oj.; Sugar, lb. iij. Macerate the saffron in the water for twelve hours, in a vessel lightly covered, then strain the liquor, and add the sugar to it.)—It is employed principally for its colour.

2. TINCTURA CROCI, E.; Tincture of Saffron (Saffron chopped fine, 3ij.; Proof Spirit, Oij. This tincture is to be prepared like tincture of cinchona, either by percolation or by digestion, the former method being the more convenient and expedient.)—Used as a colouring liquid. It is also employed as a stimulant and emmenagogue in doses of from f3 to f5ij.

As a colouring and flavouring ingredient, saffron is a constituent of several other preparations.

OTHER MEDICINAL IRIDACEÆ.

The Orris Root of the shops is the rhizome of Iris florentina, and perhaps also of I. pallida. It is imported in casks from Leghorn and Trieste. It con-
sists, according to Vogel, of volatile oil, acrid resin, astringent extractive, gum, starch, and ligneous matter. Raspail detected in it crystals of oxalate of lime. Orris root is an acrid substance, and in full doses causes vomiting and purging. It is principally used on account of its violet odour. Thus hair and tooth powders, perfumed oils, &c., are frequently scented with it. During teething, infants are sometimes permitted to rub their gums with, and bite, the rhizome: but the practice is objectionable, since it is not unfrequently attended with irritation of the mouth and disorder of the stomach and bowels. Furthermore, the danger of the rhizome getting into the oesophagus or trachea is not to be overlooked. One fatal case of this kind is recorded. Powdered orris root is sometimes used as an errhine.

Order XV.—TACCACEÆ, Lindley.—The Tacca Tribe.

Taccaæ, Prest.

This is a small and imperfectly-known order of plants. It contains the Tacca pinnatifida, Forst. a native of the Molucca Isles and of the Islands of the Pacific Ocean. The roots are tuberose, fleshy, intensely bitter and acrid. By cultivation they become larger and somewhat milder. They yield a highly nutritious fecula. At Tahiti (Otaheite) this fecula is procured by washing the tubers, scraping off their outer skin, and then reducing them to a pulp by friction on a kind of rasp made by winding coarse twine (formed of the cocoa-nut fibre) regularly round a board. The pulp is washed with sea-water through a sieve, made of the fibrous web which protects the young frond of the cocoa-nut palm. The strained liquor is received in a wooden trough in which the fecula is deposited; and the supernatant liquor being poured off, the sediment is formed into balls, which are dried in the sun for 12 or 24 hours, then broken and reduced to powder, which is spread out in the sun to dry.

Tahiti Arrow-root, sometimes called Otaheite Salep is imported into London, and sold as "Arrow-root prepared by the native converts at the Missionary stations in the South Sea Islands." It is a white amylaceous powder, with a slight musty odour. Examined by the microscope I find it to consist of particles which appear circular, mullar-shaped, or polyhedral. Some of the mullar-shaped particles are slightly narrowed at the base. Moreover the base of the mullar, instead of being flat, appears to me to be hollowed out. The hilum is small and circular; it cracks in a linear or stellate manner. The rings are few and not very distinct. This fecula is used as a substitute for the West Indian Arrow-root.

In some parts of the world cakes are made of the meal of the tubers of T. pinnatifida, "which are the tacca youy of some navigators: they form an article of diet in China and Cochin China, as also in Travancore," where, according to Dr. Ainslie, they attain a large size, and are eaten by the natives with some acid to subdue their acrimony.
Order XVI.—AMARYLLIDACEÆ, Lindl.—THE NARCISSUS TRIBE.

None of the plants of this order are employed in England as articles of the Materia Medica. Yet many of them act powerfully on the system, and one of them (*Hemanthus toxicarius*) is said to be used by the Hottentots to poison their arrow heads. The prevailing property of the order is acridity, which is possessed principally by the bulbs, several of which (as those of *Pancratium maritimum* and *Hemanthus coccineus*) seem to be endowed with properties very similar to those of squill. The leaves and flowers of *Narciussus Pseudo-*Narcissus* are enumerated among the simples of the French Codex. In doses of 20 or 30 grains they sometimes cause vomiting. They have been employed in spasmodic affections, (as hooping-cough), in diarrhoea, and in agues*. Several other species of *Narciussus*, as *N. Tazetta* and *N. odorus*, also possess emetic properties†. *Narciussus Tazetta* is supposed by Dr. Sibthorp to be the Narcissus of the poets.

Order XVII.—MUSACEÆ, Agardh.—THE BANANA TRIBE.

None of the Musaceæ are used in medicine. But the importance of the Banana (*Musa Sapient'um*) and Plantain (*M. Paradisi'aca*), as articles of food, is so great to the inhabitants of some tropical countries, that it would be almost inexcusable to pass by the order without a notice. “But for plantains,” says Dr. Wright*, Jamaica “would scarcely be habitable, as no species of provision could supply their place. Even flour, or bread itself, would be less agreeable and less able to support the laborious negro, so as to enable him to do his business, or to keep in health.”

---

* Merat and De Lens, *Diet. de Mat. Méd.* t. iv.
† De Candolle, *Essai sur les Propriétés Méd.*
† See also Humboldt’s *Pt. Équinoct.*
Boussingault * analysed the fruit of *Musa paradisiaca*, and found in it sugar, gum, malic, gallic, and pectic acids, albumen, and lignin.

**Order XVIII.—MARANTACEÆ. Lindl.—The Arrow-root Tribe.**

**Essential Characters.**—*Calyx* superior, of three sepals, short. *Corolla* tubular, irregular, with the segments in two whorls; the *outer* three-parted, nearly equal, the *inner* very irregular; one of the lateral segments usually coloured, and formed differently from the rest; sometimes by abortion fewer than three. *Stamens* three, petaloid, distinct, of which one of the laterals and the intermediate one are either barren or abortive, and the other lateral one fertile. *Filament* petaloid, either entire or two-lobed, one of the lobes bearing the anther on its edge. *Anther* one-celled, opening longitudinally. *Pollen* round (papillose in *Canna coccinea*, smooth in *Calathea zebrina*). *Ovary* three-celled; *ovules* solitary and erect, or numerous and attached to the axis of each cell; *style* petaloid or swollen; *stigma* either the mere denuded apex of the style, or hollow, hooded, and incurved. *Fruit* capsular, as in *Scitamineae*. *Seeds* round, without aril; *albumen* hard, somewhat floury; *embryo* straight, naked, its *radicle* lying against the hilum (*Lindley*).

**Properties.**—The rhizomes abound in fecula.

**Maranta arundinacea, Linn. L. E.—The West Indian Arrow-root.**

*Sex. Syst.* Monandria, Monogynia.


**History.**—This plant was brought from the island of Dominica, by Colonel James Walker, to Barbadoes, and there planted. From thence it was sent to Jamaica. That gentleman observed that the native Indians used the root against the poison of their arrows, by mashing and applying it to the poisoned wounds *®*.

**Botany.** *Gen. Char.*—*Corolla* unequal, one of the inner segments in the form of a lip. *Stamens* petaloid, with half an anther on its edge. *Style* hooded, adhering to the edge of a sterile filament. *Ovary* three-celled, smooth; *ovules* solitary. *Fruit* even, dry, one-seeded. Cauliflous plants with fleshy *rhizoma* or tubers. *Stems* branched, often dichotomous. *Inflorescence* terminal, panicled, jointed, with glumaceous, deciduous *bracts*. (*Lindley*).


*Rhizome* white, articulated, tuberous, placed horizontally in the earth, and giving origin to several tuberous jointed stoles (*stolones tuberosi*), similar to itself, but covered with scales. Those stoles are often more than a foot long, and curved, so that the points rise out of the earth and become new plants (*Nees and Ebermaier*). *Stem* two

*®* Journ de Pharm. xxii. 385.
*®* Sloane's Jamaica, vol. i. p. 254.
to three feet high. *Leaves* alternate, with long, leafy, hairy, sheaths. *Flowers* white and small.

The *Maranta indica*, Tussac, is characterized by its leaves being smooth on both sides, and by its seeds; those of *M. arundinacea* being violet. But, after a careful examination, Wickström declares that Tussac’s plant is identical with the *M. arundinacea*, Linn.

**Hab.**—West Indies. In Jamaica it is cultivated in gardens and provision grounds.

**Extraction of the Fecula.**—The roots (tubers), when a year old, are dug up, well washed in water, and then beaten in large, deep, wooden mortars to a pulp. This is thrown into a large tub of clean water. The whole is then well stirred, and the fibrous part wrung out by the hands and thrown away. The milky liquor being passed through a hair-sieve, or coarse cloth, is suffered to settle, and the clear water is drained off. At the bottom of the vessel is a white mass, which is again mixed with clean water and drained; lastly, the mass is dried on sheets in the sun, and is pure starch.

**Properties.**—The fecula (*Ficula marantae*) called in the shops *West Indian arrow-root*, is white, odourless, and tasteless. It is in the form either of a light opaque white powder or of small pulverulent masses. When pressed between the fingers it feels firm, and, when rubbed, produces a slight crackling noise. Examined by the microscope it is found to consist of oblong, somewhat ovate-oblong, or irregularly-shaped convex particles, with small mamillary processes occasionally projecting from some portion of the surface, and which are especially evident after the particles have been in water for a few minutes. The rings are very fine. The hilum is circular, and cracks in a linear or stellate manner.

*Portland Arrow-root* is obtained from *Arum maculatum* (see p. 931).

*East India Arrow-root* is the fecula procured from *Curcuma angustifolia*, and will be described hereafter (see p. 1021).

*Brazilian Arrow-root* is the fecula of *Jatropha Manihot*. It is described by M. Guibourt under the name of *Moussache* or *Cipipa*, and will be noticed hereafter (vide *Euphorbiaceae*).

*Tahiti Arrow-root* is the fecula of *Taccia pinnatifida*, and has already been noticed (p. 1009).

**Composition.**—Arrow-root has been analyzed by Dr. Prout and by Payen, who obtained the following results:

---

\[\text{Journ. Bot. iii. 41.}\]
\[\text{Wright, Lond. Med. Jour. vol. viii.}\]
\[\text{Raspail has depicted the grains of the fecula of Convolvulus Batatas for arrow-root (see Payen, Ann. Scien. Nat. 2\textsuperscript{nd} Sér. t. x. Botanique, 1838, p. 16.}\]
\[\text{Hist. des Drog. ii. 456, 3\textsuperscript{rd} éd.}\]
\[\text{Phil. Trans. 1827.}\]
\[\text{Ann. des Scien. Nat. 2\textsuperscript{nd} Sér. Botanique, 1838, pp. 183-184.}\]
Dr. Prout regards arrow-root as a low variety of starch analogous to the low sugar of honey; while wheat-starch he considers to be the most perfect form of starch, analogous to sugar-candy (see pp. 47 and 48.)

Commerce.—Arrow-root is brought, in tin cases and in barrels and boxes, from the West India Islands (Jamaica, Barbadoes, Antigua, St. Vincent, Dominica, Bermuda, St. Kitt’s, Grenada, Demerara, and Berbice). *Bermuda arrow-root* is the most esteemed variety; whether justly or otherwise I know not. Importations of a fecula called arrow-root are occasionally made from Calcutta, and sometimes from Para, Maranham, and Sierra Leone.

The quantity of arrow-root on which duty (of one shilling per cwt.) was paid during the last six years, is as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cwts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>3,581</td>
</tr>
<tr>
<td>1836</td>
<td>3,280</td>
</tr>
<tr>
<td>1837</td>
<td>2,853</td>
</tr>
<tr>
<td>1838</td>
<td>2,538</td>
</tr>
<tr>
<td>1839</td>
<td>2,264</td>
</tr>
<tr>
<td>1840</td>
<td>2,124</td>
</tr>
</tbody>
</table>

Adulteration.—Potato-starch (sold in the shops as *English arrow-root*) is said to be sometimes substituted for the Indian arrow-root. The fraud may be readily detected by the naked eye as well as by a good microscope (see *Potato-starch*).

Physiological Effects.—Nutritive, emollient, and demulcent. It is somewhat less nutritive than wheat-starch, but more palatable and digestible.

Uses.—Employed at the table, as an article of food, in the form of puddings. It forms a nutritious, easily-digested, agreeable, non-irritating diet for invalids or infants. In irritation of the alimentary canal, of the pulmonary organs, or of the urinary apparatus, it is especially valuable, as a nutritive, emollient, and demulcent.

Administration.—To invalids and infants it is exhibited when boiled in water or milk and flavoured. Milk disagrees with some patients, and in such is of course to be avoided. The addition of sugar improves the flavour and increases the nutritive qualities. Spices, lemon juice, or wine, may be employed according to circumstances.

---

OTHER DIETETICAL MARANTACEÆ.

*Canna* An imperfectly determined species of *Canna*, E.—Within the last three or four years considerable quantities of a feculent substance, called *Tous les Mois*, or *Starch of the Canna coccinea*, have been imported. It comes from St. Kitt’s, and is said to be prepared, by a tedious and trouble-
some process, from the root (rhizome) of the above-mentioned plant. It is, however, very doubtful whether it be really produced by the Canna coccinea of botanists, and the Edinburgh College, therefore, properly declares Tons les Mois to be the "fecula of the root of an imperfectly determined species of Canna."

When examined by the microscope its particles are found to be distinguished from those of all other commercial feculas by their great size, which exceeds that of every other starch particle which I have hitherto examined. Their shape is oval or oblong; generally more or less ovate. The circular hilum is usually placed at the narrow extremity; very rarely it is double. The rings are numerous, regular, close, but somewhat unequally so. The hilum and the body of the particle are frequently cracked. Examined by the naked eye, tous les mois has a slightly satiny appearance, and is devoid of that dead white or opaque character presented by some amylaceous substances. It approaches more nearly to potato starch than to any other fecula with which I am acquainted; but its particles are larger than those of the latter. Like the other amylaceous substances, it forms a valuable and nutritious article of food for the invalid.

**Order XIX.—Zingiberaceæ, Lindl.—The Ginger Tribe.**

**Drymyrhrizeæ, Vent.—Scitamineæ, R. Brown.**

**Essential Character.**—*Calyx* superior, tubular, three-lobed, short. *Corolla* tubular, irregular, with six segments in two whorls; the *outer* three-parted, nearly equal, or with the odd segment sometimes differently shaped; the *inner* (sterile stamens) three-parted, with the intermediate segment (*labellum*) larger than the rest, and often three-lobed, the lateral segments sometimes nearly abortive. *Stamens* three, distinct, of which the two lateral are abortive, and the intermediate one fertile; this placed opposite the labellum, and arising from the base of the intermediate segment of the outer series of the corolla. *Filament* not petaloid, often extended beyond the anther in the shape of a lobed or entire appendage. *Anther* two-celled, opening longitudinally, its lobes often embracing the upper part of the style. *Pollen* globose, smooth. *Ovary* three-celled, sometimes imperfectly so; *ovules* several, attached to a placenta in the axis; *style* filiform; *stigma* dilated, hollow. *Fruit* usually capsular, three-celled, many seeded [sometimes by abortion one-celled]; occasionally berried (the dissepiments generally central, proceeding from the axis of the valves, at last usually separate from the latter, and of a different texture, *R. Br.*) *Seeds* roundish or angular, with or without an aril (*albumen* floury, its substance radiating, and deficient near the hilum, *R. Br.*); *embryo* enclosed within a peculiar membrane (*vitellus, R. Br. Prodr. membrane of the amnios, ibid. in King's Voyage, 21) with which it does not cohere.—Aromatic, tropical, *herbaceous* plants. *Rhizoma* creeping, often jointed. *Stem* formed of the cohering bases of the leaves, never branching. *Leaves* simple, sheathing their lamina, often separated from the sheath by a taper neck, and having a single midrib, from which very numerous, simple, crowded veins diverge at an acute angle. *Inflorescence* either a dense spike, or a raceme, or a sort of panicle, terminal or

---

1 See the Medico-Chirurgical Review for Oct. 1, 1836.
NARROW-LEAVED GINGER.

radical. *Flowers* arising from among spathaceous membranous bracts, in which they usually lie in pairs. (Lindley.)

Properties.—Rhizomes and seeds aromatic. The rhizomes of some species are remarkable for the colouring matter which they contain.

1. **ZINGIBER OFFICINALE**, *Roscoe, L. E.—THE NARROW-LEAVED GINGER.*

*Amomum Zingiber, Linn. D.*

Sex. Syst. Monandria, Monogynia.

(Rhizoma, *L. E.—Radix, D.*)

History.—Dioscorides, and Pliny, were acquainted with ginger, which was called *ζγυγιβρος* by the former, *zingiberi* and *zingiberi* by the latter of these authors.


Hab.—Cultivated in the tropical regions of Asia and America. Native soil doubtful, probably Asia.

Preparation.—The young shoots put forth every spring by the perennial rhizome, are used in the manufacture of the delicious preserved ginger (*conditum zingiberis*). These shoots are carefully picked, washed, scalded, scraped, peeled, and then preserved in jars with syrup.

The ginger-root of the shops is prepared when the stalks are wholly withered, and the rhizomes are about a year old. In Jamaica this happens in January or February. The rhizomes are dug up, picked, cleaned, and scalded. *Black ginger* is dried, after being scalded, without being scraped: *white ginger*, on the contrary, requires to be carefully scraped. Both kinds are dried in the sun in the open air.

The differences between the black and white ginger of the shops

---

*Lib. ii. cap. 190.*

*Hist. Nat. lib. xii.*


*Roxburgh, op. cit., and Dr. P. Browne, History of Jamaica.*

*Dr. P. Browne, ibid.*
are ascribed, by Dr. P. Browne and others, to different methods merely of curing the rhizomes; but this is scarcely sufficient to account for them, and we cannot help suspecting the existence of some difference in the plants themselves. That this really exists is proved by the statement of Rumphius, that there are two ginger plants, the white and the red. Moreover, Dr. Wright says, that two sorts are cultivated in Jamaica; viz. the white and the black; and he adds, "black ginger has the most numerous and largest roots."

When brought to this country, the common kinds of ginger are bleached by washing them in a solution of chloride of lime, and sometimes by exposing them to the fumes of burning sulphur. This treatment, though it may improve the colour, must injure the acridity and aromatic qualities of the rhizomes.

Description.—The rhizome, called in commerce ginger-root (radix zingiberis), occurs in flatish, branched or lobed, palmate pieces, called races, which do not exceed four inches in length. The unscraped pieces are covered with a wrinkled epidermis; but those which have been scraped (as the Jamaica variety) are without it. Ginger breaks moderately short, but the fractured surface presents numerous projecting pointed fibres, imbedded in a mealy or farinaceous tissue. A transverse section of the larger and more perfect pieces shows an outer, horny, resinous-looking zone, surrounding a farinaceous centre, which has a speckled appearance from the cut extremities of the fibres and ducts. The taste of ginger is aromatic, hot, and biting; the odour of a fresh broken piece is peculiar and pungent, though aromatic. In commerce several varieties, distinguished by their colour and place of growth, are met with.

a. White Ginger. (Radix Zingiberis albi.)—The finest is that brought from Jamaica. Jamaica white ginger occurs in larger, rounder, and thinner races than the other kinds. Its epidermis has been carefully removed by scraping. Externally it is yellowish-white or very pale buff; internally it has a pale buff tint; inferior kinds have an ash tint externally. It forms a beautiful bright straw yellow, somewhat buffy, powder. A great part of the Jamaica ginger of the shops has been washed in whiting and water (or white-washed, as it is technically termed), under the pretence of preserving it from insects. The dark-coloured kinds are frequently bleached with chloride of lime. Barbadoes ginger is in shorter, flatter races of a darker colour, and covered with a corrugated epidermis. African ginger is in smallish races, which have been partially scraped, and are pale-coloured. East India ginger is unscraped; its races are dark ash-coloured externally, and are larger than those of the African ginger. Tellicherry ginger is in large plump races with a remarkable reddish tint externally.

b. Black Ginger. (Radix Zingiberis nigri.)—Jamaica black ginger is not frequently found in the shops. The Malabar dark ginger is
in unscraped short pieces, which have a horny appearance internally, and are of a dirty brown colour both internally and externally.

COMMERCE.—Ginger is imported in bags, weighing about a hundred weight each. The quantities on which the duty of eleven shillings per cwt. has been paid for the last six years, are as follows:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cwts.</td>
<td>cwts.</td>
<td>cwts.</td>
</tr>
<tr>
<td>In 1835</td>
<td>6,496</td>
<td>867</td>
</tr>
<tr>
<td>1836</td>
<td>4,426</td>
<td>1,912</td>
</tr>
<tr>
<td>1837</td>
<td>9,157</td>
<td>3,520</td>
</tr>
</tbody>
</table>

Composition.—Ginger was analyzed in 1817 by Bucholz, and in 1823 by Morin.

Bucholz's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale yellow volatile oil</td>
<td>1.56</td>
</tr>
<tr>
<td>Aromatic, acid, soft resin</td>
<td>3.60</td>
</tr>
<tr>
<td>Extractive, soluble in alcohol</td>
<td>0.65</td>
</tr>
<tr>
<td>Acidulous and acid extractive, insoluble in alcohol</td>
<td>10.50</td>
</tr>
<tr>
<td>Gum</td>
<td>12.05</td>
</tr>
<tr>
<td>Starch (analogous to bassorin)</td>
<td>19.75</td>
</tr>
<tr>
<td>Apothemne, extracted by potash (ulmin ?)</td>
<td>26.00</td>
</tr>
<tr>
<td>Bassorin</td>
<td>8.30</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>8.00</td>
</tr>
<tr>
<td>Water</td>
<td>11.90</td>
</tr>
</tbody>
</table>

Morin's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td></td>
</tr>
<tr>
<td>Acrid soft resin</td>
<td></td>
</tr>
<tr>
<td>Resin insoluble in ether and oils</td>
<td></td>
</tr>
<tr>
<td>Gum</td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td></td>
</tr>
<tr>
<td>Woody fibre</td>
<td></td>
</tr>
<tr>
<td>Vegeto-animal matter</td>
<td></td>
</tr>
<tr>
<td>Osmazome</td>
<td></td>
</tr>
<tr>
<td>Acetic acid, acetate of potash, and sulphur</td>
<td></td>
</tr>
<tr>
<td>The ashes contained carbonate and sulphate of potash, chloride of potassium, phosphate of lime, alumina, silica, and oxides of iron and manganese</td>
<td></td>
</tr>
</tbody>
</table>

White Ginger .................................. 102.31

1. VOLATILE OIL OF GINGER.—Is pale yellow, very fluid, lighter than water, odour that of ginger, taste at first mild, afterwards acid and hot.

2. SOFT RESIN.—Obtained by digesting the alcoholic extract of ginger first in water, then in ether, and evaporating the ethereal tincture. The residual resin is yellowish brown, soft, combustible, has an aromatic odour, and a burning aromatic taste. Is readily soluble in alcohol, ether, oil of turpentine, and hot almond oil.

PHYSIOLOGICAL EFFECTS.—Ginger is one of the acrid aromatics, whose effects have been already noticed (vide p. 181). Its dust applied to the mucous membrane of the nostrils acts as an irritant, and provokes sneezing. The rhizome chewed is a powerful sialagogue. The powder mixed with hot water, and applied to the skin, causes a sensation of intense heat and tingling. When taken into the stomach it operates as a stimulant: first, to the alimentary canal, secondly, to the body generally: but especially to the organs of respiration. Like some other spices (the peppers for instance), it acts as an excitant to the genital organs. Furthermore, it is said to increase the energy of the cerebral functions. It is less acrid than pepper.

USES.—Its principal consumption is as a condiment. Its powers in this way are considerable, while its flavour is by no means disagreeable, and its acridity scarcely sufficient to enable it, when taken with food, to irritate or inflame.
As a stomachic and internal stimulant it serves several important purposes. In enfeebled and relaxed habits, especially of old and gouty individuals, it promotes digestion, and relieves flatulency and spasm of the stomach and bowels. It checks or prevents nausea and griping, which are apt to be produced by some drastic purgatives. It covers the nauseous flavour of many medicines, and communicates cordial and carminative qualities to tonic and other agents. As a sialogogue it is sometimes chewed to relieve toothache, relaxed uvula, and paralytic affections of the tongue. As a counter-irritant I have frequently known a ginger plaster (prepared by mixing together powdered ginger and boiling water, and spreading the paste on paper or cloth) relieve violent headache when applied to the forehead.

Administration.—Powdered ginger may be administered, in doses of from ten grains to a scruple or more, in the form of pill. Made into a paste with hot water it may be applied as a plaster, as already mentioned.

Preserved ginger (conditum zingiberis), though commonly used as a sweetmeat, may be taken with advantage as a medicine to stimulate the stomach. Ginger lozenges, ginger pearls (commonly termed ginger seeds) and ginger pipe, are useful articles of confectionary, frequently of benefit in dyspepsia accompanied with flatulence.

1. TINCTURA ZINGIBERIS, L. E. D. Tincture of Ginger.—(Ginger, sliced, [in coarse powder, E. D]) 3ijss. ; Rectified Spirit, Oij. [wine measure, D.]. Macerate for fourteen [seven, D.] days, and strain, L. D. “Proceed by percolation or digestion, as directed for tincture of cinchona.” E.) — A very valuable carminative. It is commonly employed as an adjunct to tonic, stimulant, and purgative mixtures. Its dose is f3j. or f5ij. The tincture, made with proof spirit, becomes turbid by keeping in consequence of the mucilage it contains.

Essence of ginger is prepared as a tincture, except that the quantity of rhizome should be increased. Some preparers of it concentrate the tincture by distilling off part of the alcohol.

2. SYRUPUS ZINGIBERIS, L. E. D. Syrup of Ginger.—(Ginger, sliced, [bruised, D.] 3ijss. [3iv. D.]; Boiling water, Oij. [Oij. wine measure, D.]; Sugar, lb. ijss. [3lxxxvij. Z]). Macerate the ginger in the water for four hours, and strain; then add the sugar, and dissolve it.)—Used for flavouring. It is scarcely strong enough to be of much value. An extemporaneous syrup may be prepared by adding the tincture of ginger to common syrup. The syrupus zingiberis of the United States Pharmacopœia is made by adding f3ij. of tincture of ginger (prepared with 3viij. of ginger and Oij., wine measure, of alcohol) to a gallon of syrup, and evaporating the alcohol by a water bath.

3. INFUSUM ZINGIBERIS; Infusion of Ginger; Ginger Tea. This is a very useful domestic remedy, and is prepared by digesting from 5ij. to 5iv. of Ginger, in f3vij. of Boiling Water, for two hours.—When flavoured, it is employed as a carminative in flatulence, &c., in doses of one or two table-spoonfuls.

4. GINGER BEER. For the following excellent formula for the pre-
paration of this popular and agreeable beverage, I am indebted to Mr. Pollock, of Fenchurch Street:—"Take of White Sugar, lb. xx.; Lemon (or Lime) juice, f3xviii.; Honey, lb. j.; Ginger bruised, 3xxij.; Water congr. xviii. Boil the ginger in three gallons of water for half an hour; then add the sugar, the juice, and the honey, with the remainder of the water, and strain through a cloth. When cold, add the White of one Egg and f3ss. of Essence of Lemon: after standing four days, bottle." This yields a very superior beverage, and one which will keep for many months. Lemon juice may be purchased for sixpence a pint in Botolph Lane, Thames Street. A formula for the preparation of Ginger Beer Powders has already been given (see p. 559).

2. CURCUMA LON'GA, Linn. L. E. D.—THE LONG-ROOTED TURMERIC.

Sex. Syst. Monandria, Monogynia.
(Rhizoma, L. E.—Radix, D.)

History.—Turmeric is probably the Κύπερος Ἠρωκός, (Cyperus indicus) of Dioscorides. Both Dioscorides and Pliny state that this Indian Cyperus has the form of ginger, and that, when chewed, it colours the saliva yellow like saffron. The word Curcuma is derived from Kurkum, the Persian name for saffron.


Sp. Char.—Bulbs small, and with the numerous, long, palmate tubers, inwardly of a deep orange yellow. Leaves long-petioled, broad-lanceolar, of a uniform green (Roxburgh).

Hab.—Much cultivated about Calcutta, and in all parts of Bengal, also in China and Cochin-China. One acre yields about 2000lbs. of the fresh root.

Description.—The tubers, called in the shops turmeric (radix curcuma, seu terra merita), are distinguished by their place of growth into China, Bengal, and Java turmerics; the first being the best and most valuable. From their shape they are sometimes divided into the round and long. The first (curcuma rotunda) is round, oval, or ovate, about two inches long, and one inch in diameter, pointed at one end, marked externally with numerous annular wrinkles. The
second (*curcuma longa*) is cylindrical, not exceeding the thickness of
the little finger; two or three inches long, somewhat contorted, tubercu-
lated. Both kinds are greyish-yellow externally, internally more
or less orange-yellow passing into brown. The fractured surface has
a waxy appearance. The odour is aromatic, somewhat analogous to
ginger, but peculiar: the taste is aromatic. When chewed it tinges
the saliva yellow. Its powder is orange-yellow. The tubers are
frequently worm-eaten.

**Composition.**—Two analyses of turmeric have been made: one
by John⁷, and a second by MM. Vogel and Pelletier⁸.

<table>
<thead>
<tr>
<th>John's Analysis</th>
<th>Vogel and Pelletier's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow volatile oil</td>
<td>Acrid volatile oil</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Curcumin</td>
</tr>
<tr>
<td>Yellow extractive</td>
<td>Brown colouring matter</td>
</tr>
<tr>
<td>Gum</td>
<td>Gum (a little)</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>Starch</td>
</tr>
<tr>
<td>Water and loss</td>
<td>Woody fibre</td>
</tr>
<tr>
<td></td>
<td>Chloride of calcium</td>
</tr>
<tr>
<td>Turmeric</td>
<td>Turmeric</td>
</tr>
</tbody>
</table>

**Curcumin.** *Yellow Colouring Matter.*—Is obtained, mixed with some volatile
oil and chloride of calcium, by digesting the alcoholic extract of turmeric in
ether, and evaporating the etherial tincture to dryness. In the mass, *curcumin*
is brownish-yellow, but when powdered it becomes full yellow. It is tasteless,
odourless, almost insoluble in water, but readily soluble in alcohol and ether.
These properties shew that it is of a resinous nature. The alkalii colour it
reddish-brown, and readily dissolve it. The alcoholic solution, evaporated with
boracic acid, becomes red. Hydrochloric acid also redens it. The alcoholic
solution of curcumin produces coloured precipitates with several salts, as acetate
of lead and nitrate of silver.

**Chemical Characteristics.**—The alkalis change an infusion of
turmeric, or turmeric paper, to reddish-brown. A similar alteration of
colour occurs when turmeric paper is exposed to the vapour of
hydrochloric acid gas, or is touched with oil of vitriol. If, to tincture
of turmeric, boracic acid be added, and the mixture be evaporated to
dryness, an orange-red residue is obtained, whereas, without the acid,
the residue is yellow. Sulphate of copper causes a yellowish precipi-
tate with an infusion of turmeric. A similar effect is produced by
sesquichloride of iron.

**Physiological Effects.**—Are those of a mild aromatic, *vide* p. 181.
The colouring matter becomes absorbed, and communicates a yellow
tinge to the urine.⁹ According to Mr. Gibson, the colouring matter
of turmeric is somewhat changed by the digestive organs; for the
stools of animals fed with this root were green, whilst either logwood
or madder exhibited its respective hues after passing through the
intestines.

**Uses.**—Employed as a condiment, colouring ingredient, and test.

---

⁷ Gmelin's *Handb. d. Chem.*
⁸ *Journ. de Pharm.* i. 299.
It is a constituent of the well-known *curry powder* and *curry paste*, and of many other articles of Indian cookery. Formerly it had some reputation in hepatic and other visceral diseases, and especially in jaundice. As a test it is used to detect the presence of free alkalis, which change its yellow colour to a reddish-brown. But some acids, and several salts, produce the same effect on it.

**CHARTA CURCUMA; Charta exploratoria flava; Turmeric Paper.**—This is prepared with white, bibulous, or unsized paper, which is to be brushed over with, or soaked in, a tincture of turmeric (prepared by digesting one part of bruised Turmeric in six parts of Proof Spirit), and drying in the air, the access of alkaline and acid fumes being prevented. Mr. Faraday directs it to be prepared with a decoction of turmeric (prepared by boiling one ounce of the coarsely-powdered turmeric in ten or twelve ounces of Water, straining through a cloth, and allowing the fluid to settle for a minute or two). Turmeric paper is employed as a test for alkalis, which render it reddish or brownish.

3. *CUCUMA ANGUSTIFOLIA*, Roxburgh.—THE NARROW-LEAVED TURMERIC.

(Hecula tuberis. East Indian Arrow-root, Offic.)

**History.**—This plant was found by H. T. Colebrook, Esq. in the forests extending from the banks of the Sona to Nagpore, and was by him introduced into the Botanic garden at Calcutta.

**Botany.** Gen. Char.—Vide Curcuma longa.

Sp. Char.—Bulb oblong, with pale, oblong, pendulous tubers only. Leaves stalked, narrow lanceolate. Flowers longer than the bracts.

Hab.—East Indies: from the banks of the Sona to Nagpore. The fecula obtained from its tubers is sold in the markets of Benares, and is eaten by the natives. Grows also in abundance on the Malabar coast, where, especially at Travancore, large quantities of fecula are extracted from the tubers.

**Description.**—Under the name of *East Indian Arrow-Root* I have found in commerce two kinds of fecula, both of which are imported from Calcutta.

a. *White East Indian Arrow-root.*—A fine white powder, readily distinguishable, both by the eye and the touch, from West Indian Arrow-root. To the eye it somewhat resembles a finely-powdered salt (as bicarbonate of soda or Rochelle salt). When pinched or pressed by the fingers, it wants the firmness so characteristic of West Indian Arrow-root, and it does not crepitate to the same extent when rubbed between the fingers.

---

1 Chemical Manipulation.
2 Roxburgh, *Flora Indica*.
3 Roxburgh, op. cit.
4 Ainslie, *Mat. Indica*, i. 19.
Examined by the microscope it is found to consist of ovate, or oblong-ovate, flattened particles, often with a very short neck, or nipple-like projection. On account of their flatness, they have but little lateral shading, except when viewed edgewise. The hilum is placed at the narrow extremity; it is circular, very small, and not very distinct. The rings are seen both on the flat surface and on the edges: they are numerous, close, and very fine.

Particles of Tiliite East Indian Arrow-root.

To the microscope both kinds present the same appearance, from which it is probable that they are obtained from the same plant, but with unequal degrees of care. However, this is somewhat doubtful, as Dr. Roxburgh says that a fecula, like arrow-root, is procured from several species of Curcuma, (as C. rubescens and C. leucorrhiza; the fecula of the latter is called Tikor). The particles of East Indian arrow-root are very unequal in size, but on the average are larger than those of West Indian arrow-root.

Composition.—Not ascertained, but doubtless analogous to that of West Indian arrow-root.

Effects and Uses.—Analogous to those of the West Indian fecula. Its commercial value, however, is much below that of the latter.

4. AMO'MUM CARDAMOMUM, Linn. D.—THE CLUSTER OR ROUND CARDAMOM.

Sex. Syst. Monandria, Monogynia.

(Fructus. Cardamomum rotundum, Offic.)

History.—The fruit of this plant is the "Amomum" of Dioscorides, the Amomi uva of Pliny.


Sp. Char.—Leaves with short petioles, lanceolate. Spikes half immersed in the earth, loosely imbricated with villous, lanceolate, acute, one-flowered bracts. Lip, with the anterior margin, three-lobed. Crest three-lobed. (Roxburgh.)

Hab.—Sumatra, Java, and other islands eastward to the Bay of Bengal.

Description.—The fruit of this plant is the round cardamom (cardamomum rotundum) of the shops. It varies in size from that of a
AMOMUM GRANA-PARADISI.  1023

black currant to that of a cherry. It is roundish, or roundish-ovate, with three convex, rounded sides or lobes, more or less striated longitudinally, yellowish or brownish-white, sometimes with a red tint, and when examined by a pocket lens shows the remains of hairs, the greater part of which have been probably rubbed off. The seeds are brown, angular, cuneiform, shrivelled, with an aromatic, camphoraceous flavour. The fruits in their native clusters or spikes (constituting the Amomum racemosum) are rarely met with: a fine sample is in the Sloanian collection of the British Museum.

COMPOSITION.—It has not been analysed. Its constituents are probably analogous to those of the Malabar cardamom, (Elettaria Cardamomum.)

EFFECTS AND USES.—Similar to those of the Malabar cardamom. Round cardamoms are rarely employed in this country. They are official in the French Codex, and are principally consumed in the southern parts of Europe. The seeds are directed to be used by the Dublin Pharmacopœia, but I presume those of the Elettaria Cardamomum are meant.


HISTORY.—Afzelius¹ refers the seeds called, in the shops, grains of paradise, and which, he says, are the true Malaguetta pepper, to his Amomum Granum Paradisi. Roscoe,² on the other hand, asserts most positively, that Malaguetta pepper is the produce of his Amomum Meleguetta, which he considers to differ from any previously-described plant. I strongly suspect the seeds of at least two species have been confounded in commerce, under the names of grains of paradise, or Malaguetta pepper. Afzelius¹ states that there are four sorts of Malaguetta pepper, viz. Maboobo, Massa aba, Massa amquona, and Tossan, the last being the native and true one; but Sir J. E. Smith³ has shown that the two first of these are distinct species; Maboobo being A. macrospermum, Smith, and Massa aba being A. strobilaceum, Smith.

BOTANY. Gen. Char.—Vide Amomum Cardamomum.

Species.—I. A. GRANA-PARADISI, Smith.

Rhizome perennial, woody, creeping horizontally. Stems erect, simple, slender, three feet high, leafy, but destitute of flowers. Leaves numerous, crowded, two-ranked, alternate, a span long and an inch broad, lanceolate, or slightly ovate, with a long taper point, entire, smooth, single-ribbed, striated with innumerable oblique veins. Their flavour is slightly aromatic, after having been dried 20 years. Foot-stalks sheathing, linear, very long, smooth, striated. Flower-stalks radical, solitary, an inch or two in length, ascending, clothed with numerous, close, sheathing bracts, all abrupt, ribbed, somewhat hairy and fringed; the

---

¹ Remed. Guineens. x. n. 1, quoted in the Beschreib. offic. Planz of Nees, &c.
² A. Grana-paradisi of Smith in Rees' Cyclop. vol. xxiii. art. “Malagetta.”
³ Monandrian Plants.
⁴ Sierra Leone Company's Report in 1791, 8vo. p. 173.
⁵ Rees' Cyclop. vol. xxxix. art. Amomum.
lower ones very short; the upper gradually much larger. Of the parts of the flower nothing could be made out in Sir J. Smith’s specimens. [Afzelius declares them to be formed like those of A. eauscapum, Sims.] Capsule an inch and a half long, half an inch in diameter, oblong, bluntly triangular, scarcely ovate, beaked, of a dark reddish-brown, ribbed, coriaceous, rough, with minute decidueous bristly hairs. When broken it is very powerfully aromatic, even after being kept twenty years, with a peculiar pepper-like flavour, rather too strong to be agreeable. Seeds numerous, enveloped in membranes formed of the dried pulp, roundish or somewhat angular, of a shining golden brown, minutely rough or granulated, extremely hot and acrid (Smith).—Native of Guinea, about Sierra Leone.

2. A. Melegueta, Roscoe.

Stem erect, six feet high. Leaves two-ranked, subsessile, narrow-lanceolate. Scape radical, covered at the base with about seven imbricated, ovate, concave, pointed, and somewhat cuspidate bracts. Calyx cylindrical, of one leaf, green, spotted with red. Flowers cylindrical, expanding in a double border; outer border in three sections, the middle section largest, ovate, the two others linear and opposite; inner lip very large, broad-ovate, crenate, pale-yellow at the base, crimson at the margin. Filament strong, erect, clavate, terminating in three lobes, middle lobe erect and bifid, the other two pointed and recurved; a pair of hornlets on the filament, near the base of the lip. Anther in two lobes, seated in front of the filament, a little below the apex, bright yellow. Style erect, tubular, expanding into a dilated stigma or cup, supported at the base by two linear processes, about an inch in length, and one-eighth of an inch in breadth, by much the largest specimen of this part observable in any scitamineous plant. Capsule cylindrical, coriaceous, six inches long, yellow, spotted with orange, supported at the base by the large ovate, concave, cuspidate bracts, and containing a columella or receptacle about four inches long, covered with seeds beautifully arranged, arilled, and imbedded in a tomentose substance. Seeds angular, light brown, with a highly aromatic and grateful flavour (Roscoe).—Cultivated at Demerara: probably from Africa.

DESCRIPTION.—In the Sloanian Collection of the British Museum are several capsules of Malagueta pepper, one of which is labelled "Melegetta, a pod from Guinea." (Fig. 193 is taken from one of these). They are two and a half inches long, and one inch in diameter, ovate or ovate-oblong, coriaceous, wrinkled as if shrivelled, yellowish-brown. The seeds are identical with those called, in the shops, Guinea grains, or grains of paradise. Are these capsules the fruit of A. Melegueta, Roscoe?

In Dr. Burgess’s collection of Materia Medica, in the College of Physicians, is a capsule smaller than the preceding, oval or oval-oblong, somewhat reddish-brown, wrinkled longitudinally. (Fig. 194 is taken from it.) The seeds very closely
resemble, if they be not identical with, the grains of paradise of the shops. They have also the same vehemently hot taste. This capsule appears to me to be the fruit of *A. Grana paradisi*, Smith.

The seeds, called in the shops grains of paradise (*grana paradisi*), or Guinea grains, are roundish or ovate, frequently bluntly angular, and somewhat cuneiform; shining golden brown; minutely rough, from small warts and wrinkles; internally white. Their taste is aromatic and vehemently hot or peppery: when crushed and rubbed between the fingers their odour is feebly aromatic. Their greatest diameter rarely exceeds $\frac{1}{2}$ lines. The acrid taste resides in the seed coats.

**Commerce.** — Grains of paradise are imported in casks, barrels, and puncheons, from the coast of Guinea. The quantities on which duty (two shillings per lb.) has been paid during the last six years, is as follows (Trade List):

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>14,603 lbs</td>
</tr>
<tr>
<td>1836</td>
<td>16,234 lbs</td>
</tr>
<tr>
<td>1837</td>
<td>17,134 lbs</td>
</tr>
<tr>
<td>1838</td>
<td>16,199 lbs</td>
</tr>
<tr>
<td>1839</td>
<td>19,036 lbs</td>
</tr>
<tr>
<td>1840</td>
<td>9,916 lbs</td>
</tr>
</tbody>
</table>

"Extract or preparation of Guinea grains" is mentioned by Frewin in his table of Imports, as paying a duty of two shillings per lb.

The heavy duty imposed on grains of paradise is intended to act as a prohibition of their use.

**Composition.** — Grains of paradise were analyzed in 1811 by Willert, who obtained the following results: — Volatile oil 0.52, acrid resin 3.40, extractive 1.27, tragacanthin and woody fibre 82.8 [water and loss 12.01].

1. The volatile oil has a light yellow colour, a camphoraceous smell, and a hot penetrating taste.
2. The resin is brown, soft, odourless, and has an acrid, burning taste.

**Physiological Effects.** — Analogous to those of pepper. A very erroneous notion prevails that these seeds are highly injurious.

**Uses.** — Rarely employed as an aromatic. Esteemed in Africa as the most wholesome of spices, and generally used by the natives to season their food.

Its principal consumption is in veterinary medicine, and to give an artificial strength to spirits, wine, beer, and vinegar. By 56 Geo. III. c. 58, no brewer or dealer in beer shall have in his possession or use grains of paradise, under a penalty of £200 for each offence: and no druggist shall sell it to a brewer, under a penalty of £500 for each offence.

* Digested Abrigdm. of the Laws of the Customs, 1819.
* Trommsdorff's Journ. xx. St. 2, 1811.
* Roscoe, op. cit.
7. Amomum Angustifolium, Sonnerat.—The Greatest
Or Madagascar Cardamom.
Amomum madagascariense, Lamarck.
This species is a native of Madagascar, growing in marshy ground,
and was first described by Sonnerat. Its fruit is the cardamomum majus of Matthioli,
Geoffroy, Smith, and Geiger. In Dr. Burgess's Collection of Materia Medica
at the College of Physicians, there are several fine specimens (from one of which the
accompanying figure was taken), marked "Cardamomum maximum Matthioli."
The capsule is ovate, pointed, flattened on one side, striated, with a broad, circular
umbilicus or scar at the bottom, around which is an elevated, notched, and corrugated margin. Some authors, who have mistaken
the base of the capsule for its summit, have compared the shape to that of a fig.
The seeds are rather larger than grains of paradise, roundish or somewhat angular,
abrupt at the base, olive-brown, with an aromatic flavour analogous to that of the Malabar cardamom, but totally devoid of the
vehemently hot acrid taste of the grains of paradise.

8. Amomum Clusi, Smith.—Long-Seeded Amomum.
I have received from a druggist a capsule (fig. 196), which agrees with one noticed and
figured by Clusius. Another specimen is described by Sir J. E. Smith. This capsule must be
confounded neither with that of the Madagascar cardamom, nor with that of the grain of
paradise. It is ovate, pointed, slightly triangular, cartilaginous, striated, smooth, yellowish
[reddish, Smith] brown. The seeds distinguish it from all other species: they are oblong or
ovate, inclining to cylindrical, dark-brown, highly polished, as if varnished; with a pale yellowish-brown, corrugated, and notched margin surrounding the scar. They are very slightly aromatic.
9. AMOMUM MACROSPERMUM, Smith. LARGE-SEEDED GUINEA AMOMUM.


Fig. 197. This was mistaken by Gaertner for Malaguetta pepper. The capsule is ovate, pointed, somewhat striated, about two inches long, and six lines broad, with a corrugated beak. Seeds ovate, or nearly globular, or somewhat oblong, scarcely larger than grains of paradise, smooth, polished, greenish-grey, or lead-coloured, with a strong umbilicated scar at their base, with a whitish or pale-yellow margin; flavour slightly aromatic. A native of Sierra Leone. (Fig. 197 is from a specimen in the Sloanian Collection of the British Museum).

10. AMOMUM MAXIMUM, Roxburgh.—THE GREAT-WINGED AMOMUM.

(Fructus: Java Cardamom, offic.)

HISTORY.—This plant was first described by Roxburgh. That it yields the Java cardamom of commerce I entertain but little doubt; for the latter agrees precisely with the characters assigned by Roxburgh and Blume to the fruit of this plant, the seeds of which, the first of these botanists says, "are aromatic, and pass for a sort of cardamom". Moreover, Amomum maximum, being a native of Java, accounts for its fruit being called in commerce the Java cardamom. Lastly, no other plant noticed in the works of Roxburgh and Blume agrees precisely in the characters of its fruit with the cardamom in question.

Elettaria cardamomum medium, Roxburgh, which I at one time, with some other botanists, fancied might be the parent plant, disagrees in several respects: the shape and size of its fruit, the inequality of its wings, and the qualities of its seed coats, are the most essential points of disagreement. The fruit of Amomum aromaticum (Dr. Roxburgh's drawing of which was kindly shewn me by Dr. Horsfield) has no resemblance to the Java cardamom. Lastly, I have examined the fruits of Amomum grandiflorum, A. Afzelii, and A. dealbatum [a speci-
men of the latter in the British Museum is erroneously marked A. maximum, in
the collections of the Linnean Society and the British Museum, and find that
none of them are the Java cardamom.

**BOTANY. Gen. Char.**—Vide *Amomum Cardamomum*.

**Sp. Char.**—Leaves stalked, lanceolate, villous underneath. Spikes
oval, even with the earth. Bracts lanceolate. Lip elliptical. Coronet
of one semilunar lobe. Capsules round, nine-winged. (Roxburgh.)

The capsule is "almost globular, size of a gooseberry, three-celled,
three-valved, ornamented with nine [seven to thirteen, Blume], firm,
short, ragged (when old and dry), membranaceous wings. The seeds
possess a warm, pungent, aromatic taste, not unlike that of carda-
moms, but by no means so grateful" (Roxburgh.) The *Nepal carda-
mom*, described by Dr. Hamilton, appears to be identical with the
Java cardamom. Dr. Hamilton says, the plant yielding it "is a
species of *Amomum*, as that genus is defined by Dr. Roxburgh, and
differs very much from the cardamom of Malabar."

**Hab.**—The Malay Islands (Roxburgh); Java (Blume). Cultivated
in the mountainous parts of Nepal, where it is propagated by cuttings
of the root [rhizome]; the plants yield in three years, and afterwards
give an annual crop (Hamilton).

**Description.**—Greater Java cardamoms (*cardamomi majores ja-
venses*, Th. Martins; Java cardamoms, offic.; *Nepal cardamoms, desi
elachi* [i.e. country cardamoms] of Hindustan, Hamilton; the *bura
elachee* [i.e. great cardamoms] of Saharunpore,—the *Bengal cardamoms
of the Calcutta market, Royle; *cardamome fausse-
maniguite*, Guibourt) are oval or oval-oblong, fre-
cquently somewhat ovate, three-valved, from eight to
fifteen lines long, and from four to eight lines broad,
usually flattened on one side, convex on the other, occa-
sionally curved, sometimes imperfectly three-lobed, and
resembling in their form the pericarp of the cocoa-nut.
Their colour is dirty greyish-brown, They have a
course, fibrous, aged appearance, are strongly ribbed,
and when soaked in hot water become almost globular,
and present from nine to thirteen ragged, membran-
ous wings, which occupy the upper half or three-
fourths of the capsule, and are scarcely perceptible
in the dried state of the pericarp. By the posses-
sion of wings, these cardamoms are distinguished
from all others of commerce, and hence might be
called the *winged cardamoms*. Occasionally the footstalk is attached,
with, now and then, portions of brown, membranous, imbricated
scales, as long as the fruit. At the opposite or winged extremity of
the capsule are frequently the fibrous remains of the calyx. Seeds
somewhat larger than grains of paradise, dull, dirty brown, with a
shallow groove on one side, internally white; taste and odour
feebly aromatic. One hundred parts of the fruit consist, according

*An Account of the Kingdom of Nepal*, ed. 1819.
to Th. Martius,  of seventy parts seeds, and thirty parts pericarpial coats. They are imported from Calcutta in bags.

**Composition.**—Analogous probably to that of the Malabar cardamom, except in the quantity of volatile oil which it yields; for Martius procured only four scruples of it from a pound of the fruit. The oil obtained was white and thickish.

**Effects and Uses.**—Java cardamoms are not used here. They are of inferior quality, and when brought to this country are usually sold in bond for continental use. In 1839 a quantity of them was sold at seven-pence per lb.

11. ELETTARIA CARDAMOMUM, Maton.—THE TRUE OR OFFICINAL CARDAMOM.

Alpinia Cardamomum, Roxb. L.—Renealmia Cardamomum, Ed.—Amomum Cardamomum, D.

Sex. Syst. Monandria, Monosrynia.

(Semina, L. D.—The fruit; Cardamoms, Ed.)

**History.**—A medicine, called Cardamom (кардамом), is mentioned by Hippocrates, Theophrastus, and Dioscorides, the first of whom employed it in medicine. But it is now scarcely possible to determine what substance they referred to, as their notices of it are brief and imperfect, though I believe it to have been one of the fruits which we call cardamoms. Pliny speaks of four kinds of cardamoms, but it is almost impossible to ascertain with any certainty what species he refers to.

**Botany. Gen. Char.**—The same as that of Amomum, but the tube of the corolla filiform, and the anther naked (Blume).


Rhizome with numerous fleshy fibres. Stems perennial, erect, smooth, jointed, enveloped in the spongy sheaths of the leaves; from six to nine feet high. Leaves subsessile on their sheaths, entire; length from one to two feet. Sheaths slightly villous, with a roundish ligula rising above the mouth. Scapes several (three or four) from the base of the stems, flexuose, jointed, branched, one to two feet long. Branches or racemes alternate, one from each joint of the scape, suberect, two or three inches long. Bracts solitary, oblong, smooth, membranaceous, striated, sheathing, one at each joint of the scape. Flowers alternate, short-stalked, solitary at each joint of the racemes, opening in succession as the racemes lengthen. Calyx, funnel-shaped, three-toothed at the mouth, about three-quarters of an inch long, finely striated, permanent. Tube of corolla slender, as long as the calyx; limb double, exterior of three, oblong, concave,

---

1 Pharmakopon.
2 Pages 265, 573, 603, 651. ed. Foes.
4 Lib. i. cap. 5.
nearly equal, pale greenish white divisions; inner lip obovate, much larger than the exterior divisions, somewhat curled at the margin, with the apex slightly three-lobed, marked chiefly in the centre with purple violet stripes. Filament short erect: anther double emarginate. Ovary oval, smooth: style slender: stigma funnel-shaped. Capsule oval, somewhat three-sided, size of a small nutmeg [], three-celled, three-valved. Seeds many, angular (Roxburgh).

Hab.—Mountainous part of the coast of Malabar.

Production.—Cardamoms are produced naturally or by cultivation. Between Travancore and Madura they grow without cultivation; and also at certain places in the hills which form the lower part of the Ghauts in Cadutinada and other northern districts of Malaya. The cardamoms of the Wynnaad, which are esteemed the best, are cultivated: the spots chosen for the cardamom farms are called Ela-Kandy, and are either level or gently-sloping surfaces, on the highest range of the Ghauts after passing the first declivity from their base. Before the commencement of the periodical rains, in June, the cultivators of the cardamom ascend the coldest and most shady sides of a woody mountain; a tree of uncommon size and weight is then sought after, the adjacent spot is cleared of weeds, and the tree felled close at its root. The earth, shaken and loosened by the force of the fallen tree, shoots forth young cardamom plants in about a month's time.

The quantities of cardamoms brought for sale at Malabar is about 120, or, according to another account, only 100 candies, from the following places:

<table>
<thead>
<tr>
<th>Candies of</th>
<th>Candies of</th>
</tr>
</thead>
<tbody>
<tr>
<td>640 lbs.</td>
<td>640 lbs.</td>
</tr>
<tr>
<td>Coorg</td>
<td>40</td>
</tr>
<tr>
<td>Wynnaad</td>
<td>57</td>
</tr>
<tr>
<td>Tamarachery</td>
<td>20</td>
</tr>
<tr>
<td>Cadutinada or Cartinaad</td>
<td>3</td>
</tr>
<tr>
<td><strong>120</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

The cardamoms of the Wynnaad are shorter, fuller of seed, and whiter, than those of Malabar, and sell for 100 rupees a candy more. Those of Coorg have fewer fine grains, but they have also fewer black or light ones. The cardamoms of Sersi (western part of Soonda) are inferior to those of Coorg.

Description.—The fruit of the *Elettaria Cardamomum* constitutes the small, officinal, Malabar cardamom (cardamoms, Ed.; *cardamomum minus*, Clusius, Matthiolus, Bontius, Geoffroy, Dale, Geiger, Th. Martius, and Guibourt; *cardamomum malabarense*). It is an ovate-oblong, obtusely triangular capsule, from three to ten lines long, rarely exceeding three lines in breadth; coriaceous, ribbed, grayish or brownish yellow. It contains many, angular, blackish or
reddish brown, rugose seeds (cardamomum, L.; cardamomum exorticatum, Offic.) which are white internally, have a pleasant aromatic odour, and a warm, aromatic, agreeable taste. 100 parts of the fruit yield 74 parts of seeds and 26 parts of pericarpial coats.

Three varieties of Malabar cardamoms are distinguished in commerce, viz. shorts, short-longs, and long-longs.

![Fig. 199. Malabar Cardamoms.](image)

a. Shorts: Malabar cardamoms properly so called: Petit cardamome (Guib.); ? Wynaad cardamom (Hamilton); ? ? Prima species Elettari planè rotunda et albicans. — From three to six lines long, and from two to three lines broad; more coarsely ribbed, and of a browner colour, than the other varieties. This is the most esteemed variety.

b. Short-longs: ? Secunda species Elettari oblongior sed vitior (Rheede). — Differ from the third variety in being somewhat shorter and less acuminate.

c. Long-longs: Moyen cardamome (Guib.); ? ? Tertia species Elettari vilissima et planè acuminata (Rheede). — From seven lines to an inch long, and from two to three lines broad: elongated, somewhat acuminate. This, as well as the last variety, is paler and more finely ribbed than var. a. shorts. The seeds also are frequently paler (in some cases resembling those of the Ceylon cardamom) and more shrivelled.

Composition.—The small cardamom was analyzed by Trommsdorff, in 1834⁷. He obtained the following results:—Essential oil 4·6, fixed oil 10·4, a salt of potash (malate?) combined with a colouring matter 2·5, fecula 3·0, nitrogenous mucilage with phosphate of lime 1·8, yellow colouring matter 0·4, and woody fibre 77·3.

1. Volatile or Essential Oil of Cardamom.—Is obtained from the seeds by distilling them with water. 50 lbs. of good short Malabar cardamoms yielded, at one operation, about fsviss. of oil for every lb. of fruit ⁸. It is colourless, has an agreeable odour, and a strong, aromatic, burning taste. Its sp. gr. is 0·943. It is very soluble in alcohol, ether, oils (both fixed and volatile), and acetic acid. It is insoluble in potash-ley. By keeping, it becomes yellow, viscid, and loses its peculiar taste and smell. It then detonates with iodine, and takes fire when placed in contact with concentrated nitric acid. On this oil depends the odour, flavour, and aromatic qualities of the seeds. Its composition is analogous to that of oil of turpentine, being C₁₀ H₂₁ O₂.

2. Fixed Oil of Cardamom.—Is soluble in alcohol, ether, and the oils, both fixed and volatile. Nitric acid, assisted by heat, reddens it. It has some analogy to castor oil.

Physiological Effects.—The effects of cardamoms are those of a very agreeable and grateful aromatic, devoid of all acridity. (See the effects of the Spices, p. 181.)

---

⁷ For some drawings of the minute structure of the seeds, vide Bischoff's *Handb. d. botanic. Termin.* Tab. xliii. fig. 1876 and 1994.
⁸ Th. Martius, *Pharmakogn.*
⁹ Rheede, pars xi. tab. 4, 5, and 6.
² Private information.
USES. — Cardamoms are employed partly on account of their flavour, and partly for their cordial and stimulant properties. They are rarely administered alone, but generally either as adjuvants or correctives of other medicines, especially of stimulants, tonics, and purgatives.

ADMINISTRATION.—Though cardamoms enter into a considerable number of pharmaceutical compounds, only two preparations derive their names from these seeds. They are the following:

1. TINCTURA CARDAMOMI, L. E. Tincture of Cardamoms. — (Cardamom seeds, bruised, $\frac{5}{14}$ ss. [sivss. Ed.]; Proof Spirit, Oij. Macerate for fourteen [seven, Ed.] days, and strain. “This tincture may be better prepared by the process of percolation, in the same way with the tincture of capsicum, the seeds being first ground in a coffee-mill,” E.) — This compound is agreeably aromatic. It is used as an adjunct to cordial, tonic, and purgative mixtures.—Dose, $\frac{1}{3}$ j to $\frac{1}{5}$ j.

2. TINCTURA CARDAMOMI COMPOSITA, L. E. D. Compound Tincture of Cardamoms.—(Cardamom seeds, bruised; Caraway seeds, bruised, of each $\frac{5}{14}$ ss. [51]. D.; Cochineal, powdered, $\frac{3}{7}$ j.; Cinnamon, bruised, $\frac{3}{5}$ ss. D.; Raisins [stoned], 3v.; Proof Spirit, 5v. [wine-measure, D.] Macerate for fourteen [seven, Ed.] days, and filter. “This tincture may also be prepared by the method of percolation, if the solid materials be first beat together, moistened with a little spirit, and left thus for twelve hours before being put into the percolator,” Ed. The Dublin College omits the cochineal and raisins.) — This tincture is used for the same purposes and the same doses as the former preparation, over which it has the advantage of a more agreeable flavour. Moreover, its colour often renders it useful in prescribing.

2. ELETTARIA MAJOR, Smith. — THE GREATER OR CEYLON ELETTARIA.

Alpinia Granum paradisi, Moon. (Fructus; Ceylon Cardamom, Offic.)

HISTORY.—The fruit of this plant was known to Clusius, who has noticed and figured it under the name of the Cardamomum majus vulgare.

BOTANY.—The flower has not yet been described, but the other parts of the plant are so similar to the corresponding parts of Elettaria Cardamomum, that I have felt no difficulty in referring this plant to the genus Elettaria. Sir James Edward Smith, who was ac-
quainted with the fruit only, observes, "we are persuaded they must belong to the same genus as the Malabar Cardamom."

Gen. Char.—See Elettaria Cardamomum, p. 1029.

Sp. Char.—Capsule lanceolate-oblong, acutely triangular, with flat sides. Calyx three lobed. (Smith.)

Rhizome with numerous fibres. Stem erect, smooth, enveloped by leaf sheaths. Leaves sessile on their sheaths, silky beneath, acuminate; the shorter ones lanceolate, the larger ones oblong-lanceolate; breadth 2 to 3 inches, length not exceeding 15 1/2 inches. Sheaths about half the length of the leaves, with a roundish ligula. Scape from the upper part of the rhizome, flexuose, jointed, nine inches long, branched; the branches alternate, one from each joint of the scape, suberect, half an inch long, supporting two or three pedicels of about 3-10ths of an inch. Bracts solitary, sheathing at each joint of the scape, withered; partial ones, solitary, ovate, acute. Flowers not present. Capsules one or two on each branch of the scape, with the permanent calyx attached to them; their characters are described in the text.

The plant from which the above description has been drawn, formed part of a collection made for me in Ceylon by my much lamented friend and pupil, the late Mr. Fred. Saner, Assistant-Surgeon in her Majesty's 61st regiment. He received it from Mr. Lear, Acting Superintendent of the Royal Botanic Gardens in Ceylon, whose letter, describing it as "Alpinia [Amomum] Granum paradisi," I have in my possession. I presume, therefore, that it is the plant which Mr. Moon, the former superintendent of the Gardens, has described under the same name. The following facts favour this conclusion:

1. Mr. Moon states that its Singhalese name is Ensal, a term which both Hermann and Burmann gave as the native name for Cardamom.

2. Mr. Moon states that it is cultivated at Candy. If the real grain of paradise plant were cultivated in Ceylon by any island for several years, but the word grain of paradise never occurs; and all the seeds imported into England under that name, I find, by the Custom-House returns, come from the western coast of Africa. On the other hand, the Ceylon Cardamom comes, as its name indicates, from that island.

It is probable, I think, that the plant which yields the grains of paradise of European commerce does not grow in the East; and that writers who have stated otherwise have confounded it with the plant yielding Ceylon Cardamom. But the term "grains of paradise" is so truly oriental in its character, that I suspect it was first applied to Ceylon Cardamoms, a supposition rendered pro-

---

bale by the much more agreeable flavour of the latter seeds, as well as by the observation of Dale, that grains of paradise were often substituted for the Ceylon Cardamom.

HAB. — Cultivated at Candy.

COMMERCE. — Bertolacci says that the Ceylon cardamom is collected chiefly in the Candian territory, and that he was informed it is not indigenous, but was introduced by the Dutch. The quantity exported from 1806 to 1813 inclusive varied from 4½ to 18 candies annually. Percival states that cardamoms grow in the south-east part of Ceylon, particularly in the neighbourhood of Matura. I am informed that occasionally Ceylon cardamoms come from Quillon.

DESCRIPTION. — The Ceylon cardamom, or, as it is sometimes termed in English commerce, the Wild Cardamom (cardamomum zeylanicum; cardamomum medium, Matth. and Geoffr.; cardamomum majus, Bont. and Dale; cardamomum majus vulgaris, Clusius; cardamomum majus officinarum, C. Bauhin; cardamomum longum, Th. Martius and Geiger; grande cardamome, Guib.) is a lanceolate-oblong capsule, acutely triangular, more or less curved, with flat and ribbed sides, about an inch and a half long and one-third of an inch broad. At one extremity we frequently find the long, cylindrical, permanent, three-lobed calyx; at the other, the fruit stalk, which is sometimes branched. The pericarp is coriaceous, tough, brownish, or yellowish ash-coloured, three-celled. The seeds are angular, rugged, have a yellowish red tinge, a fragrant and aromatic but peculiar odour, and a spicy flavour. The long diameter of the vitellus is parallel to that of the embryo. Th. Martins says that 100 parts of these fruits yield 71 parts of seeds, and 29 parts of pericarpial coats.

COMPOSITION, EFFECTS, AND USES. — Ceylon cardamoms have not been analysed. Their constituents, as well as their effects and uses, are doubtless analogous to those of the Malabar cardamom. Their commercial value is about one-third that of the latter.

OTHER MEDICINAL ZINGIBERACEÆ.

a. Cardamoms.

Besides the Cardamoms already mentioned there are several other kinds which I have met with, and which I notice in order to make the account of these fruits as complete as possible.

---

* It would appear, however, that the term Grain of Paradise is also applied, in Ceylon, to Alpinia Alliugus. (See Burmann’s Thesaurus, p. 54; and Sir J. E. Smith, in Rees’s Cyclopædia, vol. xxxix. art. Alpinia.)
* Account of Ceylon. 1805.
* Pharmakognosie.
1. **Alpinia alea**, Roscoe; *Hellenia alba*, Wild.; *Amomum medium*, Loureiro.

---

The fruit of this plant is called by Loureiro's *Tsao quo*. He gave specimens of it to the Muséum d'Histoire Naturelle of Paris. For my specimens I am indebted to Professor Guibourt, who calls the fruit the **Ovoid China Cardamom**.

The dried fruit is about the size and shape of a large nutmeg: it is ovoid, from ten to fourteen lines long, and from six to eight lines broad, rather rigid, striated longitudinally, yellowish-brown with a reddish tint [scarlet when recent: König]. Seeds numerous, very large, pyramidal, brown externally, flavour and odour terebinthinate; albumen white, embryo yellow.

---

**Ovoid China Cardamom.**

2. **Round China Cardamoms**, Guibourt.—"The Muséum d'Histoire Naturelle possesses two varieties of this fruit mixed together. The seeds, merely united in globular and coherent masses, are marked *Cao-Keu*; and the entire fruits *Tsao-Keou*.

---

a. **Large Round China Cardamom**, Guibourt (MS.)—Probably the fruit of *Amomum globosum*, Loureiro. The accompanying drawing (fig. 203) was made from specimens kindly lent me for that purpose by Professor Guibourt. **Capsule** thin, round or oval. **Seeds** in globular masses, marked, on the surface opposed to the pericarp, by a linear depression or groove. I have observed specimens in the Sloanian Collection, as also in a collection of Chinese medicines at the College of Physicians. On comparing Professor Guibourt’s specimen with the fruit of *Alpinia nutans* in Dr. Wallich’s Collection, in the possession of the Linnean Society, the two are scarcely distinguishable externally. The seeds, however, are quite dissimilar.

---

**Large Round Cardamom.**

a. Fruit.  
b. Globular mass of seeds.

b. **Small Round China Cardamom**, Guibourt (MS.)—I am indebted to Professor Guibourt for my specimens of this fruit. **Capsules** ovate, oblong, obtusely triangular. **Seeds** have no linear depression or groove as those of the larger variety, and by the absence of this they may be readily distinguished from the preceding; coherent in masses, which are three-lobed, not quite globular. In my specimens the epicarp is eroded. The flavour of the seeds is aromatic and terebinthinate, but not powerful.

---

**Small Round China Cardamom.**

a. Fruit.  
b. Globular mass of seeds.
3. Black Cardamoms, Gærtner.—For specimens of these I am also indebted to Professor Guibourt. It is unknown from what plant it is obtained. **Capsule** larger than the short Malabar cardamoms, acuminate at its two extremities, and formed, as it were, of two obtusely-triangular pyramids joined base to base. **Pericarp** ash-brown, aromatic, but less so than the seeds (Guibourt). **Seeds** angular, brown, slightly aromatic, but devoid of the terebinthinate flavour.

4. *Cardamomum majus*, Burgess.—In Dr. Burgess’s collection at the College of Physicians is a capsule (in a bad state of preservation) marked “*Cardamomum majus*.” Its size and shape are analogous to the grain-of-paradise pod (fig. 194). It has a fibrous tuft (remains of calyx?) at one extremity, and is much split at the other. The seeds are angular, oblong, larger than those of Malabar cardamoms, shining brownish yellow, and have a large concave depression (hilum) at one extremity. They have a warm aromatic flavour and an agreeable odour, somewhat analogous to that of the oil of lemon-grass.

5. *Alpinia Galanga*, Roxburgh. — The rhizome of this plant constitutes the *Galangal Root* (*Radix Galangae*) of English druggists. It occurs in pieces which are as thick as the finger, seldom exceeding three inches in length, cylindrical or somewhat tuberous, often forked, sometimes slightly striated longitudinally, and marked with whitish circular rings. Externally its colour is reddish-brown; internally pale, reddish-white. Its odour is agreeably aromatic; its taste pungent and aromatic. It is the rhizome of *Alpinia Galanga*, Rox. It has been analyzed by Bucholz and by Morin. The former obtained Volatile Oil 0.5, Acrid soft Resin 4.9, Extractive 9.7, Gum 41.5, Woody fibre 21.6, Water 12.3, Loss 1.3. Its effects, uses, and doses, are analogous to ginger.

6. *Curcuma Zedoaria*, Roxburgh.—The sliced tuber of this plant is the *Zedoary Root* (*Radix Zedoarias*) of English druggists, which appears to me to agree with Professor Guibourt’s description of *Round Zedoary* (*Zedoaria rotunda*). It occurs in segments (halves, quarters, or flat sections) of a roundish or ovate tuber. The external portion of the tuber is marked by the remains, membranes, and fibres, and is of a pale brownish-grey or whitish appearance. When cut it presents a yellowish marble appearance, not very dissimilar to the cut surface of rhubarb. It has a warm, aromatic, bitter taste, and an aromatic odour. It has been analyzed by Bucholz and by Morin. Its constituents, according to the latter chemist, are—Volatile oil, Resin, Gum, Starch, Woody fibre, Vegeto-animal Matter (?), Osmazone (?), free Acetic Acid, Acetate of potash, Sulphur, and in the ashes Carbonate and Sulphate of potash, Chloride of potassium, Phosphate of Lime, Alumina, Silica, Oxides of Iron and Manganese. It possesses aromatic and tonic properties. It is less heating than ginger and galangal, and is more analogous to turmeric.

7. *Zingiber Cassamunae*, Roxburgh.—This perhaps is the plant from whence
is derived the root known by English druggists as Cassamunar Root, and which they regard as identical with Zerumbet Root\(^n\). It appears to me to be the Turmeric-coloured Zedoary of Ainslie\(^c\). It occurs in segments (halves or quarters) of an ovate tuber (which in the dried state must have been about the size of a pigeon’s egg), the external surface of which is marked with circular rings and the bases of the root-fibres, and is of a dirty turmeric-yellow colour. Internally it is reddish-brown, and has some resemblance, in its colour and pellucidity, to a fresh-fractured surface of Socotrine aloes. Its flavour is warm and aromatic; its odour is aromatic. It has not been analyzed. Its effects must be similar to those of ginger. It was at one time used in convulsive and other cerebral diseases\(^o\).

8. Curcuma Zerumbet, Roxburgh.—This I suspect to be the origin of the Zerumbet Root given me by Dr. Royle. It is very similar in shape to a curved or arched piece of long turmeric. Its colour is yellowish-grey.

**Order XX.—Orchidaceae, R. Brown.—The Orchis Tribe.**

Orchides, Jussieu. Orchidaceae and Vanillaceae, Lindley.

This remarkable order of gynandrous monocotyledons is, in reference to its dietetical and medicinal properties, of little importance.

The tuberous or palmate roots abound in gummy and, at certain times, in farinaceous matters, which render them nutritious, emollient, and demulcent. Salep is the prepared and dried roots of several orchideous plants, and is sometimes sold in the state of powder. Indigenous Salep is procured from Orchis mascula, O. latifolia, and other native plants of this order\(|\). Oriental Salep is procured from other Orchideae. Professor Royle states that the salep of Cachmere is obtained from a species of Eulophia. The notion of the aphrodisiac properties of salep seems to be founded on the doctrine of signatures.

The Vanilla of the shops is the fruit of Vanilla aromatica, Sw., a native of Peru, Mexico, Jamaica, and Cuba. Schiede\(^s\) mentions three other Mexican species (V. sativa, V. sylvestris, and V. Pompona) which yield vanilla. Notwithstanding the strong odour of this fruit, no volatile oil can be obtained by distillation\(|\). The white acicular crystals found on the fruit are a kind of solid volatile oil. Vanilla is employed in this country for flavouring chocolate, ice-creams, &c. But on the continent it is used as a medicinal agent. It is an aromatic stimulant; has an exhilarating effect on the mental functions, prevents sleep, increases the energy of the muscular system, and excites the sexual feelings\(|\). It has been administered in asthenic fevers, rheumatism, hysteria, impotence of the male, melancholy, &c. The dose of it is from 8 to 12 grains\(|\).

---

\(n\) Private information; also Gray, Pharmacology.
\(n\) Materia Indica, vol. i. p. 490.
\(c\) Sir Hans Sloane, Phil. Trans. vol. xxii. No. 264, p. 580.
\(\) Dr. Percival, On the Preparation, Culture, and Use of the Orchis Root. 1773.
\(|\) See Buchholz’s analysis in Buchner’s Repert. ii. 253.
\(|\) Sundelin, Heilmittelkunde, ii. 203, 3\(^a\) Aufl.
\(|\) Vogt. Pharmak. ii. 600, 2 Aufl.
3. **EXOGENÆ, De Cand.—EXOGENS.**

**DICOTYLEDONES, Jussieu.**

**Fig. 207.**

**Exogens, or Dicotyledons.**

- **v** Transverse section of a dicotyledonous stem, showing medullary rays, and the distinction of bark, wood, and pith.
- **w** Embryo with two cotyledons.
- **x** Embryo with four cotyledons.
- **y** Embryo with many cotyledons.
- **z** Stem and leaves of a dicotyledon, showing the articulation and the anastomosing veins of the leaves.

**Essential Characters.**—Trunk, consisting of bark, wood, and pith, placed one within the other; the pith being innermost. Bark, composed of strata (the younger and inner being called *lber*), increasing by the deposit of new cortical matter on its inner side. Wood, consisting of ligneous strata, traversed by medullary rays, and increasing by the deposit of new woody matter on its outer side (exogenous growth); the older and inner strata are called *duramen*, or *perfect wood*; the younger and outer strata are termed *alburnum*, or *sap wood*. Leaves articulated with the stems; their veins branching and anastomosing (*angulinerv*; *reticulated*). Flowers, if with a distinct calyx, often having a quinary arrangement. Embryo with two or more cotyledons (*dicotyledonous*); if two, they are opposite; if more than two, they are verticillate; radicle naked; *i.e.* elongating, without penetrating any external case (*exorrhizous*).

**ORDER XXI.—CYCADACEÆ, Lindl.—THE CYCAS TRIBE.**

**CYCADÆ, Richard and R. Brown.**

**Fig. 208.**

Cycas revoluta, or the Japan Sago-tree.

I notice this order for the purpose of stating, that a feculent matter is obtained from the soft centre of some species of *Cycas* (as *C. circinalis*, *C. revoluta*, *C. inermis*). This fecula (*Japan sago*) is quite unknown to me; and I doubt whether it ever reaches this country.

---

* Consult on this subject Schenk's Naturgeschichte der vorzüglichsten Handelsgewächsen, 4to. Bd. 24, S. 139, Taf. Alvi.
ORDER XXII.—CONIFERÆ, Jussieu.—THE FIR TRIBE.

Conaceæ or Pinaceæ, Lind.

Essential Characters.—Flowers monoeccious or dioecious. Males monandrous or monadelphous; each floret consisting of a single stamen, or of a few united, collected in a deciduous amentum, about a common rachis; anthers two-lobed or many-lobed, bursting outwardly; often terminated by a crest, which is an unconverted portion of the scale out of which each stamen is formed; pollen large, usually compound. Females in cones. Ovary spread open, and having the appearance of a flat scale destitute of style or stigma, and arising from the axil of a membranous bract. Ovule naked; in pairs on the face of the ovary, having an inverted position, and consisting of one or two membranes, open at the apex, and of a nucleus. Fruit consisting of a cone formed of the scale-shaped ovaries, become enlarged and indurated, and occasionally of the bracts also, which are sometimes obliterated, and sometimes extend beyond the scales in the form of a lobed appendage. Seed with a hard crustaceous integument. Embryo in the midst of fleshy oily albumen, with two or many opposite cotyledons; the radicle next the apex of the seed, and having an organic connexion with the albumen.—Trees or shrubs, with a branched trunk abounding in resin. Wood, with the ligneous tissue marked with circular disks. Leaves linear, acerose or lanceolate, entire at the margins; sometimes fascicled in consequence of the non-development of the bracts to which they belong; when fascicled, the primordial leaf to which they are then axillary is membranous, and enwraps them like a sheath. (Lindley.)

Properties.—Every part of coniferous plants contains an oleo-resinous juice, which yields by distillation a volatile oil, differing often in odour but agreeing in composition in each species. This juice is a local irritant, and acts as a powerful stimulant to the vascular system and the organs of secretion (especially the kidneys and the mucous membranes). Moreover, it appears to possess a specific influence over the nervous system: for oil of turpentine, in large doses, has operated as an inebriant and soporific; savin is said by Orfèla to act on the nervous system; and the leaves of the yew are narcotic.

1. PI'NUS, De Candolle.—THE PINE.

Pinus sylvestris, L. D.—Various species, E.

Sex. Syst. Monoeia, Monadelphia.


BOTANY. Gen. Char.—Flowers monoeccious. MALES:—catkins racemose, compact and terminal; squamose; the scales staminiferous at the apex. Stamens two; the anthers one-celled. FEMALES:—catkins or cones simple, imbricated with acuminate scales. Ovaries two. Stigmas glandular. Scales of the cone oblong, club-shaped, woody; umbilicato-angular at the apex. Seeds [nuts, De C.] in pairs, covered with a sharp-pointed membrane. Cotyledons digitato-partite. Leaves two or many, in the same sheath (De Candolle and Dubuy, Bot. Gall.);—Hardy, evergreen trees.

Species. 1. PI'NUS SYLVESTRIS, Linn. L. D.; Wild Pine or Scotch Fir.—Leaves in pairs, rigid. Cones ovato-conical, acute; young ones stalked, recurved, as long as the leaves; generally in pairs. Crest of the anthers very small. Embryo five-lobed. (Bot. Gall.)—Highlands of Scotland, Denmark, Norway, and other northern
countries of Europe. Flowers in May and June. A tall, straight, hardy, long-lived tree, determinately branched. Its wood is the red or yellow deal. It yields common turpentine, tar, and pitch.

2. *Pinus Pinaster*, Aiton, Lambert; *P. maritima*, De Cand.; *The Pinaster* or *Cluster Pine*.—Leaves twin, very long, rigid, pungent, furnished at the base with a reflexed scale. Cones oblong-conical, obtuse, very smooth, bright, shorter than the leaves. Scales bristly (Bot. Gall.)—Southern maritime parts of Europe. Very abundant in the neighbourhood of Bordeaux, and between this city and Bayonne.

Fig. 209. *Pinus sylvestris.*
Fig. 210. Branch and cones of ditto.
Fig. 211. Branch and cones of *Pinus Pinaster.*

It is a much larger tree than the Scotch fir. Flowers in May. It yields *Bordeaux* turpentine, galipot, tar, and pitch.

3. *Pinus palustris*, Lambert; *the Swamp Pine*.—Leaves three, very long. Cones subcylindrical, armed with sharp prickles. Stipules pinnatifid, ragged, persistent (Lambert).—A very large tree, growing in dry sandy soils, from the southern parts of Virginia to the Gulf of Mexico. “Its mean elevation is 60 or 70 feet, and the diameter of its trunk about 15 or 18 inches for two-thirds of this height. The leaves are about a foot in length, of a brilliant green colour, and united in bunches at the ends of the branches. The names by which the tree is known in the Southern States are long-leaved pine, yellow pine, and pitch pine; but the first is the most appropriate, as the last two are applied also to other species. This tree furnishes by far the greater proportion of turpentine, tar, &c. consumed in the United States, or sent from this to other countries.”

*United States Dispensatory.*
4. *Pinus Teda*, Lambert; the Frankincense Pine.—Abundant in Virginia. Yields *common turpentine*, but of a less fluid quality than that which flows from the preceding species.

5. *Pinus Pinea*, Lambert, De Candolle; the Stone Pine.—Grows in the south of Europe and northern part of Africa. Yields the cones called, in the shops, *pignoli pines*, the seeds of which, termed *pine nuts* (*πυτιλίδα*, Diosc.; *pityida*, Pliny; *nuclei pineae*, *pineoli*) are used as a dessert.

6. *Pinus Pumilio*, Lambert; the Mugho or Mountain Pine.—A native of the mountains of the south of Europe. An oleo-resin, called *Hungarian balsam* (*balsamum hungaricum*), exudes spontaneously from the extremities of the branches and from other parts of the tree. By distillation of the young branches with water, there is obtained in Hungary an essential oil, called *Krumholzöl*, or *Oleum Templinum*.

7. *Pinus Cembra*, Lambert; De Candolle; the Siberian Stone Pine.—The seeds, like those of *Pinus Pinea*, are eaten. By distillation the young shoots yield *Carpathian Balsam* (*Balsamum Carpathicum*; *B. Libani*).

**Abies, De Candolle.—The Fir.**

*Pinus Abies* and *P. balsamea*, *L. D.*—*Abies excelsa* and *A. balsamea*, *E.*

**Sex. Syst.** Monoeica, Monadelphia.

(*Abietis resina, L.; Thus, D.; Pix Abietina, L.; Pix Burgundica, E. D.; Terebinthina Canadensis. L. Balsamum Canadense, E. D.*)

**Botany. Gen. Char.**—*Flowers monoeious. MALES—catkins solitary, not racemose; the scales staminiferous at the apex. Stamens two; the anthers one-celled. FEMALES—catkins simple. Ovaries two. Stigmas glandular. Scales of the cone imbricated; thin at the apex, rounded, (neither thickened, angular, nor umbilicated on the back). Cotyledons digitato-partite. Leaves solitary in each sheath (Bot. Gall).*

**Species.**—1. *Abies excelsa*, De Cand. E.; *Pinus Abies*, Linn. L.D.; *the Norway Spruce Fir.*—*Leaves tetragonal. Cones cylindrical; the scales rhomboidal, flattened, jagged, and bent backwards at the margin (Bot. Gall).*—A native of Germany, Russia, Norway, and other parts of Europe; also of the northern parts of Asia. Commonly cultivated in England. Flowers in May and June. A very lofty tree, growing sometimes to the height of 150 feet. It yields, by spontaneous, exudation *Common Frankincense* (*Abietis resina, L.; Thus, D.*), from which is prepared *Burgundy Pitch* (*Pix Abietina, L., Pix Burgundica, E. D.*)

Abies excelsu.

Virginia, and Carolina. Yields Canada Balsam \((\text{Terebinthina Canadensis, L.}; \text{Balsamum Canadense, E. D.})\)

3. \(\text{Abies Canadensis}\), Lindley; \(\text{Pinus Canadensis}\), Linn., Lambert; the Hemlock Spruce Fir.—Said to yield an oleo-resin analogous to Canada balsam.

4. \(\text{Abies Picea}\), Lindley; \(\text{Abies Pectinata}\), De Candolle; \(\text{Pinus Picea}\), Linnaeus; the Silver Fir.—Mountains of Siberia, Germany, and Switzerland. Yields Strasburgh Turpentine.

5. \(\text{Abies Nigra}\), Michaux; \(\text{Pinus Nigra}\), Lambert; the Black Spruce Fir.—The concentrated aqueous decoction of the young branches is Essence of Spruce, used in the preparation of Spruce Beer.

3. \(\text{La'rix Europæa, De Candolle.}—\text{The Common Larch.}\)

\(\text{Abies Larix, Lam. E.}; \text{Pinus Larix, Linn. D.}\)

\(\text{Sex. Syst. Monocia, Monadelphia.}\)

\(\text{(Terebinthina Veneta, L. D.)}\)

\(\text{Botany. Gen. Char.}—\text{Flowers monoecious. Character as in Abies;}\)

\(\ast \text{Loudon's Encycl. of Plants.}\)

\(\gamma \text{United States Dispensatory.}\)
but the **Cotyledons** are simple, and never lobed. **Cones** lateral. **Leaves**, when first expanding, in tufted fascicles, becoming somewhat solitary by the elongation of the new branch (*Bot. Gall.*)

**Sp. Char.** — **Leaves** fascicled, deciduous. **Cones** ovate-oblong. **Edges of scales** reflexed, lacerated. **Bracts** panduriform. (*Lambert.*)

**Hab.** — Alps of Italy, Switzerland, Germany, Siberia, &c. Cultivated in woods.

**Products.** — This species yields **Larch** or **Venice turpentine**. When the larch forests of Russia take fire, a gum issues forth from the medullary part of the trunks, during combustion, which is called **Orenburgh gum** (*gummi orenburgense*). A saccharine matter exudes from the larch, about June, which is called **Manna of the Larch**, or **Manna de Briançon**. Lastly, a fungus, called **Polyporus Laricis**², is nourished on this tree.

**MEDICINAL SUBSTANCES OBTAINED FROM THE PRECEDING CONIFEROUS PLANTS.**

The term **Turpentine** (*Terebinthina*) is ordinarily applied to a liquid or soft solid oleo-resinous juice of certain coniferous plants, as well as of the **Pistacia Terebinthus**, a plant of the order **Terebintacea**, Juss. Indeed this last-mentioned plant, **Pistachia Terebinthus**, is probably the true **Terebinthus** of the ancients (*Tepfiivdog*, Theoph. and Dioscorides). When submitted to distillation, these juices are resolved into a **Volatile Oil** (*Oleum Terebinthinae*) and a **Resinous Residuum**. The roots and other hard parts of coniferous trees yield, by a kind of **distillatio per descensum**, the thick liquid called **Tar**, from which **Pitch** is procured. Hence it will be convenient to speak of the coniferous terebinthinates under four heads: — 1st, the **oleo-resinous juices**; 2dly, the **volatile oil** obtained therefrom by distillation; 3dly, the **resinous residuum**; 4thly, **tar** and **pitch**.

1. **Oleo-Resinous Terebinthinæ.** — **Terebinthinate Oleo-Resins.**

**Preparation; Properties; and Composition.** — At first these oleo-resins are liquid, but by age and exposure to the air they become, more or less speedily in the different varieties, solid, partly by the volatilization, partly by the resinification, of the volatile oil. They have a certain general similarity in taste and odour. They soften and become very fluid by heat, readily take fire in the air, and burn with a white flame, and, if the supply of air be limited, with the copious deposition of finely-divided carbon (*lamp black*). They are almost completely soluble in alcohol and ether; and yield, by distillation, a volatile oil, which passes over (usually with a small quantity of succinic acid?), and a resinous residuum. Water acquires a terebinthinate flavour when digested with them; and by the aid of the yolk or the white of an egg, or still better by that of vegetable mucilage, forms an emulsion with them.

---

² Vide p. 888.
1. **Common Turpentine** (Terebinthina vulgaris, L. D.)—Under this name we find oleo-resins brought from various parts of the world, obtained from different species of Pinus, and, though agreeing in the main in their properties, possessing certain distinctive characters. At the present time the London market is almost exclusively supplied from New York, a small quantity only being imported from Bordeaux. In the years 1830 and 1831, the quantities of turpentine (not of greater value than 12s. per cwt.) which were imported from the United States and France, were as follows:—

<table>
<thead>
<tr>
<th>Year</th>
<th>From France</th>
<th>United States of America</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cwt.s</td>
<td>qrs.</td>
<td>lbs.</td>
</tr>
<tr>
<td>1830</td>
<td>234,747</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1831</td>
<td>317,895</td>
<td>0</td>
<td>26</td>
</tr>
</tbody>
</table>

**American or White Turpentine** (the Térèbentine de Boston of the French) is procured chiefly from the Pinus palustris, partly also from the *P. Teda*, and perhaps some other species inhabiting the Southern States. In former times large quantities were collected in New England; but the turpentine trees of that section of the Union are said to be nearly exhausted; and our commerce is almost exclusively supplied from North Carolina and the south-eastern parts of Virginia.

The method of procuring this turpentine is as follows:—A hollow is cut in the tree, a few inches from the ground, and the bark removed for the space of about 18 inches above it. The turpentine runs into this excavation from about March to October; more rapidly, of course, during the warmer months. It is transferred from these hollows into casks. It is imported from New York in casks; those from North Carolina holding 2 cwts., while those from South Carolina contain 2\(\frac{1}{2}\) cwts. It is yellowish-white, with an aromatic odour, and a warm, pungent, bitterish taste. It is translucent or opaque. Its consistence varies, being semifluid, or, in cold weather, that of a soft solid. It contains various impurities (leaves, twigs, chips, &c.) That got from the first tappings is the best, and is called Virgin Turpentine. Recent American turpentine is said to yield 17 per cent. of essential oil.

**Bordeaux Turpentine** is obtained by making incisions in the *Pinus Pinaster*, Lambert (*P. maritima*, De Candolle), and collecting the turpentine in hollows at the foot of the tree. Every month these hollows are emptied, and the oleo-resin conveyed in pails to a reservoir. In this state it is called soft gum (gomme molle). It is purified either by heating it in large boilers, and filtering through straw (térèbenthine galipot), or by exposing it in a barrel, the bottom of which is perforated by holes, to the sun; the liquid which drains through is called térébenthine au...
soleil. The last method yields the best product, since less volatile oil is dissipated by it. The turpentine which flows during the winter is called galipot in Provence, barras in Guienne. It is in the form of semi-opaque, solid, dry crusts of a yellowish-white colour, a terebinthinate odour, and a bitter taste.

Bordeaux turpentine is whitish, thickish, and turbid. It has a disagreeable odour, and an acrid, bitter, nauseous taste. On standing it separates into two parts: one thinner, yellow, and almost transparent; another thicker, whitish, and of the consistency of thick honey, having a granular consistence. Bordeaux turpentine readily becomes hard and dry by exposure to the air. It enjoys, with balsam of copaiva, the property of solidifying with magnesia, and in this respect is distinguished from Strasburgh turpentine.

Common turpentine has been analyzed by MM. Moringlane, Duponchel, and Bonastre, and by Unverdorben. The last-mentioned chemist found it to consist of two Volatile Oils (oil of turpentine), Pinic acid, a little Sylvic acid, a trace of an Indifferent Resin not soluble in oil of petroleum, and a small quantity of Bitter Extractive. The quantity of volatile oil varies from 5 to 25 per cent. of the weight of the turpentine.

2. Larch or Venice Turpentine (Terebinthina veneta, E. D. Terebinthina laricea).—Obtained from Larix europaea, De Cand. by boring the trunks of the trees, and adapting to each hole a wooden gutter, which conveys the juice into a tub or trough, from which it is afterwards withdrawn for filtration.

Through the kindness of Professor Guibourt I have received an authentic sample of larch turpentine. It was collected in the wood of the Bishop of Maurienne, in Savoy, by order of the bishop, and at the urgent solicitation of M. Bonjean, Pharmacien, naturalist of Chambury. The same kind of turpentine, collected in Switzerland (Swiss turpentine) is sold in Paris as Strasburgh turpentine (Térébenthé de Strasbourg), and was formerly called Venice turpentine. It is a thick and consistent fluid, flowing with difficulty, is sometimes transparent, but more frequently cloudy, has a yellow or greenish-yellow tint, an odour which is peculiar, not very agreeable, weaker than that of either Strasburgh or common turpentine, but less disagreeable than the latter, and an acrid, very bitter taste. It has little or no tendency to concrete by keeping—a property known to Pliny, and which distinguishes it from common turpentine.

A factitious substance (Terebinthina veneta factitia) is sold by London druggists for Venice turpentine. It is prepared by mixing \( \frac{1}{2} \) lb. of oil of turpentine with lb. j. of black rosin. A similar prepa-
ration is found in the shops of the United States of America, and is probably identical with that imported from America under the name of Venice turpentine. It is, in fact, absurd in the Dublin and Edinburgh Colleges to retain Venice turpentine in their pharmacopoeias, seeing that not a grain of that oleo-resin has been imported (commercially) for many years past.

Berzelius and Unverdorben have submitted Venice turpentine to examination, and with the following results:

<table>
<thead>
<tr>
<th>Berzelius's Analysis</th>
<th>Unverdorben's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oil of turpentine, probably composed of two oils.</td>
<td>1. Volatile oil, which readily distils.</td>
</tr>
<tr>
<td>2. Resin insoluble in cold oil of petroleum.</td>
<td>2. Volatile oil, which distils less readily, and has a tendency to resinify.</td>
</tr>
<tr>
<td>3. Resin soluble in cold oil of petroleum.</td>
<td>3. Succinic acid (small quantity).</td>
</tr>
</tbody>
</table>

**Old Venice Turpentine.**

<table>
<thead>
<tr>
<th>Fresh Venice Turpentine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larch resin yields from 18 to 25 per cent. of volatile oil.</td>
</tr>
</tbody>
</table>

3. **Strasburg Turpentine** (Terebinthina argentaratisis; Térébenthine au citron, ou Térébenthine d'Alsace, Guib.)—This is obtained from Abies Picea. The peasantry, in the vicinity of the Alps, collect it by puncturing the vesicles adhering to the bark with sharp-pointed hooks, and receiving the juice in a bottle. It is afterwards filtered through a rude kind of bark funnel.

Strasburgh turpentine is very fluid, transparent, of a yellowish colour, has a very agreeable odour of citron, and a taste moderately acid and bitter. It consists, according to Caillot, of Volatile Oil 33.5, Resin insoluble in alcohol 6.20, Abietin (a crystallizable resin) 10.85, Abietic acid (? Pinic and Sylvic acids) 46.39, Extractive and Succinic acid 0.85, Loss (principally volatile oil) 2.21.

4. **Canadian Turpentine or Canada Balsam** (Terebinthina canadensis, L. Balsamum canadense, E. D.) is obtained from Abies balsamea in Canada and the state of Maine. Between the bark and the wood of the trunks and branches of these trees are vesicles containing this oleo-resin, which exudes when they are broken, and is received in a bottle. It is imported in casks containing each about one cwt. In 1838 the quantity imported was 7259 lbs. When fresh it has the consistence of thin honey, but by age gradually solidifies; it is yellow, transparent, very tenacious, of a peculiar and agreeable terebinthinate odour, and of a slightly bitter, somewhat acid, taste.

Canada balsam has been analyzed by Bonastre, who obtained the following results:—Volatile oil 18.6, Resin easily soluble in alcohol.

---

United States Dispensatory.
Dr. Maton, in Lambert's Descrip. of the genus Pinus; and Dr. A. T. Thomson, London Dispensatory.
Berzelius, op. cit.
Duhamel, Traité des Arbres, t. i. p. 9.
Journ. de Pharm. xvi. p. 436.
Trade List for 5th Jan. 1839.
Journ. de Pharm. viii. 337.
40°0, Subresin difficult soluble 33:4, Fibrous Coumchonc, like Subresin, 4°0, Acetic acid traces, Bitter Extractive and Salts 4°0.

5. **Common Frankincense** (*Abietis resin, L. Thus. D.*). This is the spontaneous exudation of *Abies communis*. It concretes in distinct drops, or tears, which are compact, opaque, of a deep yellow colour. What is found in the shops of London is a soft solid, having considerable resemblance to the dried opaque portion of common turpentine. The turpentine (?) of the *Abies communis* has been analyzed by Caillot,' who obtained the following results:—Volatile Oil 32:00, Resin insoluble in alcohol 7°40, Abietin (a crystallizable resin) 11°47, Abietic acid (?) Pinic and Sylvic acids) 45°37, Extractive and Succinic acid 1°22, Loss (principally volatile oil) 2°54.

Physiological Effects.—The effects of terebinthinate substances have been before noticed (p. 182). Locally they operate as irritants. Applied to the skin they cause rubefaction, and sometimes a vesicular eruption. Swallowed they give rise to a sensation of warmth at the stomach, in large doses occasion sickness, and promote the peristaltic movement of the intestines. After their absorption they operate on the general system as stimulants, and excite the vascular system, especially of the abdominal and pelvic viscera. Their influence is principally directed to the secreting organs, more especially to the mucous membranes and the urinary apparatus. They act as diuretics, and communicate a violet odour to the urine. This odour depends on a portion of the oil having undergone a slight change in its nature during its passage through the system. Part of the oil, however, is thrown off unchanged; for Moiroud has observed, that at the same time that the turpentine cause a violet odour, they flow in part with the urine. "I have verified," says he, "this double phenomenon on many horses, to whom turpentine has been given, for some days, in the enormous dose of ten or twelve ounces." But the kidneys are not the only parts engaged in getting rid of the absorbed turpentine. All the secreting organs, but more especially the bronchial surfaces and the skin, are occupied in the same way. By these the oil is exhaled apparently unchanged, or at least with its usual odour. During the circulation of the terebinthinate particles in the system, they exercise a local influence over the capillaries and secrening vessels, in the vital activity of which they effect a change. In certain morbid conditions, this change is of a most salutary nature. In catarrhal affections of the mucous membranes the secrening vessels become constricted under the use of terebinthinites, and the discharge is, in consequence, checked.

The most important, because by far the most active, constituent of the terebinthinate oleo-resins is volatile oil. Hence their effects are almost identical with those of the latter. Some slight differences, however, are to be noticed. They are less rapidly absorbed, are more

---

permanent in their operation, confine their influence principally to
the apparatus of organic life, not affecting, at least to the same extent,
the brain, and act less powerfully on the cutaneous system.

We have few data on which to rely in judging of the comparative
influence of the different terebinthinates; but as their most active
constituent is volatile oil, we may fairly infer that those which possess
the greatest liquidity, and which, in consequence, contain the largest
quantity of oil, are the most powerful preparations. Venice and
Strasburgh Turpentines stand in this respect pre-eminent. Canada
Balsam is valuable on account of its purity and agreeable flavour.
In activity, purity, and flavour, Common Turpentine holds the
lowest rank.

Uses.—The terebinthinate oleo-resins are, with some exceptions,
applicable for the same purposes as the volatile oil. The following
are the principal cases in which they are employed:

1. *In mucous discharges from the urino-genital organs; as gonor-
rhoea, gleet, leucorrhoea, and chronic cystirrhoea.*

2. *In chronic catarrh, both mucous and pituitous, occurring in old
persons of a lax fibre and lymphatic temperament.*

3. *In chronic mucous diarrrhoea, especially when accompanied with
ulceration of the mucous follicles.*

4. *In colic and other cases of obstinate constipation, Cullen found
a turpentine emulsion used as a clyster “one of the most certain
laxatives.”*

5. *In chronic rheumatism, especially sciatica and lumbago, the tur-
pentines are occasionally used.*

6. *As detergents and digestives they have been sometimes applied
to indolent and ill-conditioned ulcers.*

Administration.—The dose of the terebinthinate oleo-resins is
from a scruple to a drachm. They are given in the form of pill, emul-
sion, or electuary. To give the softer kinds a consistence fit for
making pills, liquorice powder may be added to them. Bordeaux
turpentine, mixed with about one-twenty-eighth part of its weight
of calcined magnesia, solidifies in about twelve hours: the acid resins
of this turpentine combine with the magnesia, and form solid resi-
nates, which absorb the volatile oil. A turpentine emulsion is
made with the yolk of egg, or mucilage of gum Arabic, sugar, and
some aromatic water. To form an electuary the turpentine is mixed
with sugar or honey. An emulsion, containing from half an ounce
to an ounce of turpentine, may be used as a clyster, in obstinate con-
stipation, ascarides, &c.

The terebinthinate oleo-resins yield several officinal substances,
and enter into several preparations:

1. *Terebinthina vulgaris, L. D. yields Oleum Terebintinae, L. E. D. and
Resina, L. E. D.; and enters into the composition of Emplastrum Galbani,
L. and Unguentum Elemi, L.*

2. *Terebinthina veneta, E. D. is a constituent of Emplastrum Cantharidis
compositum, E. and Unguentum Infusi Cantharidis, E.*

*Treat. of the Mat. Med.*

2. Oleum Terebinthinææ, L. E. D.—Oil of Turpentine.

This essential oil is frequently, though erroneously, called Spirits of Turpentine.

Preparation.—It is obtained by submitting to distillation a mixture of American turpentine (which has been melted and strained) and water in due proportions, in the ordinary copper still, with a naked fire. The distilled product is found to consist of oil of turpentine swimming on water; the residue in the still is resin. If no water be employed a much higher temperature is required to effect the distillation, and danger is thereby incurred of causing empyreuma. Mr. Flockton, a large distiller of turpentine in this metropolis, informs me that the average quantity of oil yielded by American turpentine is from 14 to 16 per cent. He also tells me that Bordeaux turpentine yields an oil having a more disagreeable odour, and a resin of inferior quality.

The Dublin College directs oil of turpentine to be prepared as follows:—Take of common Turpentine, by weight, lbv.; Water, Oiv. [wine measure]. Distil the oil from a copper alembic; yellow resin will remain after the distillation.

To deprive it of all traces of resinous and acid matters, oil of turpentine should be re-distilled from a solution of caustic potash, and this is actually done, as Mr. Flockton informs me. The British Colleges, however, direct it to be purified by distillation with water only.

The directions given by the British Colleges for the preparation of Rectified Oil of Turpentine (Oleum Terebinthinææ purificatum, L. E. Oleum Terebinthinææ rectificatum, D.) are as follows:—

Take of Oil of Turpentine, Oj. [Oij. wine measure, D.]; Water, Oiv. [wine measure, D.] Let the oil cautiously distil.—The Dublin College directs a pint and a half only of the oil to be distilled.

Properties.—Pure oil of turpentine is a colourless, limpid, very inflammable fluid. It has a peculiar, and, to most persons, disagreeable odour, and a hot taste. When pure it is neutral to test paper. Its sp. gr. is 0·86 at about 70° F. It boils at about 314° F.; the density of its vapour is 4·76 (Dumas). When moist and cooled down to 1°4 F. it deposits, after a considerable time, a crystallized hydrate compound of C^10 H^8 + 2 Aq. It is very slightly soluble in hydrated alcohol. Exposed to the air, it absorbs oxygen, becomes yellowish, and somewhat denser, owing to the formation of resin (pinic and sylvic acids). Crystals (hexahydrate of oil of turpentine) sometimes form in old hydrous oil of turpentine. By submitting to distillation a mixture of water and old oil, an aqueous liquid is obtained, which yields more or less of the same crystals. Nitric acid resinifies oil of turpentine: the resin, by long boiling with uritic acid, is converted into crystals of Turpentinic Acid C^14 H^9 O^7 + Aq.
Oil of turpentine is composed of

<table>
<thead>
<tr>
<th>Element</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
<td>60</td>
<td>88.23</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>8</td>
<td>8</td>
<td>11.76</td>
</tr>
</tbody>
</table>

Oil of Turpentine | 1 | 68 | 99.99 |

It yields two or more distinct, but probably isomeric oils. One of these (Dadyl, Terebene; Camphilene) forms with hydrochloric acid a crystalline compound (Artificial Camphor; Hydrochlorate of Oil of Turpentine), whose formula is $C^{20}H^{17}Cl.$ Another (Peucyl or Peucylene) forms with the same acid a liquid compound. But as the boiling points of the two oils, called by Blanchet and Sell, dadyl and peucyl, are higher than the boiling point of the oil of turpentine, these substances ought rather to be regarded as products than educts.

**Physiological Effects. a. On Vegetables.**—Plants exposed to the vapour of this oil are rapidly destroyed.

b. On Animals.—On both vertebrated and invertebrated animals it operates as a poison. Injected into the veins of horses and dogs it excites pneumonia. Two drachms thrown into the veins of a horse, caused trembling, reeling, falling, inclination to pass urine and stools, and frequent micturition. Inflammatory fever, with cough, continued to the 8th day; then putrid fever appeared. On the 9th day death took place. The body presented all the signs of putrid fever and pneumonia (Hertwich). Schubarth found that two drachms of the rectified oil, given to a dog, caused tetanus, failure of the pulse and breathing, and death in three minutes. The skin of the horse is very sensible to the influence of oil of turpentine, which produces acute pain. "It is a remarkable circumstance," says Moiroud, "that this pain is not accompanied with any considerable hyperaemia. It is quickly produced, but is of short duration." Oil of turpentine is sometimes employed by veterinarians as a blister, but it is inferior to cantharides, and, if frequently applied, is apt to blemish (i. e. to cause the hair of the part to fall off). In doses of three ounces it is a most valuable antispasmodic in the colic of horses. In small doses it acts as a diuretic. Tiedemann and Gmelin detected oil of turpentine in the chyle of a dog and a horse, to whom this agent had been given.

g. On Man.—In small doses (as six or eight drops to $\frac{1}{2}$ oz.) it creates a sensation of warmth in the stomach and bowels, becomes absorbed, circulates with the blood, and in this way affects the capillary vessels, and is thrown out of the system by the different excretories, on the secreting vessels of which it acts in its passage through them. The exhalations of the skin and bronchial membranes acquire a marked terebinthinate odour, while the urine obtains the smell of violets.

1 De Candolle, Phys. Veg. p. 1347.
3 Wibmer, op. cit.
4 Youatt, The Horse, in Lib. of Useful Knowledge.
its influence on the renal vessels it proves diuretic. By the same kind of local influence on the cutaneous vessels it proves sudorific. It appears to have a constricting effect on the capillary vessels of the mucous membranes, for, under its use, catarrhal affections of, and hemorrhages from, these parts are frequently checked, and often are completely stopped. Its continued use sometimes brings on irritation of the urinary organs, or when this state pre-existed, it is often aggravated by the use of turpentine.

In a medium dose (f3j. or f5ij.) its effects are not constant. Dr. Ed. Percival saw two drachms given without any unpleasant effect being produced either on the digestive or urinary organs; they acted as an agreeable stomachic, and promoted the catamenia. Mr. Stedman, on the other hand, has seen this dose produce strangury, bloody urine, suppression of this secretion, fever, thirst, and vomiting. These two cases, however, may be regarded as the opposite extremes; and, in general, we may expect, from a medium dose, a feeling of heat in the stomach and bowels, accelerated peristaltic motion, increased frequency of pulse, diaphoresis, diuresis, and sometimes irritation of the urinary organs. Occasionally it provokes the catamenia.

In a large or maximum dose (f5iv. to f3ij.) its effects are not constant. It usually causes a sensation of abdominal heat, sometimes nauseates, and in general operates as a tolerably active purgative, without causing any unpleasant effects. I have given from one to two fluidounces in a considerable number of cases of tape-worm, and never saw any ill consequences therefrom. “It has been given,” says Dr. Duncan, “even to the extent of four ounces in one dose, without any perceptible bad effects, and scarcely more inconvenience than would follow from an equal quantity of gin.” Cases are reported, however, in which it has failed to produce purging, and in such it has acted most violently on the system, accelerating the pulse, depressing the muscular power, and giving rise to a disordered state of the intellectual functions, which several persons have compared to intoxication. A remarkable and well-detailed instance of this occurred in the person of Dr. Copland, who refers the disorder of the cerebral functions, in his case, to diminished circulation of blood in the brain; while the gastric heat, &c. he ascribes to increased vascular activity in the abdominal region. The oil passed off most rapidly by the skin and lungs (principally by the latter), and the air of the apartment became strongly impregnated with its effluvia. In some cases it has caused sleepiness. Purkinje experienced this effect from one drachm of the oil. Dr. Duncan has sometimes seen it produce “a kind of trance, lasting twenty-four hours, without, however, any subsequent bad effect.” The same writer adds, “the largest dose I have known given has been three ounces, and without injury.” A scarlet

---

Footnotes:

c Edinh. Dispens.
e Quoted by Wibmer, Wirk. d. Arzn.
eruption is mentioned by Wibmer as being produced in one case by an ounce of the oil.

Uses.—The following are the principal uses of the oil of turpentine:

1. As an anthelmintic.—It is the most effectual remedy for tape-worm we possess. It both causes the death of, and expels the parasite from the body. To adults it should be given in doses of an ounce at least. I have frequently administered an ounce and a half, and sometimes two ounces. In no instance have I ever seen any ill effects arise from its use. Yet occasionally, as in Dr. Copland’s case, it fails to purge, but becoming absorbed, operates most severely on the system, causing disorder of the cerebral functions. It is said to be more apt to act thus in persons of a full and plethoric habit. To prevent these ill consequences an oleaginous purgative should be either conjoined with it, or given at an interval of four or five hours after it. An excellent and safe method of employing it is to combine it with a castor-oil emulsion. Chabert’s empyreumatic oil (described at p. 428) used by Bremser against tape-worm, consists principally of oil of turpentine. A very effectual remedy for the small thread-worm (Ascariis vermicularis) is the turpentine enema.

2. In Blennorrhoea.—Oil of turpentine sometimes checks or stops profuse chronic discharges from the mucous membranes. It appears to effect this by a topical influence over the capillary and secreting vessels, in its passage through them out of the system. In many cases it would appear to confine its operation to the production of an increase of tonicity in the vessels which pour out mucus; but in other instances, especially in blennorrhoea of the urinary apparatus, it seems to set up a new kind of irritation in the affected membrane, which supersedes the previously existing disease. Hence its use is not admissible in acute or recent affections of these tissues. In gonorrhoea and gleet I have frequently employed it as a substitute for balsam of copaiva with success. In leucorrhoea it has occasionally proved serviceable. In catarrhus vesicae or cystirrhoea it now and then acts beneficially, but it requires to be used in small doses and with great caution. In chronic pulmonary catarrh, either mucous or purulent, it is said to have been employed with advantage. In chronic diarrhoea and dysentery it has proved advantageous; in these cases it has a direct local action on the affected part, besides exerting its influence over this in common with other mucous membranes after its absorption.

3. In Hemorrhages.—In sanguineous exhalations, called hemorrhages, from the mucous surfaces, oil of turpentine may, under some circumstances, act efficaciously. On the same principle that it checks excessive secretion of mucus in catarrhal conditions of these tissues, so we can readily conceive it may stop the exhalation of blood. But it is only admissible in cases of a passive or atomic character, in the absence of plethora and a phlogistic diathesis. In purpura

OIL OF TURPENTINE. 1053

I hemorrhagica it has been recommended as a purgative, by Dr. Whitlock Nichol, Dr. Magee, and others. I have seen it act injuriously in this disease, while blood-letting has seemed to relieve.

4. In Puerperal Fever.—The use of the oil of turpentine as a specific in this disease was introduced by Dr. Brenan, of Dublin; and strong testimonies were subsequently borne to its efficacy by several highly respectable practitioners. Dr. Brenan gave one or two tablespoonfuls of the oil, every three or four hours, in cold water, sweetened; and applied flannel soaked in the oil to the abdomen. But the apparent improbability of a stimulant like turpentine curing an inflammatory disease, has prevented many practitioners placing any faith in it, or even giving it a trial. In other instances the unconquerable aversion which patients have manifested to it, has precluded its repetition. Lastly, it has failed, in the hands of some of our most accurate observers, to produce the good effects which Dr. Brenan and others have ascribed to it, and in some instances has appeared to aggravate the malady. These reasons have been conclusive against its employment, at least in the way advised by Dr. Brenan. But there are two valuable uses which may be made of turpentine, in puerperal fever: it may be given in the form of a purgative, in the form of clyster, to relieve a tympanitic condition of the intestines, and for this purpose no remedy perhaps is superior to it; secondly, flannel soaked in the hot oil may be applied to the abdomen, to cause rubefaction, as a substitute for a blister, to the employment of which several objections exist.

5. In Ordinary Fever.—As a powerful stimulant in some forms of low fever, oil of turpentine has been well spoken of by Dr. Holst, Dr. Chapman, Dr. Douglas, and more recently by Dr. Wood. When the skin is dry, the bowels flatulent, and ulceration of the mucous membrane suspected, it often proves most serviceable.

6. In Rheumatism.—In chronic rheumatism oil of turpentine has long been celebrated. Its beneficial influence depends on its stimulant and diaphoretic operation, and is more likely to be evinced in old and debilitated persons. I have found medium doses occasionally succeed when small ones had failed. But for the most part I have not met with that success with it in chronic rheumatism, to induce me to place much confidence in it. In the form of liniment it has often proved serviceable.

7. In Sciatica and other Neuralgic affections.—Oil of turpentine was proposed as a remedy for sciatica by Drs. Pitcairn and G. Cheyne. Its efficacy was subsequently confirmed by Dr. Home. More recently it has been extensively employed, and with great success, in

---

3 Thoughts on Puerperal Fever, and its Cure by Spirits of Turpentine: Lond. 1814.
4 Vide Bayle, Bibl. Therap. t. iv.
5 Hufeland's Journ. Bd. 29, St. 2, S. 146.
France, in sciatica as well as in various other neuralgias. But it has proved more successful in those which affect the lower extremities. My own experience does not lead me to speak very favourably of it. In a disease the pathology of which is so imperfectly understood as is that of neuralgia, it is in vain to attempt any explanation of the *methodus medendi* of an occasional remedy for it. I have known oil of turpentine now and then act most beneficially in sciatica, without giving rise to any remarkable evacuation by the bowels, skin, or kidneys, so that the relief could not be ascribed to a cathartic, a diaphoretic, or a diuretic operation.

8. In Suppression of Urine.—I have seen oil of turpentine succeed in reproducing the urinary secretions when other powerful diuretics had failed.

9. In Infantile Diabetes.—Dr. Dewees has cured three cases of diabetes [?] in infants under fifteen months old, "by keeping the bowels freely open, and putting a quantity of the spirits of turpentine upon the clothes of the children, so as to keep them in a terebinthiniate atmosphere."

10. In Nephritic Diseases.—In some diseases of the kidneys, as ulceration, the use of oil of turpentine has been much extolled. It has proved successful in renal hydatids.

11. In Dropsy.—Oil of turpentine has occasionally proved serviceable in the chronic forms of this disease. Its efficacy depends, in part, on its derivative operation as a stimulating diuretic; and in part, as I conceive, on its powerful influence over the capillary and secreting vessels, by which it exercises a direct power of checking effusion. It is inadmissible, or is contraindicated, in dropsies accompanied with arterial excitement, or with irritation of stomach or of the urinary organs. When the effusion depends on obstruction to the return of venous blood, caused by the pressure of enlarged or indurated viscera, tumors, &c. turpentine can be of no avail. But in the atomic forms of dropsy, especially in leucophlegmatic subjects, attended with deficient secretion of the skin and kidneys, this oil is calculated to be of benefit. Dr. Copland has used it in the stage of turgescence, or invasion of acute hydrocephalus, as a drastic and derivative.

12. In Spasmodic Diseases.—Oil of turpentine has been employed successfully in the treatment of epilepsy, by Drs. Latham, Young, Ed. Percival, Lithgow, Copland, and Prichard. No benefit can be expected from this or any other medicine, when the disease depends on organic lesion within the osseous envelopes of the nervous centres. But when the disease is what Dr. Marshall Hall terms *centripetal* or *eccentric*, (as the convulsion of infants frequently is), that is, takes its origin in parts distant from the cerebro-spinal axis, which becomes

---

* Treatise on the Phys. and Moral Treatm. of Children.
* Bayle, *op. cit.*
affected only through the incident or excitor nerves, we can easily understand that benefit may be obtained by the use of agents like this, which, while it stimulates the abdominal viscera, operates as a cathartic and anthelmintic, and produces a derivative action on the head. A more extended experience of its use in chorea, hysteria, and tetanus, is requisite to enable us to speak with confidence of its efficacy in these diseases, though a few successful cases have been published.

13. In Inflammation of the Eye.—Mr. Guthrie has employed oil of turpentine in inflammation of the iris and choroid coat, on the plan recommended by Mr. Hugh Carmichael. In some cases, especially those of an arthritic nature, it succeeded admirably, in others it was of little or no service. It was given in doses of a drachm three times a day.

14. In Tympanites.—To relieve flatulent distension of the stomach and bowels, and the colic thereby induced, both in infants and adults, oil of turpentine is a most valuable remedy. It should be given in full doses, so as to act as a purgative; or when, from any circumstance, it cannot be exhibited by the mouth, it may be employed in the form of oyster. Dr. Ramsbotham speaks in the highest terms of the efficacy of the oil of turpentine in the acute tympanites of the puerperal state, and thinks that most of the cases of the so-called puerperal fever, which yielded to this oil, were in fact cases of acute tympanites; and in this opinion he is supported by Dr. Marshall Hall.

15. In obstinate Constipation.—Dr. Kinglake, in a case of obstinate constipation, with a tympanitic condition of the intestines, found oil of turpentine a successful cathartic, after the ordinary means of treating these cases had been assiduously tried in vain. Dr. Paris also speaks highly of it in obstinate constipation depending on affections of the brain.

16. To assist the passage of Biliary Calculi.—A mixture of three parts sulphuric ether and two parts oil of turpentine has been recommended as a solvent for biliary calculi. But there is no foundation for the supposition that the relief which may be obtained by the use of this mixture in icterus and during the passage of a biliary calculus, depends on the dissolution of the latter.

17. As an External Remedy.—Oil of turpentine is employed externally, as a rubefacient, in numerous diseases, on the principle of counter-irritation, before explained (p. 145). Thus, in the form of liniment, it is used, either hot or cold, in chronic rheumatism, sprains, sore throat, neuralgic affections of the extremities, &c. In the form

---

c Loc. cit. vol. V. p. 836.
f Pharmacologia.
g Durandé, Observ. sur l'Efficacité du Mélange d'Ether sulph. et d'Huile volatile de Téréb. dans Coliques hépat. produites par des Pierres Biliaires. 1790.
of fomentation the hot oil is applied to produce redness of the skin in puerperal peritonitis, as I have already mentioned. As a powerful local stimulant, it was recommended by Dr. Kentish as an application to burns and scalds, his object being to restore the part gradually, not suddenly, to its natural state, as in the treatment of a case of frost-bite. The practice is most successful when the local injury is accompanied with great constitutional depression. I can bear testimony to its efficacy in such cases, having employed it in several most severe and dangerous burns with the happiest results. In that form of gangrene which is not preceded by inflammation, and is called dry or chronic, oil of turpentine may occasionally prove serviceable, especially when the disease affects the toes and feet of old people. There are many other topical uses to which it has been applied; but as they are for the most part obsolete, at least in this country, I omit any further mention of them. They are fully noticed in the works of Voiglets and Richter. Oil of turpentine is the principal ingredient in Whitehead's Essence of Mustard, which contains also camphor and a portion of the spirits of rosemary. St. John Long's liniment consisted of oil of turpentine and acetic acid, held in suspension by yolk of egg.

**Administration.**—When given as a diuretic, and to affect the capillary and secering vessels (in catarrhal affections of the mucous membranes, dropsy, suppression of urine, hemorrhage, &c.) the dose is from six or eight minims to f5j.; as a general stimulant (in chronic rheumatism, chorea, &c.) or to produce a change in the condition of the intestinal coats (in chronic dysentery), from f5j. to f5ij.; as an anthelmintic (in tape-worm) or as a revulsive (in apoplexy, in epilepsy previous to an expected paroxysm, &c.) from f5ss. to f5jj. It may be taken floating on some aromatic water, to which some hot aromatic tincture, as tinctura capsici, has been added; or it may be diffused through water by the aid of mucilage or an emulsion; or it may be made into a linctus with honey or some aromatic syrup.

1. **Enema Terebinthinae, L. E. D.;** Clyster of Turpentine.—(Oil of turpentine, f3j.; Yolk of Egg, q. s. “Rub them together, and add, Decoction of Barley, f3xix. L.—The Edinburgh College substitutes plain Water for Barley Water.—The Dublin College directs 3ss. of Common Turpentine to be rubbed with the Yolk of one Egg, and ten Ounces of Water, of a temperature not exceeding 100° F., to be added.)—Used as an anthelmintic in ascarides; as an antispasmodic and purgative in colic, obstinate constipation, and tympanites. Dr. Montgomery says, “it is much used in cases of peritoneal inflammation.”

2. **Linimentum Terebinthinae, L. D.;** Linimentum Terebinthinitatum, E.; Turpentine Liniment (Soft Soap, 3ij.; Camphor, 3j.; Oil of Tur-
"Shake them together until they are mixed," L.—Resinous Ointment, 5iv.; Oil of Turpentine, 5v.; Camphor, 3ss.

"Melt the ointment, and gradually mix with it the camphor and oil, till a uniform liniment be obtained," E.—Ointment of White Resin, lb.j.; Oil of Turpentine, lb.ss. "Having melted the ointment, gradually mix the oil of turpentine with it," D.)—Introduced by Dr. Kentish 1 as a dressing for burns and scalds. The parts being first bathed with warm oil of turpentine, alcohol, or camphorated spirit, are to be covered with pledgets of lint thickly spread with this liniment. When the peculiar inflammation, excited by the fire, has subsided, milder applications are then to be resorted to. This liniment may also be used in any other cases requiring the employment of a more stimulant application than the ordinary soap liniment.

3. Resinæ Terebinthinae.—Terebinthinate Resins.

1. Resina, L. E. D.—Rosin or Common Resin.

Preparation.—This is the residue of the process for obtaining oil of turpentine. It is run, while liquid, into metallic receivers coated with whiting to prevent adhesion, and from these is ladled into wooden moulds or casks. When the distillation is not carried too far, the product contains a little water, and is termed Yellow Rosin (Resina flava). A more continued heat expels the water and produces Transparent Rosin; and if the process be pushed as far as it can be, without producing a complete alteration of properties, the residue acquires a deep colour, and is termed Brown or Black Rosin or Colophony (Resina nigra seu Colophonium). If melted rosin be run into cold water contained in shallow tanks, and a supply of cold water be kept up until the rosin has solidified, a pale yellow product is obtained, called Flockton's Patent Rosin.

Properties.—Rosin is compact, solid, brittle, almost odourless and tasteless, with a smooth shining fracture, becomes electric by friction, is fusible at a moderate heat, decomposable at a higher temperature, yielding among other products a volatile oil (Luscombe's rosin oil), and an inflammable gas (Daniell's rosin gas), and burning in the air with a yellow smoky flame. It is insoluble in water, but soluble in alcohol, ether, and the volatile oils. With wax and the fixed oils it unites by fusion; with the caustic alkalis it unites to form a resinous soap (the alkaline resinates, principally the pinates). Heated with concentrated sulphuric or nitric acid mutual decomposition takes place.

Yellow rosin is opaque and yellow, or yellowish-white. Its opacity is owing to water, with which it is incorporated. By continued fusion this is got rid of, and the rosin then becomes transparent (transparent rosin). Brown rosin or colophony is more or less brown and transparent.

Composition.—Rosin is a compound or mixture of pinic acid (prin-
cipally) colophonic acid (variable in quantity), sylvic acid (a small quantity), and traces of an indifferent resin m.

1. *Pinic Acid.*—May be regarded as an oxide of oil of turpentine. It is soluble in cold alcohol of sp. gr. 0.883. The solution forms a precipitate (pinate of copper) on the addition of alcoholic solution of acetate of copper. Pinate of magnesia dissolves with difficulty in water. The ultimate composition of pinic acid (the essential constituent of rosin) is as follows:

<table>
<thead>
<tr>
<th>Elements</th>
<th>Dumas</th>
<th>Liebig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Eq. Wt.</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Per Cent.</td>
<td>78.9</td>
<td>75.0</td>
</tr>
</tbody>
</table>

2. *Colophonic Acid.* (Colopholic Acid.)—Formed by the action of heat on pinic acid, and, therefore, the quantity of it contained in rosin varies according to the heat employed. Rosin owes its brown colour to it. It is distinguished from pinic acid by its greater affinity for salifiable bases, and its slight solubility in alcohol.

3. *Sylvic Acid.*—Is distinguished from Pinic Acid by its insolubility in cold alcohol of sp. gr. 0.883. Dumas regards it as isomeric with Pinic acid. Its formula according to Trommsdorf is $C_{10}H_{18}O_{7}$, and according to Rose $C_{10}H_{16}O_{7}$.

4. *Indifferent Resin.*—Is soluble in cold alcohol, oil of petroleum, and oil of turpentine. It forms with magnesia a compound readily soluble in water.

**Physiological Effects.**—Not being used internally, its effects when swallowed are scarcely known. It is probable, however, that they are of the same kind as those of common turpentine, though very considerably lighter. In the horse it acts as a useful diuretic, in doses of five or six drachms. Its local influence is mild. "It may be considered," says Dr. Maton, "as possessing an astringency without pungency."

**Use.**—Powdered rosin has been applied to wounds to check haemorrhage, and is occasionally used for this purpose in veterinary practice. But the principal value of rosin is in the formation of plasters and ointments, to which it communicates great adhesiveness and some slightly-stimulant properties.

1. *Ceratum Resine.* L., Unguentum Resinosum, E.; Unguentum Resinae albae, D., Yellow Basilicon or Basilicon Ointment, offic.—(Resin; Wax, of each, lb. j.; Olive Oil, f3xvj. Melt the Resin and the Wax together with a slow fire; then add the Oil, and press the Cerate, while hot, through a linen cloth, L.—The Edinburgh College orders of Resin, 3v., Axunge, 3vij., Bees' wax, 3ij. Melt them together with a gentle heat, and then stir the mixture briskly while it cools and concretes.—The Dublin College directs of Yellow Wax, lb. j., White Resin, lb. ij., prepared Hogs' Lard, lb. iv. Make an ointment, which, while hot, should be strained through a sieve).—
BURGUNDY PITCH.

A mildly stimulant, digestive, and detergent application, to ulcers which follow burns, or which are of a foul and indolent character, and to blistered surfaces to promote a discharge.

2. EMPLASTRUM RESINÆ, L., Emplastrum Resinosum, E., Emplastrum Lithargyri cum Resina, D.—Has been already described, p. 814.


Preparation.—True Burgundy pitch is prepared by melting Common Frankincense (Abietis resina, L., Thus, D.) in hot water, and straining through a coarse cloth. By this process part of the volatile oil and the impurities are got rid of. The substance sold as Burgundy pitch in the shops is rarely prepared in this way, but is fictitious. Its principal constituent is rosin, rendered opaque by the incorporation of water, and coloured by palm oil. One maker of it informed me that he prepared it from old and concrete American turpentine.

Properties.—Genuine Burgundy pitch is hard, brittle when cold, but readily taking the form of the vessel in which it is kept. It softens by the heat of the hand, and strongly adheres to the skin. Its colour is yellowish white; its odour is not disagreeable; its taste slightly bitter. Fictitious Burgundy pitch is usually of a fuller yellow colour than the genuine, and has a somewhat less agreeable odour.

Composition.—Consists of resin principally, and a small quantity of volatile oil.

Physiological Effects.—Its effects are similar to those of the other tetebinthane resins. In activity it holds an intermediate station between common turpentine and rosin, being considerably less active than the first, and somewhat more so than the last of these substances. Its local action is that of a mild irritant. In some persons it excites a troublesome vesiculo-pustular inflammation.

Uses.—It is employed as an external agent only, spread on leather, forming the well-known Burgundy pitch plaster (emplastrum picis burgundiac), which is applied to the chest in chronic pulmonary complaints, to the loins in lumbago, to the joints in chronic articular affections, and to other parts to relieve local pains of a rheumatic character. It acts as a counter-irritant or revulsive.

EMPLASTRUM PICIS, L. E.; Plaster of Pitch.—(Burgundy Pitch, lb. i j.; Resin of the Spruce Fir, [Thus] lb. i.; Resin; Wax, of each, šiv.; Expressed Oil of Nutmeg, šij.; Olive Oil; Water, of each, fšij. Add first the Resin of the Spruce Fir, then the Oil of Nutmegs, the Olive Oil, and the Water, to the Pitch, Resin, and Wax, melted together. Lastly, mix them all, and boil down to a proper consistence.—L. The formula of the Edinburgh College is as follows:—Burgundy Pitch, lb. iss.; Resin and Bees’ Wax, of each, šij.: Oil of Mace, šss.; Olive Oil, fšij.; Water, fšj. Liquidify the Pitch, Resin, and Wax, with a gentle heat;
add to the other articles; mix them well together, and boil till the mixture acquires a proper consistence).—Stimulant and rubefacient: used in the same cases as the simple Burgundy Pitch.

4. *Pix liquida* and *Fix solida*—Tar and Pitch.


**History.**—This is the ἐνεργος of Theophrastus*, the πίνγα ἰγρα (liquid pitch), or κάνος, of Dioscorides*, and the *pix liquida* of Pliny†.

**Preparation.**—The process now followed seems to be identical with that practised by the Macedonians, as described by Theophrastus. It is a kind of *distillatio per descensum* of the roots and other woody parts of old pines. As now carried on in Bothnia, it is thus described by Dr. Clarke‡:—“The situation most favourable to the process is in a forest near to a marsh or bog, because the roots of the fir, from which tar is principally extracted, are always most productive in such places. A conical cavity is then made in the ground (generally in the side of a bank or sloping hill); and the roots of the fir, together with logs and billets of the same, being neatly trussed in a stack of the same conical shape, are let into this cavity. The whole is then covered with turf, to prevent the volatile

![Preparation of Tar.](image.png)

---

*Hist. Plant. lib. ix. cap. ii. and iii.
* Lib. 1. cap. xciv.
‡ Travels in Scandinavia, part 3, p. 291. See also Duhamel, Traité des Arbres.
parts from being dissipated, which, by means of a heavy wooden mallet and wooden stamper, worked separately by two men, is beaten down, and rendered as firm as possible about the wood. The stack of billets is then kindled, and a slow combustion of the fir takes place, without flame, as in working charcoal. During this combustion the tar exudes, and a cast-iron pan being at the bottom of the funnel, with a spout which projects through the side of the bank, barrels are placed beneath this spout to collect the fluid as it comes away. As fast as the barrels are filled, they are bunged, and ready for immediate exportation.”

**Commerce.**—Tar is brought to this country in barrels, each holding 31½ gallons: twelve barrels constitute a *last*. The quantities imported in the years 1830 and 1831, were as follows:—

<table>
<thead>
<tr>
<th>Countries from whence Imported</th>
<th>1830</th>
<th>1831</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lasts</td>
<td>Barrels</td>
</tr>
<tr>
<td>Russia</td>
<td>9,675</td>
<td>6</td>
</tr>
<tr>
<td>Sweden</td>
<td>550</td>
<td>8</td>
</tr>
<tr>
<td>Norway</td>
<td>88</td>
<td>7</td>
</tr>
<tr>
<td>Denmark</td>
<td>307</td>
<td>7</td>
</tr>
<tr>
<td>Germany</td>
<td>1,521</td>
<td>7</td>
</tr>
<tr>
<td>United States of America</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Isles of Guernsey, Jersey, Alderney, and Man (Foreign Goods)</td>
<td>12,206</td>
<td>1</td>
</tr>
</tbody>
</table>

**Properties.**—It is a dark brown, viscid, semi-liquid substance, which preserves during a long period its softness. It is soluble in alcohol, ether, and the oils both fixed and volatile. Submitted to distillation, it yields an acid liquor (pyroligneous acid), and a volatile oil (*oil of tar*); the residue in the still is *pitch*. *Oil of tar* is brownish, and consists of oil of turpentine, impregnated with pyrogenous oil and resin.

**Composition.**—Vegetable tar consists of several pyrogenous resins, combined with acetic acid, of colophony, *oil of turpentine*, and pyrogenous oil. The liquidity of tar is owing to the two last-mentioned constituents, which hold the resins in solution.

**Physiological Effects.**—The effects of tar are analogous to those of turpentine, but modified by the presence of acetic acid and the pyrogenous products. Locally it acts as a stimulant, and, when applied to chronic skin diseases and indolent ulcers, it frequently induces a salutary change in the action of the capillary and secrerning vessels, evinced by the improved quality of the secretions, and the rapid healing of the sores. In such cases it is termed detergent, digestive, or cicatrisant. Swallowed, it acts as a local irritant and stimulant, becomes absorbed, and stimulates the secreting organs, especially the kidneys, on which it operates as a diuretic. Slight states that a sailor swallowed a considerable quantity of liquid tar,

---

* Parliamentary Return of Imports and Exports for 1830 and for 1831.
which caused vomiting, great lassitude, and violent pain in bowels and kidneys. The urine was red, and, as well as the other evacuations, had the odour of tar. The head and the pulse were unaffected. The vapour of tar, inhaled, acts as a stimulant and irritant to the bronchial membrane, the secretion of which it promotes.

**Uses.**—Tar is rarely employed *internally*. It has, however, been administered in chronic bronchial affections, and in obstinate skin diseases.

The *inhalation of tar vapour* was recommended by Sir Alexander Crichton\(^7\) in phthisis; but at best it proves only a palliative, and it frequently, perhaps generally, fails to act even thus, and in some cases occasions a temporary increase of cough and irritation\(^5\). In chronic laryngeal and bronchial affections, it has more chance of doing good\(^a\). The mode of using tar fumigation I have before described (p. 151).

Applied *externally* tar is used in various forms of obstinate skin diseases, especially those which affect the scalp, lepra, &c.

**Administration.**—Internally, tar is administered in the form of pills made up with wheat flour, or in that of electuary, with sugar. It may be taken to the extent of several drachms daily.

1. **AQUA PICIS LIQUIDE, D., Tar Water.**—(Tar, Oij.; Water, Cong. j. [wine-measure]. Mix, stirring with a stick for a quarter of an hour; then, as soon as the tar subsides, strain the liquor, and keep it in well-stoppered jars).—Tar water has the colour of Madeira wine, and a sharp empyreumatic taste. It consists of water holding in solution acetic acid, and pyrogenous oil and resin. Notwithstanding the high eulogies passed on it by Bishop Berkeley\(^b\), tar water is now rarely employed. It is occasionally administered in chronic catarrhal and nephritic complaints, to the extent of one or two pints daily. As a wash in chronic skin diseases, especially those affecting the scalps of children, I have frequently seen it used, and sometimes with apparent benefit.

2. **UNGUENTUM PICIS LIQUIDE, L. E. D.; Tar Ointment.**—(Tar, Mutton Suet, of each, lb. j. Melt them together, and press through a linen cloth [a sieve, D.]. The Edinburgh College takes of Tar 3v., and Bees' Wax 5ij.; melt the wax with a gentle heat, add the tar, and stir the mixture briskly, while it concretes on cooling).—Its principal use is as an application to ring-worm of the scalp and scalled head; in which it sometimes succeeds, but more frequently fails, to cure. It is now and then applied to foul ulcers.

3. **OLEUM PICIS LIQUIDE; Oleum Pini rubrum; Oil of Tar.**—This is obtained by distillation from tar. It is a reddish, limpid fluid, having the odour of tar. By re-distillation it may be rendered colour-

---

\(^*\) Pract. Observ. on the Treatm. and Cure of several varieties of Pulm. Consump. and on the Effects of the Vapour of boiling Tar in that Disease, 1823.

\(^7\) Dr. Forbes, Transl. of Laennec's Treat. on Diseases of Chest, p. 365.

\(^a\) Trousseau and Pidoux, Traité de Therap. t. i. p. 459.

less, and then becomes very similar to oil of turpentine. It is occasionally used as an application to ring-worm of the scalp and scalled head. Swallowed in a large dose it has proved fatal.  


*(Pix arida, E.)*  

**History.**—This is the πίσσα ἔρα (dry pitch) of Dioscorides, which, he says, some call παλίμπιςσα (pitch boiled again).  

**Preparation.**—When vegetable tar is submitted to distillation, an acid liquor (pyroligneous acid) and a volatile oil (oil of tar) pass over: the residuum in the still is pitch (*pix nigra, L.*).  

**Properties.**—At ordinary temperatures it is a black solid, having a brilliant fracture. It softens at 99° F. and melts in boiling water. It dissolves in alcohol and in solutions of the alkalis and of the alkaline carbonates.  

**Composition.**—Pitch is composed of pyrogenous resin and colophony; but principally of pyretine.  

**Physiological Effects.**—Made into pills with flour or any farinaceous substance, pitch may be taken to a great extent, not only without injury, but with advantage to the general health. It affords one of the most effectual means of controlling the languid circulation, and the inert and arid condition of the skin. As a local remedy it possesses great adhesiveness, and when applied to wounds and ulcers acts as a stimulant and digestive.  

**Uses.**—Bateman speaks favourably of the internal use of pitch in *ichthyosis*. It has been employed also in other obstinate skin diseases. But the principal use of pitch is in the form of ointment, as an application to cutaneous affections of the scalp.  

**Administration.**—Dose from grs. x. to 3½, made into pills with flour. The unpleasant pitchy flavour of the pills is materially diminished by keeping them for some time.  

**UNGUENTUM PICIS NIGRÆ, L.**; Unguentum Basilicum nigrum vel Tetrapharmacum.—(Black Pitch, Wax, Resin, of each 6ix.; Olive Oil, f3xxvj. Melt them together, and press through a linen cloth).—Stimulant and digestive; used in the obstinate cutaneous eruptions of the scalp.  

4. *JUNIPERUS COMMUNIS, Linn. L. E. D.*—COMMON JUNIPER.  

*(Cacumina; Fructus, L. Cacumina; Fructus; Oleum, E. Cacumina; Baccae, D.)*  

**History.**—It is very questionable whether this shrub is mentioned in the Old Testament, though its name occurs in several
The fruit, called by the Greeks ἀρκενθής, and used by Hippocrates in some disorders of females, was the produce of a species of Juniperus: either *J. communis*, which Dr. Sibthorp found growing on Olympus and Athos; or *J. phænecia*, which is very common in Greece and the islands of the Archipelago, and whose fruit is yellowish, but has the size, form, and powers of that of the common juniper.

**Botany.**

**Gen. Char.** — Dioecious, rarely monocious. **MALES:** — Catkins ovate; the scales verticillate, peltato-pedicellate. **Anthers** four to eight, unilocular. **FEMALES:** — Catkins globose; the three concave scales united. **Stigma** gaping. **Galburnus**, composed of the united and fleshy scales, and containing three triquetrous, osseous seeds.

**Sp. Char.** — Leaves three in a whorl, mucronate, spreading or imbricated, longer than the galburnus.

A bushy shrub. **Leaves** evergreen, numerous, linear, pungent, glaucous on the upper side, dark green beneath. **Flowers** axillary, sessile, small; the males discharging a copious cloud of yellow pollen: **females** green, on scaly stalks. **Fruit** commonly called a berry, but is in reality that kind of cone called by botanists a galburnus, which has fleshy, coalescent carpella, whose heads are much enlarged. It requires two seasons to arrive at maturity.

Two varieties (some botanists consider them to be distinct species) are described.

a. *J. communis*, Smith. — Stem erect. **Leaves** spreading. **Fruit** scarcely more than half the length of the leaves.

b. *J. nana*, Smith. — Stem procumbent. **Leaves** imbricated. **Fruit** nearly as long as the leaves.

**Hab.** — North of Europe. Indigenous, growing on hills and heathy downs, especially where the soil is chalky. It flowers in May.

**Description.** — In this country the **fruit** and **tops**, on the continent the **wood** also are official.

**Juniper berries** (baccae juniperi), as the dried fruit of the shops is commonly termed, are about the size of a pea, of a blackish-purple colour, covered by a glaucous bloom. They are marked — superiorly, with a triradiate groove, indicating the adhesión of the succulent carpella — inferiorly with the bracteal scales, which assume a stellate form. They contain three seeds. Their taste is sweetish, with a terebinthinate flavour; their odour is agreeable and balsamic.

**Juniper tops** (cacumina seu summitates juniperi) have a bitter, terebinthinate flavour, and a balsamic odour.

**Juniper wood** (lignum juniperi) is obtained either from the stem or root; it evolves a balsamic odour in burning, and, by distillation with water, yields volatile oil. On old stems there is sometimes found a resinous substance (resina juniperi; sandaraca germanica).

**Commerce.** — Juniper berries are imported in bags and barrels from Rotterdam, Hamburg, Leghorn, Trieste, and other European ports. In 1838, duty (2s. per cwt.) was paid on 5896 cwts.

---

1 *Job*, ch. xxx.v. 4; 1 *Kings*, ch. xix. v. 4, in our translation.
2 *Prod. Fl. Graeca.*
COMMON JUNIPER. 1065

COMPOSITION.—Juniper berries were analyzed in 1822 by Trommsdorff, and in 1831 by Nicolet. Trommsdorff obtained volatile oil 1.0, wax 4.0, resin 10.0, a peculiar species of sugar with acetate and malate of lime 33.0, gum with salts of potash and lime 7.0, lignin 35.0, water 12.9 (excess 3.7).

1. Oil of Juniper (see below).
2. Resin.—Is green, according to Trommsdorff. Nicolet obtained it in the crystallized state, and found it to consist of C₃ H₂ O₂.
3. Wax.—Is brittle. Consists, according to Nicolet, of C₁₃ H₂₆ O₄.
4. Sugar.—Is crystallizable, and analogous to grape sugar, according to Trommsdorff. But Nicolet describes it as being like molasses.

PHYSIOLOGICAL EFFECTS.—Juniper berries and tops are analogous in their operation to the terebinthinate substances. Three ounces of the berries act on the larger herbivorous animals as a diuretic. On man, also, these fruits operate on the urinary organs, promoting the secretion of urine, to which they communicate a violet odour. In large doses they occasion irritation of the bladder, and heat in the urinary passages. Piso says, their continued use causes bloody urine. They promote sweat, relieve flatulence, and provoke the catamenia. Their activity is principally dependent on the volatile oil which they contain; and which, according to Mr. Alexander's experiments, is, in doses of four drops, the most powerful of all the diuretics.

USES.—Juniper berries or oil are but little used in medicine. They may be employed either alone or as adjuncts to other diuretic medicines, in dropsical disorders indicating the employment of renal stimuli. Van Swieten speaks favourably of their use in mild cases of ascites and anasarca. In some affections of the urino-genital apparatus, juniper may be employed with advantage. Thus, in mucous discharges (as gonorrhoea, gleet, leucorrhoea, and cystirrhoea), it may be used under the same regulations that govern the employment of copaiva and the terebinthines. Hecker praised it in the first stage of gonorrhoea.

Juniper has been advised in some other diseases; but I do not think it necessary to enumerate them.

ADMINISTRATION.—The dose of the berries is one or two drachms, triturated with sugar. The infusion (prepared with an ounce of the berries and a pint of boiling water) is a more convenient mode of exhibition: the dose is 5-2iv. every four hours.

1. OLEUM JUNIPERI, L. E. D.; Oil of Juniper.—It is obtained by submitting the fruit, tops, or wood, to distillation with water. The
full-grown green fruit yields more than the ripe fruit; for, in the act of ripening, a portion of the oil becomes converted into resin. It is limpid, transparent, nearly colourless, and lighter than water. It has the odour of the fruit, and an aromatic, balsamic taste. It dissolves with difficulty in alcohol. According to Blanchet, it consists of two isomeric oils: one colourless, and more volatile; a second coloured, and less volatile. Both, when agitated with a solution of salt, form crystalline hydrates. The composition of oil of juniper is analogous to that of oil of turpentine, being \( C_{10} H_{18} \).

The oil is, perhaps, the best form for exhibiting juniper. The dose is two to six drops, either in the form of pill, or diffused through water by the aid of sugar and mucilage.

2. SPIRITUS JUNIPERI COMPOSITUS, L. E. D.; Compound Spirit of Juniper.—(Juniper berries, bruised, \( \frac{3}{8} \) lb. [lb. j. E. D.]; Caraway, bruised; Fennel, bruised, of each, \( \frac{5}{12} \) j. [\( \frac{3}{8} \) iss. E. D.]; Proof Spirit, Cong. j. [Ovij. -E.]; Water, Oij. [as much as may be convenient, D.]) Mix; then, with a slow fire, let a gallon distil, L.—The Edinburgh and Dublin Colleges order the fruit to be macerated in the spirit [for two days, E.; for twenty-four hours, D.], the water then added, and [seven pints, E., a gallon, D. of] the spirit distilled.—This preparation, when sweetened, may be regarded as an officinal substitute for genuine Hollands and English Gin (see p. 364), both of which compounds are flavoured with juniper. It is used as an adjunct to diuretic mixtures. The dose is \( \frac{3}{5} \) j. to \( \frac{3}{5} \) iv.

5. JUNIP’ERUS SABI’NA, Linn. L. E. D.—COMMON SAVIN.

Sex. Syst. Dioecia, Monadelphia.

(Cacumina recentia et exsiccata, L.; Tops, E.; Folia, D.)

History.—This is the \( \beta\varphi\alpha\theta\nu \) of Dioscorides; the sabina of Pliny. Both these writers notice the two varieties of this plant.


Sp. Char.—Leaves ovate, convex, densely imbricated, erect, decurrent, opposite; the oppositions pyxidate (Bot. Gall.)

A small, bushy shrub. Branches closely inverted by the very small, glandular leaves. Galbulus round, purple, somewhat smaller than that of Juniper communis.

Two varieties are distinguished:

a. J. Sabina cupressina.—Leaves acute, more spreading, three lines long.

b. J. Sabina tamariscifolia.—Leaves shorter, almost appressed and obtuse.

Hab.—Midland and southern parts of Europe; Asiatic Russia. Cultivated in gardens in this country. Flowers in April.

Description.—The officinal parts of the plant are the tops (cacumina; summitates), which consist of the young branches with their attached leaves. They have, in the fresh state (cacumina recentia), a
strong, peculiar, heavy odour, especially when rubbed; and a nauseous, resinous, bitter taste. The dried tops (calcamina exsiccata) are yellowish green, and less odorous than the fresh ones.

Composition.—Some experiments on the composition of savin were made by Berlisky. In 1837 an analysis of this plant was made by a young chemist of the name of Gardes. The constituents are, Volatile oil, Resin, Gallic acid, Chlorophylle, Extractive, Lignin, and Salts of Lime.

Oil of Savin (see p. 1067).

Chemical Characteristics.—An aqueous infusion of savin is yellowish, has the odour and bitter taste of the herb, and forms a soluble green compound (gallate of iron) on the addition of sesquichloride of iron, but is unchanged by a solution of gelatin. Oxalate of ammonia causes, in the infusion, a white precipitate (oxalate of lime). Alcohol acquires a green colour when digested with the tops; on the addition of water to the alcoholic tincture some resin is separated. By distillation with water, both the fresh and dried tops (but especially the first) yield volatile oil.

Physiological Effects. a. On Animals.—Savin acts on animals as an acid poison. Orfila applied two drachms of the powder to an incised wound in the leg of a dog; inflammation and infiltration of the limb took place, and death occurred in about thirty-six hours. Four drachms introduced into the stomach of a dog, and the oesophagus tied, caused death in thirteen hours; the stomach was bright red, and the rectum a little inflamed. Orfila infers that its effects depend principally on its absorption, and its action on the nervous system, the rectum, and the stomach. A drachm of oil of savin was given by Hillefield to a cat. It caused a flow of saliva, anxiety, frequent discharge of urine, dulness, trembling, and, in an hour and a quarter, bloody urine. The animal having been strangled, the bladder was found contracted, with some coagulated blood contained in its cavity.

b. On Man.—Oil of savin, the active principle of the herb, is a powerful local irritant. When applied to the skin, it acts as a rubefacient and vesicant. On wounds and ulcers, its operation is that of an acid (not chemical) caustic. Swallowed in large doses, it occasions vomiting, purging, and other symptoms of gastro-intestinal inflammation. In its operation on the system generally, it is powerfully stimulant. “Savin,” says Sundelin, operates not merely as irritants generally do, as a stimulant to the arterial system, but it also eminently heightens the vitality of the venous system, the circulation in which it quickens. It next powerfully stimulates the absorbing vessels and glands, the serous, the fibrous, and the mucous membranes, and the skin. It operates as a specific excitant and irritant on the kidneys, and yet more obviously on the uterus. The increased

7 Trommsdorf’s Journ. viii. 1, 94.
8 Journ. de Chim. Méd. t. iii. p. 331, 2de Sér.
9 Tyroczl. Gif.
11 Heilmittellehre, Bd. ii. S. 180, Auf. 3°.
secretion of bile and the augmented volume of the liver, both of which conditions have sometimes been observed after the copious and long-continued use of savin, appear to be connected with its action on the venous system." Mohrenheim mentions the case of a woman, 30 years of age, who swallowed an infusion of savin to occasion abortion. Violent and incessant vomiting was induced. After some days she experienced excruciating pains, which were followed by abortion, dreadful hemorrhage from the uterus, and death. On examination, the gall-bladder was found ruptured, the bile effused in the abdomen, and the intestines inflamed. The popular notion of its tendency to cause abortion, leads, on many occasions, to the improper use of savin; and the above is not a solitary instance of the fatal consequences thereof. A fatal case of its use as an emmenagogue is recorded by Dr. Dewees. That it may frequently fail to provoke premature labour is shown by the case, related by Fodéré, of a woman, who, in order to produce abortion, took every morning, for twenty days, one hundred drops of this oil, and yet went her full time, and brought forth a living child. It ought to be well known that in those cases in which it may succeed in causing miscarriage, it can only do so at the risk of the woman's life. Vogt says, that it has a tendency to induce an apoplectic state in the fetus. The emmenagogue power of savin is fully established. Perhaps the observations of Home are the most satisfactory of any on this subject, confirmed as they are by the reports of many other accurate observers.

Uses.—Savin is not much used internally; but, in cases of amenorrhea and chlorosis, depending on or accompanied by a torpid condition or deficient action of the uterine vessels, it may be given as a powerful uterine stimulant. In such cases it proves a most efficient remedy. According to my own observation, it is the most certain and powerful emmenagogue of the whole materia medica. My experience of it, therefore, confirms the statements of Home. Though I have employed it in numerous cases, I never saw any ill effects result from its administration. Of course its use is contra-indicated where irritation of the uterus, or indeed of any of the pelvic viscera, exists.

In chronic rheumatism, with a languid circulation in the extreme vessels, Chapman speaks in very high terms of it. It has been used as an anthelmintic. As a topical agent, savin is frequently employed, mostly in the form of the cerate, to make perpetual blisters. Equal parts of savin and verdigris, in powder, form one of the most efficacious applications for the removal of venereal warts. The powder, an infusion, or the expressed juice of the plant, is occasionally applied to warts, to old and indolent ulcers, and in cases of psora and tinea.

---

5 Compend. Syst. of Midwifery, pp. 133-4.  
6 Med. Leg.  
7 Pharmacodynam.  
8 Clinical Experiments, p. 419.  
9 Ibid.  
10 Elem. of Therap.
Administration.—By drying, savin loses part of its volatile oil, and hence the powder is not the best preparation of it. It is, however, sometimes given in doses of from five to fifteen grains. A decoction and extract are also objectionable preparations, on account of the heat employed in making them. An infusion may be prepared by digesting 5i. of the fresh herb in f3viii. of boiling water: the dose is one or two table-spoonfuls. The oil is by far the most convenient and certain preparation of savin, and is the one which I always employ. A conserve of the fresh leaves is sometimes used.

1. OLEUM SABINÆ, E. D.; Oil of Savin. — This is obtained by submitting the fresh tops to distillation with water. It is a limpid, almost colourless liquid, having the unpleasant odour of the plant, and a bitter, acrid taste. Its sp. gr. is 0.915. Its composition is analogous to that of oil of turpentine, being C10 H8. The dose, as an emmenagogue, is from two to six drops, diffused in a mucilaginous or oleaginous mixture.

2. CERATUM SABINÆ, L. E.; Unguentum Sabine, D., Savin Ointment.—(Savin [fresh, E.; the leaves stripped from their stalks, D.], bruised, lb. i. [lb. ss., D.]; Wax, lb. ss.; Lard, lbs. ii. Mix the savin in the lard and wax melted together, then press through a linen cloth. The Edinburgh and Dublin colleges boil them [in the lard only, D.] together, until the leaves are crisp). — The boiling is considered objectionable on account of the loss of a portion of the oil. The colour of this cerate should be fine green, and its odour that of the plant. Savin cerate is used as a dressing to blistered surfaces, to produce what is termed a perpetual blister. It is preferred to the ceratrum cantharidis as being less acrid, and not liable to cause strangury. It is sometimes applied to seton tapes, to increase the discharge from setons.

Antidotes.—In a case of poisoning by savin herb or its oil, the first indication is to remove the poison from the stomach and bowels. Opiates and demulcent drinks should then be given. The warm bath may be advantageously employed. Blood-letting should be resorted to, if the inflammatory symptoms indicate, and the condition of system permit, it.

OTHER MEDICINAL PRODUCTS OF CONIFERÆ.

1. Gemmæ seu Turiones Abietis.—The leaf-buds of the Norway Spruce Fir (Abies excelsa), as well as of the Silver Fir (Abies Picea), are used on the continent, in the form of decoction or beer; or, with the woods of guaiacum and sassafras, and juniper berries, in the form of tincture (tinctura pini composita, Ph. Bor.) They are employed in scorbutive, rheumatic, and gouty complaints.

2. Essentia Abietis.—Essence of Spruce is prepared by boiling the young tops of some coniferous plant (in America, those of Abies nigra or Black Spruce, are used) in water, and concentrating the decoction by evaporation. “It is a
thick liquid, having the colour and consistence of molasses, with a bitterish, acidulous, astringent taste." It is used in the preparation of spruce beer.

3. Cerevisia Abietis.—Spruce Beer is thus prepared:—Take of Essence of Spruce, half a pint; Pimento, bruised; Ginger, bruised; Hops, of each, four ounces; Water, three gallons. Boil for five or ten minutes; then strain, and add, of warm water, eleven gallons; Yeast, a pint; Molasses, six pints. Mix, and allow the mixture to ferment for twenty hours1." It is sometimes taken as an agreeable and wholesome drink in summer. It is diuretic and anti-scorbutic, and is, in consequence, employed in long sea-voyages as a preventive of scurvy.

4. Juniperus Virginiana, Linn., the Red Cedar (the wood of which is used for black-lead pencils) is used in the United States as a substitute for savin.

5. Sandarach or Juniper Resin.—The resin called sandarach (sandaraca), or gum juniper (gummi juniperi), is imported from Mogadore. It is the produce of Callitris quadrivalvis, Vent. (Thuja articulata, Desf.) Though sold by chemists and apothecaries, it is not employed in medicine. It is used in the manufacture of varnishes. Its powder is pounce.

6. The fruit of the Common Yew, Taxus baccata, is poisonous. In one case (that of a child) it caused vomiting, convulsions, purple lips, dilated pupil, and death in less than four hours ².

**Order XXIII.—BALSAMACEÆ, Lindley.—THE LIQUIDAMBAR TRIBE.**

Balsamiflœ, Blume.

Though this order yields no officinal substance contained in the British pharmacopœias, yet the two balsamic oleo-resins, liquidambar and liquid storax (especially the latter) are frequently met with in the shops, and, therefore, require to be noticed.

1. Balsam of Liquidambar (Balsamum Liquidambar, T. W. C. Martins; Liquidambar, Guibourt; Copalm balsam).—This is procured in Mexico and Louisiana by making incisions into the stem of Liquidambar Styraciflua. The liquid balsam (fluid liquidambar, or oil of liquidambar, Guib.) is transparent, amber-yellow, has the the consistence of a thick oil, a balsamic odour, and an aromatic, acrid, bitter taste. The solid balsam (soft or white liquidambar, Guibourt; white balsam of Peru, Auctor.) is a soft, almost opaque, solid, very similar in appearance to concrete turpentine. Its odour is similar to, though weaker, than the liquid balsam. Its taste is balsamic and sweetish. Bonastre analyzed a very fluid sample, recently received from America, and found it to consist of:—Volatile oil 7'0, semi-concrete matter 7'0, benzoic acid 1'0, crystalline matter soluble in water and alcohol 5'3, yellow colouring matter 2'5, oleo-resin 49'0, styracin 24'0, loss 0'55. The volatile oil consists, according to Henry, of C10 H7. Styracin is a fusible, crystalline substance, soluble in boiling alcohol, and composed, according to Henry, of C11 H8 O2. The effects and uses of liquidambar are similar to those of other balsamic substances (vide p. 74). The dose of it is from ten to twenty grains.

2. Liquid Balsam of Storax (Styrax liquidus, officin).—This is said to be procured from the Liquidambar Altingia, Blume, (Altingia excelsa, Noronha), a native of Java, where it is called Ras-sama-la (Rasamalla or Rosa-mallas, Auct.) But on referring to the books of a wholesale druggist, I find that all the storax (liquid and solid), which has been imported into this country during the last seven years, came from Trieste; and from this circumstance Dr. Lindley suspects that the liquid storax of the shops is the produce of Liquidambar orientale, a native of Cyprus, and other parts of the east of Europe; but there is no reason to believe that liquid storax is obtained in Europe. Petiver ³ says, that the tree which yields it is the Rosa mallas, and grows in Cobross, an island at the upper end of the Red Sea, near Cadess, which is three days' journey from Suez. The

---

1. United States Dispensatory.
2. Ibid.
4. Phil. Trans. vol. xxvi. p. 44.
bark of this tree is removed annually, and boiled in salt water until "it comes to a consistence like birdlime;" it is then separated, put in barrels (each holding 420 lbs.), and sent to Mocha, by way of Judda. Under the name of *storax*, I have met with two liquids:

a. A pellucid liquid, having the consistence and tenacity of Venice turpentine, a brownish yellow colour, a sweetish storax-like odour, different to that of liquidambar. A few particles of bran or saw-dust are intermixed with it. It was sold to me as *balsam* or *balsam storax*, and I was informed that it had been imported in jars, each holding 14 lbs. It agrees with the *pure or fine liquid storax* of Hill, the *styrex liquida finissima* of Alston. Professor Guibourt, to whom I sent a sample, regards it as a balsam of liquidambar, somewhat thickened by age.

b. The second kind is the *common liquid storax* of the shops; the *impure or coarse liquid storax* of Hill; and doubtless is the variety referred to by Petiver. It is imported in casks, holding about 4 cwt. each. It is opaque, of a grey colour, has the consistence of birdlime, and the odour of storax, but frequently intermixed with an odour of naphtha. The substance met with in the shops and sold to perfumers under the name *strained storax* (*Styrax colatus*) is prepared from this variety of liquid storax, by heating it until the water is evaporated, and then straining it. During the process it evolves a very fragrant odour. The impurities are stones, sand, &c. No complete analysis of liquid storax has been made. The following substances, however, are contained in it: — Volatile oil, benzoic acid, resin, styracin, matter soluble in boiling alcohol (wax?), fragments of bark, and earthy matter. *Oil of Storax* consists of $C_8H_{16}$ or some multiple of this. *Styracin* is a crystallizable resin, composed of $C_{20}H_{11}O_3$. The effects and uses of liquid storax are similar to those of other balsamic substances (vide p. 183). Its dose is from $\frac{1}{3}$ to $\frac{1}{5}$.

**Order XXIV.—Salicaceæ, Lindley.—The Willow Tribe.**

**Salicinae, Richard.**

**Essential Character.** — Flowers unisexual, either monoecious or dioecious, amentaceous. Stamens distinct or monadelphous; anthers two-celled. Ovary superior, one or two-celled; ovules numerous, erect, at the base of the cell, or adhering to the lower part of the side; style one or none; stigmas two. Fruit coriaceous, one or two-celled, two-valved, many-seeded. Seeds either adhering to the lower part of the axis of each valve, or to the base of the cell, comose; albumen none; embryo erect; radicle inferior. — Trees or shrubs. Leaves alternate, simple, with deliquescent primary veins, and frequently with glands; stipules deciduous or persistent (Lindley.).

**Properties.** — The astringency possessed by most willow barks is referable to tannic acid. The bitterness and tonic properties depend on salicine, populin, or some uncrystrallizable principle.

**Salix, Linn.—Willow.**

**Salix Caprea, E. D., and S. fragilis and S. alba, D.**

**Sex. Syst.** Dioecia, Diandria.

(Cortex e speciebus salicis cUversis: cortex salicis, offic.)

**History.** — Dioscorides speaks of the astringent qualities of the *Iría, or Willow* (? *Salix alba*), which was employed in medicine by the ancients. For a long series of years it fell into disuse, but was again brought into notice in 1763 by the Rev. Mr. Stone, who pub-
lished a paper on the efficacy of the bark of *Salix alba*, as a remedy for agues.

**Botany. Gen. Char.** — *Flowers* dioecious, or rarely monoeious, amentaceous; *scales* imbricated: a *gland* surrounding the stamens or ovary. **Males:** — *Stamens* two to five, usually two, sometimes the two united into one, and then the anther is four-celled. **Females:** — *Seeds* comose; the *radicle* inferior (Bot. Gall.)

**Species.** — Sir J. E. Smith mentions sixty-four indigenous species of *Salix*; but pharmacological and botanical writers are not agreed as to which species possesses the most medicinal power. The best practical rule to follow is this: — Select those whose barks possess great bitterness, combined with astringency. The following are those which are in the greatest repute:

1. *Salix Russelliana*, Smith; the Bedford Willow. — *Leaves* lanceolate, tapering at each end, serrated throughout, very smooth. *Footstalks* glandular or leafy. *Germen* tapering, stalked, longer than the scales. *Style* as long as the stigmas (Smith). — A tree. In marshy woods, wet meadows, &c., in various parts of Britain. Flowers in April and May. Its bark abounds in tannic acid. On account of its astringency, Sir J. E. Smith regards it as the most valuable officinal species; and he observes, that if it has occasionally disappointed medical practitioners, they probably chanced in such cases to give the *S. fragilis*.


---

*Fig. 216.*

*Salix Russelliana.*

*Fig. 217.*

*Salix alba.*

*Engl. Flora, iv.*


5. *Salix Pentandra*, Linn.; **Sweet Bay-leaved Willow.**—This species is official in the Prussian Pharmacopoeia, and is preferred by Nees Von Esenbeck to all other species. Its bark is the *cortex salici laureae* of some pharmacologists.

6. *Salix purpurea*, Linn.; **Bitter Purple Willow.**—This species deserves notice on account of the intense bitterness of its bark.

**DESCRIPTION.**—Willow bark (*cortex salici*) varies, in its appearance and qualities, according to the species and the age of the tree from which it is procured. In the dried state, it is usually quilled and odourless. It should have a bitter and astringent taste.

**COMPOSITION.**—The bark of *Salix alba* was analyzed by MM. Pelletier and Caventou, who obtained the following results:—Bitter yellow colouring matter, green fatty matter, similar to that found in cinchona, tannin, resinous extract, gum, wax, woody fibre, and a magnesian salt, containing an organic acid.

These celebrated chemists failed to isolate salicin, which must have been contained in their bitter yellow colouring matter, either mixed or combined with some other matter. Their resinous extract is probably identical with what Braconnet calls corticin.

1. Tannic Acid.—This is the astringent principle of willow bark. Sir H. Davy gives the following as the quantities of tannin [impure tannic acid], in the bark of two willows:

<table>
<thead>
<tr>
<th></th>
<th>lbs. of bark</th>
<th>lbs. of tannin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leicestershire Willow <em>Salix Russelliana</em> large size</td>
<td>480</td>
<td>33</td>
</tr>
<tr>
<td>Common Willow <em>Salix — ?</em> large</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

2. Salicin.—See p. 1074.

**CHEMICAL CHARACTERISTICS.**—A decoction of the bark, made with distilled water, is coloured dark green (*tannate of iron*) by sesquichloride of iron; but, made with spring water, dark purple. Solution of gelatin produces a precipitate (*tannate of gelatin*) in the decoction; but tincture of nutgalls causes no turbidity. A strong decoction of willow bark, containing much salicin, is reddened by concentrated sulphuric acid.

**PHYSIOLOGICAL EFFECTS.**—Willow bark possesses both bitterness
and astringency. It belongs, therefore, to the astringent tonics, whose effects have been already noticed (p. 189). It is less apt to disturb the stomach than cinchona, but its tonic and febrifuge powers are less than the latter. Vogt\textsuperscript{8} ascribes to it balsamic properties.

Uses.—It has been employed as an indigenous substitute for cinchona. The indications for its use, therefore, are the same as those for the latter. It is given in intermittent, dyspeptic complaints accompanied with, or dependent on, a debilitated condition of the digestive organs, passive hemorrhages, chronic mucous discharges, in the stage of convalescence after fever, and as an anthelmintic. As a local astringent, the powder or infusion is sometimes employed; but there are many more efficient remedies of this kind.

Administration.—The dose of the powder is 5 ss. to 5 i. The infusion or decoction (prepared with 5 j. of the bark, and 0 j. of water) may be given in doses of from 5 j. to 5 iij.

SALICIN.—Discovered by Buchner\textsuperscript{4} in 1828. Has been found in about fourteen species of Salix and eight species of Populus\textsuperscript{8}. It has been detected in the bark, leaves, and flowers. Herberger obtained 250 grs., Merck 251 grs., from 16 ounces of the bark and young twigs of Salix Helica: Erdmann, however, procured, by another process, 300 grs. from the bark of Salix pentandra\textsuperscript{8}. Merck’s process for obtaining it, as stated by Liebig\textsuperscript{8}, is as follows:

“Dried or fresh willow bark is cut small, and exhausted by repeated boiling with water. The decoctions are concentrated, and while boiling treated with litharge till the liquor appears nearly colourless. The dissolved oxide of lead is removed, first by sulphuric acid, afterwards by sulphuret of barium, and, after the separation of sulphuret of lead, evaporated, when salicin crystallizes; and is purified by repeated solution and crystallization (Merck). From willow bark, which is fresh and rich in salicin, it may be obtained by cautious evaporation of the cold aqueous infusion (Merck). The oxide of lead removes from the solution gum, tannin, and extractive matter, which would impede the crystallization of the salicin. It also combines with the salicin, forming a kind of salt, which is decomposed by the sulphuric acid and sulphuret of barium. If the latter be carefully added, neither sulphuric acid nor baryta remain in the solution; and the sulphuret of lead, which separates, acts as a decolorizing agent.”

Salicin crystallizes in silky needles and laminae. It is white, very bitter, inodorous, neutral to vegetable colours, fusible at 230\textdegree F., and combustible at a higher temperature. It is much more soluble in boiling than in cold water; it is also soluble in alcohol, but not so in ether or the volatile oils. It is not precipitated by any agent. If oil of vitriol be added to it, it becomes blood-red (owing to the formation of rufin\textsuperscript{2}, \( C_{14} H_{24} O^2 \)) and dissolves in the acid. Hydrochloric acid and dilute sulphuric acid convert it into grape sugar and a white tasteless powder (saliretine, \( C_{30} H_{16} O^8 = C_{30} H_{15} O^7 + Aq. \)) Chlorine gas
renders an aqueous solution of salicin turbid, and causes the depo-
sition of a yellow crystalline powder (composed of C14H5O3 + Aq).
By submitting a mixture of salicin, bichromate of potash, oil of
vitriol, and water, to distillation, we obtain salicic acid (also called
salicic acid, hydruret of salicile, hydruret of spiroule, or oil of
spirae), the formula of which is C14H5O3 + Aq.

Salicin has been repeatedly subjected to analysis.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>22</td>
<td>176</td>
<td>38:51</td>
<td>38:57</td>
<td>38:59</td>
<td>38:53</td>
</tr>
</tbody>
</table>

Salicin possesses tonic properties analogous to disulphate of
quinine, than which it is less liable to irritate the stomach. It may be
employed in dyspepsia, intermittent, and other diseases for which
cinchona and disulphate of quinine are usually exhibited. In the
event of the latter becoming scarce, salicin would prove an ex-
ceedingly valuable substitute. The dose of it is from 10 to 30 grains.
It may be given in powder mixed with sugar or dissolved in some
aromatic water. Its quickest action in intermitents is said to be
obtained when it is given in powder.

Order XXV.—CUPULIFERÆ, Richard.—THE OAK TRIBE.

Corylaceæ, Mirbel.

Essential Character.—Flowers unisexual: males, amettaceous; females ag-
gregate or amettaceous. Males:—Stamens five to twenty, inserted into the
base of the scales, or of a membranous calyx, generally distinct. Females:
—Ovariæ crowned by the rudiments of a superior calyx, seate with a coria-
ceous involucre (cupule) of various figure, and with several cells and several
ovules, the greatest part of which are abortive; ovulæ twin or solitary, pendu-
lous; stigmæ several, substessile, distinct. Fruit a bony or coriaceous, one-
celled nut, more or less inclosed in the involucre. Seeds solitary, one, two, or
three, pendulous: embryo large, with plano-convex, fleshy cotyledons, and a
minute superior radicle.—Trees or shrubs. Leaves with stipules, alternate,
simple, often with veins proceeding straight from the midrib to the margin
(Lindley).

Properties.—The prevailing quality of this order is astringency, owing to the
presence of tannic acid.

1. Quercus peduncula'ta, Wild. L.E.—THE COMMON
BRITISH OAK.

Quercus Robur, Linn. D.

Sex. Syst. Monoeccia, Polyandria.

(Cortex, L. D. The Bark, E.)

History.—The oaks (Quercus of botanists) were held sacred by
the Greeks, Romans, Gauls, and Britons. They are mentioned in the

Pharmaceutisches Central-Blatt für 1839, S. 429.

Ibid. S. 369.

Ibid. für 1838, S. 925.


Blum, Beschreib. 6. Iehr. 6. die Salicil. Potsdam, 1835.

Old Testament. Both Dioscorides and Galen were acquainted with their astringent qualities. "Every part of the oak," says Dioscorides, "but especially the liber, possesses an astringent property."

**Botany.** — **Gen. Char.** Monoecious. **Male flowers:** — Catkins lax and pendulous. Perianth lacerated. Stamens five to ten. **Female flowers:** — Involucr scaly; the scales numerous, imbricated; combined with a coriaceous, hemispherical cup. Perianth six-lobed, adnate to the ovary. Ovary three-celled; two of the cells abortive. Stigmas three. Nut (galls or acorn) one-celled, one-seeded, surrounded at the base by the cupule (acorn-cup). (Bot. Gall.)

**Sp. Char.** — Leaves deciduous, shortly-stalked, oblong-ovate, deeply sinuate; their sinuses rather acute, lobes obtuse. **Fruits** two or three upon a long peduncle (Hooker).

A large and handsome tree, remarkable for its longevity. Twigs round, smooth, grayish-brown. Leaves bright green, furnished with a single midrib sending off veins into the lobes. **Male flowers** yellowish; **females** greenish, tinged with brown.

**Hab.** — Indigenous, growing in woods and hedges. Flowers in April. It is found in most European countries.

**Barking.** — In the spring, the barks of trees contain more astringent matter, and are more readily separated from the wood. The usual time for barking the oak is from the beginning of May to the middle of July. The barkers make a longitudinal incision with a mallet furnished with a sharp edge, and a circular incision by means of a barking bill. The bark is then removed by the peeling-irons, the separation being promoted, when necessary, by beating the bark with the square end of the mallet. It is then carefully dried in the air, by setting it on what are called lofts or ranges, and is afterwards stacked.

**Description.** — Oak bark (cortex quercus) consists of pieces of from one to two feet long, which vary in their appearance according to the age of the stem or branch from which they have been taken. The bark of young stems is thin, moderately smooth, covered externally with a silvery or ash-gray cuticle, and is frequently beset with lichens. Internally it is, in the fresh state, whitish; but, when dried, brownish, red, and fibrous. The bark of old stems is thick, very rough externally, cracked, and wrinkled, and is of inferior quality.

**Composition.** — According to Braconnot, oak bark contains — Tannic acid, tannates of lime, magnesia, potash, &c., gallic acid, uncrystallizable sugar, pectin, and lignin.

1. **Tannic Acid.** — The quantity of tannin [impure tannic acid] obtained by Davy from oak bark is as follows:

---

\[d\text{ Isaiah, ch. i. v. 29, 30.}
\[e\text{ Lib. i. cap. 142.}
\[f\text{ London's Encyclop. of Agricult., 3rd ed. p. 658-9.}
\[g\text{ Ann. de Chim. et de Phys. t. 50. p. 381.}
\[h\text{ Elem. of Agricult. Chem. p. 83, 4th ed.}
Entire bark of middle-sized oak, cut in spring .... 480 lbs of afforded. 
" coppice oak.... 29 lbs
" oak cut in autumn... 32 lbs
White interior cortical layers of oak bark... 72 lbs

Biggins obtained 30 parts of tannin from the bark of an oak felled in winter, while the same weight of the bark of an oak felled in spring yielded him 108 parts.

2. Gallic Acid.—This contributes to the astringency of oak bark. It is formed probably by the action of the air on the tannic acid.

Chemical Characteristics. — Decoction of oak bark reddens litmus, and becomes dark blue or purple (tannate of iron) on the addition of sesquichloride of iron. A solution of gelatin causes a precipitate (tannate of gelatin) with it. It is somewhat remarkable, however, that a solution of emetic tartar causes no precipitate with the decoction. [If alcohol be added to the decoction, concentrated to the consistence of a syrup, it causes the precipitation of pectin. A decoction, rendered alkaline by a fixed alkali, deposits a gelatinous matter (pectic acid) on the addition of acetic acid. Braconnot.]

Physiological Effects. — The effects of oak bark are similar to those of other vegetable astringents containing tannic acid, and have been already described (pp. 188 and 189).

Uses. — The principal value of oak bark, in medicine, arises from its astringent property. Thus we employ a decoction of it as a gargle in relaxed conditions of the uvula, and in chronic inflammatory affections of the throat; as a wash, in flabby, ill-conditioned, or bleeding ulcers; as an injection in leucorrhoea, in piles, and in prolapsus of the uterus or rectum; as an internal astringent in old diarrhoeas, in the last stage of dysentery, in alvine hemorrhages, &c. Poultices made of powdered oak bark have been applied with benefit to mortified parts. Mr. Lizars states that he has obtained "wonderful success" in the cure of reducible herniae by bathing the groin (the hernia having been previously reduced) three or four times daily with a warm inspissated decoction of oak bark, and then applying a truss. The practice, however, is not a new one.

The inhalation of finely-powdered oak bark is said to have proved very beneficial in supposed cases of pulmonary consumption. I have already noticed (p. 151) the inspiration of impalpable powders of other astringents as a remedy for phthisis. Connected with this, the popular opinion of the exemption of operative tanners from phthisis pulmonalis deserves to be mentioned. Dr. Dods, who has paid some attention to this subject, concludes, that the popular notion is correct; and he ascribes the exemption to "the inhalation of that peculiar aroma, or volatile matter, which is constantly arising from tan-pits during the process of tanning with bark." Hitherto, how-

2 Cullen, Mat. Med. vol. ii. p. 43.
3 Barton, Collect. towards a Mat. Med. of the United States.
5 See the references in Ploucquet's Literatura Medica, t. ii. p. 297.
6 Eberle, Treat. on Mat. Med. vol. i. p. 268, 2nd ed.
ever, no sufficient evidence has been advanced to prove that tanners are exempt from the disease.

As a tonic, oak bark has been employed in medicine, but it is much inferior to the cinchona. Baths made of a decoction of this substance have been used by Dr. Eberle in the intermittents of very young children with benefit; and Dr. Fletcher (of Virginia) has recommended the same remedy in tabes mesenterica. The decoction, powder, and extract, have been taken internally in intermittents, but they are very apt to irritate the stomach. Dr. Cullen says, that both by itself and joined with chamomile flowers, he has prevented the paroxysms of intermittents.

Administration.—Dose of the powder from half a drachm to one or two drachms.

1. DECOCTUM QUERCUS, L. E. D.; Decoction of Oak Bark.—(Oak bark, bruised, 3x. [5i. D.]; Water [distilled, L.] Oij. [wine measure D.]) Boil down to a pint, and strain.)—Used as a local astringent for various purposes, in the form of gargle, injection, or lotion. Administered internally in doses of 1/3 iii. to 1/3 vi. Sometimes employed as a bath, especially for children.

2. EXTRACTUM QUERCUS, D.; Extract of Oak Bark.—(Obtained by evaporating a decoction).—Rarely employed in medicine. May be given internally as an astringent, in the dose of from ten grains to a drachm.

2. QUERCUS INFECTORIA, Olivier, L. E. D.—THE GALL OR DYER’S OAK.

Sex. Syst. Monococia, Polyandria.

(Gallae; Gemmae morbas, L. Galle; Excrecences, E. Gallae, E.)

History.—Hippocrates employed the nutgall (συκί) as an astringent, both internally and externally. Dioscorides describes it as the fruit of the oak; and the same error is found in the works of comparatively recent writers, as of Pomet. Mr. Lambert declares the celebrated Mad Apples (Mala insana seu Poma Sodomitica) to be galls of the Quercus infectoria; but he is certainly in error when he says they “are identical with those of commerce.” His drawing of them disproves this statement.


Sp. Char.—Leaves ovate-oblong, sinuate-dentate, very smooth, deciduous. Fruit sessile, very long.

Small tree or shrub, from four to six feet high. Stem crooked. Leaves on short petioles, with a few short mucronate teeth on each side. Acorn two or three times as long as the cupules.
Hab.—Asia Minor, from the Bosphorus to Syria, and from the Archipelago to the frontiers of Persia.

Formation of Nutgalls.—The Hymenopterous insects of the tribe called Gallicole, or Diplolepariae, are furnished with a terethra, or borer, by means of which they are enabled to perforate the foliaceous or cortical parts of plants for the purpose of depositing their eggs, along with an acrid liquor, in the wound thus made. The irritation thereby produced gives rise to an influx of the juices of the plant to the wounded part, and an excrescence is formed, which is termed a gall (galla). Here the insect undergoes its transformations: the egg produces the larva (or maggot), which feeds on the juices of the plant, and is changed into the pupa. This afterwards becomes the perfect insect (imago), and, perforating the gall, escapes from its prison-house.

The external form and appearance of these productions are very constant when formed by the same insect, on the same part of the same plant; but the galls of different species of vegetables, as well as those of the same species, produced by a different insect, vary considerably. There is reason for believing that the form and appearance of the gall is determined more by the insect than by the plant; for we sometimes have on the same oak two kinds of galls, of very dissimilar appearance, produced by different insects.

As familiar instances of galls, I may mention, first, the red carpuncular protuberances in the leaves of Salix Helix. The gall of the Sweet Briar or Eglantine (Rosa rubiginosa) is called Bedeguar, or the Sweet Briar Sponge, and will be noticed hereafter. Another well-known indigenous gall is the Oak Apple, produced on Quercus pedunculata. It is usually spheroidal, but of variable size; commonly, however, not exceeding one or two inches in diameter. Its texture is spongy. It has been employed, on account of the tannic acid which it contains, as a substitute for nutgalls in dyeing.

The gall of the Quercus infectoria is the nutgall of the shops. It is produced by the Cynips Galleae tinctoriae. Olivier says, that this insect lives on the Quercus infectoria only.

On the sides and at the ends of the branches and shoots of this tree, the female makes a puncture and deposits her egg. An excrescence is soon formed, within which the larva is developed, which is

---

* Cuvier, Règne Animal, t. v. p. 290.
changed first into the pupa, and then into the imago. As soon as the perfect insect is produced, it eats its way out. If we examine those galls from which the animal has escaped, we observe externally a circular hole, of about a line in diameter, leading to a canal of from $\frac{2}{3}$ to $\frac{3}{3}$ lines long, which passes to the centre of the gall. But in those galls in which the insect has not put off its pupa state, we find neither an external hole nor an internal canal. Those galls from which the insect has escaped are commonly longer, lighter coloured, and less astringent: they are termed white galls.

COMMERCE.—Nutgalls are imported principally from Turkey; hence their name of Turkey Galls (Galla turcica). They usually come from Constantinople, but sometimes from Smyrna. Those brought from Aleppo are the produce of Mosul (Aleppo or Mosul Galls), and are the best. Smyrna Galls are not so heavy, are lighter coloured, and contain a larger admixture of white galls than those brought from Aleppo. East India Galls are brought from Bombay. Ainslie thinks, "that the greater part of the galls found in Indian bazaars grows in Persia, and are brought to the peninsula by Arab merchants."

DESCRIPTION.—In commerce three kinds of galls are distinguished, viz. black or blue, green, and white. But there is no essential distinction between the two first.

1. Black or Blue Nutgalls (Gallae nigrae seu caeruleae); Green Nutgalls (Gallae virides).—These are gathered before the insect has escaped, and are called by the natives Yerli. They vary from the size of a pea to that of a hazel-nut, and have a grayish colour. The smallest have a blackish-blue tint, and are distinguished by the name of black or blue galls, while the larger and greener varieties are called green galls. Externally they are frequently tuberculated, but the surface of the tubercles and of the intervening spaces is usually smooth. Their texture is compact, but fragile. They have no odour, but a styptic and powerfully astringent taste.

2. White Galls (Galla albae).—These are for the most part gathered after the insect has escaped, and hence they are perforated with a circular hole. They are larger, lighter coloured (being yellowish or whitish), less compact, less heavy, and less astringent. They are of inferior value.

COMPOSITION.—Nutgalls were analyzed by Sir H. Davy, who obtained the following results:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>26.0</td>
</tr>
<tr>
<td>Gallic acid, with a little extractive</td>
<td>6.2</td>
</tr>
<tr>
<td>Mucilage and matters rendered insoluble by evaporation</td>
<td>2.4</td>
</tr>
<tr>
<td>Carbonate of lime and saline matter</td>
<td>2.4</td>
</tr>
<tr>
<td>Matter insoluble in water (lignin)</td>
<td>63.0</td>
</tr>
<tr>
<td>Good Aleppo Nutgalls</td>
<td>100.0</td>
</tr>
</tbody>
</table>

1. TANNIC ACID (Acidum Tannicum; Acidum Quercitannicum).—The substance formerly described in chemical works by the name of tannin, is tannic acid mixed with some foreign matters, from which it is very difficult to free it. When extracted from nutgalls by ether, in the percolation or displacement apparatus, (see p. 366) as recommended by Pelouze, this acid presents itself as a

---

7 Mat. Indica, vol. i. p. 145.
8 Phil. Trans. 1830.
non-crystalline, white solid, sometimes having a yellowish tinge. 100 parts of nutgalls yield from 36 to 40 parts of tannic acid.

The following are the essential characteristics of this substance:—It has an intensely astringent taste, and produces, with a solution of gelatin, a white precipitate (tannate of gelatine); with a solution of a sesquisalt of iron, a deep blue compound (tannate of iron); and with solutions of vegetable alkalis, white precipitates (tannates), slightly soluble in water, but very soluble in acetic acid. The mineral acids also cause precipitates with concentrated solutions of tannic acid, as do the alkalis and their carbonates. Gelatinous alumina rapidly absorbs tannic acid from its solution, and forms an insoluble compound with it.

Tannic acid is composed of $C_{18}^8 H^8 O^{12}$; consequently its equivalent or atomic weight is 212.

Tannic acid is a very powerful astringent. Given to dogs to the extent of 12 grains it caused constipation. One of the animals being killed, the intestinal mucous membrane was found dry, and the fecal matter hard, and collected in the colon. In doses of two grains and a half it produced constipation in the human subject. To the presence of this acid the vegetable astringents principally owe their medicinal activity (vide pp. 188 and 189). It has been employed in hemorrhages, (from the lungs, uterus, and rectum), and in profuse mucous discharges (diarrhoea, pulmonary catarrh, leucorrhoea, and gonorrhoea). It may be administered in doses of three grains, in the form of pill or solution. It presents but few advantages over the astringent extracts.

2. Gallic Acid (Acidum Gallicum).—Though we obtain 20 per cent, of gallic acid from nutgalls, these excrescences contain very little of it,—at least in the free state; our produce being principally the result of the decomposition of the tannic acid. Nay, Pelouze thinks that even the small quantity of gallic acid which does exist in nutgalls, is formed by the decomposition of the tannic acid during or subsequent to the process of drying these bodies.

The conversion of tannic into gallic acid is effected, according to Pelouze, by the agency of the air, the oxygen of which is absorbed, while an equal volume of carbonic acid is evolved. One atom of tannic acid and eight atoms of oxygen contain the elements of two atoms of gallic acid, four atoms of carbonic acid, and two atoms of water.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>atoms</td>
<td>atoms</td>
<td>atoms</td>
</tr>
<tr>
<td>1 atom Tannic acid consists of</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>8 atoms Oxygen of the air</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>8</td>
</tr>
</tbody>
</table>

When the air is excluded no gallic acid is formed.

The production of gallic acid may also be accounted for by supposing that it is a constituent of tannic acid. Thus, three atoms of tannic acid contain the elements of six atoms of gallic acid and two atoms of pyrogallic acid.

Pure gallic acid is a colourless, crystallizable acid, with an acidulous and styptic taste. It produces a deep blue colour with the sesquisalts of iron, in which circumstance it agrees with tannic acid; but it differs from the latter acid in not precipitating gelatin or the vegetable alkaline salts. To detect gallic acid mixed with tannic acid, the latter is to be previously removed from its solution by immersing in it a piece of skin depilated by lime. The tannic acid is absorbed. The gallic acid may then be detected by the salts of iron.

Gallic acid consists of $C_6^2 H^2 O^2$; hence its equivalent or atomic weight is 85. When heated to 410° or 420° F., it gives out carbonic acid, and is resolved into pyrogallic acid ($C_6^4 H^2 O^3$). If the heat is raised to 480° F., both water and carbonic acid are evolved, and meta-gallic acid ($C_{12}^2 H^2 O^3 + aq.$) is produced.

The effects and uses of gallic acid have been before noticed (p. 190).

3. Ellagic Acid (Acidum Ellagicum).—Discovered by Braconnot, who named

---

it ellagic acid, from the French word for a gall (galle) spelt backwards. It is obtained from galls in the process for making gallic acid, and hence is probably a product, and not an educt. It is a white, insipid powder, which becomes of a blood-red colour on the addition of nitric acid. It consists of $C_7H_6O_4 + Aq. = C_7H_3O_6$; hence the equivalent or atomic weight of the hydrated acid is 85.

Chemical Characteristics. — Infusion of nutgalls reddens litmus paper, forms an inky compound (tanno-gallate of iron) on the addition of a sesquisalt of iron, and a yellowish white precipitate (tannate of gelatin) with a solution of gelatin. If a piece of skin, depilated by lime, be immersed in the infusion, and agitated with it from time to time, all the tannic acid is absorbed, the filtered liquor striking a blue colour (gallate of iron) with the sesquisalts of iron, but giving no precipitate with a solution of gelatin. Infusion of galls forms precipitates (metallic tannates or tanno-gallates) in many metallic solutions.

Physiological Effects. — As nutgalls contain a larger portion of tannic acid than any other known vegetable production, they possess in the highest degree the properties of an astringent (vide p. 188).

Uses. — The following are the principal uses of nutgalls:

1. As a tonic in intermittents. — Notwithstanding Poupart's favourable report of the use of galls in these cases, they scarcely deserve notice, as we have in arsenic, cinchona, and sulphate of quina, much more effective and certain febrifuges.

2. As an astringent in hemorrhages, especially passive alvine hemorrhages.

3. In chronic mucous discharges, as old diarrhoeas.

4. As a chemical antidote. — Nutgalls may be given in poisoning by ipecacuanha, emetina, the organic alkalis generally, and those vegetable productions whose activity depends on an organic alkali, as opium, white hellebore, colchicum, nux vomica, &c. Their efficacy arises from the tannic acid, which combines with the vegetable alkali to form a tannate possessing less activity than the other salts of these bases; perhaps because of its slight solubility. Nutgalls are recommended as an antidote in cases of poisoning by emetic tartar, but I very much doubt their efficacy (see p. 679).

5. As a topical astringent. — Nutgalls are applicable in any cases requiring the topical use of a powerful vegetable astringent. Thus, in the form of gargle, in relaxation of the uvula; as an injection, in gleet and leucorrhoea; as a wash, in flabby ulcers, with profuse discharge; prolapsus ani seu vaginae; in the form of ointment, in piles, &c.

Administration. — The dose of the powder is from ten to twenty grains. The infusion is prepared with four drachms of nutgalls and six ounces of water: the dose is from $\frac{1}{2}$ ss. to $\frac{3}{2}$ii. ; or, in cases of poisoning by the vegetable alkalis, $\frac{3}{2}$iv.

Besides the following officinal formulæ for the use of galls, others have been published by Mouchon.

---

1 See the table given in Mr. Brande's Manual of Chemistry, p. 1106, 5th ed.
1. TINCTURA GALLÆ, L.; Tinctura Gallarum, E. D.; Tincture of Galls.—(Galls, bruised, 5v. [3iv. D.]; Proof Spirit, Oij. [wine measure, D.]) Macerate for fourteen [seven, D.] days, and filter. “This tincture may be prepared either by digestion or percolation, as directed for tincture of capsicum, E.)—A powerful astringent. Dose from 15ss. to 15j. Diluted with water, it forms a very useful and convenient astringent gargle and wash. Its principal use is as a chemical test, especially for the salts of iron.

2. UNGUENTUM GALLARUM, D.; Ointment of Galls.—(Galls, in very fine powder, 3i.; Lard, 3jij. Mix them).—Astringent. Mixed with zinc ointment it is applied to piles after the inflammatory stage is passed. The above is Dr. Cullen’s formula; but Mr. B. Bell recommends an ointment composed of equal parts of powdered galls, and hog’s lard or butter, in external hemorrhoidal swellings.

3. UNGUENTUM GALLÆ COMPOSITUM, L.; Unguentum Gallce et Opii, E.; Compound Ointment of Galls.—(Galls, in very fine powder, 5ij.; Opium, powdered, 5ss. [3i. E.]; Lard, 5ij. [3i. E.]. Mix.)—An excellent astringent application to blind piles (i.e. piles without hemorrhage) and prolapsus ani. The opium diminishes the pain which the galls might otherwise occasion, where the hemorrhoidal tumors are very sensible. From 5ss. to 5i. of camphor is frequently added to this ointment.

OTHER MEDICINAL CUPULIFÈRE.

1. QuERCUS TINCTORIÆ, or the Black Oak, is a native of America. Its bark, called quercitron, is used by dyers. In the United States it is employed medicinally, but it is said to be disposed to irritate the bowels.

2. QuERCUS SUBER, or the Cork Oak, is a native of the northern parts of Africa, and of the southern parts of Europe, particularly of France, Spain, and Portugal.

Although no medicinal agent is obtained from it, yet the important pharmaceutical uses of its cortical portion must be my excuse for noticing it.

According to Mohl, the bark of a young branch of Quercus Suber consists of four distinct layers. 1st, an exterior layer or epidermis, 2ndly, colourless cellular tissue, 3rdly, green parenchyma, and 4thly, the liber or fibrous layer. When the branches are from three to five years old, the epidermis cracks by distension, and the second layer enlarges on the inner side by the deposition of new layers. These constitute cork. It falls naturally every eight or nine years, but for commercial purposes is usually removed one or two years before this period. That season of the year is selected when the bark adheres the most firmly to the wood, in order that the cork may be raised.

Fig. 220.

Quercus Suber.
without endangering the separation of the liber from the alburnum. By this precaution, the trees are not at all injured by the corking process; nay, they are said to be more healthy and vigorous than when the cork is allowed to accumulate on their stems. The trees yield these crops from the age of 15 to 150 years.

To remove the cork, an incision is made from the top to the bottom of the tree, and a transverse circular incision at each extremity; the cork is then stripped off. To flatten it, a number of layers are piled up in a pit of water, and loaded with weights to keep them down. Subsequently they are dried, and in that state exported. Our supply is principally derived from Spain and Portugal. To close the transverse pores, cork is charred.

The physical properties of cork are too well known to need description. Its leading character is elasticity. In this respect it is similar to the wood of Anona palustris, called cork wood. When thin slices of cork are examined by the microscope, they present a cellular appearance.

When cork has been deprived of all its soluble matters by successive digestions in water and alcohol, it differs but little from ordinary cork; it is, however, then termed Suberaria. This suberin is analogous in its nature to lignin; but, as it yields a peculiar substance (suberic acid, composed of C8H6O3), when treated by nitric acid, it has been regarded as a distinct principle. Suberic acid is also a product of the action of nitric acid on oleic, margaric, and stearic acids. Raspail contends that suberin is only lignin undeprived of some of its foreign matters, such as wax, resin, &c.

By distilling suberate of lime, Bossingault obtained an oleaginous substance, which has been denominated suberone.

The soluble principles of cork are gallic acid, some gallates, resin, a waxy-like substance, colouring matter, &c.; hence the impropriety of employing cork in closing vessels containing chalybeate liquids, as the iron is in part absorbed by the cork.

Cork was formerly employed in medicine. Reduced to powder, it was applied as a styptic: hung about the necks of nurses, it was thought to possess the power of stopping the secretion of milk; lastly, burnt cork, mixed with sugar of lead and lard, has been used as an application to piles.

3. The large capsules or acorn-cups of Quercus nigra are imported from the Levant, under the name of Velonia. They are astringent, and are employed by dyers.

4. A saccharine substance exudes from the leaves of Quercus manifera in Kurdistan.

Order XXVI.—ULMACEAE, Mirbel.—THE ELM TRIBE.

Essential Characters. — Flowers hermaphrodite or polygamous, never in catkins. Calyx divided, campanulate, inferior, irregular. Stamens definite, inserted into the base of the calyx; erect in aestivation. Ovary superior, two-celled; ovules solitary, pendulous; stigmas two, distinct. Fruit one or two-celled, indehiscent, membranous, or dupraceous. Seed solitary, pendulous; albumen none, or in very small quantity; embryo straight or curved, with foliaceous cotyledons; radicle superior. — Trees or shrubs, with scabrous, alternate, simple, deciduous leaves, and stipules (Lindley).

Properties.—Elm bark is tonic and astringent.

ULMUS CAMPESTRIS, Linn. L. D.—THE COMMON SMALL-LEAVED ELM.

Sex. Syst. Pentandria, Digynia, (Cortex, L. Cortex interior, D.)

History.—Dioscorides speaks of the astringent property of elm bark.
THE COMMON SMALL-LEAVED ELM.

Botany. Gen. Char. — Flowers hermaphrodite. Calyx campanulate, four to five-toothed, coloured, persistent. Stamens three to six. Ovary compressed. Stigmas two. Fruit (a samara) suborbicular, with a broad membranous margin (Bot. Gall.)

Sp. Char. — Leaves doubly serrated, rough. Flowers nearly sessile, four-cleft. Fruit oblong, deeply cloven, naked. (Sir J. E. Smith.)

A large tree, with rugged bark. By the latter character it is readily distinguished from Ulmus glabra, which has a smooth, dark, lead-coloured bark.

Hab. — Southern parts of England. Flowers in March or April.

Description. — The officinal part of the elm is the inner cortical portion, or liber. To obtain it, the bark should be separated from the tree in spring; and, after the epidermis and a portion of the external cortex have been removed, the liber should be quickly dried.

As met with in the shops, the inner elm bark (cortex ulmi) consists of thin, tough pieces, which are inodorous, and have a brownish-yellow colour, and a mucilaginous, bitter, very slightly astringent taste.

Composition. — According to Rinck 88, 100 parts of elm bark contain:—Resin 0·63, gum and mucus 20·3, impure gallic acid (tannin ?) 6·5, oxalate of lime 6·3 (?), chloride of sodium (?) 4·6.

1. Tannic Acid. — Davy states, that 480 grs. of elm bark yielded 13 grs. of tannin.

2. Ulmic Acid: Ulmin. — On many trees, especially the elm, there is not unfrequently observed a substance, which was supposed to be a morbid production. When dried it consists of a mucilaginous matter, and carbonate or acetate of potash. By the combined agency of the air and the carbonate, the organic matter is altered in its properties, and is converted into a brown substance, which combines with the potash. This brown matter has been termed ulmin, or ulmic acid. It may be formed, artificially, by a variety of processes; as by heating a mixture of wood and potash, by the action of sulphuric acid on vegetable matters, and by other methods.

Chemical Characteristics. — Infusion of elm bark becomes green (tannate of iron) on the addition of a sesquisalt of iron, and forms a precipitate (tannate of gelatin) with a solution of gelatin.

Physiological Effects. — The effects of elm bark are those of a mild astringent tonic, containing a considerable quantity of mucilage, which gives it a demulcent property. Hence, in the classification of

88 Geiger, Hand. d. Pharm.
1 Phil. Trans. 1803, p. 233.
Richter it is arranged as a mucilaginous astringent. The decoction, taken in full doses, accelerates the pulse, and acts as a diaphoretic and diuretic.

Uses.—Lysons recommended the decoction of this bark in cutaneous eruptions; and Dr. Lettsom found it successful in ichthyosis. It has now fallen almost into disuse. It has been employed as a cheap substitute for sarsaparilla.

Administration.—Used only in the form of decoction.

DECOCTUM ULMII, L. D.; Decoction of Elm Bark.—(Fresh Elm Bark, bruised, 3ijss. [3ij. D.]; Distilled Water, Oij. [wine measure, D.] Boil down to a pint, and strain).—Formerly given in skin diseases, now fallen into disuse. Dose, f3iv. to f3vi., three or four times a day.

OTHER MEDICINAL ULMACEÆ.

Dr. M'Dowall, of Virginia, has proposed the bark of Ulmus fulva for bougies, tents, catheters, &c.¹

Order XXVII.—URTICACEÆ, Endlicher.—THE NETTLE TRIBE.

Essential Character.—Flowers small, greenish, monoeccious or dioecious, solitary, ammentaceous, or surrounded by a monophyllous involucrem. Calyx monosepalous, three to five-lobed, persistent. Stamens definite, inserted into the base of the calyx. Ovary simple, free; styles two or one, bifurcate. Fruit an achenium, surrounded by the persistent calyx, solitary, or inserted into the dilated fleshy receptacle. Seeds pendulous, with or without albumen. Embryo straight, curved, or spiral. Radicle generally superior.—Herbs or trees usually with hispid and spathulate leaves. Flowers capitate or racemose (Bot. Gall).

Properties.—Variable.

1. HMULUS LU’PULUS, Linn. L. E. D.—THE COMMON HOP.

Sex. Syst. Dioecia, Pentandria.

(Strobili exsiccati, L. Catkin, E. Strobili siccati, D.)

History.—This plant is probably the Lupus salictarius of Pliny. Its culture was introduced into this country from Flanders, in the reign of Henry VIII.⁰

Botany. Gen. Char. — Dioecious. MALES: — Calyx five-partite. Stamina five. FEMALES:—Strobiles consisting of large, persistent,
THE COMMON HOP.

Concave scales [bracts], having a single flower in the axilla of each. **Ovary** one. **Styles** two. **Seed** one, with an arillus. **Embryo** spirally contorted (*Bot. Gall.)*

**Sp. Char.** — The only species.

**Perennial. Stems** annual, long, weak, and climbing, scabrous. **Leaves** petiolate, three to five-lobed, serrated, veiny, rough. **Flowers** greenish yellow.

**Hab.** — Thickets and hedges in many parts of Europe. Indigenous [*?*]. **Flowers** in July.

**Cultivation.** — The female plant is cultivated in several counties in England, especially Kent, Sussex, Surrey, Worcestershire, and Herefordshire. The third year after planting it generally comes into full bearing. **Stacking or setting the poles** is performed in April or May. The **gathering or picking** takes place in September. The cones are dried in kilns, and are then packed in hempen sacks, called **bags** or **pockets**. This operation is called **bagging**.

**Description.** — The aggregate fruits of the *Humulus Lupulus* are strobiles or catkins (*strobili seu amenta lupuli*), in commerce termed hops. They consist of scales, nuts, and lupulinic glands or grains. The **scales** are the enlarged and persistent bracts, which enclose the nuts: they are ovate, membranous, and at their base glandular. The **nuts** (achenia) are small, hard, nearly globular, and covered with aromatic, superficial, globose glands. The **lupulinic glands or grains** (commonly termed yellow powder or lupulin) are the most important parts of the strobiles. By thrashing, rubbing, and sifting, Dr. Ives procured 14 ounces from six pounds of hops; and he therefore concluded that dry hops would yield about a sixth part of their weight of these grains. They are usually intermixed with sand. They are rounded, of a cellular texture, golden yellow, and somewhat transparent. They are sessile, or nearly so. The common centre, around which the cells are arranged, has been called the **hilum**. By drying they lose their spherical form. Placed in water they give out an immense number of minute globules. Under other circumstances they become ruptured, and allow an inner envelope to escape. According to Turpin they consist of two vesicles, one enclosing the other. The inner one contains globules, an aromatic oil.

---

* Loudon's *Encyclopedia of Agriculture*.
and a gas. He also states, that in the bubbles of the disengaged gas, an immense number of crystals are formed.

Composition. — Payen, Chevallier, and Pelletan⁷, analyzed the scales and lupulinic grains. Dr. Ives⁸ also examined the latter.

**Lupulinic Grains.**

<table>
<thead>
<tr>
<th>Payen, Chevallier, and Pelletan's Analysis</th>
<th>Ives's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>2:00</td>
</tr>
<tr>
<td>Bitter principle</td>
<td>10:30</td>
</tr>
<tr>
<td>Resin</td>
<td>50 to 55:00</td>
</tr>
<tr>
<td>Lignin</td>
<td>32:00</td>
</tr>
<tr>
<td>Fatty, astringent, and gummy matters, osmazome, malic and carbonic acids, several salts (malate of lime, acetate of ammonia, chloride of potassium, sulphate of potash). &amp;c...</td>
<td></td>
</tr>
<tr>
<td>99:30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payen, Chevallier, and Pelletan's Analysis</th>
<th>Scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astringent matter.</td>
<td>Extractive.</td>
</tr>
<tr>
<td>Inert colouring matter.</td>
<td>Bitter principle.</td>
</tr>
<tr>
<td>Chlorophylle.</td>
<td>Wax.</td>
</tr>
<tr>
<td>Gum.</td>
<td>Resin.</td>
</tr>
<tr>
<td>Lignin</td>
<td>Lignin.</td>
</tr>
<tr>
<td>Suits (of potash, lime, and ammonia, containing acetic, hydrochloric, sulphuric, nitric, &amp;c. acids).</td>
<td></td>
</tr>
<tr>
<td>The scales usually contain a portion of lupulinic matter, from which it is almost impossible to free them.</td>
<td></td>
</tr>
</tbody>
</table>

---

1. **Volatile Oil of Hops.** — Resides in the lupulinic grains. Obtained by submitting these, or hops which contain them, to distillation with water. Its colour is yellowish, its odour that of hops, its taste acrid. It is soluble in water, but still more so in alcohol and ether. Its sp. gr. is 0:910. By keeping, it becomes resinified. It is said to act on the system as a narcotic. The water which comes over, in distillation, with the oil, contains acetate of ammonia, and blackens silver; from which circumstance the presence of sulphur is inferred.

2. **Bitter Principle of Hops:** Lupulite; Lupuline. — Is procured by treating the aqueous extract of the lupulinic grains, united with a little lime, with alcohol. The alcoholic tincture is to be evaporated to dryness, the residue treated with water, and the solution evaporated. The residue, when washed with ether, is lupulite. It is uncrystallizable, yellowish white, very bitter, soluble in 20 parts of water, very soluble in alcohol, and slightly so in ether. The aqueous solution froths by agitation; it forms no precipitate with either tincture of nutgalls or acetate of lead. Lupuline contains no nitrogen. It is devoid of the narcotic property of the oil. In small doses it is said to have caused loss of appetite and diminished digestive power; but a repetition of the experiment is very desirable.

3. **Resin.** — Is of a golden yellow colour, and becomes orange-yellow by exposure to the air. It is soluble in both alcohol and ether. It appears to be the oil changed into resin, partly by oxidizement.

**Chemical Characteristics.** — A decoction of hops reddens litmus, owing to the presence of free acid. Sesquichloride of iron strikes an olive-green colour (tannate of iron). A solution of gelatin renders the filtered decoction turbid (tannate of gelatin). Chloride of barium occasions with it a white precipitate (sulphate of baryta). Oxalate of ammonia also causes a white precipitate (oxalate of lime).

**Physiological Effects.** — The odorous emanations (vapour of the volatile oil) of hops possess narcotic properties. Hence a pillow of these cones promote sleep, as I have several times witnessed. Moreover, we are told that stupor has occasionally been induced in persons who have remained for a considerable time in hop warehouses.

The lupulinic grains are aromatic and tonic. They appear also to possess soothing, tranquillizing, and, in a slight degree, sedative and soporific properties. But the existence of any narcotic quality has

---

been strongly denied by Dr. Bigsby, Magendie, and others. "I have tried, at different times," says Magendie, "both the lupuline [lupulinic grains] in substance, and its different preparations, on animals, but I have never observed that it is a narcotic, although this property is one which is most strikingly displayed in experiments on animals." Dr. Maton found that it aliced pain, produced sleep, and reduced the frequency of the pulse from 96 to 60 in twenty-four hours.

Both infusion and tincture of hops are mild but agreeable aromatic tonics. They sometimes prove diuretic, or, when the skin is kept warm, sudorific. Their sedative, soporific, and anodyne properties, are very uncertain.

**Uses.**—A pillow of hops (cervicale seu pulvinus, pulvinar lupuli) is occasionally employed in mania, and other cases in which inquietude and restlessness prevail, and in which the use of opium is considered objectionable. In hop countries it is a popular remedy for want of sleep. The benefit said to have been obtained from it by George III., for whom it was prescribed by Dr. Willis, in 1787, brought it into more general use.

Hops are given internally to relieve restlessness consequent upon exhaustion and fatigue, and to induce sleep in the watchfulness of mania, and of other maladies: to calm nervous irritation; and to relieve pain in gout, arthritic rheumatism, and after accouchement. Though they sometimes produce the desired effect, they frequently fail to give relief. Dr. Maton used it, with good effect, as an anodyne in rheumatism.

As a tonic it is applicable in dyspepsia, cachectic conditions of the system, or any other maladies characterized by debility.

Hops have been applied, topically, in the form of fomentation or poultice, as a resolvent or discutient, in painful swellings and tumors. Freake employed an ointment, composed of lard and the powder of the hop, as an anodyne application to cancerous sores.

But the principal consumption of hops is in the manufacture of beer and ale, to which they communicate a pleasant, bitter, and aromatic flavour, and tonic properties, while, by their chemical influence, they check the acetous fermentation. Part of the soporific quality of beer and ale is ascribable to the hops used in the manufacture of these beverages.

**Administration.**—The best preparation of hops, for internal use, is the yellow powder (lupuline grains or lupulin). The infusion and tincture are less eligible modes of exhibition. The extract is still more objectionable. *Well-hopped beer* is a convenient mode of administering hops, when fermented liquors are not contra-indicated.

1. **INFUSUM LUPULI, L.; Infusion of Hops.**—(Hops, 5vj.; Boiling Distilled Water, OJ. Macerate for four hours, in a vessel lightly covered, and strain). Dose $\frac{f}{3}$j. to $\frac{f}{2}$j.

2. **TINCTURA LUPULI, L.; Tinctura Humuli, D. Tincture of Hops.**

---

2. *Formulare.*
1. **Hops, 3vij. [3v. D.]; Proof Spirit, Oij. Macerate for fourteen days, and strain.**—Dose f3ss. to f3ij.

3. **EXTRACTUM LUPULI, L. E. ; Extractum Humuli, D. Extract of Hops.—(Hops, lb. ss. [lb. j. E.]; Boiling Distilled Water, Cong. ij. [Cong. j. E.] Macerate for twenty-four hours, then boil down to a gallon [Oiv. E.], and strain the liquor while hot; lastly, evaporate [in the vapour bath, E.] to a proper consistence. The directions of the Dublin College are nearly the same as those of the Edinburgh College).—Dose, gr. v. to 9j. Whatever virtue this preparation possesses is owing to the bitter principle or lupulite.

4. **LUPULINA : Yellow Powder ; Lupuline Grains or Glands.—(Separated from the strobiles by rubbing and sifting).—Dose grs. vj. to grs. xii. taken in the form of powder or pills.

5. **TINCTURA LUPULINAE; Tinctura Lupuli, E.—(Take any convenient quantity of hops, recently dried; separate by friction and sifting the yellowish brown powder attached to the scales. Then take of this powder, 3v. ; and of rectified spirit, Oij.; and prepare the tincture by percolation or digestion, as directed for tincture of capsicum. Ph. Ed.)—Dose, 5ss. to 5ij.

2. **MORUS NIGRA, Linn., L. D.—THE COMMON MULBERRY.

*Sex. Syst. Monoezia, Tetrandria.*

**(Fructus, L., Baccae, D.)**

**History.**—The mulberry (ποπέα) is mentioned by Hippocrates ὑ, "Mora calefaciunt et humectant ac alvo secedunt," says the Father of Physic. Dioscorides ὑ also speaks of the mulberry.

**Botany. Gen. Char.**—Monoeious. Catkins unisexual. Calyx four-lobed; the lobes concave. Stamens four, alternate with the segments of the calyx. Ovary free. Stigmas two. Seeds one in two, covered by the pulpy calyx (Bot. Gall.)

**Sp. Char.**—Leaves cordate, ovate, lobed, or unequally dentate; rough and thickish. Fruit dark purple (Bot. Gall.)

A small tree, with rugged bark. Flowers greenish. "Fruit, consisting of the female flowers, become fleshy and grown together, inclosing a dry membranous pericarp" (Lindley).

**Hab.**—Native of Persia and China. Cultivated for its fruit. Flowers in May.

**Description.**—The fruit is usually called a berry (bacca mori nigrae), but is, in fact, that kind called by botanists a sorosis. Its odour is peculiar and agreeable; its taste is peculiar, pleasant, acidulous, and sweet. The juice is dark violet red.

**Composition.**—The fruit has not

---

2. Lib. i. cap. 180.
been analyzed. Its principal constituents are violet-red colouring matter, tartaric acid, sugar, and woody fibre. The root has been analyzed by Wackenroder.²

**Physiological Effects.**—Mulberries are alimentary in a slight degree; they allay thirst, diminish febrile heat, and, in large quantities, prove laxative.

**Use.**—They are employed as an agreeable aliment, and are well adapted to check preternatural heat, and relieve thirst in fevers, but are objectionable when a tendency to diarrhoea exists. They owe their retention in the Pharmacopoeia to their colour and flavour.

**Syrupus Mori, L.**; *Syrup of Mulberries.*—(Juice of mulberries, strained, Oj.; Sugar, lb. iijss. Dissolve the sugar in the mulberry juice with a gentle heat, and proceed in the same manner as directed for Syrup of Lemons).—Used as a colouring and flavouring substance. Its acidity prevents its being used with alkalis, earths, or their carbonates.

3. **Ficus Carica, Linn., L. E. D.**—The Common Fig.


(Fici fructus siccus, L.—Fici: the dried fruit, E.—Fructus siccatus, D.)

**History.**—In the Old Testament we are informed that Hezekiah (who lived 600 years before Christ) used figs as a topical application to a boil.³

**Botany.** Gen. Char. — Monoœcious. Flowers numerous, pedicellated, inclosed within a fleshy receptacle, which is umbilicated, and nearly closed at the apex, hollow within. Calyx three to five-lobed: lobes acuminate. Male-flowers near the umbilicus. Stamens three to five. Ovary free (Desf.); semi-adnate (Gærtn.) Style one. Stigma two. Drupe or utricle one-seeded, sunk into the pulpy receptacle. Coat of the nut fragile, crustaceous (Bot. Gall.)

Sp. Char.—Leaves cordate, palmate; scabrous above, pubescent beneath (Bot. Gall.)—A small tree. Flowers in June. Receptacle green. At the base of each receptacle are two or three bracteal scales.

---

² Gmelin's Handb. d. Chem. 2, 1324.
³ Isaiah, ch. xxxviii. v. 21.
Figure 226.

A, Receptacle.
  a, a, bracteal scales.
  b, umbilicus.
B, Longitudinal section of receptacle.
  a, flowers seated on b, the inner side of the receptacle.
C, Female flower.
D, Section of ditto.
E, Male ditto.

**Ficus Carica.**

**Hab.**—Native of Asia and South of Europe.

**Description.**—Figs (feci seu carice) constitute that kind of collective fruit called, by Mirbel, a syconus. They consist of fleshy, hollow, pyriform receptacles, within which are numerous, small, seed-like bodies (achenia, Lindley; utricles, Auctor). In the unripe state they contain an acrid and bitter juice, but which, when they are ripe, is replaced by sugar. Ripe figs are dried in the sun or in ovens, and are afterwards packed in drums and baskets, in which they are imported. As met with in the shops they are more or less compressed, are covered with a whitish, saccharine efflorescence, have a brownish or yellowish colour, and are somewhat translucent. They have a peculiar and agreeable odour, and contain a sweet, viscid pulp, in which are the achenia. Turkey or Smyrna figs are the largest, most juicy, and sweetest; hence they are sometimes termed fat figs (carice pingues): they are distinguished into pulled and flat. Of 20,406 cwts. of figs, imported in 1830, no less than 18,801 came from Turkey (Parliam. Return.)

**Composition.**—Bley analyzed Smyrna figs, and obtained the following result:—Sugar of figs 62·5, fatty matter 0·9, extractive with chloride of calcium 0·4, gum with phosphoric acid 5·2, woody fibre and seeds [achenia] 150·0.

**Physiological Effects.**—Figs are nutritive, emollient, demulcent, and laxative. In the fresh state they are both agreeable and wholesome: when dried, as we receive them, they readily disorder the stomach and bowels, and occasion flatulence, griping, and mild diarrhoea.

**Uses.**—In those countries where they are plentiful, figs are used as food. Here they are chiefly employed as a dessert. Internally they are given in the form of demulcent decoctions (as the decoctum hordei compositum, L. D.) in pulmonary and nephritic affections. As

---

*Zenker's Naturgeschichte der vorzügl. Handelspf.
laxatives they are sometimes taken with the food, to relieve habitual constipation, and enter into the composition of Confectio Senna, L. (Electuarium Senna, E.) Roasted or boiled, and split open, they are employed as suppulsive cataplasms in gum-boil, &c.

4. DORSTE'NIA CONTRA'JER'VA, Linn. L.; and DORSTENIA BRASIL'LEIN'SIS, Lam.

Sex. Syst. Tetandria, Monogynia.
(Dorstenia Contrajerva.—Radix, L.)

History.—The earliest notice of this plant is that by Monardes, who states that the word Contrayerva is the Indian Spanish term for alexipharmic or counter-poison. In 1581 Clusius received from Sir Francis Drake a root which he called, after the donor, Drakena radix, and which has been supposed to be contrayerva root.

Botany. Gen. Char.—Monoecious. Flowers arranged upon a fleshy receptacle, usually flat and expanded, and extremely variable in form: males on the surface of the receptacle, two-lobed, fleshy, dian-drous: females immersed in the receptacle, also two-lobed in most species. Ovary one to two-celled, with a single suspended ovule in each cell. Style one. Stigma two-lobed. Achenia lenticular, im-bedded in the fleshy receptacle; from which they are projected with elasticity when ripe.—Dwarf herbaceous plants with scaly rhizomata (Lindley).

Species. 1. D. CONTRA-JER'VA, Linn. L.—Caules-cent; stem covered with spreading green, scaly stipules. Leaves palmate; the lobes lanceolate, acuminate, coarsely serrated and gashed, occasionally almost pinnatified. Receptacle on a very long stalk, quadrangular, wavy, or plated (Lindley). A native of New Spain, Mexico, Peru, Tobago, St. Vincent's (Willd.) The root of this is not met with in commerce.

2. D. BRASIL'LEN'SIS, Lam.—A native of Jamaica, Brazil, and Trinidad. This yields the contrayerva root usually met with in the shops.

\[\text{Clusius, Exoticorum, p. 311.}\]
\[\text{Ibid. p. 83.}\]
DESCRIPTION.—The contrayerva root (radix contrajervae), usually found in the shops, is imported from the Brazils. It consists of an ovoid or oblong rootstock, terminating, inferiorly, in one or several long, tapering, more or less curved, root-fibres. From the sides of the rootstock also arise numerous slender fibres. Externally the colour is yellowish-brown. The odour of the root is peculiar, but aromatic. The taste is warm, bitterish, slightly acrid.

I have also found another kind of contrayerva root in the shops. The rootstalk is smaller, cylindrical, blackish-brown, with fewer fibres. The receptacle and leaves are attached; the latter are reniform.

Is this the Dracaena radi-x of Clusius?

COMPOSITION.—The root has not been analyzed. It contains, according to Geiger, volatile oil, bitter extractive, and starch. To which may be added resin, free acid, and woody fibre.

PHYSIOLOGICAL EFFECTS.—Stimulant, tonic, and diaphoretic. Its operation is very analogous to that of serpentary root, between which and the rhizome of the sweet flag it deserves to be arranged. The root of the Dorstenia braziliensis often proves emetic.

USES.—Obsolete, or nearly so. It has been employed in fevers of a low type, and in other diseases requiring a mild, stimulant, and diaphoretic treatment.

ADMINISTRATION.—The dose of the root in powder is 3j. or 5ss. The infusion (prepared by digesting from 5iv. in 53vj. of boiling water) may be given in doses of 13j. or 15j. The pulvis contrajervae compositus (composed of powdered contrayerva root 3v. and prepared shells lb. iss.) is no longer officinal.

OTHER MEDICINAL OR POISONOUS URTICACEÆ.

1. Antiaris toxicaria is the celebrated Antjar or Upas poison tree of Java, rendered notorious principally in consequence of certain gross falsehoods concerning it, about the year 1780, by a person of the name of Foersch, said to have been a surgeon in the service of the Dutch East India Company. Malefactors, says this person, when they receive sentence of death, are offered the chance of life, if they will go to the Upas-tree for a box of poison; and although every precaution is taken to avoid the injurious influence of the emanations of the tree, yet of 700 criminals who went to collect the poison, scarcely two out of twenty returned. Foersch further adds, that for fifteen or eighteen miles around this tree no living animal of any kind has ever been discovered. Dr. Horsefield and M. Leschinault have shewn that the above statements are for the most part fabulous. From their observations it appears that the true poison tree of Java is the Antiaris toxicaria (fig. 228, is taken from Blume's Rumphia).
It is one of the largest forest trees of Java, being from 60 to 100 feet high.

The milky juice is collected by incision, and is then inspissated by boiling along with the juice of arum, galanga, onions, &c. The poison, when brought to this country, is found to be a thick fluid, of a grayish-brown or fawn color, and an unpleasant odour. It consists, according to Pelletier and Caventou, of a peculiar elastic resin, slightly soluble gumy matter analogous to bassorin, and a bitter matter soluble in water. This bitter matter is composed of a colouring matter absorbable by charcoal, an undetermined acid, and antiarin, the active principle of the plant, and which is precipitable by incrustation of galls. More recently, Mulder has submitted this juice to analysis, and found it to consist of vegetable albumen 16.14, gum 12.34, antiar-resin 20.93, myricin 7.02, sugar 6.31, and extractive 33.70. The antiar-resin was composed of C_{64}H_{10}O_{5}. Antiarin consisted of C_{14}H_{10}O_{3}. Sir B. Brodie says, the poison renders the heart insensible to the stimulus of the blood. Magendie and Delile found that,
besides acting on the brain and spinal marrow, it proved emetic. According to Andral, it causes convulsions with alternations of relaxation.

2. Artocarpus.—The Artocarpus incisa, or Bread-fruit tree, and the A. integri folia or Jak fruit, deserve notice on account of their important alimentary uses. Artocarpus incisa is a native of the islands of the Pacific and of the Moluccas. Its fruit is to the inhabitants of Polynesia what corn is to the people of other parts of the world. Artocarpus integri folia is cultivated throughout southern India, and all the warmer parts of Asia. Its fruit forms a very considerable article of food in Ceylon.

3. Cannabis sativa; Common Hemp.—Herodotus mentions the hemp plant, and states that the Scythians, who cultivated it, made themselves garments of it. He also adds that they threw the seeds on red-hot stones, and used the perfumed vapour thereby obtained as a bath, which excited from them cries of exultation. This I presume refers to the intoxicating properties of its smoke. The hemp may have been, as Dr. Boyle suggests, the "assuager of grief" or the Nepenthes (νεπένθες) of which Homer speaks. It is known in India as the "increaser of pleasure," the "exciter of desire," the "cementer of friendship," the "causer of a reeling gait," the "laughter mover," &c.

The plant which grows in India and has been described by some botanists under the name of Cannabis indica does not appear to me to possess any specific differences from the common hemp. Roxburgh and most other distinguished botanists have accordingly considered it identical with the Cannabis sativa of Linnaeus and Willdenow. Mr. Anderson, of the Chelsea Garden, has pointed out to me, as one distinguishing character, that the C. indica branches from the ground up to within two feet of the top; whereas common hemp grows three or four feet before it branches. The fruit also of C. indica is smaller, and rounder. I have carefully compared C. indica (both that grown in the Chelsea Garden, and that contained in Dr. Wallich's Herbarium in the possession of the Linnean Society) with the C. sativa in Linnaeus's collection, and I cannot discover any essential distinction between them. The male plants appear to me to be in every respect the same. In the female plants, the flowers of C. indica were more crowded than those of common hemp.

The parts employed, in Asia, for the purpose of intoxication are as follows:

a. Churrus or the concreted resinous exudation from the leaves, slender stems, and flowers. "In Central India and the Saugor territory and in Nipal, Churrus is collected during the hot season in the following singular manner: men clad in leathern dresses run through the hemp-fields brushing through the plant with all possible violence; the soft resin adheres to the leather, and is subsequently scraped off and kneaded into balls, which sell from five to six rupees the seer. A still finer kind, the Momeea or waxen Churrus, is collected by the hand in Nipal, and sells for nearly double the price of the ordinary kind. In Nipal Dr. M'Kinnon informs me, the leathern attire is dispensed with, and the resin is gathered on the skin of the naked coolies. In Persia, it is stated by Mirza Abdul Razes that the Churrus is prepared by pressing the resinous plant on coarse cloths, and then scraping it from these and melting it in a pot with a little warm water.

Fig. 231.

Cannabis sativa.

For a full description of these plants, by Dr. Hooker, see Botan. Magaz. vol. ii. N. S.
Melpomene, ixxiv. and ixxv.
Illustrations of the Botany of the Himalayan Mountains, p. 334.
Odyssey, iv. verse 220.
Royle, op. supra cit.; also Dr. O'Shauglinessy On the Preparation of the Indian Hemp or Gunjah. Calcutta, 1839.
Rumphius, Herbarium Ambolinense, vol. v. t. 77.
Flora Indica, vol. iii. p. 772.
This agrees with a remark in the Hortus Cliffortianus, "Quodivas in Horto Malabarico exhibitus nostra sit planta nullum dubium detur; terrina autem parum recedit folia tenebris, tamen et ejusmodi plantas in solo macro apud nos observamus non infrequenter."
considers the Churrus of Herat as the best and most powerful of all the varieties of the drug".  

β. Gunjah. This is the dried hemp plant which has flowered, and from which the resin has not been removed. It is sold in the Calcutta bazaars for smoking chiefly, in bundles of about two feet long and three inches in diameter, each containing twenty-four plants.  

γ. Banff, Subjee, or Sidhee. This consists of the larger leaves and capsules without the stalks.  

The leaves of common hemp have been submitted to analysis by Tschepe, by Schlesinger, and by Bohlig. The results of the two former of these are as follows:—

<table>
<thead>
<tr>
<th>Tschepe.</th>
<th>Schlesinger.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophylle</td>
<td>1:25</td>
</tr>
<tr>
<td>Gluten</td>
<td>4:75</td>
</tr>
<tr>
<td>Phosphate Lime</td>
<td>9:375</td>
</tr>
<tr>
<td>Green fecula</td>
<td>5:0</td>
</tr>
<tr>
<td>Brown extractive</td>
<td>10:15</td>
</tr>
<tr>
<td>Sweetish bitter extractive</td>
<td>19:45</td>
</tr>
<tr>
<td>Brown gum</td>
<td>6:75</td>
</tr>
<tr>
<td>Lignin</td>
<td>6:875</td>
</tr>
<tr>
<td>Soluble albumen</td>
<td>8:0</td>
</tr>
<tr>
<td>Vegetable albumen</td>
<td>9:5</td>
</tr>
<tr>
<td>Suits of ammonia, potash, lime, and magnesia</td>
<td>12:0</td>
</tr>
<tr>
<td>Alumina</td>
<td>6:875</td>
</tr>
<tr>
<td>Loss</td>
<td>100:000</td>
</tr>
</tbody>
</table>

Leaves of Cannabis sativa.

The most important constituents, in a medicinal point of view, are probably volatile oil and resin. Bohlig failed to detect a trace of any organic basic matter. The volatile oil of hemp has hitherto been procured in such small quantities that its properties are but imperfectly known. When the dried plant is distilled with a large quantity of water, traces of the oil pass over, and the distilled liquor has the powerful narcotic odour of the plant. The resin of hemp (cannabin) is soluble in alcohol and ether. It has a warm, bitterish, acrid taste, and a fragrant and narcotic odour.  

Dr. O'Shaughnessy gave ten grains of Nipalese churrus dissolved in spirit to a middling-sized dog:—"In half an hour he became stupid and sleepy, dozing at intervals, starting up, wagging his tail as if extremely contented, he ate some food greedily, on being called to he staggered to and fro, and his face assumed a look of utter and helpless drunkenness. These symptoms lasted about two hours, and then gradually passed away; in six hours he was perfectly well and lively."  

The general effects on man, as stated by Dr. O'Shaughnessy, from his own observations, are alleviation of pain (mostly), remarkable increase of appetite, unequivocal aphrodisia, and great mental cheerfulness. Its more violent effects were delirium of a peculiar kind, and a cataleptic state. These effects are so remarkable that I shall quote some cases by way of illustration.

At two P.M. a grain of the resin of hemp was given to a rheumatic patient. At four P.M. he was very talkative, sang, called loudly for an extra supply of food, and declared himself in perfect health. At six P.M. he was asleep. At eight P.M. he was found insensible, but breathing with perfect regularity, his pulse and skin natural, and the pupils freely contractile on the approach of light. Happening by chance to lift up the patient's arm the "professional reader will judge of my astonishment," observes Dr. O'Shaughnessy, "when I found that it remained in the posture in which I placed it. It required but a very brief examination of the limbs to find that the patient had by the influence of this narcotic been thrown into that strange and most extraordinary of all nervous conditions, into that state which so few have seen, and the existence of which so many still discredit—the genuine catalepsy of the nosologist" (see p. 175). "We raised him to a sitting posture, and placed his arms and limbs in every imaginable attitude. A waxen figure could not be more pliant or more stationary in each position, no matter how contrary to the natural influence of gravity on the part. To all impressions he was meanwhile almost insensible."
He continued in this state till one A.M., when consciousness and voluntary motion quickly returned.

Another patient who had taken the same dose fell asleep, but was roused by the noise in the ward. He appeared vastly amused at the strange aspect of the statue-like attitudes in which the first patient had been placed. “On a sudden he uttered a loud peal of laughter, and exclaimed that four spirits were springing with his bed into the air. In vain we attempted to pacify him; his laughter became momentarily more and more incontrollable. We now observed that the limbs were rather rigid, and in a few minutes more his arms and legs could be bent, and would remain in any desired position.” He was removed to a separate room, where he soon became tranquil, his limbs in less than an hour regained their natural condition, and in two hours he experienced himself perfectly well and excessively hungry.”

Dr. O’Shaughnessy was kind enough to send me from Calcutta specimens of Guajah, Nepalese Churrus, and an alcoholic extract of Guajah. The two former only came to hand. I have submitted them to experiment both on animals and man, and have given specimens of them to medical friends for trial, but their effects have hitherto proved comparatively slight. Whether this be owing to the preparations having undergone some deterioration in their passage, or to the comparative phlegmatic temperament of the English, I know not. My experiments on animals were made in the lecture-room of the London Hospital before the students of the materia medica class: and the trials on the human subject were made in the wards of the Hospital. The following are brief notices of some of the experiments:

Expt. 1. Ten grains of Churrus in fine powder were given to a small terrier with his food. In fifteen minutes he appeared somewhat drowsy. In fifty-five minutes, when left quiet, he would sleep as he sat, and nod forward or to the side, so as nearly to fall. When roused, however, he appeared quite well, but when left alone soon fell asleep again. One of the students (Mr. Porter) took charge of him for the remainder of the day, and reported that he fell asleep, but presented no other symptom.

Expt. 2. One drachm of Churrus in fine powder was given to a large cat, but no effects were observed.

Expt. 3. My colleague, Mr. Curling, to whom I had given some Churrus, informs me that 69 grs. were given, in 16 hours, to a tetanic patient on board the hospital ship the Dreadnought, without any obvious effect.

Expt. 4. Four grains of an alcoholic extract of Gunjah were given to a girl, aged 14, in the London Hospital, affected with a convulsive disorder partaking of the characters of both chorea and hysteria. She was troubled with a spasmodic action of the diaphragm, and had been for several days and nights without sleep. About half an hour after taking the third four-grain dose the spasms entirely ceased, and the patient complained of vertigo and headache. The pupils were not perceptibly affected. The pulse was 93, soft and regular. She fell into a tranquil sleep, in which she remained several hours. When she awoke she had no spasms, but complained of headache and vertigo. The pupils were dilated and the skin moist. On raising her up to take another pill she complained of great faintness, and broke out into a profuse perspiration. The faintness having subsided she again sat up, when the pulse suddenly rose from 93 to 130. Some days afterwards convulsive movements appeared in other muscles. The extract was again resorted to, but its effects were never more than palliative, and notwithstanding the dose was increased to thirty grains twice, and even thrice, it ceased to produce any obvious effect. The extract never appeared to affect her appetite, which was all through good.

Expt. 5. A scruple of the green alcoholic extract of Cannabis indica grown at the Chelsea Garden was dissolved in about a fluidrachm of spirit, and thrown into the peritoneal sac of a middle-sized dog, but no effect was observed.

Expt. 6. Two drachms of the powder of the female plant of Cannabis indica, grown at Chelsea, were given to a small dog, but no effect was observed.

I have also tried the alcoholic extract of Gunjah, prepared at Madras, and sent me by my late pupil Mr. T. Brydon; but have failed with it also to produce the remarkable effects observed by Dr. O’Shaughnessy. I have seen weakness in the hind extremities of a cat caused by it, so as to prevent her taking her customary leap on to a wall to escape. This effect was observed 24 hours after the exhibition of the medicine, which did not appear to produce any other result.
The preparations of hemp are used in India for the purpose of intoxication. They are employed in the form of beverages, smoke, or confection. There are seven or eight makers of Majoon or hemp confection in Calcutta. Dr. O'Shaughnessy has described the method of making it as followed by the proprietor of a celebrated place of resort for hemp-devotees in Calcutta.

Dr. O'Shaughnessy has suggested the employment of Indian hemp in rheumatism, tetanus, hydrophobia, and cholera, and has published some cases illustrative of its beneficial effects. In the case of hydrophobia it alleviated the patient's suffering, though it did not save him.

The preparations used by Dr. O'Shaughnessy were the extract and tincture.

a. Extractum Cannabis. Alcoholic or Resinous Extract of Indian Hemp. — This is prepared by boiling the rich adhesive tops of the dried Gunjah in rectified spirits until all the resin is dissolved. The tincture thus obtained is evaporated to dryness in a vessel placed over a pot of boiling water. The extract softens at a gentle heat, and can be made into pills without any addition.

b. Tinctura Cannabis. — Dr. O'Shaughnessy directs three grains of the extract to be dissolved in one dram of proof spirit. Dose, in tetanus, 3j. every half hour, until the paroxysms cease, or catalepsy is induced; in cholera, ten drops every half hour.

4. Parietaria officinalis, or Common Wall-pellitory, is a common indigenous plant, which was formerly in great repute as a diuretic and lithotriptic. By some practitioners it is still highly esteemed. It is used in calculous and other urinary affections, and also in dropsies. The expressed juice may be taken in doses of one or two fluidounces. Or the decoction (prepared by boiling 3j. of the herb in a pint of water) may be substituted. The extract and distilled water have also been used. On account of the nitre which the plant contains, the extract is said to be taken fire in making it.

Order XXVII.—PIPERACE.Æ, Kunth.—THE PEPPER TRIBE.

Essential Character. — Flowers naked, hermaphrodite, with a bract on the outside. Stamens definite or indefinite, arranged on one side, or all round the ovary; to which they adhere more or less: anthers one or two-celled, with or without a fleshy connective; pollen smooth. Ovary superior, simple, one-celled, containing a single erect ovule; stigma sessile, simple, rather oblique. Fruit superior, somewhat fleshy, indehiscent, one-celled, one-seeded. Seed erect, with the embryo lying in a fleshy sac, placed at that end of the seed which is opposite the hilum, on the outside of the albumen.—Shrubs or herbaceous plants. Leaves opposite, verticillate, or alternate, in consequence of the abortion of one of the pair of leaves, without stipules. Flowers usually sessile, sometimes pedicellate, in spikes which are either terminal or axillary: or opposite the leaves (Lindley).

Properties. — Fruits remarkable for their hot taste, and acrid and stimulant properties. These qualities they owe to the presence of an acrid oil and resin.

1. PIPER NIGRUM, Linn., L. E. D.—THE BLACK PEPPER.

See. Syst. Diandria, Trigynia.

History. — The ancient Greeks were acquainted with pepper (πιπερον): their knowledge of which must have been derived, directly or indirectly, from the Hindoos. Hippocrates employed it in several diseases. Pliny notices its uses as a condiment, and expresses his
astonishment that it should have come into general use, since it has neither flavour nor appearance to recommend it.

**Botany.** Gen. Char. — Spadix covered with flowers on all sides. *Flowers* hermaphrodite, rarely dioecious, each supported by a scale. *Stamina* two or more. *Ovarium* with one, solitary, erect *ovule*. *Stigma* punctiform, obtuse, or split. *Berry* one-seeded. *Embryo* dicotyledonous [monocotyledonous, Blume], inverted (Blume).^z^  

**Sp. Char.** — Stem shrubby, radicant, climbing, terete. *Leaves* ovate or elliptical, acuminate, occasionally somewhat oblique, subcordate, five to seven-nerved, coriaceous, smooth, recurved at the margin, glaucogreenish beneath. *Spadices* shortly pedunculated, pendulous. *Fruits* distinct (Blume).^9^  

*Stem* eight to twelve feet long, jointed, dichotomous. *Fruit* at first green, then red, afterwards black.

According to Dr. Roxburgh^b^ *Piper tricicum* is cultivated, and yields excellent pepper.

**Hab.** — Cultivated in various parts of India and its islands (Roxburgh); also in the West Indies.

**Preparation.** — When any of the berries on a spadix change from green to red, the whole are considered fit for gathering; for if they are allowed to become fully ripe, they are somewhat less acrid, and, moreover, easily drop off. When collected they are spread out, and dried in the sun, and the stalks separated by hand-rubbing. They are afterwards winnowed^c^. The dried and shrivelled berries constitute black pepper (*piper nigrum*).

*White pepper* (*piper album*) is prepared from the best and soundest grains, taken at their most perfect stage of maturity. These being soaked in water, swell and burst their tegument, which is afterwards carefully separated, by drying in the sun, hand-rubbing, and winnowing^d^.

**Commerce.** — The pepper countries extend from about the longitude of 90° to that of 115° E., beyond which no pepper is to be found; and they reach from 5° S. latitude to about 12° N., where it again ceases. The following estimate of the production of pepper is drawn up by Mr. Crawford^e^.

<table>
<thead>
<tr>
<th>Production of Pepper</th>
<th>Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumatra (west coast)</td>
<td>20,000,000</td>
</tr>
<tr>
<td>Do. (east do)</td>
<td>8,000,000</td>
</tr>
<tr>
<td>Islands in the Straits of Malacca</td>
<td>3,500,000</td>
</tr>
<tr>
<td>Malay peninsula</td>
<td>3,755,333</td>
</tr>
<tr>
<td>Borneo</td>
<td>2,666,667</td>
</tr>
<tr>
<td>Siam</td>
<td>8,000,000</td>
</tr>
<tr>
<td>Malabar</td>
<td>4,000,000</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td><strong>30,000,000</strong></td>
</tr>
</tbody>
</table>

---

^1^ Enum. Plant. Javae, p. 64.  
^3^ Fl. Indica, vol. 1, p. 133.  
^4^ Marsden, History of Sumatra, 3d ed. p. 137.  
^5^ Ibid. op. cit.  
^6^ M’Culloch, Diet. of Comm.
In the year 1838, the number of pounds of pepper which paid duty (1s. per lb.) was 2,169,138. In 1840, 2,271,174 lbs. paid duty. Pepper is usually imported in bags.

Description.—Black pepper (piper nigrum) is round, covered externally with a brownish-black, corrugated layer (the remains of the succulent portion of the berry), which may be readily removed by softening it in water. Internally we have a hard, whitish, spherical, smooth seed, which is horny externally, but farinaceous internally. The finest kind of black pepper is called shot pepper, from its density and hardness. Fulton's decockicated pepper is black pepper deprived of its husk by mechanical trituration. It is sometimes bleached by chlorine. The taste of pepper (both of nucleus and covering) is acrid and hot. White pepper (piper album) is the fruit deprived of the external fleshy portion of the pericarp. The grains are larger than those of black pepper, spherical, whitish, and smooth, horny externally; internally they are farinaceous, or hollow in the centre. They are less acrid and pungent than black pepper.

Composition.—In 1819, Oersted discovered piperin in pepper. In 1821, black pepper was analyzed by Pelletier. In 1832, white pepper was analyzed by Lucà.

<table>
<thead>
<tr>
<th>Acrid soft resin.</th>
<th>White pepper (Lucà).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil.</td>
<td>Acrid resin...........</td>
</tr>
<tr>
<td>Piperin.</td>
<td>Volatile oil.........</td>
</tr>
<tr>
<td>Extractive.</td>
<td>Extractive, gum, and salts</td>
</tr>
<tr>
<td>Gum</td>
<td>Starch..............</td>
</tr>
<tr>
<td>Bassarin.</td>
<td>Allumene...........</td>
</tr>
<tr>
<td>Starch.</td>
<td>Woody fibre.........</td>
</tr>
<tr>
<td>Maleic acid.</td>
<td>Water and loss.....</td>
</tr>
<tr>
<td>Tartaric acid.</td>
<td></td>
</tr>
<tr>
<td>Potash, calcareous, and magnesian salts</td>
<td>White pepper...........</td>
</tr>
<tr>
<td>Woody fibre.</td>
<td></td>
</tr>
</tbody>
</table>

Lucà found no piperin in white pepper; but Pontet subsequently detected it. Probably, therefore, in Lucà's analysis, the piperin was contained in the resin.

1. Resin of Pepper (resina piperis).—This is a very acrid substance, soluble in alcohol and ether, but not so in volatile oils. It possesses in high perfection the acrid properties of pepper. Dissolved in ether it was employed by Dr. Lucas, in intermittents, and in two out of three cases with success.

2. Volatile Oil of Pepper (oleum piperis).—When pure this is colourless; it has the odour and taste of pepper. Its sp. gr. is 0·9932 (Lucà). Its composition is C8 H14. It absorbs hydrochloric acid in large quantity, but does not form a crystalline compound with it. According to Meli, it possesses the same febrifuge properties as piperin, perhaps because it retains some of the latter principle. It has been used in some forms of dyspepsia depending on general debility.

3. Piperin.—This substance was discovered by Oersted in 1819, but was more accurately examined by Pelletier in 1821. It exists in black, white, and long pepper, and also in cubes.

---

1 Brande, Dict. of Med. Med.
2 Ann. de Chim. et de Phys. xvi. 344.
3 Schwartz, Pharm. Tabellen.
4 Jouren de Pharm. t. xiv.
6 Dierbach, op. cit.
It is a crystalline substance, the crystals being rhombic prisms, with inclined bases. It fuses at 212° F., is insoluble in cold water, and is only very slightly soluble in boiling water. Its best solvent is alcohol; the solution throws down piperin when water is added to it. Ether dissolves it, but not so readily as alcohol. Acetic acid likewise is a solvent for it.

Piperin, when pure, is white; but, as met with in commerce, it is usually straw-yellow. It is tasteless and inodorous. It was at first supposed to be an alkali; but Pelletier has shewn that it possesses no analogy with vegetable alkalis, and that it is related to the resins. With strong sulphuric acid it forms a blood-red liquid. Nitric acid colours it first greenish-yellow, then orange, and afterwards red. The action of hydrochloric acid is similar.

Its formula, according to Regnault, is \( \text{C}_4\text{H}_{10}\text{N}_0^2 \).

Piperin has been recommended and employed by Meli and several other physicians as a febrifuge in intermittent fevers. It is said to be more certain and speedy, and also milder in its action, than the cinchona alkalis. Moreover, we are told it might be procured at a cheaper rate than sulphate of quinia. Its dose is about six or eight grains in powder or pills. Sixty grains have been taken in twenty-four hours, without causing any injurious effects. Meli considers two or three scruples sufficient to cure an intermittent. Magendie proposes it in blennorrhagia, instead of cubeb.

**Physiological Effects.—** Pepper is one of the acrid spices whose general effects have been already noticed (p. 181). Its great acridity is recognised when we apply it to the tongue. On the skin it acts as a rubefacient and vesicant. Swallowed, it stimulates the stomach, creates a sensation of warmth in this viscus, and, when used in small doses, assists the digestive functions, but, if given in large quantities, induces an inflammatory condition. Thirty white pepper-corns, taken for a stomach complaint, induced violent burning pain, thirst, and accelerated pulse, which continued for three days, until the fruits were evacuated. Wendt, Lange, and Jager, have also reported cases in which inflammatory symptoms supervened after the use of pepper. On the vascular and secreting systems pepper acts as a stimulant. It accelerates the frequency of the pulse, promotes diaphoresis, and acts as an excitant to the mucous surfaces. On one of my patients (a lady) the copious use of pepper induces burning heat of skin, and a few spots of *Urticaria evanida* usually on the face. “I have seen,” says Van Swieten, “a most ardent and dangerous fever raised in a person who had swallowed a great quantity of beaten pepper.” It has long been regarded as a stimulant for the urinogenital apparatus. The opinion is supported by the well-known influence of the peppers over certain morbid conditions of these organs. Moreover, the beneficial effect of pepper in some affections of the rectum leads us to suspect that this viscus is also beneficially influenced by these fruits.

**Uses.—** It is employed as a condiment, partly for its flavour, partly for its stimulant influence over the stomach, by which it assists digestion. As a gastric stimulant it is a useful addition to difficultly-digestible foods, as fatty and mucilaginous matters, especially in per-
sons subject to stomach complaints from a torpid or atonic condition of this viscus. Infused in ardent spirit it is a popular remedy for preventing the return of the paroxysms of intermittent fevers, given shortly before the expected attack. The practice is not recent, for Celsus advises warm water with pepper to relieve the cold fit. The febrifuge power of this spice has been fully proved, in numerous cases, by L. Frank; Meli, Riedmüller (Dierbach), and others; though Schmitz denies it. Barbier says, that in some instances, where large doses were exhibited, death occurred in consequence of the aggravation of a pre-existent gastritis. It has been employed in gonorrhoea as a substitute for cubeb. In relaxed uvula, paralysis of the tongue, and other affections of the mouth or throat requiring the use of a powerful acrid, pepper may be employed as a masticatory. In the form of ointment it is used as an application to tinea capitis. Mixed with mustard it is employed to increase the acridity of sinapisms.

**ADMINISTRATION.**—The dose of black pepper (either of corns or powder) is from five to fifteen grains; the powder may be given in the form of pills.

1. **CONFECTION PIPERIS NIGRI, L. E. : Electuarium Piperis, E. Confection of Black Pepper.**—(Black Pepper; Elecampane-root [Liquorice-root in powder, E.] of each, lb. j.; Fennel seeds, lb. iij.; Honey; White Sugar, of each, lb. ij. Rub the dry ingredients together to a very fine powder. The London College keeps this in a covered vessel, and directs the Honey to be added when the Confection is to be used. But the Edinburgh and Dublin Colleges order the Honey to be added immediately after the dry ingredients have been mixed.)—This preparation is intended to be a substitute for a quack medicine, called “Ward’s Paste,” which has obtained some celebrity as a remedy for fistulæ, piles, and ulcers about the rectum. Its efficacy doubtless depends on the gentle stimulus it gives to the affected parts. Sir B. Brodie observes, that severe cases of piles are sometimes cured by it; and he thinks that it acts on them topically, the greater part of the paste passing into the colon, becoming blended with the feces, and in this way coming into contact with the piles, on which it operates as a local application, much as vinum opii acts on the vessels of the conjunctiva in chronic ophthalmia. In confirmation of this view, he mentions the case of a patient attended by Sir Everard Home, who was cured by the introduction of the paste into the rectum. Confection of black pepper is adapted for weak and leucophlegmatic habits, and is objectionable where much irritation or inflammation is present. The dose of it is from one to two or three drachms twice or thrice a day. “It is of no use,” says Sir B.

---

1 Lib. iii. cap. 12.
3 Ibid. t. xiii. p. 124.
4 Rust’s *Magaz.* Bd. xvi.
5 *Traité Elem. de Mat. Méd.* 2d. ed. t. ii. p. 57.
Brodie, "to take this remedy for a week, a fortnight, or a month; it must be persevered in for two, three, or four months." As it is apt to accumulate in and distend the colon, gentle aperients should be exhibited occasionally during the time the patient is taking the confection.

2. **UNGUENTUM PIPERIS NIGRI, D.** *Ointment of Black Pepper.—*
(Prepared Hog’s Lard, lb. 1.; Black Pepper, reduced to powder, 5iv. Make an ointment).—Formerly in vogue for the cure of tinea capitis.

2. **PIPER LONGUM, Linn. L. E. D.—THE LONG PEPPER.**

*Sex. Syst.* Diandria, Trig'ynia.

*(Fructus immaturus exsiccatus, L.—Dried Spikes, E.—Semina, D.)*

**Botany.**

*Gen. Char.—Vide Piper nigrum.*

*Sp. Char.—Stem shrubby, climbing. Lower leaves ovate-cordate, three to five-nerved: upper ones on short petioles, oblong, acuminate, oblique, and somewhat cordate at the base, obsolescently four to five-nerved and veined, coriaceous, smooth, greyish-green beneath. Peduncles longer than the petiole. Spadices almost cylindrical (Blume).*

*Hab.—India. Found wild among bushes, on the banks of water-courses, up towards the Circar mountains. It flowers and bears fruit during the wet and cold seasons (Roxburgh). It is cultivated in Bengal, and in the valleys amongst the Circar mountains. The roots and thickest parts of the stems, when cut into small pieces and dried, form a considerable article of commerce all over India, under the name of *Pippula moola.*

**Description.**—When fully grown, but yet unripe, the spadices are gathered and dried by exposure to the sun. They are then packed in bags for sale.

As met with in commerce, long pepper (*piper longum*) is greyish-brown, cylindrical, an inch or more in length, having a mild aromatic odour, but a violent pungent taste.

**Composition.**—This pepper was analysed by Dulong in 1825. The following are the substances he obtained from it:—*Acrid fatty matter* (resin?), *volatile oil, piperin, nitrogenous extractive, gum, bassorin, starch, malates and other salts.*

The *volatile oil of long pepper* is colourless, and has a disagreeable odour and an acrid taste.

**Physiological Effects and Uses.**—The effects of long pepper are analogous to those of black pepper. Cullen and Bergius consider it less powerful; but most other pharmacologists are agreed on

---

\* Enum. Fl. Javae, p. 79.
\* Journ. de Pharm. t. xi. p. 52.
\* Mat. Med. Ed. 2nd, t. i. p. 29.
its being more acrid. Medicinally it may be employed in similar cases. It is used principally for culinary purposes. It is a constituent of several pharmacopoeial preparations.

3. **Piper Cubeba**, Linn. L. E. D.—THE CUBE-B PEPPER.

*Sex. Syst.* Diandria, Trigynia.

(Baccus; cubebae, L.—Fruit, E.—Fructus, D.)

**Historv.**—It is uncertain when the cubebs of our shops were first introduced into medicine, or who first alludes to them. There does not appear to be any foundation for the opinion that the ancient Greeks were acquainted with them. "Many, indeed, pretend that the *Carpeiosis* (καρπῆς) of Galen is our cubeb, and that the round pepper of Theophrastus, the *pepper* of Hippocrates, were all names for them; but this is a conjecture founded on a very bad basis. The Arabians are at the head of these blunders. Serapion has translated all that Galen says of carpeiosis into his chapter of cubeb, and attributed all its virtues to it, and has even added every thing to the account that Dioscorides has left us of the *Ruscus*. Avicenna is also in the same error, and calls the carpeiosis *cubeb*; and from these authors Actuarius and the other Greeks have collected their accounts. It is plain from all this, that either the carpeiosis of the Greeks and the cubeb of the Arabians are the same things, or else that the Arabians have been guilty of confounding different things in a strange manner together: if the latter be the case, there is no judging of any thing from what they say; and if the former, it is very evident that our cubebs are not the same with theirs—that is, with the carpeiosis of Galen; for he expressly assures us that this was not a fruit or seed, but, as he tells us, a kind of slender woody twig, resembling in smell and virtues the root of the valerian. Nothing is more evident than that the carpeiosis, therefore, was either a fibrous root, or the small twigs and branches of a climbing plant, not a round small fruit. If the Arabians, therefore, were acquainted with our cubebs at all, it appears that, not knowing what the carpeiosis and ruscus were, they ignorantly attributed the virtues ascribed by the Greeks to these medicines to these fruits."

Cubebs were in use in England 500 years ago, for in 1305 Edward I. granted to the corporation of London the power of levying a toll of one farthing a pound on this article in its passage over London Bridge.

**Botany.** Gen. Char.—Vide *Piper nigrum*.

Sp. Char.—Stem shrubby, terete, climbing. Leaves petiolate, oblong or ovate-oblong, acuminate, rounded or oblique cordate at the base, nerved, coriaceous, smooth. Peduncles almost equal to the petiole. Berries with elongated peduncles (Blume).
Dr. Blume says that the cubebs of the shops are the fruit of *P. caninum*, which has a smaller and shorter-stalked fruit, having a distinct anise flavour, and less pungency than the fruit of *P. Cubeba*; but Dr. Lindley observed that he cannot perceive any difference in the flavour of the dried fruit of *P. Cubeba* and of the cubebs sold in the London shops. *P. Cubeba* is readily distinguishable from *P. caninum* by the leaves being coriaceous, smooth, and shining, with the veins proceeding from the side of the midrib, not from its base.

**Hab.**—Java and the Prince of Wales's Island.

**Description.**—The dried unripe fruit of this plant constitutes the *cubebs* (*cubebae vel piper caudatum*) of the shops. In appearance, cubebs resemble black pepper, except that they are lighter coloured, and are each furnished with a stalk two or three lines long, and from which circumstance they have received their name *caudatum*. The cortical portion of cubebs (that which constituted the fleshy portion of the fruit) appears to have been thinner and less succulent than in black pepper. Within it is a hard spherical seed, which is whitish and oily. The taste of cubebs is acrid, peppery, and camphoraceous; the odour is peculiar and aromatic.

**Composition.**—Three analyses of cubebs have been made: one by Trommsdorff, in 1811; a second by Vauquelin, in 1820; and a third by Monheim, in 1835.

*Vauquelin.*

1. Volatile oil, nearly solid.
2. Resin like that of copaiva.
3. Another coloured resin.
5. Extractive.

*Monheim.*

1. Green volatile oil 2.5
2. Yellow volatile oil 1.0
3. Cubebin 4.5
4. Balsamic resin 1.5
5. Wax 3.0
6. Chloride of sodium 1.0
7. Extractive 6.0
8. Lignum 65.0
Loss 13.5

**Cubebs.**

1. Essential Oil of Cubebs. — (See p. 1108.)
2. Resin of Cubebs. — Vauquelin has described two resins of cubebs: one is green, liquid, acrid, and analogous, both in odour and taste, to balsam of copaiva; the other is brown, solid, acrid, and insoluble in ether.
3. Cubebin (*Piperin*). — From cubebs is obtained a principle to which the term *cubebin* has been applied. It is very analogous to, if not identical with, piperin. Cassola, a Neapolitan chemist, says, it is distinguished from the latter principle by the fine crimson colour which it produces with sulphuric acid, and which remains unaltered for twenty or twenty-four hours; moreover, Cubebin is not crystallizable.

Monheim, however, declares Cubebin to be identical with piperin, and that it is combined with a soft acrid resin. In this state it is soluble in ether, alcohol, the fixed oils, and acetic acid; but it is insoluble in oil of turpentine and dilute sulphuric acid. It fuses at 68° F.

Dr. Gorres gave cubebin, in both acute and chronic gonorrhoea, to the extent of one drachm, four times daily. But he premised the use of phosphoric acid.

4. Extractive Matter of Cubebs. — Vauquelin says, the extractive matter of cubebs is analogous to that found in leguminous plants. It is precipitable by galls, but not by acetate of lead.
Physiological Effects.—Cubebs belong to the acrid species, already (p. 181) noticed. Their sensible operation is very analogous to that of black pepper. Taken in moderate doses, they stimulate the stomach, augment the appetite, and promote the digestive process. In larger quantities, or taken when the stomach is in an irritated or inflammatory condition, they cause nausea, vomiting, burning pain, griping, and even purging. These are their local effects. The constitutional ones are those resulting from the operation of an excitant,—namely, increased frequency and fulness of pulse, thirst, and augmented heat. It probably stimulates all the mucous surfaces, but unequally so. In some instances, cubebs give rise to an eruption on the skin, like urticaria. Not unfrequently they cause headache; and occasionally disorder of the cerebro-spinal functions, manifested by convulsive movements or partial paralysis, as in a case related by Mr. Broughton.

Cubebs appear to exercise a specific influence over the urinogenic apparatus. Thus they frequently act as diuretics, and at the same time deepen the colour of, and communicate a peculiar aromatic odour to, the urine. Their stimulant operation on the bladder is well illustrated by a case related by Sir Benjamin Brodie. A gentleman, labouring under chronic inflammation of the bladder, took fifteen grains of cubebs, every eight hours, with much relief. Being anxious to expedite his cure, he, of his own accord, increased the dose to a drachm. This was followed by an aggravation of the symptoms: the irritation of the bladder was much increased, the mucus was secreted in much larger quantity than before, and ultimately the patient died,—"his death being, I will not say occasioned," adds Sir Benjamin, "but certainly very much hastened, by his imprudence in overdosing himself with cubebs."

Three drachms of cubebs caused in Pil nausea, acid eructations, heat at the pit of the stomach, headache, uneasiness, and fever.

Uses.—The principal use of cubebs is in the treatment of gonorrhoea. They should be given in as large doses as the stomach can bear, in the early part of the disease; for experience has fully proved that in proportion to the length of time gonorrhoea has existed, the less amenable is it to the influence of cubebs. In some instances an immediate stop is put to the progress of the malady. In others, the violent symptoms only are palliated; while in many (according to my experience in most) cases no obvious influence over the disease is manifested. The presence of active inflammation of the urethra does not positively preclude the use of cubebs, though I have more than once seen them aggravate the symptoms. Mr. Jeffreys thinks the greatest success is met with in the more inflammatory forms of the disease. Cubebs have been charged with inducing swelled testicle; but I have not observed this affection to be more frequent.
after the use of cubebs than when they were not employed. Mr. Broughton gave them to fifty patients, and in forty-five they proved successful. Of these only two had swelled testicle. The explanation of the methodus medendi is unsatisfactory. Sir A. Cooper thinks that cubebs produce a specific inflammation of their own on the urethra, which has the effect of superseding the gonorrhoeal inflammation. The occasional occurrence of a cutaneous eruption from the use of cubebs deserves especial attention, as I have known it create a suspicion of secondary symptoms.

Cubebs have been recommended in gleet and leucorrhoea. In abscess of the prostate gland, twenty or thirty grains of cubebs, taken three times a day, have in many cases appeared to do good. They seemed to give a gentle stimulus to the parts, and to influence the disease much in the same way that Ward's Paste operates on abscesses and fistulae, and ulcers of the rectum. In cystinrhoea also they have occasionally proved serviceable in small doses. In piles, likewise, they are given with advantage.

The efficacy of cubebs in mucous discharges is not confined to the urino-genital mucous membrane. In catarrhal affections of the membrane lining the aetiair passages, it proves exceedingly useful, especially when the secretion is copious and the system relaxed.

Formerly cubebs were employed as gastric stimulants and carminatives in dyspepsia, arising from an atonic condition of the stomach. They have also been used in rheumatism. The Indians macerate them in wine, and take them to excite the sexual feelings.

**Administration.**—Cubebs, in the form of powder, are given in doses varying from ten grains to three drachms. In affections of the bladder and prostate gland the dose is from ten grains to thirty grains. In gonorrhoea, on the other hand, they should be administered in large doses. Mr. Crawford says, that in Malay countries they are given in doses of three drachms, six or eight times during the day.

1. **OLEUM CUBEBI.** E.; Volatile Oil of Cubebs. — (Prepared by grinding the fruit, and distilling with water). By distillation, cubebs yield about 10.5 per cent, of a transparent, slightly-coloured (when pure, colourless), volatile oil, which is lighter than water (sp. gr. 0.929), and has the cubeb odour, and a hot, aromatic, bitter taste. It is composed of carbon and hydrogen, in the same relative proportion as in oil of turpentine; but its formula is C13 H22.

By keeping, it sometimes deposits crystals (cubeb steaoptene or cubeb camphor), the primary form of which is the rhombic octahedron. Their odour is that of cubebs; their taste, at first, that of cubebs and camphor, afterwards cooling. They are fusible at 133° F. soluble in alcohol, ether, and oils, but are insoluble in water. Their
composition is $\text{C}^{16} \text{H}^{14} \text{O}$, so that they are the hydrate of the oil of cubebs. Oil of cubebs is an excellent and most convenient substitute for the powder. The dose of it, at the commencement of its use, is ten to twelve drops. This quantity is to be gradually increased as long as the stomach will bear it. In some instances, I have given it to the extent of a fluidrachm for a dose. It may be taken suspended in water by means of mucilage, or dropped on sugar. *Gelatinous capsulæ of cubebs*, containing the oil of cubebs, are prepared by Mr. Wildenow. The mode of preparing these will be described when noticing the gelatinous capsules of copaiva. A combination of oil of cubebs and oil of copaiva forms a very useful medicine in some cases of gonorrhœa.

On the continent, a preparation, called the *oleo-resinous extract of cubebs*, is used. It is prepared by adding the oil to the resinous extract of cubebs, which is prepared by digesting the cake left after the distillation of the oil in alcohol, and distilling off the spirit.

2. TINCTURA CUBEBE, L. : Tinctura Piperis Cubebæ, D. Tincture of Cubebs. — (Cubebs, 5v. [5iv. D.]; Rectified [Proof, D.] Spirit, Oij. [wine-measure, D.]) Macerate for fourteen days, and filter). — Dr. Montgomery* says, “I have found this tincture cure gonorrhœa both speedily and satisfactorily.” The dose of it is one or two drachms, three times a day.

OTHER NON-OFFICINAL PIPERACEÆ.

The *Piper Betle* is extensively used by the Malays and other nations of the East, who consider it as a necessary of life. The mode of taking it in Sumatra consists simply in spreading on the *sirih* (the leaf of the Piper Betle) a small quantity of *chunam* (quick-lime prepared from calcined shells), and folding it up with a slice of *pinang* or Areca nut (vide pp. 203 & 936). From the mastication there proceeds a juice which tinges the saliva of a bright red, and which the leaf and nut, without the lime, will not yield. This hue being communicated to the mouth and lips, is esteemed ornamental, and an agreeable flavour is imparted to the breath. The juice is usually, but not always, swallowed. To persons who are not habituated to this composition it causes giddiness, astringes and excoriates the mouth and fauces, and deadens for a time the faculty of taste. Individuals, when toothless, have the ingredients previously reduced to a paste, that they may dissolve without further effort.

Order XXVIII.—EUPHORBIACEÆ. Juss.—THE EUPHORBIUM TRIBE.

Essential Character.—Flowers monoecious or dioecious. Calyx monosepalous: the segments definite, sometimes none, very often increased on the inside by

---

*Journ. de Pharm. t. xiv. p. 49.
* Observ. on the Dutl. Pharm. p. 439, Lond.
various squamiform or glandular appendages. Stamens indefinite, or generally
definite, distinct [or monadelphous]; sometimes inserted into the centre of the
flower, beneath the rudiments of the pistil. Authors two-celled; the cells
sometimes distinct, dehiscing longitudinally on the outer side. Ovary superior,
 sessile, or stipitate, two to three or many-celled; the cells arranged in a circle
around the central placenta. Ovules solitary or in pairs; suspended from the
inner angle beneath the apex. Styles as many as the cells; either distinct, or
united, or none. Stigmas single or compound or many-lobed. Capsule of
two to three distinct bivalved cells, which often burst elastically. Seeds soli
tary or twin, with an arillus, and attached above to the central placenta. Embryo
surrounded by a fleshy albumen: cotyledons flat; radicle superior.
—Herbs or shrubs generally lactescent. Leaves mostly stipulate, alternate.
or rarely opposite. Flowers axillary or terminal, usually
with bracts; bracts in some
cases large and involucriform (Bot. Gall.)

Some of the Euphorbiaceae are
succulent (as Euphorbia melo-
formis and E. antiquorum, figs.
234 & 235), and have a con-
siderable resemblance to Cacte-
aceae, from which they may in
general be distinguished by the
presence of an acrid milky
juice. However, the genus
Mammilaria (of the family
Cacteaceae) possesses a milky
juice.

Properties.—Acridity is the leading quality of the plants of this family. Some
species also possess a narcotic property and depress the action of the heart.
The acridity resides in the milky juice. In some plants the acrid principle is
volatile, as in Hippomane Mancinella and Croton Tiglium: in the last-men-
tioned species it is of an acid nature. Some poisonous species, by roasting,
are deprived of this volatile principle, and thereby become esculent. In some
cases the acrid principle is fixed, as in the substance called, in the shops, “gum”
euphorbium.

Some euphorbaceous plants are devoid of acridity, or possess it in a very
slight degree only. Von Buch says, the branches of Euphorbia balsamifera
contain a mild sweet juice, which is eaten by the inhabitants of the Canary
Isles. The aromatic tonic bark of the Croton Cascarilla is another exception
to the very general acridity of euphorbiaceous plants.

This acrid juice pervades various parts of the plants; in the stem it resides
principally in the cortical portion. “M. Berthollet has recorded a remarkable
instance of the harmless quality of the sap in the interior of a plant, whose
bark is filled with a milky proper juice of a poisonous nature. He described
the natives of Teneriffe as being in the habit of removing the bark from the
Euphorbia canariensis, and then sucking the inner portion of the stem in order
to quench their thirst, this part containing a considerable quantity of limpid
and non-elaborated sap.”

1. CRO’TON TIG’LIUM, LamarcK, L. E. D.—THE PURGING CROTOn.

Croton Jamalgota, Hamilton.
Sex. Syst. Monoeccia, Monadelphia.

(Oleum e seminibus expressum, L. D.—Expressed Oil of the Seeds, E.)

History.—Croton seeds are mentioned by Avicenna, and by Serapion, under the name of Dend or Dende. The earliest European
The Purging Croton.

Christopher D'Acosta, in 1578, who terms them *pini nuclei malucani*. When Commelina wrote, they were known in the shops by the name of *cataputia minor*, although they were sold by itinerants as *grana dilla* or *grana tilli*. They were much employed by medical men in the 17th century, and were known by various names, but principally by that of *grana tiglia*. They, however, went out of use, probably in consequence of the violence and uncertainty of their operation. Their re-employment in modern practice is owing partly to the notices of them by Dr. White and Mr. Marshall, in the first edition of Dr. Ainslie's work; but principally to the introduction of the oil, in 1819, by Dr. Conwell.

**Botany.** *Gen. Char.*—Flowers monoecious, or very rarely dioecious. **Calyx** five-parted.—**Males:** petals five; stamens ten or more, distinct. **Females:** petals none; styles three, divided into two or more partitions. **Capsule** trilocular (Adr. de Jussieu).

**Sp. Char.**—Arboreous. **Leaves** oblong-ovate, acuminate, slightly serrate, smooth. **Stamens** fifteen, distinct. Each cell of the fruit filled by the seed.

A middle-sized tree, from 15 to 20 feet high. **Bark** smooth, ash-coloured. **Leaves** sometimes cordate, and with two flat round glands at their base; when young covered on both surfaces, but especially the lower one, with minute stellate hairs. At the base of the leaves are two flat round glands. **Raceme** terminal, erect, simple. **Petals** of male flower white.

**Hab.**—Continent of India, islands forming the Indian Archipelago, and Ceylon.

The *Croton Pavana* is said also to yield tiglium or croton seeds. It is distinguished from *C. Tiglium* by having only ten stamens, and by the seeds being much smaller than the cells in which they are placed. *C. Pavana* is a native of Ava, north-eastern parts of Bengal? Amboyna?? Dr. Hamilton thinks it is the *Gramum Moluccum* of Rumphius.

**Description.**—Croton seeds (*semina tiglii* seu *semina crotonis; grana tiglii; purging nuts* of some authors), in size and shape are very similar to castor seeds. Viewed laterally, their shape is oval or oval-oblong: seen from either extremity, they have a rounded or imperfectly quadrangular form. Their length does not exceed six lines; their thickness is 2½ to 3 lines; their breadth, 3 or 4 lines. Sometimes the surface of the seeds is yellowish, owing to the presence of an investing lamina (epidermis?). The testa is dark brown, or blackish, and is marked with the ramifications of the raphé. The endocarp, or internal seed-coat, is thin, brittle, and of a light colour. It incloses a yellowish oily albumen, which envelopes the embryo, whose cotyledons are foliaceous or membranous. The seeds are

---


c *Materia Medica of Hindostan.* 1813.


VOL. II.
without odour; their taste is at first mild and oleaginous, afterwards acrid and burning. When heated they evolve an acrid vapour.

According to Dr. Nimmo\(^{\text{f}}\), 100 parts consist of—

<table>
<thead>
<tr>
<th>Shell or seed-coats</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel, or nucleus</td>
<td>64</td>
</tr>
<tr>
<td><strong>100</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Composition.**—Croton seeds were analyzed by Brandes\(^{\text{g}}\), with the following results:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>traces</td>
</tr>
<tr>
<td>Fixed oil, with crotonic acid, and an alkabid (crotonin)</td>
<td>17.40</td>
</tr>
<tr>
<td>Crotonates and colouring matter</td>
<td>0.32</td>
</tr>
<tr>
<td>Brownish yellow resin, insoluble in ether</td>
<td>1.00</td>
</tr>
<tr>
<td>Stearine and wax</td>
<td>0.65</td>
</tr>
<tr>
<td>Extractive, sugar, and malates of potash and lime</td>
<td>2.65</td>
</tr>
<tr>
<td>Sterchy matter, with phosphate of lime and magnesium</td>
<td>3.71</td>
</tr>
<tr>
<td>Gum, and gummoine</td>
<td>10.17</td>
</tr>
<tr>
<td>Albumen</td>
<td>1.01</td>
</tr>
<tr>
<td>Glutin</td>
<td>2.00</td>
</tr>
<tr>
<td>Seed-coats, and woody fibre of the nucleus</td>
<td>30.00</td>
</tr>
<tr>
<td>Water</td>
<td>22.50</td>
</tr>
<tr>
<td><strong>Croton seeds</strong></td>
<td><strong>101.41</strong></td>
</tr>
</tbody>
</table>

1. **Volatile Oil of Croton Seeds.**—This is but imperfectly known, traces only of it having been obtained. Brandes regards it as extremely acrid, and thinks that by the united agencies of air and water it is converted into crotonic acid; for the distilled water of the seeds becomes more acid by keeping.

2. **Fixed Oil of Croton Seeds.**—This also is but imperfectly known. It must not be confounded with croton oil of the shops, which is a mixture of this and other constituents of the seeds. Fixed oil of croton seeds is, probably, a combination of crotonic and other fatty acids with glycerine.

3. **Crotonic Acid.** (Jatrophy Acid.)—Though this acid exists in the free state in the seed, yet an additional quantity of it is obtained when the oil is saponified. It is a volatile, very acrid, fatty acid, which congeals at \(23^\circ\) F., and, when heated a few degrees above \(32^\circ\) F., is converted into vapour, having a strong nauseous odour, and which irritates the eyes and nose. It has an acrid taste, and acts as a powerful local irritant. It is to this acid that the cathartic and poisonous qualities of croton oil are principally referrible. Pelletier and Caventou think that it is not sufficiently energetic to be the sole active principle. It unites with bases forming a class of salts called crotonates, which are inodorous. The crotonate of ammonium precipitates the salts of lead, copper, and silver, white; and the sulphate of iron, yellow. Crotonate of potash is crystalline, and dissolves, with difficulty, in alcohol. Crotonate of barytes is soluble in water; but crotonate of magnesia is very slightly soluble only in this liquid.

4. **Crotonin.**—The alkali which Brandes found in these seeds, and to which he gave the name of crotonin, appears to be identical with the Tiglin of Adrien de Jussieu. It is crystalline, has an alkaline reaction, is fusible and combustible with flame, leaving a carbonaceous residuum. It is insoluble in water, dissolves very slightly only in cold, but easily in hot, alcohol. If sulphuric or phosphoric acid be added to the spirituous solution, small prisms (sulphate or phosphate of crotonin?), decomposable by heat, are obtained by slow evaporation. Soubeiran\(^{\text{h}}\) thinks that crotonin is a combination of magnesia with a fatty acid.

5. **Resin.**—Is brown and soft; and has a disagreeable odour, on account, doubtless, of the oil which it retains. It is soluble in alcohol, but insoluble in ether and in water. The alkalis dissolve it by separating a whitish matter. It contributes to the purgative properties of croton oil.

---

\(^{\text{g}}\) Gmelin, Handb. d. Chem. Bd. ii. S. 1320.
\(^{\text{h}}\) Nonn, Traité de Pharm. t. ii. p. 103.
Physiological Effects. 1. Of the Seeds. a. On Animals generally.—Croton seeds are powerful local irritants or acrids, causing inflammation in those living parts with which they are placed in contact. Orfila found that three drachms being introduced into the stomach of a dog, and the oesophagus tied to prevent vomiting, caused death in three hours; and, on examination of the body, the alimentary canal was found to be in a state of inflammation. In another experiment, a drachm caused death under the same circumstances. A drachm, also, applied to the cellular tissue of the thigh, was equally fatal. A dose of from twenty to thirty grains of the powder of the kernel given to the horse causes, in six or eight hours, profuse watery stools, and is recommended by some veterinarians as a purgative; but the uncertainty of its operation, and the griping and debility which it occasions, are objections to its use. Lansberg found that twenty of the seeds killed a horse, by causing gastro-enteritis. The pulse was frequent, small, and soft.

β. On Man.—In the human subject, a grain of croton seed will frequently produce full purgation. Mr. Marshall says that this quantity, made into two pills, is about equal in power to half a drachm of jalap, or to six grains of calomel. The operation, he adds, is attended with much rumbling of the bowels; the stools are invariably watery and copious. Dr. White recommends the seeds to be torrefied, and deprived of their seed-coats, before employing them. Dr. Wallich informed me that the labourers in the Calcutta Botanic Garden were in the habit of taking one of these seeds as a purgative, but that on one occasion this dose proved fatal.

The seed-coats, the embryo, and the albumen, have each in their turn been declared to be the seat of the acrid principle: I believe the remarks which I shall have to make with respect to the seat of the acridity of castor-oil seeds, will apply equally well to that of croton seeds. The following is a case of poisoning by the inhalation of the dust of the seeds:

Thomas Young, aged 31, a labourer in the East India warehouses, was brought into the London Hospital on the 8th of December, 1841, labouring under symptoms of poisoning by the inhalation of the dust of croton seeds. He had been occupied about eight hours in emptying packages of these seeds, by which he was exposed to their dust. The first ill effects observed were loss of appetite, then a burning sensation in the nose and mouth, tightness at his chest, and copious lachrymation, followed by epigastric pain. Feeling himself getting worse he left the warehouse, but became very giddy and fell down insensible. Medical assistance was procured, an emetic was administered, stimulants were exhibited, and he was wrapped in warm blankets. When he became sensible he complained of his mouth being parched, and that his throat was swelling. He was then removed to the hospital. On his admission he appeared in a state of collapse, complained of burning pain at the stomach, in the throat, and in the head, and of swelling and numbness of his tongue. The epigastrium felt hot and tense, the pupils were dilated, the breathing short and hurried, the countenance distressed, pulse 85, surface cold. He stated that his tongue felt...
too large for his mouth, and appeared to be without feeling, and he had bitten it two or three times to ascertain whether there was any sensation in it. On examination, however, no change could be observed in the size or appearance of the tongue or parts about the mouth. Hot brandy and water were given to him, and he was put into the hot bath with evident relief. He continued in the hospital for several days, during which time he continued to improve, but still complained of epigastric pain. It deserves notice that his bowels were not acted on, and on the day following his admission several doses of castor-oil were given to him.

It would be interesting to know whether the seeds of Croton Pavana are equally active with those of Croton Tiglinii; and, also, whether the seeds of both species are found in commerce.

2. Of the Oil. a. On Animals generally.—On vertebrated animals (horses, dogs, rabbits, and birds), it acts as a powerful local irritant or acrid. When taken internally, in moderate doses, it operates as a drastic purgative; in large doses, as an acrid poison, causing gastro-enteritis. Moiroud⁷ says, that from twenty to thirty drops of the oil are, for the horse, equal to two drops for man; and that twelve drops injected into the veins cause alvine evacuations in a few minutes. Thirty drops, administered in the same manner, have caused, according to this veterinarian, violent intestinal inflammation and speedy death. A much less quantity (three or four drops) has, according to Hertwich⁸, terminated fatally when thrown into the veins. After death the large intestines have been found to be more inflamed than the small ones. Flies, which had eaten some sugar moistened with the oil of croton, died in three or four hours,—the wings being paralyzed or immovable before death.

b. On Man.—Rubbed on the skin it causes rubefaction and a pustular or vesicular eruption, with sometimes an erysipelas-like swelling of the surrounding parts. When rubbed into the abdomen, it sometimes, but not invariably, purges. Rayer⁹ mentions a case in which thirty-two drops rubbed upon the abdomen produced purging, large vesicles, swelling and redness of the face, with small prominent, white, crowded vesicles on the cheeks, lips, chin, and nose. Applied to the eye, it gives rise to violent burning pain, and inflammation of the eye and face. In one case it produced giddiness.¹⁰ Ebeling obtained relief by the application of a solution of carbonate of potash. Swallowed in small doses, as of one or two drops, it usually causes an acrid burning taste in the mouth and throat, and acts as a drastic purgative, giving rise to watery stools, and frequently increasing urinary secretion. Its operation is very speedy. Frequently it causes evacuations in half an hour; yet it is somewhat uncertain. Sometimes six, eight, or even ten drops, may be given at a dose, without affecting the bowels. In moderate doses it is less disposed to cause vomiting or purging than some other cathartics of equal power. Mr. Hiff, however, observes that it

---

* Pharm. Vétér. p. 372.
* Treat. on Diseases of the Skin, by Dr. Willis, p. 367.
* Dierbach, Neuesten Entd. in d. Mat. Med. 1837, p. 201.
produces nausea and griping more frequently than has been sup-
posed.

The following is the only case, with which I am acquainted, of
poisoning by an excessive dose of croton oil:—A young man, aged
25, affected with severe typhoid fever, swallowed by mistake two and a
half drachms of croton oil. At the end of three-quarters of an hour
the skin was cold, and covered with cold sweats; the pulse and
action of the heart scarcely perceptible; respiration difficult; the
points of the toes and fingers, the parts around the eyes and the lips,
blue, as in malignant cholera; abdomen sensible to the touch; but
no vomiting. In an hour and a half there were excessive and in-
voluntary alvine evacuations; sensation of burning in the oesopha-
gus; acute sensibility of the abdomen; skin colder; respiration and
circulation difficult; the cyanosis extended over the whole body;
the skin became insensible; and death occurred, with some of the
symptoms of asphyxia, four hours after the poison was swallowed.
No lesion was found in the gastric membrane. The intestines pre-
sented ulcerations, such as are characteristic of typhus fever.*

In comparing croton oil with other violently acrid purgatives, we
find it distinguished by its speedy operation, the great depression of
the vascular system, as well as the general feeling of debility which
it produces, and by the uncertainty of its operation.

Uses.—The value of croton oil as an internal remedial agent de-
pends principally on two circumstances: first, its powerful and speedy
action as a drastic cathartic, by which it is adapted for obviating
constipation, or for operating on the bowels as a counter-irritant;
and, secondly, on the smallness of the dose, which in practice pre-
sents many advantages. These circumstances render it peculiarly
applicable in cases requiring powerful and speedy catharsis, and in
which the patient cannot swallow, or does so with extreme difficulty,
as in trismus, coma, and some affections of the throat; or where he
will not swallow, as in mania. In all such cases the oil may be
dropped on the tongue. In obstinate constipation, whether from the
poison of lead, or from other causes, it has sometimes succeeded
where other powerful cathartics had been tried in vain. It is espe-
cially serviceable where the stomach is irritable, and rejects more
voluminous purgatives; and it is of course objectionable in all in-
flammatory conditions of the digestive tube. In stercoraceous vomiting
with other constitutional symptoms of hernia, but without local
evidence of displacement, and where the stomach rejected the ordinary
senna draught, I have known oil of croton prove most effectual. In
torpid conditions of the intestinal canal, in tendency to apoplexy, in
dropsy unconnected with inflammation, in paralysis—in a word, in any
cases in which a powerful and speedy intestinal irritant is required,
either for the purpose of evacuating the canal merely, or for acting
as a revulsive or counter-irritant, and thereby relieving distant parts,
croton oil is a very useful, and on many occasions, most valuable

cathartic. In employing it, two cautions are necessary: it must be avoided, or at least used with great caution, in extreme debility; and it is improper in inflammatory affections of the digestive organs. The great drawback to its use is its uncertainty. In one case it acts with extreme violence; in another, it scarcely produces any effect. *In the diseases of children*, where a powerful purgative is required, croton oil has been administered, on account of the minuteness of the dose, and the facility of its exhibition. In hydrocephalus, and other head affections of children, I have several times used it where other cathartics had failed, or where extreme difficulty was experienced in inducing the patients to swallow the more ordinary remedies of this class. In some of these it has disappointed me. In the case of a child of four years of age, affected with incipient hydrocephalus, I gave six doses, of one drop each, of the oil without any effect. *In uterine obstructions* (chlorosis and amenorrhoea) it has occasionally proved serviceable. *In tape-worm* it has been recommended; but I have no experience of its efficacy.

Rubbed on the skin, croton oil has been employed to produce rubefaction and a pustular eruption, and thereby to relieve diseases of internal organs, on the principle of counter-irritation, before explained* (see p. 145). *Inflammation of the mucous membrane lining the air-passages, peripneumonia, glandular swellings, rheumatism, gout, and neuralgia*, are some of the diseases against which it has been applied in this way, and doubtless frequently with benefit. It is sometimes used in the undiluted form, but more commonly with twice or thrice its volume of olive oil, oil of turpentine, soap liniment, alcohol, ether, or some other convenient vehicle. But, in all the cases just enumerated, it has never appeared to me to present any advantage over many other counter-irritants in common use, as emetic tartar; while the chance of causing purging is, in some cases, an objection to its use; and its greater cost sometimes precludes its employment on a large scale in pauper establishments. Frictions with it on the abdomen have been used to promote alvine evacuations; but it frequently fails to produce the desired effect. To promote the absorption of the oil in these cases, it should be dissolved in ether or alcohol, and the frictions are to be assiduously made.

Administration.—*Croton Seeds* are rarely or never used in this country. Their farina may, however, be given in doses of a grain or two.

**CROTONIS OLEUM, E.; Tiglii Oleum, L.; Croton Oil.**—This is the expressed oil of the seeds. It is imported from the East Indies, principally from Madras, but in part from Bombay. I am informed by an oil presser at Calcutta that it is prepared like castor oil, except that it is strained instead of being boiled. In shelling the seeds the women often suffer severely with swelling of the face, &c. Croton oil is also expressed in England. Soubeiran* obtained from

*Berol. 1833.*

*Souveau Traite de Pharmacie, t. ii. p. 54.*

*2nd ed.*

*1* Bamberger, *De Olei crotonis externe adhibiti efficacia.* Berol. 1833.

*2* Nouveau Traite de Pharmacie, t. ii. p. 54.
one kilogramme [2 lbs. 8 oz. 84 grs. *Troy*] of seeds 270 grammes [about 4170 grs. *Troy*] of oil; of which 146 grammes [about 2255 grs. *Troy*] were procured by pressure, and 124 grammes [1915 grs. *Troy*] by alcohol. As met with in English commerce, it is yellowish-brown or amber-coloured, and has an unpleasant odour and an acrid taste. It reddens litmus, and is soluble in alcohol. It consists, according to Dr. Nimmo\(^a\), of

| An acrid matter                           | 4.5 |
| Bland fixed oil                           | 5.5 |
| Croton oil                                | 10.0 |

The *acrid matter* is extracted from croton oil by alcohol. The alcoholic solution reddens litmus, and, when dropped into water, causes a cloudiness. Dr. Nimmo supposed this acrid matter to be of a resinous nature; but the investigations of Pelletier and Caventou, and Brandes, have shown that it is a mixture of *crotonic acid* and *crotonin* [and resin?]. According to Mr. Twining\(^b\) there are two kinds of croton oil met with in commerce. One is dark yellow and thickish; the other is straw-coloured. The first is the most energetic. These oils may, perhaps, be obtained from different plants; the one from Croton Tiglium, the other from Croton Pavana.

The following are the characteristics of the goodness of the oil, according to the Edinburgh College:

When agitated with its own volume of pure alcohol and gently heated, it separates on standing, without having undergone any apparent diminution.

Croton oil is exhibited in doses of one, two, or three drops. In some instances it is simply placed on the tongue, as in coma, tetanus, mania, &c.; or it may be taken in a tea-spoonful of syrup. These methods of administering it are objectionable, on account of the acrid taste produced. The usual mode of employing it is in the form of pill, made with conserve of roses or bread-crumbs. Some have employed it in the form of emulsion, flavoured with some carminative oil or balsamic substance; but the burning of the mouth and throat, to which it gives rise, is an objection to its use.

\(a.\) *Tinctura Crotonis; Tincture of Croton.* This is prepared by digesting the seeds, or dissolving the oil in rectified spirit. Soubeiran’s formula is one drop of croton oil and half a drachm of rectified spirit.

\(\beta.\) *Sapo Crotonis; Croton Soap.* This is prepared with two parts of croton oil and one part of soap-boiler’s lye. It is in fact a crotonate of soda. A croton soap is sold by Mr. Morson, of Southampton Row, Russell Square. It may be used as a purgative, in doses of from one to three grains. It has been said that the alkali diminishes the acrimonious property of the oil without affecting its cathartic powers—a statement, however, which is highly improbable.

---

\(^a\) *Op. supra, cit.*

\(^b\) *Dierbach, op. cit.*
γ. Linimentum Crotonis; Croton Liniment. This is prepared by mixing one part of croton oil with five parts of olive oil. Rubbed repeatedly on the skin it occasions redness and a pustular eruption. It is used as a counter-irritant.

Antidotes.—In a case of poisoning by the seeds or oil, the first object is to remove the oil from the stomach. Mild, demulcent, and emollient drinks, are then to be given. Alkaline substances have been recommended as chemical antidotes, but their efficacy is not proved. Full doses of opium will be requisite to check the diarrhoea. To relieve a failing circulation, ammonia and brandy may be given, and the warm bath employed. To combat the inflammatory symptoms, blood-letting may be used, if the condition of the vascular system permit its employment.


Sex. Syst. Monocotyl Monadelphia.

History.—Cascarilla or Eleutheria bark was first mentioned by Stisser in 1686, at which time it was used in this country, mixed with tobacco, for smoking. In 1754 Catesby noticed and figured a plant, which, he said, grew plentifully on most of the Bahama Islands, and yielded Cascarilla bark, or, as he called it, "The Ilatheria bark, La Chacrilla." This plant is generally supposed to be the Croton Cascarilla, Linn. (C. lineare, Jacq.); and several reasons led me, at one time, to think that it might be the source of the cascarilla bark of the shops—an opinion also entertained by Dr. Wood. Dr. Lindley adduced several reasons for believing that the Croton Eleuteria was the true species, as Drs. Wright and Woodville had already asserted. The subsequent receipt, by Dr. Lindley, of specimens of the plant, from Mr. Lees, of the Bahama Islands, has fully confirmed the accuracy of Dr. Lindley's opinion. The Croton Cascarilla, Don, L. (C. Pseudo-China, Schiede,) yields Copalchi (not Cascarilla) bark.


Sp. Char.—Leaves ovate, acuminate, quite entire, smooth, beneath silvery, with scales. Racemes compound axillary. Stem arborescent (Swartz).

Branches and twigs angular, somewhat compressed. Leaves stalked, alternate, with a short but obtuse point. Flowers monoeccious, sub-sessile. Males:—petals whitish; stamens ten to twelve. Ovary
roundish: *styles* three, bifid; *stigmas* obtuse. Capsule roundish, minutely warded, not much bigger than a pea, with three furrows, three cells, and six valves.

**Hab.**—The Bahama Islands, Jamaica.

**Description.**—Eleutheria or cascarilla bark (cortex eleuterie seu cascarilla) is in the form of fragments, or quills, of about one or two, more rarely three or four, inches long, the fragments being thin, and usually curved both longitudinally and transversely, the quills varying in size from that of a writing pen to that of the little finger. The bark is compact, hard, moderately heavy, and has a short resinous fracture, not fibrous or splintery, as in cinchona barks. Some of the pieces are partially or wholly covered with a whitish, rugous epidermis, cracked both longitudinally and transversely. The cortical layers are of a dull brown colour. The taste of this bark is warm, spicy, and bitter; its odour is peculiar, but agreeable. When burned, it evolves a pleasant odour (which has been compared by Pfaff to that of vanilla or amber when heated), on which account it is a constituent of *fumigating pastiles*.

Fee has enumerated no less than forty-three species of lichens found on this bark. With one exception (*Parmelia perlata*, which I have never seen on cascarilla), every one of these lichens has an adherent, crustaceous, amorphous thallus. A very common species is *Lecidea Arthonioides*, Fee: the thallus of which is very white, and the apothecia minute, round, and black.

**Commerce.**—It is imported from Nassau, in New Providence (one of the Bahama Islands). Of sixteen imports, which I have been enabled to trace since 1833 in the bills of entry, eight were from Nassau, three from Belize, and two from Lima; the others were from European ports. Some of these probably were returned goods. Those from Belize may perchance be the produce of the Bahamas. 4,579 lbs. paid duty (one penny per lb.) in 1838. In 1840, 14,490 lbs. paid duty.

**Composition.**—Cascarilla bark was analyzed by Trommsdorff, who obtained from it the following substances:—Volatile oil 1.6, bitter resin 15.1, gum and bitter matter with trace of chloride of potassium 18.7, woody fibre 65.6. Meissner detected in the ashes of the bark the oxide of copper. Brandes has announced the existence of a peculiar alkaline substance (cascarillina).

1. **Volatile Oil of Cascarilla.**—It possesses the odour and taste of the bark. Its sp. gr. is 0.938. Its colour is variable, sometimes being greenish, at others yellow or blue. It consists of two oils, one boiling at 344°, and which contains no oxygen (its formula probably being C₁₀ H₁₅); the other less volatile and oxygenated. Nitric acid converts it into a yellow, pleasant smelling resin. By distillation with water the bark yields about 1-120th of its weight of this oil.

2. **Resin.**—Separated from the alcoholic tincture of the cascarilla by the addition of water. It is reddish brown; has a balsamic, slightly bitter, not astringent taste; and, when thrown on hot coals, evolves an agreeable odour.
3. Extractive.—Has a bitter, but not balsamic, taste. Its watery solution reddens litmus, and is unchanged by either ferruginous solutions or tincture of nutgalls.

Chemical Characteristics.—The sesquichloride of iron deepens the colour of the infusion of cascarilla. The tincture of nutgalls causes turbidness, and at the end of twenty-four hours a very slight precipitate. The alcoholic tincture deposits some resin on the addition of water.

Physiological Effects.—Cascarilla bark belongs to the aromatic bitters, before noticed (p. 189.) That is, it produces the combined effect of an aromatic and of a moderately powerful tonic; but it does not possess any astringency. Some pharmacologists place it with aromatics, others with tonics. Cullen, though at one time uncertain as to which of these classes it belonged, ultimately classed it with the tonics. Krauss states, that moderate doses give rise, in very susceptible, especially in sanguine, subjects, to narcotic effects; but though I have frequently employed it, I never observed an effect of this kind. Mixed with tobacco, and used for smoking, it is said to cause giddiness and intoxication.

Uses.—Cascarilla has been employed as a substitute for cinchona; and, although it is inferior to the latter in tonic and febrifuge qualities, its aromatic quality frequently enables it to sit easily on the stomach, without causing either vomiting or purging, which, in irritable affections of the alimentary canal, cinchona is apt to produce. In this country it is principally employed in those forms of dyspepsia requiring an aromatic stimulant and tonic. It is also used in cases of debility generally; and in chronic bronchial affections, to check excessive secretion of mucus. In Germany, where it is a favourite remedy, it is used in many other cases: such as low nervous fevers, intermittents, the latter stages of diarrhœa, and dysentery.

Administration.—The powder may be given in doses of from ten grains to half a drachm; but it is a less agreeable form than the infusion.

Macerate for two hours in a vessel lightly covered, and strain [through linen or calico, E.]).—A light and aromatic bitter tonic. It is a good vehicle for acids and alkalis. The tincture of cascarilla is usually joined with it. Dose, from f3i. to f3ii.

2. Mistura Cascarillæ Composita, L.; Compound Mixture of Cascarilla.—(Infusion of Cascarilla, f3xivii.; Vinegar of Squill, f3i.; Compound Tincture of Camphor, f3ii.; Mix).—Said to be useful in chronic affections of the mucous membranes of the lungs. Dose, from f3i. to f3iss. twice or thrice a day.

3. Tinctura Cascarillæ, L. E. D.; Tincture of Cascarilla.—(Cascarilla bark, bruised [in moderately fine powder, E.], 5v. [3iv. D.];

---

* Mat. Med.  
* Heilmittelchere, S. 401.  
* United States Dispensatory.

3. RICINUS COMMUNIS, Linn. L. E. D.—THE CASTOR-OIL PLANT, OR PALMA CHRISTI.

Sex. Syst. Monoecia, Monadelphia.

(Oleum e seminibus expressum, L. Expressed oil of the seeds, E. Oleum e seminibus, D.)

History.—The castor-oil plant was known in the most ancient times. Caillaud found the seeds of it in some Egyptian sarcophagi, supposed to have been at least 4000 years old. Whether this is, as some persons imagine, the plant alluded to in the Bible, and which, in our translation is called the gourd, I cannot pretend to decide. The pious fathers, Jerom and Augustin, differed so much in their opinions as to what was the particular plant meant in the passage just referred to, that from words, we are told, they proceeded to blows!

The ancient Greeks were acquainted with the Ricinus, for both Herodotus and Hippocrates mention it; the latter employed the root in medicine. Dioscorides calls it the ἱκα or Κρότων. It was termed Κρότων by the Greeks, and Ricinus by the Romans, on account of the resemblance of its seeds to a little insect bearing these names, which infests dogs and other animals, and whose common name in English is the tick.

Botany. Gen. Char.—Flowers monoecious. Calyx three to five, parted, valvate. Petals none. Filaments numerous, unequally polyadelphous; cells of the anther distinct, below the apex of the filament. Style short; stigmas three, deeply bipartite, oblong, coloured, feathery; ovary globose, three-celled, with an ovule in each cell. Fruit generally prickly, capsular, tricoccous. Trees, shrubs, or herbaceous plants, sometimes becoming arborescent. Leaves alternate, palmate, pellate, with glands at the apex of the petiole. Flowers in terminal panicles, the lower male, the upper female; all articulated with their peduncles, and sometimes augmented by bi-glandular bracts (Lindley).

Sp. Char.—Leaves peltato-palmate; the lobes lanceolate, serrated. Stem herbaceous, pruinose. Stigmas three, bifid at the apex. Capsule covered with spines (Bot. Gall.)

1 Dict. Univ. de Mat. Méd. t. vi. 2 Jonah, ch. iv. 6.
3 See Dr. Canvane’s Dissertation on the Oleum Palmic Christi. 2nd ed. Lond. 1769.
3 Harris, Nat. Hist. of the Bible.
4 Euterpe, 94.
6 Lib. iv. cap. 164.
The stems of plants growing in this country are round, greenish or reddish-brown, and blue pruinose, and branched. Leaves on long round petioles, eight or ten-lobed. A large scutelliform gland on the petiole, near its junction with the lamina. Filaments capillary, branched. Stigmas reddish. Capsules supported on stalks, which are somewhat longer than the capsules themselves.

**Hab.**—India. When cultivated in Great Britain, Ricinus communis is an annual, seldom exceeding three or four feet high; but in other parts of the world it is said to be perennial, arborescent, and to attain a height of fifteen or twenty feet. Dr. Roxburgh says, that in India several varieties are cultivated, “some of them growing to the size of a pretty large tree, and of many years’ duration.” Clusius saw it in Spain with a branched trunk as thick as a man’s body, and of the height of three men. Belon also tells us that in Crete it endures for many years, and requires the use of ladders to mount it. Ray found it in Sicily as large as our common alder trees, woody, and long-lived; but it has been a question with botanists whether these arborescent and other kinds are mere varieties of, or distinct species from, the ordinary Ricinus communis.

The following (varieties or distinct species) are enumerated by Nees and Ebermaier as common in gardens, and as distinguished principally by the colour and pruinose condition of the stem—characters which, however uncertain in other cases, appear here to be constant.

1. **Ricinus africanus** (Willd.)—Stem not pruinose, green, or on one side reddish. The fruit-racemes abbreviated, the fruit-stalk longer than the capsule. Seeds attenuated on one side, marbled gray and yellowish-brown. [Arborescent. Cultivated in Bengal.]

2. **Ricinus macrophyllus** (H. Berol.)—Nearly allied to the foregoing: stem quite green, not pruinose. Fruit racemes elongated, fruit-stalk shorter than the fruit.

3. **Ricinus leucocarpus** (H. Berol.)—Stem pale green, white pruinose. Fruit-stalk as long as the fruit. The unripe fruit and prickles almost quite white.

4. **Ricinus lividus** (Willd.)—Stem, petiole, and midrib, purple red, not pruinose. Nearly allied to R. africanus, and, like this, more woody and perennial. [Arborescent. Cultivated in Bengal (Hamilton).]

5. **Ricinus viridis** (Willd.)—Stem pale green, blue pruinose, by which it is distinguished from R. macrophyllus. Seeds somewhat smaller, more oval, marked with white and fine brown. [Herbaceous. Cultivated in Bengal (Hamilton).]

**Description.**—Castor seeds (semina ricini, seu sem. catapultiae ma-
joris) are oval, somewhat compressed, about four lines long, three lines broad, and a line and a half thick: externally, they are pale grey, but marbled with yellowish brown spots and stripes. The seed-coats consist, according to Bischoff, of a smooth external coat (*epidermis seminalis*). 2dly, a diffus, hard *testa*, consisting of two layers, an external, thick, and dark brown one, and an internal one, thinner and paler. 3dly, a *cuticula nuclei* or *membrana interna*. The fleshy tumid *cicatricula stomatis* (also termed *strophiola*) is very evident at the upper end of the seed; beneath it is a small *hilum*, from which passes downwards the longitudinal *raphé*. The *chalaza* is colourless. The *nucleus* of the seed consists of oily *albumen*, and an *embryo*, whose cotyledons are membranous or foliaceous.

**Composition.**—The only analysis of these seeds, as yet published, is that of Geiger. The following are his results:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasteless resin and extractive</td>
<td>1.91</td>
</tr>
<tr>
<td>Brown gum</td>
<td>1.91</td>
</tr>
<tr>
<td>Ligneous fibre</td>
<td>29.00</td>
</tr>
<tr>
<td>Fatty oil</td>
<td>46.19</td>
</tr>
<tr>
<td>Gum</td>
<td>2.40</td>
</tr>
<tr>
<td><em>Caseum</em> (albumen)</td>
<td>0.50</td>
</tr>
<tr>
<td>Ligneous fibre with starch? (hardened)</td>
<td></td>
</tr>
<tr>
<td><em>albumen</em></td>
<td></td>
</tr>
</tbody>
</table>

Loss (moisture) ................................ 7.09

**Castor Seeds** .................................. 100.00

1. **Volatile acrid principle (? Ricin and Elaiioidic acids).**—This principle is not mentioned by Geiger, and its existence has been doubted or denied by others. But the following as well as other facts establish, in my opinion, its presence:—First, Guibourty experienced a peculiar feeling of dryness of the eyes and throat, in consequence of having been exposed to the vapour arising from a vessel in which bruised castor seeds and water were boiling. Secondly, Planche obtained a permanent, odorous principle, by distilling a mixture of water and castor oil. Bussy and Lecaeu ascribe the occasional acridity of the oil to the production of fatty acids, by the action of the air on it.

The acrid principle (whatever its nature may be) appears to reside in both the *albumen* and *embryo* of the seeds. Jussieu and some others have asserted that it resided exclusively in the embryo; while Bouton-Charlard and Henry jun. declared the albumen to be the exclusive seat of it. But any unprejudiced person may soon satisfy himself by tasting separately the embryo and albumen, that both parts possess acridity. Dierbach states that in fresh seeds the innermost seed-coat contains the acrid principle. If this be correct, it is most remarkable that the same coat, when dry, contains none.

2. **Fixed Oil; Castor Oil (Oleum Ricini, L. E. D.) Preparation.**—The following are the modes of preparing castor oil in India, America, and Jamaica. At Calcutta castor oil is prepared as follows: the fruit is shelled by women; the seeds are crushed between rollers, then placed in hempen cloths, and pressed in the ordinary screw or hydraulic press. The oil thus procured is afterwards heated with water in a tin boiler until the water boils, by which the mucilage or albumen is separated as a scum. The oil is then strained through flannel and put into canisters. Castor seeds are distinguished according to the country yielding them. Two principal kinds are known, the large and the small.
nut; the latter yields the most oil. Ainslie describes the method of preparing the oil in India by coction. The best East Indian Castor Oil is sold in London as cold drawn. In the United States the cleansed seeds are gently heated in a shallow iron reservoir, to render the oil liquid for easy expression, and then compressed in a powerful screw-press, by which a whitish oily liquid is obtained, which is boiled with water in clean iron boilers, and the impurities skimmed off as they rise to the surface. The water dissolves the mucilage and starch, and the heat coagulates the albumen, which forms a whitish layer between the oil and water. The clear oil is now removed, and boiled with a minute portion of water until aqueous vapours cease to arise; by this process an acrid volatile matter is got rid of. This oil is put into barrels, and in this way is sent into the market. Good seeds yield about 25 per cent. of oil. In Jamaica the bruised seeds are boiled with water in an iron pot, and the liquid kept constantly stirred. The oil, which separates, swims on the top, mixed with a white froth, and is skimmed off. The skimmings are heated in a small iron pot, and strained through a cloth. When cold, it is put in jars or bottles for use.

Physical properties and varieties. Castor oil is a thickish fluid oil, usually of a pale yellow colour, with a slightly nauseous odour and a mild taste. It is lighter than water, its sp. gr. being, according to Saussure, 0.969 at 55°F. When cooled down to about 0°C, it congeals into a transparent yellow mass. By exposure to the air it becomes rancid, thick, and ultimately congeals, without becoming opaque, and hence it is called a drying oil. When heated to a little more than 55°F. it begins to decompose.

a. East Indian Castor Oil is the principal kind employed in this country. It is imported from Bombay and Calcutta. It is an oil of exceedingly good quality (both with respect to colour and taste), and is obtained at a very low price. It is procured from Ricinus communis and R. lividus.

b. West India Castor Oil I am not well acquainted with, not having been able to procure authentic samples of it.

c. American or United States Castor Oil is, for the most part, imported from New York. All the samples, which I have examined, have been of very fine quality, and, in my opinion, had a less unpleasant flavour than the East Indian variety. Our druggists object to it, on the ground of its depositing a white substance (margarine) in cold weather—a circumstance which has led some persons to imagine it had been mixed with olive oil.

d. I have seen one sample of Castor Oil from New South Wales. It was of a very dark colour.

Solubility. In absolute alcohol, and in pure sulphuric ether, castor oil is completely soluble. In this respect it agrees with palm oil, but disagrees with all the ordinary fixed oils. Hence alcohol has been proposed as a means of detecting adulteration of castor oil, the adulterating oil not being soluble in alcohol. [Castor oil is entirely dissolved by its own volume of alcohol.] Ph. Ed. Stoltze says benzoic acid promotes the solution of castor oil in rectified spirit.

Commerce. Castor oil is imported in casks, barrels, hogsheads, and duppers. The duty on it is 1$ per cwt. Of 393,191 lbs. imported in 1831, there came from the East Indies 343,373 lbs., from British Northern Colonies of America 25,718 lbs., from the United States 22,699 lbs., and from the British West Indies 10,47 lbs.

Composition. The following is the ultimate composition of castor oil:

<table>
<thead>
<tr>
<th>Component</th>
<th>Sautnure</th>
<th>Ure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>74.178</td>
<td>74.00</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>11.694</td>
<td>16.29</td>
</tr>
<tr>
<td>Oxygen</td>
<td>14.798</td>
<td>13.71</td>
</tr>
<tr>
<td>Castor oil</td>
<td>100.000</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1 Private information from an oil-presser of Calcutta.
2 Materia Medica, vol. i. p. 256.
3 United States Dispensatory.
6 I am informed that duppers are made of gelatine (prepared by boiling cuttings of skins) moulded in earthen moulds.
7 Parliamentary Returns for 1831.
The proximate constituents have not been accurately determined. As by saponification castor oil yields three fatty acids (ricinic, elaioditic, and margaritic acids) and glycerine, analogy leads us to infer that it is a compound of three fatty acids, respectively composed of glycerine and one of these acids; but hitherto, however, these salts have been imperfectly separated. They may be provisionally denominated ricinina (ricine), elaiodine \(^b\) (ricino-oleine), and margaritine (ricino-stearine). Ricinine is regarded as the ricinate of glycerine; elaiodine, as elaidiate of glycerine; and margaritine, as margaritate of glycerine. All these salts are soluble in alcohol. As margaritic acid constitutes only 0.002 of the products of saponification, it follows that castor oil contains but a small portion of margaritine. By distillation these salts undergo decomposition. By the action of hyponitrous acid, castor oil yields a peculiar fatty matter called palmine, which is analogous to, but not identical with, elaidine.

### Products of Saponification.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 parts of Castor oil yielded:</td>
<td>(Average of two experiments:)</td>
<td>Palmin (yielding by saponification, and, therefore, probably consisting of, palmine acid and glycerine).</td>
</tr>
<tr>
<td>1. Fatty acids (viz. ricinic, elaioditic, and margaritic acids)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>. Glycerine</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

**a. Volatile Oil.**—This oil, obtained by distillation, is analogous to acroleine. It is to be separated from acetic acid by washing with water, and from the fatty acids by distillation with water. It is limpid and colourless, has a peculiar odour, an acrid taste, and a sp. gr. of 0.815. It is soluble in alcohol and ether, but is insoluble in a solution of potash. By long-continued exposure to a temperature of 23° F. it becomes crystalline.

**b. Fatty acids (Ricinic, Elaioditic, and Margaritic acids.)**—These are very acrid, soluble in alcohol, ether, and a weak aqueous solution of potash. They unite with bases to form salts. The saline compounds formed by the union of these acids with potash, soda, magnesia, and lead, are soluble in alcohol: those with potash and soda are also soluble in water.

<table>
<thead>
<tr>
<th>aa. Ricinic acid</th>
<th>crystalline, solid at ordinary temperatures, and fusible at 72° F. Its crystalized hydrate consists of carbon 73.56, hydrogen 9.86, and oxygen 16.58. Formula C(^{30}) H(^{31}) O(^{5}) (Laurent).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta). Elaidic or Ricino-oleic acid</td>
<td>is a yellow-coloured liquid at 32° F.; but at many degrees below it becomes crystalline.</td>
</tr>
<tr>
<td>(\gamma). Margaritic or Ricino-stearic acid</td>
<td>crystallizes in pearly scales. It is distinguished from the two preceding acids by its high fusing point, by its partial decomposition when submitted to distillation, and by the insolubility of the margaritate of magnesia in alcohol. The crystalized hydrate consists of carbon 70.5, hydrogen 10.91, and oxygen 18.59. Formula C(^{35}) H(^{31}) O(^{6}) (Laurent).</td>
</tr>
</tbody>
</table>

**\(\gamma\). Solid residuum of distillation.**—Pale yellow, elastic, gelatiniform, odourless, tasteless, combustible, solid. It is insoluble in alcohol, ether, and the oils (both fixed and volatile).

**\(\delta\). Palmine.**—A solid odorous fat formed by the action of hyponitrous acid on castor oil. By saponification it yields palmine acid and glycerine.

**\(\epsilon\). Elanthylic Acid.**—By the action of nitric acid on castor oil, Mr. Tilly obtained, besides suberic and lipinic acids, a peculiar acid called elanthylic acid, whose formula is C\(^{14}\) H\(^{18}\) O\(^{3}\) + Aq.

---

\(^1\) The student must be careful not to confound elaidine with the fat described at p. 770, under the name of elaidine.
Physiological Effects.—1. Of Castor Seeds.—These seeds possess considerable acidity. Bergius states, that a man masticated a single seed at bed-time: the following morning he was attacked with violent vomiting and purging, which continued the whole day. Lanzoni also states that the life of a woman was endangered by eating three grains of the seeds. More recently, a girl, 18 years of age, was killed by eating about twenty seeds: the cause of death was gastro-enteritis.

2. Of Castor Oil.—a. On Animals generally castor oil acts as a laxative or mild purgative. Large animals, as the horse, require a pint or more for a dose; smaller ones need only a few ounces. Mr. Youatt, however, declares this oil to be both uncertain and dangerous in the horse.

b. On Man.—Injected into the veins, castor oil gripes and purges, and causes a nauseous oily taste in the mouth: hence it would appear to have a specific influence over the mucous lining of the alimentary canal. Swallowed to the extent of one or two ounces, it usually acts as a mild but tolerably certain purgative or laxative, without producing any uneasiness in the bowels. It has this particular advantage, says Dr. Cullen, that it operates sooner after its exhibition than any other purgative I know of, as it commonly operates in two or three hours. It seldom gives any griping, and its operation is generally moderate—to one, two, or three stools only.

It not infrequently occasions nausea, or even vomiting, especially if somewhat rancid; in many cases, I believe, rather from its disgusting flavour than from any positively emetic qualities.

It has been stated by continental writers that castor oil is most unequal in its action, at one time operating with considerable violence, at another with great mildness; but I have never found it so, nor is it usually considered to be so in this country. I can, however, readily believe that a difference in the mode of its preparation, especially with reference to the heat employed, may materially affect its purgative property.

When castor oil has been taken by the mouth, it may be frequently recognized in the alvine evacuations; but it presents itself under various forms, sometimes resembling caseous flakes, or a soap-like scum, floating on the more fluid part of the dejection; occasionally it had been arranged in a form not unlike branches of grapes, or more nearly of hydatids of a white colour; more generally, however, it is found mixed up with the feces as a kind of emulsion, and in some few instances it has been discharged under the form of solid tallow-like masses. Mr. Brande says, in one case it was discharged from

1 Mat. Med. t. ii. p. 823, ed. 2nd.
2 Marx, Die Lehre von d. Giften. l. 128.
4 Moiroud, Pharm. Veter. p. 280.
5 The Horse, in Libr. of Useful Knowledge, pp. 212 and 387.
6 Dr. F. Hale, in Begin's Traite de Therapeutique, p. 114.
7 Mat. Med.
the bowels in the form of indurated nodules, which were at first regarded as biliary concretions. A remarkable case is mentioned by Dr. Ward, of a woman on whom this oil does not act as a purgative, but exudes from every part of her body.

Uses.—Castor oil is used to evacuate the contents of the bowels in all cases where we are particularly desirous of avoiding the production of abdominal irritation (especially of the bowels and the urino-genital organs). The principal, or I might say the only, objection to its use in these cases, is its nauseous taste. The following are the leading cases in which we employ it:

1. In inflammatory affections of the alimentary canal, as enteritis, peritonitis, and dysentery, a mild but certain purgative is oftentimes indicated. No substance, I believe, answers the indication better, and few so well, as castor oil.

2. In obstructions and spasmodic affections of the bowels, as intussusception, ileus, and colic, especially lead colic, this oil is the most effectual evacuant we can employ.

3. After surgical operations about the pelvis or abdomen, (for example, lithotomy, and the operation for strangulated hemia), as well as after parturition, it is the best and safest purgative.

4. In inflammatory or spasmodic diseases of the urino-genital organs, inflammation of the kidneys or bladder, calculous affections, gonorrhœa, stricture, &c., castor oil is a most valuable purgative.

5. In affections of the rectum, especially piles, prolapsus, and stricture, no better evacuant can be employed.

6. As an anthelmintic for tape-worms, castor oil was first employed by Odier. Arnemann, however, has shown that it possesses no peculiar or specific vermifuge properties.

7. As a purgative for children it has been used on account of its mildness, but its unpleasant taste is a strong objection to its use.

8. In habitual costiveness, also, it has been recommended. Dr. Cullen observed that if castor oil be frequently repeated, the dose might be gradually diminished; so that persons who, in the first instance, required half an ounce or more, afterwards needed only two drachms.

Administration.—The dose of castor oil for children is one or two tea-spoonfuls; for adults, from one to two or three table-spoonfuls. To cover its unpleasant flavour some take it floating on spirit (especially gin), but which is frequently contra-indicated; others on coffee, or on peppermint or some other aromatic water; or it may be made into an emulsion by the aid of the yolk of egg or mucilage.

4. EUPHORBIA, Linn.; AN UNDETERMINED SPECIES YIELDING EUPHORBIIUM, E.

Euphorbia officinarum, L. Euphorbia canariensis, D.

Sex. Syst. Dodecandria, Trigynia, Linn.; Monoecia, Monandria, Smith.

(Euphorbium; gummi-resina, /. D. Concrete resinous juice, E.)

History.—The saline waxy-resin, called in the shops gum euphor-
bium. is said both by Dioscorides¹ and Pliny² to have been first discovered in the time of Juba, king of Mauritania; that is, about, or a few years before, the commencement of the Christian era. Pliny says that Juba called it after his physician, Euphorbus; and that he wrote a volume concerning it, which was extant in Pliny's time. Salmasius, however, states that this is mentioned by Meleager the poet, who lived some time before Juba.

Botany.  Gen. Char.—Flowers collected in monocious heads, surrounded by an involucrem, consisting of one leaf with five divisions, which have externally five glands alternating with them. Males naked, monandrous, articulated with their pedicel, surrounding the female, which is in the centre. Females naked, solitary. Ovarium stalked. Stigmas three, forked. Fruit hanging out of the involucrem, consisting of three cells, bursting at the back with elasticity, and each containing one suspended seed (Lindley).

Sp. Char.—Branches channelled, with four, rarely five, angles, armed with double, straight, spreading, dark, shining spines.

These specific characters are taken from the branches found mixed with the euphorbium of commerce. They agree with the description and figure of Tithymalus aizoides botrysus of Pinkerton. From the E. canariensis of Wildenow and of some other botanists, this plant is distinguished by its straight spines. On examining the E. canariensis at the Kew Garden, I find as many of the spines straight as uncurved. But the diameter of the stems, and even of the young shoots, is greater than that of the stems found in the euphorbium of commerce. The species which most closely agrees with the latter in the size of the stems, the number of angles, and the number and directions of the spines, is Euphorbia tetragona. This species has mostly square stems; though some of the larger stems are somewhat channelled. The dried stems found in the euphorbium of commerce appear to be uniformly channelled. The E. officinarum has many angles; the Derrynane of Jackson has many scoloped angles. Euphorbia antiquorum (fig. 233) has been said to yield euphorbium, but the statement is denied by both Hamilton and Reyle.

Hab.—Africa, in the neighbourhood of Mogadore.

Extraction.—Euphorbium is thus procured. The inhabitants of the lower regions of the Atlas range make incisions in the branches of the plant, and from these a milky juice exudes, which is so acrid that it excoriates the fingers when applied to them. This exuded juice hardens by the heat of the sun, and forms a whitish yellow solid, which drops off in the month of September, and forms the euphorbium of commerce. "The plants," says Mr. Jackson, "produce abundantly once only in four years; but this fourth year's produce is more than all Europe can consume." The people who collect it, he adds, are obliged to tie a cloth over their mouth and nostrils to prevent the small dusty particles from annoying them, as they produce incessant sneezing."

¹ Lib. iii. cap. 96.
⁴ Account of Morocco, 3d ed. p. 134.
⁵ Trans. of the Linn. Soc. vol. xiv.
⁶ Bot. of the Himalayan Mountains, p. 328.
EUPHORBIIUM.

Properties.—Euphorbium consists of irregular, yellowish, slightly friable tears, usually pierced with one or two holes, united at the base, and in which we find the remains of a double aculeus. These tears are almost odourless; but their dust, applied to the olfactory membrane, acts as a powerful sternutatory. Their taste is at first slight, afterwards acrid and burning.

When heated, euphorbium melts, swells up imperfectly, evolves an odour somewhat like that of benzoic acid vapour, takes fire, and burns with a pale flame. Alcohol, ether, and oil of turpentine, are its best solvents; water dissolves only a small portion of it.

Composition.—Euphorbium has been the subject of several analyses; namely, in 1800, by Laudet; in 1809, by Braconnor; in 1818, by Pelletier; and by Mühlmann; in 1819, by Brandes; and more recently by Drs. Buchner and Herberger.

Pelletier's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>60.8</td>
</tr>
<tr>
<td>Wax</td>
<td>14.4</td>
</tr>
<tr>
<td>Bassorin</td>
<td>2.0</td>
</tr>
<tr>
<td>Malate of Lime</td>
<td>12.2</td>
</tr>
<tr>
<td>Malate of potash</td>
<td>1.8</td>
</tr>
<tr>
<td>Water and loss</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Euphorbium: 100.0

Brandes' Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>43.77</td>
</tr>
<tr>
<td>Wax</td>
<td>14.93</td>
</tr>
<tr>
<td>Caoutchouc</td>
<td>4.84</td>
</tr>
<tr>
<td>Malate of Lime</td>
<td>18.82</td>
</tr>
<tr>
<td>Malate of potash</td>
<td>4.90</td>
</tr>
<tr>
<td>Sulphates of potash and phosphoric acid</td>
<td>6.70</td>
</tr>
<tr>
<td>Water and loss</td>
<td>6.44</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>5.60</td>
</tr>
</tbody>
</table>

Euphorbium: 100.0

Resin is the active ingredient of euphorbium. It coincides in many of its properties with ordinary resins: thus, it is reddish-brown, hard, brittle, fusible, soluble in alcohol, ether, and oil of turpentine, and somewhat less so in oil of almonds. Its leading and characteristic property is intense acridity. It differs from some resins in being slightly soluble only in alkalis. It is a compound of two resinous substances.

a. One resinous substance is soluble in cold alcohol. Its formula, according to Mr. Johnston, is C_{60}H_{31}O_{6}.

b. The other resinous substance is insoluble in cold alcohol. The mean of Rose's analyses of it gives as the composition of this resin, carbon 81.58, hydrogen 11.35, and oxygen 7.07.

Physiological Effects. a. On Animals generally.—Euphorbium acts on horses and dogs as a powerful acrid substance, irritating and inflaming parts with which it is placed in contact, and by sympathy affecting the nervous system. When swallowed in large quantities, it causes gastro-enteritis (two ounces are sufficient to kill a horse); when applied to the skin, it acts as a rubefacient and epispastic. Farriers sometimes employ it as a substitute for cantharides, for blistering horses, but cautious and well-informed veterinarians are opposed to its use.

b. On Man.—The leading effect of euphorbium on man is that of a most violent acrid; but under certain circumstances a narcotic ope-
ration has been observed. When euphorbium dust is inhaled, and also applied to the face, as in grinding this drug, it causes sneezing, redness and swelling of the face, and great irritation about the eyes and nose. To prevent as much as possible these effects, various contrivances are adopted by different drug-grinders: some employ masks with glass eyes; others apply wet sponge to the nose and face; while some cover the face with crêpe. The pain and irritation, I am informed, are sometimes very great. Individuals who have been exposed for some time to the influence of this dust, suffer with headache, giddiness, and ultimately become delirious. All the workmen of whom I have inquired (and they comprise those of three large firms, including the one alluded to by Dr. Christison), agree that these are the effects of euphorbium. An old labourer assured me that this substance produced in him a feeling of intoxication: and I was informed at one drug-mill of an Irish labourer who was made temporarily insane by it, and who, during the fit, insisted on saying his prayers at the tail of the mill-horse.

Insensibility and convulsions have been produced by euphorbium. The only instance I am acquainted with is the following:—A man was engaged at a mill where euphorbium was being ground, and remained in the room longer than was considered prudent. Suddenly he darted from the mill-room, and ran with great velocity down two pairs of stairs. On arriving at the ground-floor or yard he became insensible, and fell. Within five minutes I saw him; he was lying on his back, insensible, and convulsed; his face was red and swollen; his pulse frequent and full; and his skin very hot. I bled him, and within half an hour he became quite sensible, but complained of great headache. He had no recollection of his flight down stairs, which seems to have been performed in a fit of delirium.

When powdered euphorbium is applied to the skin, it causes itching, pain, and inflammation, succeeded by vesication. When swallowed, it causes vomiting and purging, and, in large doses, gastro-enteritis, with irregular hurried pulse and cold perspirations.

Uses.—Notwithstanding that it is still retained in the Pharmacopoeia, it is rarely employed in medicine. It was formerly used as an emetic and drastic purgative in dropsies; but the violence and danger of its operation have led to its disuse. Sometimes it is employed as an irritant in chronic affections of the eyes, ears, or brain; but its local action is so violent that we can only apply it when largely diluted with some mild powder, as starch or flour.

Mixed with turpentine or Burgundy pitch (or rosin), it is employed in the form of plaster, as a rubefacient, in chronic affections of the joints. As a vesicant, it is rarely employed. As a caustic, either the powder or alcoholic tincture (Tinctura Euphorbii, Ph. Bor. prepared by digesting euphorbium 5j. in rectified spirit, Oj.) is sometimes employed in carious ulcers.

Antidote.—In a case of poisoning by euphorbium, emollient and demulcent drinks, clysters (of mucilaginous, amylaceous, or oleaginous liquids), and opium, should be exhibited, and blood-letting
and warm baths employed. In fact, as we have no chemical antidote, our object is to involve the poison in demulcents, to diminish the sensibility of the living part by opium, and to obviate the inflammation by blood-letting and the warm bath. If the circulation fail, ammonia and brandy will be required.

5. Jan'ipha Man'ihot, Kunth, E.—THE CASSAVA OR TAPIOCA PLANT.

Jatropha Manihot, Linn.

Sex. Syst. Monococa, Monadelphia.

(Fecula of the root; Tapioca, E.)

History. — Tapioca (Tipioca) is mentioned by Piso in 1648. The terms Janipha and Manihot are Indian appellations.


Sp. Char.—Leaves palmate, five to seven-parted, smooth, glaucous beneath: segments lanceolate, quite entire. Flowers racemose (Hooker). — Root large, thick, tuberous, fleshy, and white; containing an acrid, milky, highly poisonous juice. Flowers axillary.

Hab.—Brazil.

Extraction.—The tuberous root consists principally of starch and a white milky poisonous juice. It is rasped and pressed to separate the juice, which deposits a fecula: this, when washed and dried in the air without heat, is termed Moussache (from mouchaco, a Spanish word, signifying boy or lad), or Cipipa, and for some years past has been imported into France from Martinique, and sold as arrow-root. I believe it to be identical with the Brazilian Arrow-root of English commerce. When this fecula has been prepared by drying on hot plates, it acquires a granular character, and is then termed Tapioca.

The compressed pulp is dried in chimneys, exposed to the smoke, and afterwards powdered. In this state it constitutes Cassava powder, or Farine de Manioc. If it be granulated by agitating it in a heated iron pan until incipient tumefaction, it is called Couaque or Couac. Lastly, when dried or baked into cakes on plates of iron or clay, it constitutes Cassava or Cassada bread.

i Bot. Mag. t. 3671.
m Guibourt, Hist. des Drog. t. ii. p. 466, 3ème éd.
Properties.—Two kinds of tapioca are imported. One is in the form of small lumps or granules, and is the ordinary tapioca of the shops: the other is a white amylaceous powder.

1. Granular Tapioca, or Tapioca commonly so called, is imported from Bahia and Rio Janeiro. It occurs in irregular small lumps or grains, which are partially soluble in cold water, the filtered solution yielding a blue colour with iodine. When these grains are mixed with water, and examined by the microscope, they are found to consist of entire and broken particles. The entire ones appear either circular or mullar-shaped, with very distinct and marked hilums (see fig. 238). But when they are made to roll over, the apparently rounded ones are then seen to be mullar-shaped, so that their rounded appearance arose from viewing them endways. Sometimes the mullar-shaped particles have a contracted base. At times, instead of the flat tend of the mullar, we have two faces meeting at an oblique angle, so that the particles are like the third of a sphere. The base of the mullar is not, I think, really flat, but hollow. The hilum is surrounded by rings, and cracks in a stellate form.

2. Tapioca Meal: razilian Arrow-root: — Moussache or Cipipa.—Imported from Rio Janeiro. It is white and pulverulent. When examined by the microscope, the particles seem identical with those of the common or granular tapioca.

Composition.—Tapioca has not been analysed. Its composition is doubtless analogous to that of other amylaceous matters (vide pp. 47, 909, and 1013).

Chemical Characteristics.—The filtered cold infusion is coloured blue by tincture of iodine, showing that tapioca is partially soluble in cold water. In boiling water tapioca becomes tremulous, gelatiniform, transparent, and viscous. Submitted to prolonged ebullition in a large quantity of water, it leaves an insoluble residue, which precipitates. This residue, diluted with water, and coloured with iodine, appears under the microscope to consist of mucous flocks, and to have no resemblance to the primitive ingredient.

Physiological Effects. a. Of the Recent Juice.—The milky juice is a powerful acrid or acro-narcotic poison; and to this the root owes its poisonous properties. The symptoms which it gives rise to, when swallowed, are pain and swelling of the abdomen, vomiting and purging, giddiness, dimness of sight, syncope, and rapid diminution of the powers of life.\(^a\). The scrapings of the fresh root are successfully applied to ill-disposed ulcers.\(^a\). The root is used to catch birds, which, by eating it, lose the power of flying.\(^p\). The poisonous principle of the root may be destroyed or dissipated by heat, fermentation, &c. Hence it is either very volatile or readily

---

\(^a\) Wright, Med. Plants of Jamaica.
\(^p\) Martius, in Wiebmer, Arzneim. u Gifte, Bd. iii. S. 273.
decomposable. Guibourt⁹ says it appears to be of the nature of hydrocyanic acid.

β. Of the Fecula (Tapioca) of the Root.—When the root has been deprived of its poisonous principle, it becomes highly nutritious. Of the preparations of it before referred to, the only one met with in this country is the fecula (Tapioca). This is both highly nutritious and easy of digestion. Its local action is emollient and demulcent.

Uses.—Made into puddings, tapioca is employed as a dietetic substance. Boiled in water or milk, and flavoured with sugar, spices, or wine, according to circumstances, it is used as an agreeable, nutritious, light, easily digestible article of food for the sick and convalescent. It is devoid of all irritating and stimulating properties.

OTHER MEDICINAL EUPHORBIACEÆ.

1. Croton Pseudo-China, Schiede (Croton Cascarilla, Don, Ph. L.) grows in the vicinity of Jalapa, at Actopan, and in the district of Plan del Rio, in the province of Vera Cruz, Mexico. Its bark, called Quina blanca, or Copalche bark, has been confounded with both cinchona and cascarilla barks. In 1817 a quantity of it was carried to Hamburgh as Cascarilla de Trinidad de Cuba. In 1827 no less than 30,000 lbs. of the same bark were sent from Liverpool to Hamburgh as genuine cinchona, but it was soon recognized to be a bark nearly allied to cascarilla, and by those on board the vessels coming from Para was declared to be Quina, dit Copalche. Subsequently the minister, Von Altenstein, procured some of it from Mexico, under the name of Copalche; and in 1829 the plant yielding it was declared by Dr. Schiede to be a species of Croton, which he called Pseudo-China. Mr. Don⁷ mistook it for cascarilla bark. Copalche bark, in its form, size of the quills, and general appearance, very much resembles what our druggists call Ash Cinchona bark; but its cascarilla-like flavour instantly distinguishes it. A sample of it was given to me as a Cinchona bark.

From cascarilla bark it is distinguished by the length of the quills, their colour, and the absence of transverse cracks⁵.

2. Jatropha Curcas is a native of South America and of Asia. Its fruit is the nux cathartica americana, or nux barbadensis of some writers. Its seeds, which are occasionally met with in the shops, are called physie nuts (semina ricini majoris, or gros pignon d'Inde). Pelletier and Caventou analyzed them under the name of Croton seeds⁶, and extracted from them a volatile acrid acid, called jatrophic acid (see p. 1112). Mr. Bennett⁸ swallowed four seeds, and experienced a very unpleasant burning sensation in the stomach and bowels, with nausea, which, after an interval of nearly two hours, terminated in vomiting: their purgative effects followed soon afterwards, and were mild; the sickness had then nearly passed away, but the burning sensation continued for some time longer. In large doses they are energetic poisons.

The oil (Oleum Jatrophi Curcadis seu Oleum infernale) is analogous in its properties to croton oil. It is occasionally used as a drastic purgative. In India it is used for lamps.

3. Euphorbia Lathyris, or Caper Spurge, is an indigenous biennial. It is mentioned as an officinal substance in the Paris Codex. Its milky juice is violently acrid. In a case of poisoning by the seeds, narcotic symptoms were also present⁷. The oil (Oleum Euphorbiæ Lathyridis), extracted from the seeds, may

---

⁹ Hist. des Drog. t. ii. p. 455, 3° ed.
⁵ For further details, consult Guibourt, Hist. des Drog.; and Goebel and Kunze, Pharm. Waaren-
⁶ kunde.
⁸ Journ. de Pharm. t. xv. p. 514.
⁴ Christison, Treatise on Poisons.
be employed as an indigenous substitute for croton oil. The dose of it is from three to ten drops.

4. *Euphorbia Ipecacuanha* is a native of the United States of America, in whose Pharmacopoeia it is mentioned. It is emetic and purgative. As an emetic it is given in doses of from ten to fifteen grains.

5. The juice of *Crozophora tinctoria* becomes, under the united influence of air and ammonia, blue. Linen impregnated with this blue dye is called *rag turnsole* (bezetta carulea): it is a test for acids, which redden it, but it is not used in this country. It must not be confounded with litmus.

**Order XXX.—ARISTOLOCHIACEAE, Lindley.—THE BIRTHWORT TRIBE.**

* Aristolochia, Jussieu.

**Essential Character.**—*Flowers* hermaphrodite. *Calyx* adherent to the ovary (i.e. superior), monosepalous: the limb three-lobed or tubular, and irregularly dilated at the upper part; valvate in aestivation. *Stamens* definite, generally in ternary numbers, free and distinct or adherent to the style and stigma, and epigynous. *Ovary* three- to six-celled; *style* short; *stigma* divided. *Capsule* or *berry* coriaceous, three- to six-celled, many seeded; the *placentas* lateral. *Embryo* very small, at the base of a cartilaginous albumen.—Usually climbing herbs or shrubs, with alternate, simple, petiolated leaves. *(Bot. Gall.)*

**Properties.**—Not important. The roots possess stimulant properties, owing to the presence of volatile oil. Some of them are acrids. Bitter extractive renders them somewhat tonic.

1. **ARISTOLOCHIA SERPENTARIA, Linn. L. E. D.—THE VIRGINIAN SNAKE-ROOT.**

Aristolochia officinalis, Nees and Ebermaier.

**Sex. Syst Gynandria, Hexandria.**

**History.**—The first writer who distinctly mentions Virginian snake-root, or snake-weed, is Thomas Johnson, an apothecary of Loudon, in his edition of Gerarde's Herbal, published in 1633.


**Sp. Char.**—*Stem* flexuous, ascending. *Leaves* cordate, acuminate, on both sides pubescent. *Peduncles* nearly radical, unifloral. Lip of the *calyx* lanceolate *(Beschr. offic. Planzen).*

**Hab.**—North America.

**Collection and Properties.**—The root *(radix serpentariae)* is collected in Western Pennsylvania and Virginia, in Ohio, Indiana, and Kentucky. It is imported in bales, usually containing about 100 lbs. As met with in the shops, it consists of a tuft of long, slender, yellowish, or brownish fibres, attached to a long contorted head or caudex. The odour is aromatic, the taste warm and bitter.

---

* Dierbach, Neuesten Entde. in d. Mat. Med. S. 76, 1837; Ballly, Lancet, June 10th, 1826.
* United States Dispensatory.
* Vide p. 883.
* United States Dispensatory.
THE VIRGINIAN SNAKE-ROOT.

Composition.—It was analyzed by Bucholz in 1807, by Chevallier in 1820, and by Peschier in 1823.

<table>
<thead>
<tr>
<th>Bucholz’s Analysis</th>
<th>Chevallier’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>Greenish-yellow soft resin</td>
<td>Resin</td>
</tr>
<tr>
<td>Extractive matter</td>
<td>Extractive</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>Starch</td>
</tr>
<tr>
<td>Lignin</td>
<td>Lignine fibre.</td>
</tr>
<tr>
<td>Water</td>
<td>Albumen</td>
</tr>
<tr>
<td>Serpentary root</td>
<td>Malate and phosphate of lime.</td>
</tr>
<tr>
<td></td>
<td>Oxide of iron and silica.</td>
</tr>
<tr>
<td></td>
<td>Serpentary root</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0-50</td>
<td></td>
</tr>
<tr>
<td>2-85</td>
<td></td>
</tr>
<tr>
<td>1-70</td>
<td></td>
</tr>
<tr>
<td>18-90</td>
<td></td>
</tr>
<tr>
<td>62-40</td>
<td></td>
</tr>
<tr>
<td>14-45</td>
<td></td>
</tr>
<tr>
<td>100-00</td>
<td></td>
</tr>
</tbody>
</table>

1. VOLATILE OIL.—Grassmann obtained only half an ounce from 100 lbs. of the root. Its colour is yellowish, its odour considerable, its taste not very strong. Grassmann compares the odour and taste to those of valerian and camphor combined.

2. BITTER PRINCIPLE: EXTRACTIVE, Bucholz and Chevallier.—This is very bitter and slightly acid. It is soluble in both water and spirit. Its solution, which is yellow, is rendered brown by alkalis, but is unchanged by the ferruginous salts.

PHYSIOLOGICAL EFFECTS.—These have been examined by Jörg and his pupils. In small doses, serpentine promotes the appetite. In large doses, it causes nausea, flatulence, uneasy sensation at the stomach, and more frequent but not liquid stools. After its absorption, it increases the frequency and fulness of the pulse, augments the heat of the skin, and promotes secretion and exhalation. Furthermore, it would appear, from the experiments before referred to, that it causes disturbance of the cerebral functions, and produces headache, sense of oppression within the skull, and disturbed sleep.

In these properties, serpentine bears some analogy to, but is much weaker than, camphor. It is more powerful than contryerva.

USES.—Its employment is indicated in cases of torpor and atony. It was formerly termed alexipharmic, on account of its fancied power of curing the bite of the rattlesnake and of a mad dog. At the present time it is rarely employed. It has been much esteemed as a stimulant in fevers, both continued and intermittent. A scruple of serpentine, taken in three ounces of wine, is mentioned by Sydenham as a cheap remedy for tertians in poor people. Dr. Cullen considered it as suited for the low and advanced stage of typhus only. In an epidemic affection of the throat (called the throat-distemper), it was given internally as a diaphoretic, and used with sumach berries, in the form of a decoction, as a gargle, with benefit.

ADMINISTRATION.—The dose of it in substance is from ten to thirty grains. The infusion is the best form for the administration of serpentine.

* Journal de Pharm. vi. 365.
* Gmelin, op. cit.
* Quoted by Dr. W. C. Martius, Pharmacogn.
* Wibmer, Arzneim. & Gifte, Bd. i. S. 221; also, Journ. de Chim. Méd. t. vii. p. 493.
* Dale, Pharmacologia.
* Med. Obscr. and Inquir. vol. i. p. 211.
1. INFUSUM SERPENTARII, L. E.; Infusion of Serpentary or Snake-root.—Serpentary, $ss.;$ Boiling Water, $ij.$ Infuse for four hours in a [lightly, $L.$] covered vessel, and strain [though linen or calico, $E.$] —Dose, $1/2j.$ or $1/3j.$ every two or three hours, according to circumstances.


2. AS'ARUM EUROPÆUM, Linn. L. D. —COMMON ASARABACCA.

Sex. Syg.: Dodecandria, Monogynia.

(Folia, $L. D.$)

History. — This plant was used in medicine by the ancients. Dioscorides $k$ calls it ἀσάρος.


Sp. Char. — Leaves two on each stem, kidney-shaped, obtuse [somewhat hairy]. (Smith $l$.)

The branching root-fibres arise from an underground stem or rhizome. The aerial stems are several from each rhizome. Leaves petiolated. From the axil of the two leaves springs a solitary, rather large, drooping flower, upon a short peduncle, of a greenish brown colour and coriaceous substance. Segment of the calyx incurved. Capsule coriaceous. Seeds ovate, with horny albumen.


Description. — The whole plant (root-fibres, rhizome, and aerial stems, with leaves and flowers) are kept in the shops under the name of asarabacca (radix cum herbâ asari), but the leaves only are directed to be used in the Pharmacopoeia. Dr. Batty $m$ states that the plant is gathered for medicinal uses in the woods near Kirkby Lonsdale, Westmorland. The rhizome is about as thick as a goose-quill, greyish, quadrangular, knotted. It has a pepper-like odour and an acrid taste. The leaves are almost inodorous, but have an acrid, aromatic, and bitter taste.

Composition. — Goerz $n$ published an analysis of the root in 1784; Lassaigne and Feneulle another in 1820; Regimbeau a third in 1827 $p$; and Grager a fourth in 1830.q

---

$k$ Lib. i. cap. ix.
$l$ Esq. Flora.
$m$ Ibid.
$p$ Journ. de Pharm. t. vi. p. 561.
$q$ Journ. de Pharm. t. xiv. p. 200.
$u$ Goebel and KURZ, Pharm. Waarenk.
I. **Volatile Oily Matters.**—By submitting asarabacca root to distillation with water, three volatile oily matters are obtained; one liquid and two solid, at ordinary temperatures.

**a. Liquid Volatile Oil (Oleum Asari).** It is yellow, glutinous, lighter than water, and has an acrid, burning taste, and a penetrating valerian-like odour. It is slightly soluble in water, more so in alcohol, ether, and the oils (volatile and fixed). Its constituents are $C_8H_{11}O_3$.

**b. Asarite of Grager.**—In small needles, of a silky lustre. It is odourless and tasteless. It is fusible and volatilizable by heat; its vapour being white and very irritating. It is soluble in alcohol, ether, and the volatile oils, but not in water. Both nitric and sulphuric acids dissolve the crystals without the evolution of gas: if water be added to the sulphuric solution, the asarite is thrown down unchanged.

**c. Asarum-campitor.**—Is distinguished from asarite by the following characters:—Water throws it down from its alcoholic solution in cubes or six-sided prisms, whereas asarite is precipitated in delicate flexible needles. It dissolves in nitric acid without effervescence. Water added to its sulphuric solution throws down a brown resin. After fusion it has the form of a crystalline, striated mass. Its composition is $C_8H_5O_2$. Blanchet and Sell regard it as the hydrate of the liquid volatile oil.

II. **Bitter principle of Asarabacca (Asarin of Grager and of some other pharmacologists).**—Brownish, very bitter, soluble in alcohol.

**Physiological Effects.**—Every part of the plant possesses acrid properties. Applied to the mucous membrane of the nose, it excites sneezing, increased secretion of the mucus, and even a discharge of blood. Swallowed, it causes vomiting, purging, and griping pains. It is said also to possess diuretic and diaphoretic properties. Dr. Cullen has enumerated it in his list of diuretics, but expresses his doubts whether it possesses any specific power of stimulating the renal vessels.

**Uses.**—Asarabacca has been employed in medicine to excite vomiting, and as an errhine. As an emetic, it is now superseded by ipecacuanha and tartarized antimony. As an errhine, to excite irritation and a discharge of mucus from the nasal membrane, it has been used in certain affections of the brain, eyes, face, mouth, and throat, on the principle of counter-irritation: thus, in paralytic affections of the mouth and tongue, in toothache, and in ophthalmia.

**Administration.**—We may administer either the root or leaves,
recollecting that the latter are somewhat milder than the former.—As an emetic, the dose is half a drachm to a drachm. As an erthine, one or two grains of the root, or three or four grains of the dried leaves, are snuffed up the nostrils every night.—The powder of this plant is supposed to form the basis of cephalic snuff.

PULVIS ASARI COMPOSITUS, D. Compound Powder of Asarabacca. (Asarabacca leaves, dried, 3i.; Lavender flowers, dried, 5i. Reduce them together to powder).—Used as an erthine, in headache and ophthalmia.—Dose from grs. v. to grs. viii.

OTHER MEDICINAL ARISTOLOCHIACEÆ.

Aristolochia.—The roots of Aristolochia longa and A. rotunda are found in the shops. The long aristolochia root is several inches in length, one or two inches broad, and has a more or less cylindrical form. The round aristolochia root has a more rounded and knobby form. Both kinds are bitter and acrid, and have, especially when powdered, a disagreeable odour. They contain extractive matter and starch. Lassaigne found ulmin in the long species. Their effects are stimulant and tonic. Their stimulant effects are supposed by some to be principally directed to the abdominal and pelvic viscera. They have been employed in amenorrhea as an emmenagogue. Their dose is from 3i. to 5i. Round aristolochia root is a constituent of the Duke of Portland’s powder for the gout, which consisted of equal quantities of the roots of Gentian and Birthwort (Aristolochia rotunda), the tops and leaves of Germander (Chamomyls), Ground Pine (Chamaemyrtis), and lesser Centaury (Chironea Centaurium), powdered and mixed together.

ORDER XXXI.—LAURACEÆ, Lindley.—THE CINNAMON TRIBE.


Essential Character.—Calyx four to six-cleft, with imbricated aestivation, the limb sometimes obsolete. Stamens definite, perigynous opposite the segments of the calyx, and usually twice as numerous; the three innermost, which are opposite the three inner segments of the calyx, sterile or deficient; the six outermost scarcely ever abortive; anthers adnate, two to four-celled; the cells bursting by a longitudinal persistent valve from the base to the apex; the outer anthers valved inwards, the inner valved outwards [or both valved inwards, Lindl.]. Glands usually present at the base of the inner filaments. Ovary single, superior, with one or two single pendulous ovules; style simple; stigma obtuse. Fruit baccate or drupaceous, naked or covered. Seed without albumen; embryo inverted; cotyledons large, plano-convex, peltate near the base; radicle very short, included, superior; plumule conspicuous, two-leaved.—Trees, often of great size. Leaves without stipules, alternate, seldom opposite, entire, or very nearly lobed. Inflorescence panicked or umbelbed (Rob. Brown).

* See Dr. Clephane’s Inquiry into the Origin of the Gout Powder, in the Med. Observ. and Ing. vol. i. Lond. Dr. Clephane concludes that “Cælius Aurelianus’s diaeantaureon and Aëtius’s antidotus ex duobus centauræ generibus were the same medicine, and are the old names for the Duke of Portland’s Powder.”
Properties.—The plants of this order owe their most important qualities to the presence of volatile oil, which is found, more or less abundantly, in all parts of the vegetable. This oil is sometimes liquid and highly aromatic, as oil of cinnamon; at others it is solid at ordinary temperatures, and is endowed with narcotic properties, as camphor. The acrid principle of some species is probably a volatile oil.

In the bark and leaves, the volatile oil is usually associated with tannic acid, which gives them astringency, as in cinnamon. In the fruit and seeds, on the other hand, it is usually combined or mixed with fixed oil, as in bay-berries.

1. CINNAMOMUM ZEYLAN'ICUM, Nees, E.—THE CINNAMON.

Laurus Cinnamomum, Linn. L. D.

Sex. Syst. Enneandra, Monogynia.

(Cortex; et Oleum e cortice destillatum, L.—Bark; and Volatile oil of the bark, E.—Cortex et Oleum volatile, D.)

History.—Cinnamon (Kinman, Hebr.) is mentioned in the Old Testament, about 1490 years before Christ. In all probability the Hebrews received it from the Arabians, who must, therefore, have had commercial dealings with India at this early period. The first notice of cinnamon (κιναράμον) by the Greek writers occurs in Herodotus, who died 413 years before Christ. Probably both the Hebrew and Greek names for this bark are derived from the Cingalese cacyn-nama (dulce lignum), or the Malayan kaimanis. Hippocrates employed cinnamon externally. Dioscorides describes several kinds of cinnamon.

Botany. Gen. Char.—Flowers hermaphrodite or polygamous. Calyx six-cleft; with the limb deciduous. Stamina twelve, in four rows; the nine external ones fertile, the three inner ones capitate, abortive; the three most internal of the fertile stamina having two sessile glands at the base: anthers four-celled, the three inner turned outwards. Ovary one-celled, with one ovule. Fruit (a berry) seated in a cup-like calyx. Leaves ribbed. Leaf-buds naked. Flowers panicled, rarely fascicled. (Condensed from Endlicher.)

Sp. Char.—Branches somewhat four-cornered, smooth. Leaves ovate or ovate-oblong, tapering into an obtuse point, triple-nerved, or three-nerved, reticulated on the under side, smooth, the uppermost the smallest. Panicles terminal and axillary, stalked. Flowers hoary and silky; segments oblong, deciduous in the middle (Nees.)

Botanists admit several varieties of this species: the most important are,—

a. Broad-leaved, Moon: Mu-pat (Cingalese). The plant above described.
This variety, which I have received from Ceylon, under the name of Bastard Cinnamon, has oblong or elliptical leaves, much tapering to the point, and acute at the base.

Percival mentions four varieties which are barked: 1st, *Rosse curundu*, or honey cinnamon, with broad leaves, yields the best bark; 2dly, *Nai curundu*, or snake cinnamon, also with large leaves, not greatly inferior to the former; 3dly, *Capuru curundu*, or camphor cinnamon, an inferior kind; 4thly, *cabatte curundu*, or astringent cinnamon, with smaller leaves; its bark has a harsh taste.

**Hab.**—Cultivated in Ceylon and Java.

**Production.**—The cinnamon bark of Ceylon is obtained by the cultivation of the plant. The principal cinnamon gardens lie in the neighbourhood of Colombo. The bark-peelers, or choliaks, having selected a tree of the best quality, lop off such branches as are three years old, and which appear proper for the purpose. Shoots or branches, much less than half an inch or more than two or three inches

---

b *Account of the Island of Ceylon.*

c See Percival's *Account of Ceylon*, 2d ed. 1805.
in diameter, are not peeled. The peeling is effected by making two opposite, or when the branch is thick three or four, longitudinal incisions, and then elevating the bark by introducing the peeling-knife beneath it. When the bark adheres firmly, its separation is promoted by friction with the handle of the knife. In twenty-four hours the epidermis and greenish pulpy matter (rete mucosum) are carefully scraped off. In a few hours the smaller quills are introduced into the larger ones, and in this way a congeries of quills formed, often measuring forty inches long. The bark is then dried in the sun, and afterwards made into bundles with pieces of split bamboo twigs.

COMMERC. — Cinnamon is imported in bales, boxes, and chests, from Ceylon principally; but in part also from Madras, Tellicherry, and rarely from Canton. In 1830, 14,345 lbs.; and in 1831, 2305 lbs. of cinnamon were imported from the Cape of Good Hope. The quantities of cinnamon on which the import duty of 6d. per lb. was paid, during the last six years, are the following:

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>16,255 lbs.</td>
</tr>
<tr>
<td>1836</td>
<td>17,398 lbs.</td>
</tr>
<tr>
<td>1837</td>
<td>13,697 lbs.</td>
</tr>
<tr>
<td>1838</td>
<td>16,605 lbs.</td>
</tr>
<tr>
<td>1839</td>
<td>15,533 lbs.</td>
</tr>
<tr>
<td>1840</td>
<td>16,515 lbs.</td>
</tr>
</tbody>
</table>

Cinnamon exported from the island of Ceylon is subject to the exorbitant duty of 3s. per lb. This has been put on as a substitute for the previous monopoly in the cultivation and sale of cinnamon, held by the government. A few years ago it was the practice to sprinkle black pepper among the bales of cinnamon in stowing them, in order to preserve and improve the quality of the bark.

DESCRIPTION. — When cinnamon comes into dock, it is unpacked and examined; all the mouldy and broken pieces are removed from it. It is then re-made into bales. These are cylindrical, 3 feet 6 inches long, but of variable diameter, perhaps 16 inches on the average. These bales are enveloped by a coarse hempen cloth, called gunny. The cinnamon in boxes and chests is usually the small, inferior, and mouldy pieces. The kinds of cinnamon which I have seen and examined are the Ceylon, the Tellicherry, and the Malabar or Madras.

1. Ceylon Cinnamon. (Cinnamomum zeylanicum, seu Cinnamomum acutum). — This is the most esteemed kind. The fasciculi or compound quills, of which the bales are made up, are about 3 feet 6 inches long, slender, and shivery, and are composed of several smaller quills inclosed one within the other. The bark is thin (the finest being scarcely thicker than drawing paper), smooth, of a light yellow-brown, or brownish yellow (somewhat similar to that of Venetian
gold), smooth, moderately pliable, with a splintery fracture, especially in the longitudinal direction. The inner side or liber is darker and browner, and contains, according to Nees, small medullary rays filled with a red juice, and which he regards as the peculiar bearers of the aroma. The odour of the bark is highly fragrant. The flavour is warm, sweetish, and agreeable. Inspection and tasting are the methods resorted to for ascertaining the qualities of cinnamon.

Ceylon cinnamon is characterised by being cut obliquely at the bottom of the quill, whereas the other kinds are cut transversely. In the London market three qualities of Ceylon cinnamon are distinguished, viz. first, seconds, and thirds. Inferior kinds are thicker, darker, browner, and have a pungent, succeeded by a bitter, taste.

2. Tellicherry or Bombay Cinnamon is grown on one estate only, at Tellicherry, by Mr. Brown, and is wholly consigned to Messrs. Forbes and Co. Only 120 or 130 bales are annually imported. In appearance it is equal to the Ceylon kind; but the internal surface of the bark is more fibrous, and the flavour is inferior. It is superior to the Malabar variety.

3. Madras or Malabar Cinnamon is of inferior quality. It is grown, I am informed, on the Coromandel coast. It is coarser and inferior in flavour to the other kinds. In thick ess it approximates to Cassia linea. Its quality has annually deteriorated since its introduction into the market. It does not meet with a ready sale, and it is expected that its importation will cease.

Besides the above three kinds of cinnamon, another has appeared in the market, from Java. I have not, however, had an opportunity of seeing it. Java cinnamon is said to be equal in quality to that from Ceylon, over which it has the advantage of paying only a trifling export duty.

French pharmacologists describe a cinnamon cultivated at Cayenne. Cayenne cinnamon is, however, unknown in the London market. Its volatile oil is more acrid and peppery than the oil from Ceylon cinnamon.

Substitution.—In commerce, Cassia linea is frequently substituted for cinnamon. It is distinguished by its greater thickness, its short resinous fracture, its less delicacy but greater strength of flavour, its shorter quills, and its being packed in small bundles. The difference of flavour is best distinguished when the barks are ground to powder. The great consumers of cinnamon are the chocolate-makers of Spain, Italy, France, and Mexico, and by them the difference of flavour between cinnamon and cassia is readily detected. An extensive dealer in cinnamon informs me that the Germans, Turks, and Russians, prefer cassia, and will not purchase cinnamon, the delicate flavour of which is not strong enough for them. In illustration of this, I was told that some cinnamon (valued at 3s. 6d.

---

{k} See Percival, op. supra cit.; also Marshall, op. supra cit.

{1} Proceedings of the Committee of Commerce and Agriculture of the Asiatic Society, p. 147.

{2} See Guibourt, Hist. abrév. des Drogues, ii. 14. French pharmacologists apply the term Cannelle to Cinnamon as well as to Cassia.

{3} Vaquelin, Journ. de Pharm. t. iii. p. 434.
per lb.) having been by mistake sent to Constantinople, was unsaleable there at any price; while cassia lignea (worth about 6d. per lb.) was in great request.

Composition.—In 1817, Vauquelin made a comparative analysis of the cinnamons of Ceylon and Cayenne. The constituents of both were found to be volatile oil, tannin, mucilage, colouring matter (partially soluble in water and in alcohol, but insoluble in ether), resin, an acid, and ligneous fibre.

Oil of Cinnamon. See below.

Chemical Characteristics.—Sesquichloride of iron causes a greenish flocculent precipitate (tannate of iron) in infusion of cinnamon. Solution of gelatine also occasions a precipitate (tannate of gelatine) in the infusion.

Physiological Effects.—Cinnamon produces the effects of the spices already described (p. 181). In moderate doses it stimulates the stomach, produces a sensation of warmth in the epigastric region, and promotes the assimilative functions. The repeated use of it disposes to costiveness.

In full doses it acts as a general stimulant to the vascular and nervous systems. Some writers regard it as acting specifically on the uterus.

Uses.—The uses of cinnamon are those of the species generally, and which have been before noticed (p. 182). It is employed by the cook as an agreeable condiment. In medicine, it is frequently added to other substances; as, to the bitter infusions, to improve their flavour; and to purgatives, to check their griping qualities. As a cordial, stimulant, and tonic, it is indicated in all cases characterized by feebleness and atony. As an astringent, it is employed in diarrhoea, usually in combination with chalk, the vegetable infusions, or opium. As a cordial and stimulant, it is exhibited in the latter stages of low fever. In flatulent and spasmodic affections of the alimentary canal, it often proves a very efficient carminative and antispasmodic. It checks nausea and vomiting. It has also been used in uterine hemorrhage.

Administration.—The dose of it in substance is from ten grains to half a drachm.

1. Oleum Cinnamomi, L. E. D.; Oleum Cinnamomi veri offic.; Oil of Cinnamon.—(Obtained in Ceylon, by macerating the inferior pieces of the bark, reduced to a gross powder, in sea-water for two days, when both are submitted to distillation.)—As imported the oil varies somewhat in its colour from yellow to cherry-red; the paler varieties are most esteemed: hence London druggists frequently submit the red oil of cinnamon to distillation, by which they procure two pale yellow oils; one lighter (amounting to about the quarter of the whole), the other heavier, than water. The loss on this process is considerable, being near 10 per cent. Percival says, that the oil

---

\[ ^{6} \text{Ibid. p. 433.} \]

obtained from the finer sorts of cinnamon is of a beautiful gold colour, while that from the coarser bark is darker and brownish. Its odour is pleasant and purely cinnamonic. Its taste is at first sweetish, afterwards cinnamonic, burning, and acrid. The following is the composition of the oil according to Mulder:

<table>
<thead>
<tr>
<th>Elements</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Ct.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>20</td>
<td>120</td>
<td>81.03</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>11</td>
<td>84</td>
<td>7.89</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>16</td>
<td>10.89</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>33</td>
<td><strong>147</strong></td>
<td><strong>100.00</strong></td>
</tr>
</tbody>
</table>

By exposure to the air oil of cinnamon absorbs oxygen, becomes coloured, and produces cinnamic acid, two resins, and water. The coloration depends on resinification.

- **Cinnamic Acid.** — This acid is colourless and crystalline. It is sometimes formed by exposing oil of cinnamon for some time to the air. Cinnamyl (C₁₃ H₁₈ O₂) is the hypothetical base of this acid.

- **Resins.** Alpha resin has a reddish-brown colour. It is soluble in both cold and hot alcohol. Beta resin is soluble in hot, but very slightly so in cold, alcohol. Its colour is cinnamon-brown. To the latter resin Mulder ascribes the colour of cinnamon.

With nitric acid, oil of cinnamon forms a white crystalline substance, composed of C₁₃ H₁₈ N O₅; and a red oil.

The Edinburgh College gives the following characters of oil of cinnamon:

> "Cherry-red when old, wine-yellow when recent: odour purely cinnamonic; nitric acid converts it nearly into a uniform crystalline mass."

These characters, however, are not peculiar to this oil, as they are also possessed by oil of cassia (see p. 1148).

Oil of cinnamon is sometimes employed as a powerful stimulant in paralysis of the tongue, in syncope, or in cramp of the stomach. But its principal use is as an adjuvant to other medicines. The dose of it is from one to three minims.

Oil of Cinnamon leaf has been recently imported. I am informed by a gentleman on whose estate in Ceylon it was obtained, that it is procured by macerating the leaves in sea-water, and afterwards submitting both to distillation. It is a yellow liquid, heavier than water, and has an odour and taste analogous to those of oil of cloves.


Let a gallon distil. *The Dublin College* macerates the bark in the

---


*berlinisches Jahrbuch für die Pharmacie, Bd. xxxviii. S. 176.

*Pharmaceutisches Central Blatt für 1839, S. 881.*
water for one day previous to distillation).—This water is usually prepared in the shops, by diffusing the oil through water by the aid of sugar or of carbonate of magnesia. According to a formula given in the London Pharmacopoeia, $\frac{3}{5}$ of oil is to be carefully triturated with $\frac{5}{3}$ of carbonate of magnesia, and afterwards with Oiv. of distilled water, and the water subsequently filtered. Cinnamon water is principally employed as a vehicle for other medicines. It is aromatic and carminative. Goeppert says it is poisonous to plants. By dissolving iodine and iodide of potassium in cinnamon water, a crystalline compound is produced, consisting of iodide of potassium 12.55, iodine 28.14, oil of cinnamon 59.31.

3. SPIRITUS CINNAMOMI, L. E. D. Spirit of Cinnamon.—[Oil of Cinnamon, 5ij.; Proof Spirit, Cong. j.; Water, Oj.] Mix them; then with a slow fire let a gallon distil, $L$.—Cinnamon, in coarse powder, lb. j.; Proof Spirit, Ovij. Macerate for two days in a covered vessel: add a pint and a half of water; and distil off seven pints, $E$.—Cinnamon bark, bruised, lb. j.; Proof Spirit, Cong. j. [wine-measure]; Water sufficient to prevent empyreuma. Macerate for twenty-four hours, and distil a gallon, $D$.—Stimulant.—Dose, f3ij. to f5iv.

4. TINCTURA CINNAMOMI, L. E. D. Tincture of Cinnamon.—[Cinnamon, bruised, 3iijss. [in moderately fine powder, $E$.]; Proof Spirit, Oij. [wine-measure, $D$.] Macerate for fourteen days and strain. [Proceed by percolation or digestion as directed for tincture of cassia, $E$.].—Commonly used as an adjuvant to cretaceous, astringent, tonic, or purgative mixtures. It has also been employed in uterine hemorrhage$^a$.

5. TINCTURA CINNAMOMI COMPOSITA, L. E. Compound Tincture of Cinnamon.—[Cinnamon, bruised [in fine powder, if percolation be followed, $E$.] $\frac{3}{5}$j.; Cardamom, bruised, 3s. [3j. $E$.]; Long Pepper, powdered [ground finely, $E$.], $\frac{5}{3}$s. [3ij. $E$.]; Ginger, 3ijss. [not used by the Ed. College]; Proof Spirit, Oij. Macerate for fourteen days, and strain, $L$. “This tincture is best prepared by the method of percolation, as directed for the compound tincture of cardamom. But it may also be made in the ordinary way for digestion for seven days, straining and expressing the liquor, and then filtering it.” $E$.—Cordial and aromatic. Used in the same cases as the last.—Dose, f3j. to f5ij.

6. PULVIS CINNAMOMI COMPOSITUS, L. Pulvis Aromaticus, E. D.; Compound Powder of Cinnamon; Aromatic Powder.—[Cinnamon, 3ij.; Cardamom, 3ss. [3j. $D$.]; Ginger, 3j.; Long Pepper, 3ss. [3j. $D$.] Rub them together, so that a very fine powder may be made. $L. D$.—The Edinburgh College employs cinnamon, cardamom seeds, and ginger, of each equal parts.)—Aromatic and carminative.—Dose, gr. x. to gr. xxx.—Principally employed as a corrigent of other preparations.

7. CONFECTION AROMATICA, L. D.; Electuarium Aromaticum E.; Aromatic Confection.—[Cinnamon; Nutmegs, each 3ij.;...
Clove, ½.; Cardamom Seeds, 5ss.; Saffron, ½ij.; Prepared Chalk, 3xvj.; Sugar, lb. ii. Rub the dry ingredients together to a very fine powder. The **Dublin College** orders this powder to be mixed by degrees with lb. j. of water, and the whole beaten to a pulp. The **London College**, on the other hand, directs the powder to be kept in a close vessel, and the water to be added when the confection is wanted. — The **Edinburgh College** orders of Aromatic Powder, one part; Syrup of Orange Peel, two parts. Mix and triturate them into a uniform pulp. — The preparation of the **Edinburgh Pharmacopoeia** differs essentially from the Aromatic Confection of the London and Dublin Pharmacopoeias, in not containing chalk. The London College directs the water to be added when the preparation is wanted, with the view of preventing fermentation, to which the preparation is subject. Some druggists substitute a strong infusion of saffron for the solid saffron; and precipitated carbonate of lime for chalk. Aromatic confection, Ph. L. and D. is antacid, stimulant, and carminative. It is usually added to the ordinary chalk mixture in diarrhea, and is employed on various other occasions where spices are indicated. Dose, grs. x. to 3j.

8. **EMPLASTRUM AROMATICUM.** D.; Aromatic Plaster.—Frankincense [Thus], ½ij.; Yellow Wax, 3ss.; Cinnamon Bark, powdered, 3xvj.; Essential Oil of Allspice; Essential Oil of Lemons, of each, ½ij. Melt the Frankincense and Wax together, and strain; when they are beginning to thicken by cooling, mix in the powder of cinnamon rubbed up with the oils, and make a plaster). — By keeping, as well as by the application of heat in spreading, the volatile oils of this preparation are dissipated. *It is used as a stimulant, applied over the region of the stomach, in dyspepsia and increased irritability of that organ, to allay pain and nausea and expel flatus*.[ii]

2. **CINNAMOMUM CAS'SIA, Blume, E.—THE CINNAMON CASSIA.**

*(Cassia-bark. Oil of Cassia, E.—Cassia lignea, and Cassia buds, offic.)

**History.** — It is highly probable that the bark, now called cassia-lignea, was known to the ancient Greeks and Romans; but we cannot positively prove this. The barks termed by the ancients cinnamomum (κυαδαμον) and cassia (κασία), as well as the trees yielding these substances, are too imperfectly described to enable us to determine with precision the substances referred to. The cassia tree is called in Chinese Kwei (Qui). Cassia lignea is called Kwei Pe, or Cassia skin; while Cassia buds are termed Kwei Tsze, or Cassia seeds. Cinnamon is called Yuh Kwei (vulgarly Yoke Qui), or Precious Cassia. It is not a product of China.

**Botany.** Gen. Char.—Vide Cinnamomum zeylanicum.

Sp. Char.—Leaves opposite, sometimes alternate, oblong-lanceolate,
triple-nerved; the nerves vanishing at the point of the leaf. Petioles and younger branches silky-tomentose. Stem arborescent (Brown).^w

Hab.—China; Cultivated in Java.

The tree known in Ceylon as the Dawul Kurunda was erroneously supposed by Linnaeus to be the source of cassia bark, and hence he termed it Laurus Cassia. The Dublin College has been led into the same error. Many years since, Mr. Marshall^x stated that the bark of Dawul Kurunda was not aromatic like cinnamon, but had the bitter taste and the odour of myrrh. This tree is the Litsea Ceylanica of recent botanists^s. Mr. Marshall declares^z, that in Ceylon it is never decorticated, and that the coarse cinnamon (i.e. cinnamon procured from thick shoots or large branches of Cinnamomum Zeylanicum) "has been imported into England, and sold under the denomination of cassia." It has been erroneously inferred from this statement that the cassia-lignea of European commerce was merely coarse cinnamon; but if this were the case, it would be somewhat remarkable that cassia-lignea is not imported from Ceylon. It is not at all improbable that coarse Ceylon cinnamon may have been sold in the London market as cassia-lignea; but this by no means establishes the identity of the two barks. Such an occurrence can now scarcely happen, seeing that all cinnamon (coarse as well as fine) exported from Ceylon pays a duty of 3s. per lb., while the value here of cassia-lignea in bond is about 6d. per lb.

In the Pun-tsaou (a Chinese Herbal) is a drawing of the Cassia tree. It is represented growing on a hill, and as having a very crooked and knotted stem.

Description.—Cassia-lignea (cortex cassiae) is imported in chests. It resembles cinnamon in many of its qualities. It is made up in bundles, which are tied with slips of bamboo. It has the same general appearance, smell, and taste, as cinnamon; but its substance is thicker, its appearance coarser, its colour darker, browner, and duller; its flavour, though cinnamomic, is much less sweet and fine than that of Ceylon cinnamon, but is more pungent, and is followed by a bitter taste; it is less closely quilled, and breaks shorter, than genuine cinnamon (see p. 1141). It is imported from Singapore, Calcutta, Bombay, and Manilla.

China cassia-lignea (sometimes called China cinnamon) is the best kind. It is usually imported from Singapore, rarely from Canton direct. Mr. Reeves^y says vast quantities both of cassia buds and cassia-lignea are annually brought to Canton from the province of Kwangse, whose principal city (Kwei Lin Too) literally the city of the Forest (or Grove) of Cassia trees, derives its name from the forests of cassia around it. The Chinese themselves use a much thicker bark, (which they call Gan Kwei Pe) unfit for the European market. Mr. Reeves informs me that they esteem it so highly as to pay nearly 10 dollars per lb. for it. A very fine quality is occasionally met with, and commands the enormous price of 100 dollars per catty (1 lb.). A specimen of it, with which he has kindly furnished me, is straight, semi-cylindrical, 11 inches long, rather more than an inch wide, and about one-sixth or one-eighth of an inch thick. Externally it is warted, and covered with crustaceous lichens. Internally it is deep brown. Its odour and flavour are those of cassia. Mr. Reeves also informs me that the best cassia-lignea is

^w Bijdrag.
^x Ann. of Phil. vol. x. 1817.
^s C. G. Nees ab Essenebeck Nyst. Laurinarum, Berol. 1836; also Dr. Wight in Jameson's Journal, vol. xxi. Edinb. 1840.
cut in the 3rd or 4th moon, the second sort in the 6th or 7th moon. Malabar cassia-lignea is brought from Bombay. It is thicker and coarser than that of China, and is more subject to foul packing; hence each bundle requires separate inspection. It may perhaps be coarse cinnamon; for Dr. Wight states that the bark of the older branches of the genuine cinnamon plant are exported from the Malabar coast as cassia. Mauritian cassia-lignea I am acquainted with. Manilla cassia-lignea, I am informed, is usually sold in bond for continental consumption. I have received a specimen of bark ticketed "Cassia vera from Manilla", the epidermis of which was imperfectly removed.

Cassia Buds (Flores Cassiae immatures; Clavelli cinnamoni) are not contained in any of the British Pharmacopoeias. They are the produce of China, and are probably procured from the same plant which yields cassia-lignea. Mr. Reeves tells me that he always understood and has no doubt that both cassia buds and cassia-lignea are obtained from the same trees. The buds are gathered, he informs me, in the 8th or 9th moon. Dr. T. W. C. Martius says, that "according to the latest observations which the elder Nees has made known, cassia buds are the calyces (Fruchtkelche) of Cinnamomum aromaticum, about one-fourth of their normal size. It is also said that they are collected from Cinnamomum dulce Nees, which is found in China." Cassia buds bear some resemblance to cloves, but are smaller, or to nails with round heads; they have the odour and flavour of cassia-lignea or cinnamon. The exports from Canton in 1831 were 177,856 lbs., and the imports into Great Britain in 1832 were 75,173 lbs. In 1840, 6,406 lbs. paid duty (6d. per lb.) Cassia buds have not been analyzed; their constituents are similar to those of cassia-lignea; they yield a volatile oil by distillation, and contain tannic acid.

Commerce.—The quantity of cassia-lignea annually imported, and the countries from which it is brought, are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>East India Company's territories and Ceylon</th>
<th>Mauritius</th>
<th>Philippine Islands</th>
<th>Bencoolen</th>
<th>Netherlands</th>
<th>Cape of Good Hope</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827</td>
<td>488,192</td>
<td>4,117</td>
<td>5,996</td>
<td>6,383</td>
<td>6,290</td>
<td>—</td>
<td>415,702</td>
</tr>
<tr>
<td>1830</td>
<td>799,715</td>
<td>6,206</td>
<td>6,301</td>
<td>—</td>
<td>5,379</td>
<td>—</td>
<td>388,420</td>
</tr>
<tr>
<td>1831</td>
<td>358,413</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>398,420</td>
</tr>
</tbody>
</table>

In 1838, duty (6d. per lb.) was paid on 88,971 lbs. Cassia-lignea is imported in chests, bales, and boxes. In 1840, 63,958 lbs. paid duty.

Composition.—Cassia-lignea was analyzed by Bucholz, who obtained the following results: Volatile oil 0.8, resin 4.0, gummy (astringent) extractive 14.6, woody fibre with bassorin 64.3, water and loss 16.3.

1. Volatile Oil of Cassia. (See p. 1149.)
2. Resin.—Is peculiar, tasteless, yellowish-brown, soft (Bucholz).
3. Tannic Acid.—Must have been contained in what Bucholz termed gummy (astringent) extractive.

Chemical Characteristics.—Sesquichloride of iron renders infusion of cassia-lignea dark green, and causes a precipitate (tannate of iron). Gelatine also produces a precipitate (tannate of gelatine).
Physiological Effects.—Similar to those of cinnamon. Sundelin† regards it as being more astringent.
Uses.—Are the same as those of cinnamon.
Administration.—Dose, gr. x. to 5ss.
1. Oleum Cassiae, E.; Oil of Cassia; Oil of Chinese Cinnamon
(Obtained from Cassia-ligneae by distillation with water). Its properties and composition are similar to those of oil of cinnamon before described. Its odour and flavour, however, are inferior to those of the latter. Its colour is usually pale yellow. Nitric acid converts it into a crystalline mass (see p. 1144). Its effects and uses are similar to those of oil of cinnamon. It is employed in the preparation of Aqua and Spiritus Cassiae.—Dose gtt. i. to gtt. iv.
2. Aqua Cassiae, E.; Cassia Water.—(Cassia-bark, bruised, 3xviii.; Water, Cong. ii.; Rectified Spirit, f3iii. Mix them together, and distil off one gallon).—Used as an aromatic vehicle for other medicines. It is usually prepared from the oil in the same way that cinnamon water is commonly made.
3. Spiritus Cassiae, E.; Spirit of Cassia.—(Cassia, in coarse powder, lb. i.; Proof Spirit, Ovij. Macerate for two days in a covered vessel; add a pint and a half of water, and distil off seven pints).—Dose, f5i. to f5iv. It is usually prepared by adding oil of cassia to proof spirit.
4. Tinctura Cassiae, E.; Tincture of Cassia.—(Cassia, in moderately fine powder, 5ijss.; Proof Spirit, Oij. Digest for seven strain, express the residuum strongly, and filter. This tincture is more conveniently made by the process of percolation, the cassia being allowed to macerate in a little of the spirit for twelve hours before being put into the percolator).—Dose, f5i. to f5iv. Used as an adjuvant to tonic infusions.


Laurus Camphora, Linn. L. D.
Sex. Syst. Enneandria, Monogynia.

(Concretum sui generis sublimatione purificatum, L.—Camphor, E.—Camphora, D.)

History.—The Ancient Greeks and Romans do not appear to have been acquainted with camphor. C. Bauhin and several subsequent writers state that Aëtius speaks of it; but I have been unable to find any notice of it in his writings; and others§ have been equally unsuccessful in their search for it. Avicenna h and Serapion i speak of it: the latter calls it kaphor, and erroneously cites Dioscorides. Simeon Sethj, who lived in the 11th century, describes it; and his description is considered, both by Voigtels k and by Sprengel l, to be the earliest on record.

nine, in three rows; the inner with two, stalked, compressed glands at the base; anthers four-celled, the outer turned inwards, the inner outwards. Three sterile stamens, shaped like the first, placed in a whorl alternating with the stamens of the second row; three others stalked, with an ovate, glabrous head. Fruit placed on the obconical base of the calyx. - Leaves triple-nerved, glabrous in the axis of the principal veins. Leaf-buds scaly (Lindley).

Sp. Char.—Leaves triple-nerved, shining above, glabrous in the axis of the veins. Panicles axillary and terminal, corymbose, naked. Flowers smooth on the outside (Nees).

**Fig. 241.**

![Image](image_url)

*Camphora officinarum.*

Young branches yellow and smooth. Leaves evergreen, oval, acuminate, attenuate at the base, bright green and shining above, paler beneath. Petioles from one inch to one and a half inches long. Panicles axillary and terminal, corymbose. Flowers small, yellowish-white. Berry round, blackish-red, size of a black currant. Seed solitary.

Every part of the tree, but especially the flower, evince by its smell and taste that it is strongly impregnated with camphor.

Hab.—China, Japan, and Cochim-China. Introduced into Java from Japan.

**Extraction.**—Kempfer and Thunberg have described the method of extracting camphor in the provinces of Satzuma and the islands of Gotho in Japan. The roots and wood of the tree, chopped up, are boiled with water in an iron vessel, to which an earthen head, containing straw, is adapted. The camphor sublimes and condenses on the straw.

The method practised in China appears, from the statements of the Abbé Grosier, Debreceslet, and Davies, to be somewhat different. The chopped branches are steeped in water, and afterwards boiled, until the camphor begins to adhere to the stick used in stirring. The liquid is then strained, and, by standing, the camphor concretes. Alternate layers of a dry earth, finely powdered, and of this camphor, are then placed in a copper basin, to which another inverted one is luted, and sublimation effected.

Two kinds of unrefined or crude camphor (camphora cruda) are known in commerce:—

1. *Dutch Camphor*; *Japan Camphor.*—This is brought from Batavia, and is said to be the produce of Japan. It is imported in tubs (hence it is called tub camphor) covered by matting, and each surrounded by a second tub, secured on the outside by hoops of twisted cane. Each tub contains from 1 cwt. to $\frac{1}{4}$ cwt. or more.
It consists of pinkish grains, which, by their mutual adhesion, form various-sized masses. It differs from the ordinary crude camphor in having larger grains, in being cleaner, and in subliming (usually) at a lower temperature. In consequence of these properties it generally fetches 10s. per cwt. more. There is not much brought to England, and of that which does come the greater part is re-shipped for the continent.

2. Ordinary Crude Camphor; China Camphor; Formosa Camphor

This is imported from Singapore, Bombay, &c. in square chests lined with lead foil, and containing from 1½ to 1¾ cwt. It is chiefly produced in the island of Formosa, and is brought by the Chin-Chew junks in very large quantities to Canton, whence foreign markets get supplied. It consists of dirty greyish grains, which are smaller than those of Dutch camphor. Its qualities varies: sometimes it is wet and impure; but occasionally it is as fine as the Dutch kind.

Purification.—Crude camphor is refined by sublimation. Formerly this process was carried on only at Venice. Afterwards it was successfully practised in Holland. The method at present adopted in this metropolis is as follows:—The vessels in which this sublimation is effected are called bomboloes (bombola, Ital. bombole). They are made of thin flint glass, and weigh about 1 lb. each. Their shape is that of an oblate spheroid, whose shorter or vertical axis is about ten inches, and the longer or horizontal axis about twelve inches. They are furnished with a short neck. When filled with crude camphor, they are imbedded in the sand-bath, and heated. To the melted camphor, lime is added, and heat raised so as to make the liquid boil. The vapour condenses on the upper part of the vessel. As the sublimation proceeds, the height of the sand around the vessel is diminished. In about forty-eight hours the process is usually completed. The vessels are then removed, and their mouth closed with tow; water is sprinkled over them by watering-pots, by which they are cracked. When quite cold, the cake of camphor (which weighs about eleven pounds) is removed, and trimmed by paring and scraping. In this process the lime retains the impurities and a portion of the camphor; hence, to extract the latter, the lime is submitted to a strong heat in an iron-pot with a head to it, and the sublimed product refined by a second sublimation.

Properties.—Refined Camphor (Camphora raffinata; Camphora, officin.) is met with in the form of large hemispherical or convex-concave cakes, perforated in the middle. It is translucent, has a crystalline granular nature, a strong, peculiar, not disagreeable, aromatic odour, and an aromatic, bitter, afterwards cooling taste. It is solid at ordinary temperatures, soft, and somewhat tough, but may be readily powdered by the addition of a few drops of rectified spirit. A crystal of native camphor in the wood (?) camphor of Dry-
obalanops aromatica, Gærtn.) in the collection of Materia Medica at the College of Physicians, appears as a flat octahedron, but its primary form is a right rhombic prism. It evaporates in the air at ordinary temperatures; but in closed vessels, exposed to light, sublimes and crystallizes on the sides of the bottle. It fuses at 347° F., and forms a transparent liquid, which boils at 400° F., and in close vessels condenses unchanged. It is lighter than water, its sp. gr. being 0.9867. Small pieces rotate when thrown on this liquid. Water dissolves a very minute portion only of camphor. Alcohol readily dissolves it; but if water be added to the solution, the camphor is precipitated. Ether, bisulphuret of carbon, the oils (both fixed and volatile), and the acids, also dissolve it. The liquid obtained by dissolving camphor in nitric acid is sometimes termed camphor oil; it is a nitrate of camphor. Camphor is insoluble in alkaline solutions. The vapour of camphor passed over red-hot lime is converted into a liquid called camphrone (composed of C_{30}H_{40}O.)

**Composition.**—Camphor has the following composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
<td>60</td>
<td>78-49</td>
<td>78-02</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>8</td>
<td>8</td>
<td>10-53</td>
<td>10-02</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>11-59</td>
<td>11-02</td>
</tr>
</tbody>
</table>

Camphor 1 76 100-00 100-00 100-00

Dumas has suggested that camphor may be regarded as an oxide of a base (as yet hypothetical) which he calls camphogen, and whose composition is C_{10}H_{8}.

**Chemical Characteristics.**—Camphor is readily known by its odour. It does not blacken in burning. It agrees in many of its properties with the volatile oils (p. 185). From these it differs, however, in its solidity at ordinary temperatures, and in its not being converted into resin by the oxygen of the air or by nitric acid. By repeatedly distilling nitric acid from camphor, the latter is converted into camphoric acid (composed of C_{10}H_{16}O in the anhydrous state). Before the whole of the camphor has been converted into camphoric acid, there are produced intermediate compounds of camphor and this acid, which we may regard as camphorates of camphor.

The above are the characters of the Common or Laurel Camphor. Borneo Camphor, or the Camphor of the Dryobalanops, will be described hereafter.

**Artificial Camphor** is a hydrochlorate of oil of turpentine or of some other volatile oil, having a similar composition. Its empirical formula is C_{10}H_{16}Cl or C_{20}H_{16} + H Cl. According to Orfila it produces no lesion of the nervous system, but confines its action to the formation of a few small ulcers in the mucous membrane of the stomach.

**Physiological Effects.** a. On Vegetables.—Gæppert has satisfactorily shown,—1st, that solutions of camphor act in the same deleterious manner on plants as the volatile oils; 2dly, that they destroy the mobility of contractile parts without previously exciting them; 3dly, that they have no influence either on the germination of phanerogamia, or the vegetation of the cellular cryptogamia; and

---

1 W. Phillips, in Paris's Pharmacologia.
2 Toxicol. Gen.
4thly, that the vapour only is sufficient to destroy fleshy plants and ferns. Miquet has confirmed these results.

β. On Animals generally.—The action of camphor on animals has been the subject of numerous experiments made by Hillefield, Monro, Menghini and Carminati, Viborg, Hertwich, Orfila, and Scudery.

Air impregnated with the vapour of camphor proves injurious to insects (the Tinee, which destroy wool, excepted). Sooner or later it causes frequent agitation, followed by languor, insensibility, convulsions, and death (Menghini). To amphibials (frogs) the vapour also proves noxious. It produces preternatural movements, difficult respiration, trembling, and stupor (Carminati). Given to birds and mammals, in sufficient doses, camphor proves poisonous, but the symptoms which it gives rise to do not appear to be uniform. Indeed there are few remedies whose action on the animal economy is so variable as that of camphor. Three drachms dissolved in oil and given to a dog, the oesophagus being tied, caused violent convulsions, somewhat analogous to those of epilepsy, followed by insensibility and death (Orfila). When administered in substance, it inflamed the digestive tube, caused ulceration, and, after its absorption, gave rise to convulsions (Ibid). Given to horses, in doses of two drachms, it excites spasmodic movements, and quickens the pulse, but does not determine any serious result. Tiedemann and Gmelin detected the odour of camphor in the blood of the vena portae and of the mesenteric vein of a horse, to whom they had given camphor; but they could recognize it neither in the chyle nor in the urine. It is evolved from the system principally by the bronchial surfaces; for the breath of animals, to which this substance has been administered, has a strong odour of camphor. Moiroud observed that the skin of a horse, into whose jugular vein camphor had been injected, smelt of this substance.

"The general sedative effects of camphor on animals are rarely well marked; however, when administered in a proper dose, and in cases really requiring its use, it sometimes causes a diminution in the force and frequency of the pulse, and seems to allay pain" (Moiroud).

Scudery observed that the convulsions caused in animals by camphor were accompanied with a peculiar kind of delirium, which made them to run up and down without apparent cause. He also found the urinary organs generally affected, and for the most part with strangury.

γ. On Man.—No article of the materia medica has had more contradictory statements made respecting its effects and mode of action than camphor. These, however, have principally referred to its in-
fluence over the functions of circulation and calorification; for, with regard to the modifications which it induces in the other functions, scarcely any difference of opinion prevails.

Its local action on the mucous surfaces, the denuded dermis, and ulcers, is that of an acrid. A piece of camphor held in the mouth for half an hour caused the mucous lining of this cavity to become red, hot, swollen, and painful; and it is highly probable that, had the experiment been persevered in, ulceration would have followed.

The pain and uneasiness which camphor, when swallowed in substance, sometimes produces in the stomach, is likewise imputed to its local action as an acrid. Rubbed on the skin covered with cuticle, Dr. Cullen says that it causes neither redness nor other mark of inflammation; but Dr. Clutterbuck declares this to be "undoubtedly a mistake." When applied to the denuded dermis, or to ulcers, it produces pain, and appears to act as an irritant. These observations respecting the local action of camphor on man, are confirmed by the ascertained effects of this substance on other animals.

Camphor becomes absorbed, and is thrown out of the system by the bronchial membrane principally, but also by the skin. Trousseau and Pidoux recognized its odour in every case in the pulmonary exhalation, but failed to detect it in the cutaneous perspiration. Cullen, however, says that "Mr. Lasonne, the father, has observed, as I have done frequently, that camphor, though given very largely, never discovers its smell in the urine, whilst it frequently does in the perspiration and sweat." The non-detection of it in the urine agrees with the observation of Tiedemann and Gmelin with regard to horses, already noticed.

Camphor specifically affects the nervous system.—Regarding the symptoms of this effect but little difference of opinion prevails. In moderate doses it exhilarates and acts as an anodyne. Its exhilarating effects are well seen in nervous and hypochondriacal cases. In large doses it causes disorder of the mental faculties, the external senses, and volition, the symptoms being lassitude, giddiness, confusion of ideas, and disordered vision, noise in the ears, drowsiness, delirium or stupor, and convulsions. These phenomena, which have been observed in several cases, agree with those noticed in experiments on brutes. In its power of causing stupor, camphor agrees with opium; but it differs from the latter in its more frequently causing delirium and convulsions. Epilepsy has been ascribed to the use of camphor.

The quality of the influence which camphor exercises over the vascular system has been a subject of much contention. From my own

---

* Trousseau and Pidoux, Traité de Thérap. t. i. p. 43.
limited observations of its use in small or medium doses (from five to ten grains), I am disposed to regard its leading effect as that of a vascular excitant, though I am not prepared to deny that slight depression may not have preceded this effect. Combined with diaphoretic regimen (warm clothing and tepid diluents), I have seen camphor increase the fulness of the pulse, raise the temperature of the surface, and operate as a sudorific. If opium be conjoined, these effects are more manifest.

In excessive doses it acts as a powerful poison. The best related case is that of Mr. Alexander who swallowed two scruples in syrup of roses. In about twenty minutes he experienced lassitude and depression of spirits, with frequent yawnings: at the end of three-quarters of an hour his pulse had fallen from 77 to 67. Soon after he felt giddy, confused, and almost incapable of walking across the room. He became gradually insensible, and in this condition was attacked with violent convulsions and maniacal delirium. From this state he awoke as from a profound sleep; his pulse was 100, and he was able to reply to interrogatories, though he had not completely recovered his recollection. Warm water being administered, he vomited up the greater part of the camphor, which had been swallowed three hours previously; and from this time he gradually recovered.

In another case a man swallowed four ounces of camphorated spirits containing 160 grains of camphor. The symptoms were burning heat of skin, frequent, full, and hard pulse, brilliancy of the eyes, redness of the face, heaviness of the head, anxiety, agitation, violent sense of heat in the stomach—then intense headache, giddiness, indistinctness of sight, and ocular hallucinations. The patient only complained of the heat, which he said was intolerable. In the night copious sweating came on, followed by sleep. The pulse continued full and frequent, and the voiding of urine difficult.

In some other well-reported cases, camphor, in large doses, caused depression of the vascular system. In the instances related by Fred. Hoffmann, Ponteau, Griffin, Cullen, Callisen, Edwards, and Trousseau and Pidoux, sedation of the vascular system was observed. It was manifested by a languid, small, and slower pulse, coldness of the surface, and pallid countenance; in some cases with cold sweat. In some of these instances, symptoms of vascular excitement followed those of depression. The pulse became more frequent and fuller than natural, and the heat of the surface augmented. Trousseau

---

\( ^a \) See p. 301 for some remarks on the comparative operation of ammonia and camphor.
\( ^b \) Experimental Essays, p. 128. 1768.
\( ^e \) Murray, App. Med. vol. iv.
\( ^f \) Quoted by Alexander.
\( ^g \) Mat. Med. vol. ii. p. 295.
\( ^h \) Murray, App. Med.
\( ^i \) Orfila, Tox. Gén.
\( ^j \) Traité de Thérap. t. i. p. 48.
and Pidoux ascribe the symptoms of sedation to the depressing influence which camphor exerts over the system by sympathy; while the sanguineous excitation they refer to the passage of camphor into the blood, and the efforts of the organism to eliminate this unassimilable principle. But in some of the cases in which excessive doses of camphor have been taken, no symptoms of depression were manifested; as in the instance mentioned by Dr. Eickhorn (in whom great heat, rapid but small pulse, copious sweating, and agreeable exhilaration), were produced by 120 grs., by Dr. Wendt, by Scudery, and by Bergondi.

Camphor has long been celebrated as an anaphrodisiac; the smell of it even is said to be attended with this effect; hence the verse of the School of Salernum, "Camphora per nares castrat odore mares." Trouseau and Pidoux experienced the anaphrodisiac property of 36 grains of camphor taken into the stomach.

Strangury has also been ascribed to this substance by Heberden, by Scudery, and others.

Uses. — The discrepancy among authors as to the physiological effects of camphor has had the effect of greatly circumscribing the use of this substance. Indeed, until its operation on the system be more satisfactorily ascertained, it is almost impossible to lay down general rules which should govern its exhibition. The following are the principal maladies in which it has been found useful:

1. Fever. — Camphor has been employed in those forms of fever which are of a typhoid type. It is chiefly valuable by causing determination to the surface and giving rise to diaphoresis. Hence those remedies should be conjoined with it which promote these effects: such are ipecacuanha, emetic tartar, and the vegetable alkaline salts. Opium greatly contributes to the sudorific effects of camphor; and, when it is admissible, benefit is sometimes obtained by the administration of one grain of opium with five or eight of camphor. But in a great number of cases of fever the cerebral disorder forbids the use of opium. From its specific influence over the cerebral functions, camphor has been frequently used in fever to allay the nervous symptoms, such as the delirium, the watchings, the subsultus tendinum, &c.; but it frequently fails to give relief. Dr. Home did not find any advantage from its use in the low nervous fever; and Dr. Heberden has seen one scruple of camphor given every six hours, without any perceptible effect in abating the convulsive catchings, or composing the patient to rest.

2. In Inflammatory Diseases. — In the latter stages of inflammation...
of internal important parts (as the serous and mucous membranes, the stomach, intestines, uterus, &c.) after proper evacuations have been made in the earlier periods of the disease, when great exhaustion is manifested by a small feeble pulse and a cold flaccid skin, small but repeated doses of camphor have been employed to determine to the skin, and to promote diaphoresis. It is particularly serviceable in rheumatic inflammation, and especially when produced by metastasis.

3. In the Exanthemata.—Camphor has been employed in smallpox, as also in measles, scarlatina, and miliary fever: but it is admissible only when the circulation flags, and the temperature of the surface falls below the natural standard. In such cases it is sometimes employed along with a diaphoretic regimen to determine to the skin. It is to be carefully avoided when inflammation of the brain or its membranes is feared. It has been asserted that if a camphorated ointment be applied to the face, no small-pox pustules will make their appearance there; but the statement is not correct.

4. In Mania, Melancholia, and other forms of Mental Disorder.—Camphor is occasionally taken to cause exhilaration. I am acquainted with two persons (females), both of nervous temperament, who use it for this purpose. To relieve despondency I have often found it serviceable. In mania and melancholia it has now and then proved serviceable by its narcotic effects: it induces mental quiet and causes sleep. It was used in these affections by Paracelsus and several succeeding writers, especially, in more modern times, by Dr. Kinneir, and by Avenbrugger. The latter regards it as a specific in the mania of men, when accompanied with a small contracted penis, corrugated empty scrotum, or when both testicles are so retracted that they appear to be introduced into the abdominal cavity.

5. In Spasmodic Affections.—The narcotic influence of camphor has occasionally proved serviceable in some spasmodic or convulsive affections; viz. spasmodic cough, epilepsy, puerperal convulsions, hysteria, and even tetanus; its use, however, requires caution.

6. In Irritation of the Urinary or Sexual Organs.—A power of diminishing irritation of the urinary organs has long been assigned to camphor. In strangury and dysury, especially when produced by cantharides, it is said to have been used with benefit—a statement apparently inconsistent with that more recently made of its producing irritation of the urinary organs. In satyriasis, nymphomania, and onanism, it is said to have proved advantageous by its anaphrodisiac properties. In dysmenorrhoea it sometimes proves serviceable as an anodyne.

7. In Poisoning.—Small doses of camphor (administered by the mouth or by the rectum) have been exhibited with apparent benefit.
in cases of poisoning by opium. It has also been employed to mitigate the effects of cantharides, squills, and mezereon; but toxicologists, for the most part, do not admit its efficacy; at any rate, further evidence is required to establish it. Nor does there appear any valid testimony for believing that camphor possesses the power of checking mercurial salivation, as some have supposed.

8. In Chronic Rheumatism and Gout.—A mixture of camphor and opium, in the proportions before mentioned, is useful in chronic rheumatism, by its sudorific and anodyne properties. Warm clothing and diluents should be conjoined. In chronic gout, also, camphor is said to have proved beneficial.

9. In Cholera.—The combination of camphor and opium above referred to, I have seen used with benefit in cholera.

10. Externally, camphor is employed in the form of vapour, in solution, or, more rarely, in the solid state. The vapour is occasionally inhaled in spasmodic cough; and is applied to the skin to alleviate pain and promote sweat, constituting the camphor fumigations (fumigationes camphorae). Dupasquier recommended these fumigations in chronic rheumatism. The patient may be in bed or seated in a chair; and, in either case, is to be enveloped by a blanket tied round the neck. About half an ounce of camphor is then to be placed on a metallic plate, and introduced within the blanket (under the chair, if the patient be seated). In solution, camphor is used either as an anodyne or a local stimulant. The nitric solution of camphor is used to relieve toothache. A solution of camphor in oil has been used as an injection into the urethra, to relieve ardor urinae in gonorrhoea, and into the rectum to mitigate tenesmus arising from ascarides or dysentery. The acetic and alcoholic solutions of camphor are mostly employed as stimulants. In substance, camphor is not frequently used. A scruple or half a drachm added to a poultice, and applied to the perineum, allays the choree, which is a painful attendant upon gonorrhoea. Powdered camphor is a constituent of some tooth-powders, to which it communicates its peculiar odour.

The foregoing are some only of the maladies in which camphor has been extensively used and lauded. I must refer to the works of Murray for various other uses which have been made of this substance.—It is scarcely necessary to add, that camphor-bags possess no prophylactic properties against contagion.

ADMINISTRATION.—The medium dose of it is from five to ten grs.; but it is frequently exhibited in much smaller doses (as one grain); and occasionally a scruple has been employed. It is given in the form of a pill or emulsion. That of pill is said to be objectionable, "as in this state the camphor is with difficulty dissolved in the
gastric liquors, and, floating on the top, is apt to excite nausea, or pain or uneasiness at the upper orifice of the stomach. The emulsion is made by rubbing up the camphor with loaf sugar, gum arabic, and water; and the suspension will be rendered more complete by the addition of a little myrrh.

Antidote.—In a case of poisoning by camphor, first evacuate the contents of the stomach. Hufeland recommends the use of opium to relieve the effects of camphor. Pheebus directs chlorine water to be administered as the antidote, and afterwards purgatives and clysters. Vinegar and coffee, he states, promote the poisonous operation. Wine assists the patient's recovery.

1. MISTURA CAMPHORI, L. E. D.; Aqua Camphorea; Camphor Mixture.—(Camphor, 5ss.; Rectified Spirit, utx.; Water, Oj. First rub the camphor with the spirit, then with the water gradually poured in, and strain through linen, L.—The Dublin College employs of Camphor, 3j. ; of Rectified Spirit, gtt. x.; of Refined Sugar, 3ss. ; of Hot Water, Oj. [wine measure]. The camphor is to be first rubbed with the spirit, then with the sugar; lastly, add the water during the trituration, and filter the mixture through bibulous paper, D.—The Edinburgh College employs Camphor, 3j.; Sweet Almonds, and Pure Sugar, of each, 3ss.; Water, Oj. Steep the almonds in hot water, and peel them; rub the camphor and sugar well together in a mortar; add the almonds; beat the whole into a smooth pulp; add the water gradually, with constant stirring, and then strain, E.)—The camphor mixture kept in the shops is often prepared by suspending camphor in water without the intervention of any third body. The quantity of this substance dissolved is exceedingly small. The rectified spirit employed by the London and Dublin Colleges serves to promote the pulverization, and, very slightly perhaps, the solution of the camphor. Sugar also assists its diffusion through water. The preparation of the Edinburgh Pharmacopoeia is, in fact, an emulsion. None of these artificial mixtures, however, are very permanent, and the quantity of camphor which remains in solution is so small, that the liquid can scarcely be said to possess more than the flavour and odour of camphor. Hence its principal value is as a vehicle for the exhibition of other medicines. Its usual dose is from f3j. to f3ij.

2. MISTURA CAMPHORI CUM MAGNESIA, E. D. Camphor Mixture with Magnesia.—Camphor, gr. x. [gr. xij. D.]; Carbonate of Magnesia, gr. xxv. [3ss. D.]; Water, f3j. Triturate the camphor and carbonate of magnesia together, adding the water gradually).—The carbonate of magnesia promotes the solution of the camphor in water. This mixture, therefore, holds a larger quantity of camphor in solution than the previous one. A minute portion of magnesia is also dissolved. As the magnesian carbonate is not separated by filtration,
it gives to the mixture antacid properties, in addition to those qualities which this preparation derives from the camphor. "In addition to the uses of the simple camphor mixture, this preparation has been found very beneficial in the uric acid diathesis, and also in irritations of the neck of the urinary bladder, particularly when given in combination with hyoscyamus." The dose is 5 ss. to 1 ss.

3. **Tinctura Camphorae**, L. E.; **Tinctura Camphorae, sive Spiritus Camphoratus**, D.; **Spiritus Camphorae; Spirit of Camphor; Camphorated Spirits of Wine**, offic. — (Camphor, 5v. [5j. D.; in small fragments, 5 jss. E.]; Rectified Spirit, Oij. [Oss. wine-measure, D.]). Mix, that the camphor may be dissolved.)—The principal use of this preparation is as a stimulant and anodyne liniment in sprains and bruises, chilblains, chronic rheumatism, and paralysis. Water immediately decomposes it, separating the greater part of the camphor, but holding in solution a minute portion, thereby forming an extemporaneous camphor mixture. By the aid of sugar or mucilage, the greater part of the camphor may be suspended in water. Employed in this form, we may give tincture of camphor internally, in doses of from mx. to f5j.

4. **Tinctura Camphorae Composita**, L.; **Tinctura Opii camphorata**, F. D.; **Elixir Paregoricum; Paregoric Elixir**, offic. — (Camphor, Oijss. [9ij. D.]; Opium, powdered, [sliced, E.] gr. lxxij. [5j. D.]; Benzoin Acid, gr. lxxij. [3iv. E.]; Oil of Anise, fsj.; Proof Spirit, Oij. [wine-measure, D.]). Macerate for fourteen [seven, E.] days, and filter.)—This is a very valuable preparation, and is extensively employed both by the public and the profession. Its active ingredient is opium. The principal use of it is to allay troublesome cough unconnected with any active inflammatory symptoms. It diminishes the sensibility of the bronchial membrane to the influence of cold air, checks profuse secretion, and allays spasmodic cough. Dose, f 5j. to f5ij. A fluidounce contains nearly two grains of opium. The name given to this preparation by the London College, though less correct than that of the Edinburgh and Dublin Colleges, is, I conceive, much more convenient; since it enables us to prescribe opium without the knowledge of the patient—no mean advantage in cases where a strong prejudice exists in the mind of the patient or his friends to the use of this important narcotic. Furthermore, it is less likely to give rise to serious and fatal errors in dispensing. In a case mentioned by Dr. M. Good, "laudanum was served, by an ignorant dispenser, for tinct. opii camph." The error proved fatal to the patient.

5. **Linimentum Camphoræ**, L. E.; **Oleum Camphoratum, D.; Camphor Liniment**, offic. — (Camphor, 5j. [5j. D.]; Olive Oil, f 5iv. [5j. D.]) Shake them together until they are mixed, L. Rub them together [in a mortar, E.] until the camphor is dissolved, E. D.)—A stimulant and anodyne embrocation in sprains, bruises, and rheumatic and other local pains. In glandular enlargements it is used as a resolvent.

---

*Dr. Montgomery, *Observ. on the Dubl. Pharm.*
6. LINIMENTUM CAMPHORÆ COMPOSITUM, L. D.; Compound Liniment of Camphor. — (Camphor, ³iijss. [³iij. D.]; Solution of Ammonia, f³vijs. [f³vj. D.]; Spirit of Lavender, Oj. [wine-measure, D.] Mix the solution of ammonia with the spirit; then let a pint distil from a glass retort, with a slow fire; lastly, dissolve the camphor in it).

A powerful stimulant and rubefacient, producing, when freely used, considerable irritation and inflammation. It is applicable in the same cases as the simple camphor liniment and the liniment of ammonia (p. 304). From both of these compounds it differs in not being greasy. "I have used," says Dr. Montgomery, "a liniment composed of two parts of this and one of turpentine, with children, as a substitute for a blister, and with good effect; or, with equal parts of the anodyne liniment, I have found it highly beneficial in the removal of those distressing pains in the back which so frequently annoy women about the close of their pregnancy."

4. SASSAFRAS OFFICINALE, Nees, E.—THE SASSAFRAS TREE.

Laurus Sassafras, Linn. L.D.

Sex. Syst. Enneandria, Monogynia.

(Radix, L.—The Root, E.—Lignum, Radix, et Oleum volatile, D.)

History. — Sassafras wood is mentioned by Monardes, who states that it had been recently introduced into Spain from Florida. It was, however, first brought to Europe by the French.

Botany. Gen. char. — Dioecious. Calyx six-parted, membranous; segments equal, permanent at the base. MALES: Fertile stamens nine, in three rows, the three inner with double-stalked distinct glands at the base. Anthers linear, four-celled, all looking inwards. FEMALES with as many sterile stamens as the male, or fewer; the inner often confluent. Fruit succulent, placed on the thick fleshy apex of the peduncle, and seated in the torn unchanged calyx. — Flowers yellow, before the leaves. Leaves deciduous (Lindley).

Composition. — Neither the wood nor the bark of sassafras has been analyzed. Both contain volatile oil.

Volatile Oil (see p. 1162).

Physiological Effects. — The wood and the bark are stimulant and sudorific. Taken in the form of infusion, and assisted by warm clothing and tepid drinks, they excite the vascular system and prove sudorific. They owe their activity to the volatile oil, which possesses acrid properties.

Uses. — Sassafras is employed as a sudorific and alterative in cutaneous, rheumatic, and venereal diseases. On account of its stimulant properties it is inadmissible in febrile or inflammatory conditions of the system. It is rarely or never used alone, but generally in combination with sarsaparilla and guaiacum.

Administration.—Sassafras is administered in the form of oil or infusion. The dose of the oil is from two to ten drops. Sassafras tea, flavoured with milk and sugar, is sold at day-break in the streets of London, under the name of saloop. Sassafras is a constituent of the Decoctum Sarzæ Compositum; but the volatile oil is dissipated by boiling (p. 1001).

OLEUM SASSAFRAS, D.; Volatile Oil of Sassafras officinale, E., Oil of Sassafras.—(Obtained by submitting the wood to distillation with water). It is colourless, but, by keeping, becomes yellow or red. Its smell is that of sassafras; its taste hot. Sp. gr. 1·094. Water separates it into two oils, one lighter, the other heavier than water. By keeping, it deposits crystals (stearoptene), which are readily soluble. Oil of sassafras is rendered orange-red by nitric acid. It is said to be adulterated with oil of lavender or oil of turpentine; but the statement, I suspect, does not apply to the oil found in English commerce. Oil of sassafras is stimulant and diaphoretic. It may be employed in chronic rheumatism, cutaneous diseases, and venereal maladies. It is a constituent of the Compound Extract of Sarsaparilla, p. 1003.

5. LAURUS NOBILIS, Linn. L.D.—THE SWEET BAY.

Sex. Syst. Enneandria, Monogynia.

(Bacce. Folia. L. D.)

History.—The bay-tree is mentioned, though erroneously, in our translation of the Bible; the Hebrew word, translated bay, meaning native; Hippocrates used both the leaves and berries of the bay-tree (δάφνη) in medicine. Bay-leaf is analogous to the Malabathrum of the ancients.

Botany. Gen. Char.—Flowers dioecious or hermaphrodite, involucrated. Calyx four-parted; segments equal, deciduous. Fertile stamens twelve, in three rows; the outer alternate with the segments of the calyx; all with two glands in the middle or above it. Anthers oblong, two-celled, all looking inwards. Female Flowers, with two to four castrated males, surrounding the ovary. Stigma capitate. Fruit succulent, seated in the irregular base of the calyx. —Umbels axillary, stalked. Leaf-buds with valvate papery scales. Leaves evergreen (Lindley).

Sp. Char.—The only species.

A bush or small tree. Bark aromatic, rather bitter. Leaves alternate, lanceolate, acute, or acuminate, wavy at the edge, somewhat coriaceous. Flowers yellowish. Fruit (called by Nees a one-seeded flesh berry, by De Candolle a drupe) bluish-black, oval, size of a
small cherry. **Seed** pendulous; **funiculus** compressed, ascending from the base of the fruit, and attached at the top of the testa; **testa** papery; **tunica interna** very thin; **embryo** exalbuminous, composed of two large oleaginous **cotyledons** inclosing superiorly the **radicle**.

**Hab.**—South of Europe. Cultivated in gardens.

**Description.**—Bay leaves (folios *lauri*) have a bitter, aromatic taste, and a somewhat aromatic odour. Their infusion reddens litmus. Dried bay-berries (baccae *lauri*, offic.) are covered externally by a dark-brown, brittle coat, which is produced by the epidermis and succulent covering of the fruit.

**Composition.**—In 1824 bay-berries were analyzed by Bonastre, who found the constituents to be—Volatile oil 0·8, laurin 1·0, fixed oil 12·8, wax (stearin) 7·1, resin 1·6, uncrystallizable sugar 0·4, gummy extractive 17·2, bassorin 6·4, starch 25·9, woody fibre 18·8, soluble albumen traces, an acid 0·1, water 6·4, salts 1·5. The ashes (amounting to 1·2) consisted of carbonate of potash and the carbonate and phosphate of lime.

1. **Volatile Oil of Laurel Berries**; *Oil of Sweet Bay.*—Obtained from the berries by distillation with water. The crude oil is pale yellow, transparent, readily soluble in alcohol and ether. By re-distillation it yields two isomeric oils (C<sub>10</sub>H<sub>16</sub>O), one having a sp. gr. of 0·857, the other 0·885, while a brown balsamic matter remains in the retort.

2. **Laurin**; **Camphor of the Bay berry.**—A crystalline solid, fusible, and volatile. Has an acrid bitier taste, and an odour analogous to that of the volatile oil. It is soluble in ether and in boiling alcohol. Sulphuric acid renders it yellow; nitric acid liquefies it. Alkalis are without action on it. It is extracted from bay berries by rectified alcohol.

3. **Fixed Oil of Bays** (see Below).

**Physiological Effects.**—The berries, leaves, and oil, are said to possess aromatic, stimulant, and narcotic properties. The leaves, in large doses, prove emetic.

**Uses.**—Bay berries or leaves are rarely, if ever, used in medicine in this country. They might, therefore, with great propriety be expunged from the Pharmacopoeia. The leaves are employed by the cook on account of their flavour. Both leaves and berries have been used to strengthen the stomach, to expel flatus, and to promote the catamenial discharge.

**Administration.**—Both berries and leaves are used in the form of infusion.

**OLEUM LAURI; Oleum Lauri expressum; Oleum Laurinum; Laurel Fat; Oil of Bays.** This may be obtained from either the fresh or dried berries. Duhamel states that it is obtained from the fresh and ripe berries by bruising them in a mortar, boiling them for three hours in water, and then pressing them in a sack. The expressed

---

1. Journ. de Pharm. x. 30.
2. Brandes, Pharmaceutisches Central-Blatt für 1840, S. 344.
Oil is mixed with the decoction, on which when cold the butyricaceous oil is found floating. From the dried berries it is procured by exposing them to the vapour of water until they are thoroughly soaked, and then rapidly subjecting them to the press between heated metallic plates. By the latter method they yield one-fifth of their weight of oil. Oil of bays is imported in barrels from Trieste. In 1839, duty (3d. per lb.) was paid on 1737 lbs. of it. It has a butyricaceous consistence, and a granular appearance. Its colour is greenish, its odour is that of the berries. It is partially soluble in alcohol, completely so in ether. With alkalis it forms soaps. It is occasionally employed externally as a stimulating liniment in sprains and bruises, and in paralysis. It has also been used to relieve colic, and against deafness. Its principal use, however, is in veterinary medicine.

**OTHER MEDICINAL LAURACÆ.**

1. **Culilawan or Clove Bark** is obtained from *Cinnamomum Culilawan*, Blume, a native of the Indian islands. Its properties are analogous to those of *Cassia-ligneae*. It is rarely met with in London.

2. I have received from Dr. Martiny of Hesse Darmstadt a bark marked *Culilawan Papuanus*. It is, I presume, the produce of *Cinnamomum xanthoneuron* of Blume.

3. **Massow Bark** (in commerce *Misoi*) is the *cortex onimus* of Rumphius. It is used in the cosmetics of the natives of India. I have never found it in the London shops.

4. **Sintoc Bark** is the produce of *Cinnamomum Sintoc*, Blume. Its properties are analogous to those of Culilawan.

5. The **Folia Malabathri** of India are obtained from *Cinnamomum nitidum*, Hooker, and Blume; and from *C. Tamala*. They are aromatic tonics, but are not found in the London market.

6. **Sassafras nuts** are the seeds of some Lauraceous plant. "They were imported from Brazil into Stockholm in the middle of the last century, and were found a valuable tonic and astringent medicine: during the continental war they were used as a bad substitute for nutmegs." They are still to be found in some of the old drug houses of London. It is doubtful from what plant they are obtained.

**Order XXXII.—MYRISTICACEÆ, Lindley.—THE NUTMEG TRIBE.**

**Myristiceæ, R. Brown.**

**Essential Character.**—*Flowers* completely unisexual. *Calyx* trifid, rarely quadrifid; with valvular aestivation. **Males:** Filaments either separate, or completely united in a cylinder. **Anthers** three to twelve, two-celled, turned outwards, and bursting longitudinally; either connate or distinct. **Female:**—*Calyx* deciduous. **Ovary** superior, sessile, with a single erect ovule; **style** very short; **stigma** somewhat lobed. **Fruit** baccate, dehiscent, two-valved. **Seed**

---

nut-like, enveloped in a many-parted aril; albumen ruminate, between fatty and fleshy; embryo small; cotyledons foliaceous; radicle inferior; plumule conspicuous. — Tropical trees, often yielding a red juice. Leaves alternate, without stipules, quite entire, stalked, coriaceous; usually, when full-grown, covered beneath with a close down. Inflorescence axillary or terminal, in racemes, glomerules, or panicles; the flowers often each with one short cucullate bract. Calyx coriaceous, mostly downy outside, with the hairs sometimes stellate, smooth in the inside (Lindley, from R. Brown chiefly).

Properties.—The bark and pericarp contain an acrid juice. The seed (!) and arillus abound in an aromatic volatile oil, which is mixed with a fixed oil.

**MYRISTICA OFFICINALIS, Linn., E. — THE NUTMEG TREE.**

Myristica moschata, Thunberg, L. D.

Sex. Syst. Dioscia, Monadelphia.

(Nuclei; et oleum destillatum nuclei, L.—Kernel of the fruit; volatile oil from the kernel; concrete expressed oil from the kernel, E.—Nucleus. Oleum volatile et involucrum macis dictum, D.)

History.—Both nutmegs and mace were unknown to the ancient Greeks and Romans; unless, indeed, the κώμακος of Theophrastus, —the cinnamon, quod comacum appellant Ovian, —be our nutmeg, as some have suggested. Both mace and nutmegs are noticed by Avicenna.


Sp. Char. — Leaves oblong, acuminate, smooth, whitish beneath, and with simple nerves. Peduncles one to four-flowered.

A tree from 20 to 25 feet high, similar in appearance to a pear tree. Bark dark grayish-green, smooth, with a yellowish juice. Leaves aromatic. Racemes axillary. Peduncles and pedicels glabrous, the latter with a quickly deciduous ovate bract at its summit, often pressed close to the flower. Male flowers: — Three to five on a peduncle: calyx fleshy, pale yellow, with a reddish pubescence. Female flowers scarcely different from the males, except that the pedicel is frequently solitary.

Fruit pyriform, smooth externally, about the size of a peach, marked externally by a longitudinal groove. Pericarp fleshy, dehiscing by two nearly equal longitudinal valves. Arillus (mace) large, fleshy, branching, scarlet; when dry, yellow, brittle, and somewhat horny.
Nucleus or nut (nutmeg in the shell, offic.) within the arillus, oval or ovate: its outer coat (testa, tunica externa, or shell) is dark brown, hard, glossy, marked by the mace: its inner coat (endopleura seu tunica interna) closely invests the seed, and dips down into the substance of the albumen, giving it a marbled or ruminated appearance. The great body of the nutmeg consists of the oleaginous albumen: its so-called veins are processes of the endopleura, which have a reddish-brown colour, and abound in oil. Embryo at the base of the seed; radicle inferior, hemispherical; cotyledons two, large, flat, foliaceous, fan-shaped; plumule two-lobed.

Hab.—Moluccas, especially the Isle of Banda. The Dutch have endeavoured to confine the nutmeg tree to three of the little cluster of the Banda isles, viz. Pulo Ay, Banda, and Nera.

Curing.—Mace is prepared for the market by separating it from the nutmeg, and drying it for some days in the sun, when its rich crimson changes to dusty yellow. Nutmegs require more care in curing, on account of the attacks of an insect (the nutmeg-insect). They are first sun-dried for three days: then laid on hurdles and smoke-dried by a slow wood-fire for three months, at the end of which time they are freed from their shells, and dipped twice or thrice in lime water, or rather a thick mixture of lime and water, to secure them from the depredations of insects. It is said that while the nutmegs are in their shells, they are secure from the attack of these insects.

Description. 1. Of Nutmegs (Nucæ moschatæ).—The ordinary nutmeg of commerce (formerly called the female nutmeg,—nux moschata femina, Clusius) rarely exceeds an inch in length. Its shape is roundish or elliptical, like that of the French olive. Externally it is marked with reticular furrows. The colour of the projecting parts is brownish; that of the depression sometimes whitish, from the lime used in curing (limed nutmegs), at other times brown (brown nutmegs). Internally it is pale reddish-grey, with red veins. The odour is strong, but pleasant, peculiar, and aromatic. The taste is agreeable and aromatic. Occasionally this kind of nutmeg is imported in the shell.

A long kind of nutmeg, called, in the shops, the wild nutmeg in the shell (the male nutmeg,—nux moschata mas. Clusius), is frequently met with. Its shape is oblong, like that of the date; its length about an inch and a half. Its shell is bony, somewhat brittle, externally shiny and brown, internally dull, grayish-white. The contained seed is paler coloured, less furrowed, and less aromatic, than in the preceding sort. Sometimes these nutmegs are imported with the mace dried around them (wild nutmegs covered with mace). Long nutmegs

---

1 Crawford, Hist. of the Ind. Archip.
are said to be the produce of *Myristica officinalis* var. *sphenocarpa*, (Dierbach). A specimen of the fruit and leaves, preserved in spirit in the Banksian collection, is marked the *long nutmeg from Sumatra*.

2. Of Mace. (*Macis.*)—Mace, as met with in the shops, is a flat, irregularly slit, smooth, slightly flexible or brittle membrane, of a pale cinnamon-yellow colour, and an odour and taste analogous to those of nutmegs.

Under the name of *False Mace* I have received from Dr. Martiny a red mace, with scarce any flavour or odour. It is perhaps the mace of the long nutmeg just described.

**Commerce.**—Nutmegs and mace are imported from the Indian Archipelago either directly or indirectly by the Cape of Good Hope or Holland. In 1840, the duty of 2s. 6d. per lb. was paid on 114,160 lbs. of nutmegs, and on 16,333 lbs of mace.

**Composition.**—Nutmegs were analyzed, in 1804, by Schrader; and, in 1823, by Bonastre. In 1824 an analysis of mace was made by N. E. Henry.

<table>
<thead>
<tr>
<th>Nutmeg.</th>
<th>Bonastre’s Analysis.</th>
<th>N. E. Henry’s Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light volatile oil</td>
<td>2.60</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Heavy ditto</td>
<td>0.52</td>
<td>Liquid fat</td>
</tr>
<tr>
<td>Expressed, reddish, soft oil</td>
<td>0.41</td>
<td>Solid fat</td>
</tr>
<tr>
<td>White solid oil</td>
<td>17.72</td>
<td>Acid (?)</td>
</tr>
<tr>
<td>Gummy extract</td>
<td>25.00</td>
<td>Starch</td>
</tr>
<tr>
<td>Resin</td>
<td>3.12</td>
<td>Gum</td>
</tr>
<tr>
<td>Ligneous fibre</td>
<td>34.38</td>
<td>Ligneous fibre</td>
</tr>
<tr>
<td>Loss</td>
<td>6.25</td>
<td>Loss</td>
</tr>
</tbody>
</table>

Nutmeg. 100.00

1. **Volatile Oil of Nutmegs.**

2. **Volatile Oil of Mace.**

3. **Fixed Oil of Nutmegs.**

**Chemical Characteristics.**—The presence of starch in the nutmegs and mace may be detected by a solution of iodine, which gives them a blue tint (*iodide of starch*). Both of these substances yield, by distillation with water, a volatile oil, characterized by its peculiar odour; and both yield, by expression, a fixed butyrous oil.

**Physiological Effects.**—The activity of both nutmegs and mace depends on the volatile oil which they contain. Swallowed in moderate quantities, they produce the before-described effects of the spices (p. 181). In large doses they prove narcotic, and cause giddiness, delirium, precordial anxiety, sleepiness, or actual stupor. Instances of this kind are mentioned by Bontius, Rumphius, Lobel, Schmid, and Cullen. In the case related by the last-
mentioned authority two drachms of powdered nutmegs produced drowsiness, which gradually increased to complete stupor and insensibility. The patient continued for several hours alternately delirious and sleeping, but ultimately recovered. Purkinje has confirmed these statements by experiments made on himself. I am acquainted with a case in which the narcotic effects of a whole nutmeg have been several times experienced.

Uses.—The principal consumption of nutmegs and mace is for dietetical purposes. They serve to flavour, and, by their stimulant properties, to assist the digestive process. Food highly seasoned with these substances may prove injurious in cerebral affections (apoplexy, for example), on account of their narcotic properties.

Medicinally they are used, like other spices (see p. 181), as stimulants, carminatives, and flavouring ingredients. Nutmeg is an important constituent in the confectio aromatica (see p. 1146), so frequently employed as a cordial and antacid in bowel complaints. In mild cases of diarrhoea I frequently employ nutmeg as a substitute for opium. It may be taken in warm brandy and water, unless the use of spirit be contra-indicated.

Administration.—Either nutmeg or mace may be taken to the extent of a scruple or half a drachm, in powder obtained by grating; or the volatile oil of these substances may be used, in doses of mj. to nv.

1. OLEUM MYRISTICÆ, L. E.; Oleum Nucis Moschatae: Essential Oil of Nutmeg. (Procured by submitting nutmegs and water to distillation). It is usually imported. It is colourless or pale yellow, has the odour and taste of nutmegs, and a viscid consistence. By agitation with water it separates into two oils, one lighter, the other heavier than water. By keeping, it deposits crystals of stearoptène (myristicine), which are fusible at 212° F., volatile, soluble in alcohol, in ether, and in boiling water; from the latter liquid myristicine separates in a crystalline form as the liquid cools. According to Mulder the stearoptène consists of C₄₁H₇₀O₅. Volatile oil of nutmegs is seldom employed medicinally. Its dose is mj. to v., taken on sugar or dissolved in spirit.

2. OLEUM MACDIS; Essential Oil of Mace. This is colourless or pale yellow, lighter than water, and has the flavour and odour of mace. Its composition, effects, and uses, are similar to those of nutmegs.

3. MYRISTICÆ ADEPS, E. Myristicae Oleum expressum, L.; Butter of Nutmegs; Expressed Oil of Nutmegs. In the shops it is usually denominated Expressed Oil of Mace. It is prepared by beating the
nutmegs to a paste, which is to be inclosed in a bag, and then exposed to the vapour of water, and afterwards expressing by heated plates. It is imported in oblong cakes (covered by some monocotyledonous leaves, commonly called flag leaves), which have the shape of common bricks, but whose size is somewhat smaller. Its colour is orange, its consistence firm, its odour fragrant, like that of the seeds from which it is obtained. It is soluble in 4 parts of boiling alcohol. According to Schrader 16 parts of butter of nutmeg are composed of Tallow-like Oil $7$, Yellow Oil $8\frac{1}{3}$, and Volatile Oil $2\frac{2}{3}$. More recently it has been examined by Playfair, who states its composition to be volatile oil, sericine, a fat oil, and colouring matter. Cold alcohol dissolves the volatile oil, the fat oil, and the colouring matter, leaving from 25 to 30 per cent of sericine.

Sericine is a white crystalline fat, fusible at $87^\circ$ F., and composed of sericic or myristic acid ($C_{28}H_{57}O_{5}$) and glycerine. It is soluble in hot alcohol.

Expressed oil of nutmegs is occasionally employed externally in chronic rheumatism and palsy. It is a constituent of Emplastrum Picis (see p. 1059).

4. SPIRITUS MYRISTICÆ, L. E. D. Spirit of Nutmeg.—(Nutmegs, bruised, $\frac{2}{3}$ijss. [$\frac{3}{ij}. D.$]; Proof Spirit, cong. i. [wine measure D.]; Water, Oj. [sufficient to prevent empyreuma, D.] Mix them [macerate for twenty-four hours, D.], then, [with a slow fire, L.] let a gallon distil).—It is frequently prepared by mixing volatile oil of nutmegs with proof spirit. It is cordial and carminative; and is employed in doses of $\frac{5}{3}$i. to $\frac{3}{iv}$. as a pleasant addition to stimulant, narcotic, or purgative draughts.

Order XXXIII.—THYMELACEÆ, Lindley.—THE MEZEREUM TRIBE.

Thymeæ, Jussieu.

Essential Character.—Calyx inferior, tubular, coloured; the limb four-cleft, seldom five-cleft, with an imbricated aestivation. Corolla none, or sometimes scale-like petals in the orifice of the calyx. Stamens definite, inserted in the tube or its orifice, often eight, sometimes four, less frequently two; when equal in number to the segments of the calyx or fewer, opposite to them; anthers two-celled, dehiscing lengthwise in the middle. Ovary solitary, with one solitary pendulous ovule; style one; stigma undivided. Fruit hard, dry, and nut-like, or drupaceous. Albumen none, or thin and fleshy; embryo straight; cotyledons plano-convex; radicle short, superior; plumule inconspicuous.—Stem shrubby, very seldom herbaceous, with tenacious bark. Leaves without stipules, alternate or opposite, entire. Flowers capitate or spiked, terminal or axillary, occasionally solitary (R. Brown).

Properties.—The prevailing property of the plants of this order is acridity.
DAPHNE MEZEREUM, Linn., L. E. D.—COMMON MEZEREON OR SPURGE-OLIVE.

Sex. Syst. Octandria, Monogynia.

(Radicis cortex, L.—Root-bark, E.—Cortex, D.)

History. — Tragus⁵ is the earliest author who mentions this plant⁶. He calls it Thymeleæa. The mezereon of Avicenna⁴, and of other Arabian authors, is declared, by C. Bauhin, to be Chamelea tricocca (now called Cneorum tricoccœ), a plant of the order Euphorbiaceæ; but it is probably identical with the χαμέλαια of Dioscorides, which is declared by Sibthorpe⁸ to be Daphne oleoides.


Sp. Char.—Flowers naked on the stem, sessile, about three together. Leaves lanceolate, deciduous (Smith).

Stem bushy, four or five feet high, with upright, alternate, smooth, tough, and pliant branches; leafy while young. Leaves scattered, stalked, lanceolate, smooth, two inches long, appearing after the flowers, and soon accompanied by flower-buds for the next season. Flowers highly, and to many persons too powerfully, fragrant, seated in little tufts on the naked branches, with several brown, smooth, ovate bracteas underneath. Calyx like a corolla in texture, crimson all over; the tube, externally hairy. Berries scarlet.—There is a variety with white flowers, and the berries also vary to a yellow or orange hue.

Hab.—Indigenous. Plentiful near Andover. Flowers in March.

Description of the Bark.—The bark of the root (cortex radicis mezerei) is alone employed in this country. It is tough, pliable, and fibrous; externally brown and corrugated; internally white and cottony. Its taste is at first sweetish, afterwards highly acrid: it has no odour. In Germany the bark of the stem and larger branches is removed in spring, folded in small bundles, and dried for medicinal use.

Composition.—The bark of the stem was analyzed by C. G. Gmelin and Bär⁷, and found to consist of wax, an acrid resin, daphnin, a trace of volatile oil, yellow colouring principle, uncrystallizable but fermentable sugar, nitrogenous gummy matter, reddish brown extractive, woody fibre, free malic acid, and malates of potash, lime, and magnesia.

1. Acrid Resin.—Obtained by boiling the bark in alcohol: when the solution cools, some wax is deposited. The supernatant liquid is to be evaporated, and the residual extract washed with water. The resin then left behind is dark-green, and soluble in both alcohol and ether. To this substance mezereon owes its acridity. There is, however, some reason to suspect that this resin is itself a compound of two principles, viz. an acrid, vesicating, fixed oil, and another.

---

⁵ Hist. Steppian. 1532.
⁶ Sprengel, Hist Rei Herb. Praf. xi.
⁷ Lib. 2ndus, tract. 2ndus, cap. 464.
⁸ Prod. Fl. Grecœ.
substance. The resin is rendered soluble in water by means of the other constituents of the bark.

2. Daphne.—A peculiar crystalline principle, having a bitter, slightly astringent taste. It is soluble in alcohol and ether, but possesses neither basic nor acid properties. Gmelin and Bär consider it to be analogous to asparagin. It is not the active principle of mezereon.

**Physiological Effects.**—All parts of the plant, but more especially the bark and the fruit, are endowed with excessive acridity; in virtue of which they cause irritation and inflammation in tissues to which they are applied. When swallowed, therefore, in large quantities, they prove poisonous. The topical action of mezereon bark is that of an irritant, and, when the bark has been applied to the skin, vesicant.

A decoction of mezereon bark, taken in moderate quantities, sometimes appears to promote the action of the secreting and exhaling organs (especially the kidneys and the skin). But Dr. Alex. Russell could not observe, upon the strictest inquiry, “that it sensibly increases any of the secretions, more than the same quantity of any small liquor would do.” In some cases it proves laxative, where the patients are easily moved, and large doses disturb and irritate the stomach. Richter says, that, under the long-continued use of mezereon, the saliva acquires a peculiar odour. In larger doses it causes dryness and heat in the throat, increased saliva, pain in the stomach and bowels, and sometimes vomiting and purging; the stools being occasionally bloody. The urinary organs are sometimes specifically affected by it; irritation, analogous to that produced by cantharides, being set up by it. An affection of the cerebro-spinal system (marked by great feebleness, giddiness, incapability of keeping the erect posture, and slight convulsive movements) is occasionally brought on. I am unacquainted with any cases which have proved fatal from the use of mezereon bark. Vicat mentions the case of a dropsical patient, in whom the wood caused diarrhoea, pain, and vomiting, which continued for six weeks.

**Uses.**—In this country mezereon is scarcely ever employed alone. It is usually administered in conjunction with sarsaparilla, and is employed as a sudorific and alterative in venereal, rheumatic, scrofulous, and chronic cutaneous diseases. Decoction of the root-bark of mezereon was recommended to the notice of the profession, by Dr. Alexander Russell, as a very efficacious remedy in cases of venereal nodes and nocturnal pains. Dr. Home also speaks of it as “a powerful deobstruent in all venereal tumors, of the scirrhous kind, where mercury has failed.” But Mr. Pearson, after many years’ observation of it, says, “I feel myself authorized to assert unequivocally,

---

10 Vogt, Pharmakodynamik, Bd. ii. S. 365, 2nd Aufl.
11 Orfila, Toxicol. Gen.
12 Vide Decocatum Sarsaparillae compositum, p. 1001.
14 Clin. Exper. and Hist.
15 Observ, on the Effects of Various Articles of the Mat. Med. 1800.
that the mezereum has not the power of curing the venereal disease in any one stage, or in any one form." Dr. Cullen employed it with success in some cutaneous diseases.

As a topical remedy, it is sometimes applied to relieve tooth-ache. It is occasionally used as a masticatory. Dr. Withering cured a case of difficulty of swallowing (arising from a paralytic affection) by mezereum, which he directed to be chewed frequently. In France the bark of both Daphne Mezereum and D. Gnidium is used as a vesicatory. The mode of applying it is this:—First soften the bark by soaking it in hot vinegar and water, and then apply it to the part by a compress and bandage. The application is to be renewed night and morning, until vesication is produced.

Administration. — Mezereon is administered in the form of decoction. As a masticatory, two grains of the bark may be chewed.

Antidote.—In a case of poisoning by mezereon, evacuate the contents of the stomach as speedily as possible, and give emollient drinks, opiates, and the vegetable acids. To counteract inflammatory symptoms, the usual antiphlogistic treatment should be adopted.

Decoctum Mezerii, E. D.; Decoction of Mezeron.—(Mezereum bark, in chips, 3ij.; Liquorice root, bruised, 3ss.; Water, Oij. [Oij. wine-measure, D.]. Mix them, and boil down with a gentle heat to a pint and a half [two pints wine-measure, D.] and strain. — Stimulant and sudorific. Used in chronic rheumatism, and secondary syphilis. Dose f 3iv. to f 3viij. three or four times a day.

Other Medicinal Thymelaceæ.

1. Daphne Gnidium is the Θυμέλαια, or Thymelea, of Dioscorides, whose fruit is the κόκκος κνίδιος, or Gnidian berry, used by Hippocrates. Its properties are similar to those of D. Mezereum. In France the bark (called garou) is employed, in the way before described, as a vesicatory.

2. Daphne Laureola is an indigenous plant, having yellowish-green flowers and black berries. Its effects are analogous to the last-mentioned species.

3. Lagetta lintearia, or the Lace Bark Tree, possesses the medicinal properties of mezereon, and has been used in the same cases. Its bark may be separated into 20, 30, or more laminae, which are fine and white, like gauze: of these, caps, ruffles, and even whole suits of ladies' clothes, have been made.

Order XXXIV.—Polygonaceæ, Lindley.—The Buckwheat Tribe.

Polygonæ, Jussieu.

Essential Character.—Calyx free, simple, persistent, monosepalous, deeply divided; the segments imbricate in aestivation, disposed in a double row; the
inner opposite the sides of the ovary, the outer opposite the angles. **Stamen**s definite, inserted into the base of the calyx. **Anthers** two-celled, four-furrowed, dehiscing laterally by a double chink. **Ovary** one, free. **Styles** numerous, or **stigmas** numerous, sessile. **Carpellus**, or **nut**, one-seeded, generally triangular, more or less covered by the calyx. **Embryo** generally lateral, sometimes central, often curved. **Albumen** farinaceous. **Radicle** distinct from the hilum. —**Herbaceous** plants, rarely shrubs. **Stems** nodose. **Leaves** alternate, sheathing, or adnate to an infrafoliaceous sheath or **ochrea** : revolute when young (Bot. Gall.)

**Properties.** — Oxalic acid is an abundant product of this order. In the free state, or rather in the form of a supersalt, it exists in the leaves and petioles, to which it communicates refreshing refrigerant qualities. In the root of rhubarb it is found in combination with lime. Tannic acid is another important principle of this order; it exists in the roots, the stems, and the leaves. **Colouring matter,** in considerable quantity, exists in the roots. In many species the roots are purgative. Some species of Polygonum contain a volatile acrid principle. Nutritive (mucilaginous) matters are yielded by several species.

1. **Rheum, Linn.**—ONE [OR MORE] UNDETERMINED SPECIES, E.

**Rheum palatum, L. D.**—R. undulatum, D.

**Sex. Syst.** Enneandria, Monogynia.

(Radix, L. E. D.)

**History.** — Dioscorides speaks of a root which he calls **Rha,** or **Rheon** (ρα φοιν), and which has been regarded by some as identical with our rhubarb; but the description he has given of it does not apply to the latter substance, and it is therefore fair to presume some other root must be meant. "**Rha,** by same called **Rheon,** grows," says Dioscorides, "in those countries which are beyond the Bosporus, and from which it is brought. It is a root which is black externally, like to great centaury, but smaller and redder, odourless, loose or spongy, and somewhat smooth internally." Pliny gives a similar account of it, under the name of **Rhacoma** : it comes, he says, from the countries beyond Pontus, resembles the black costus, is odourless, and has a hot, astringent taste. Prosper Alpinus was of opinion that the **Rha** of Dioscorides was the root of Rheum Rha ponticum, which Alpinus obtained from Thracia, in 1608 A. D., and cultivated at Pavia. The later Greek writers are supposed to have been acquainted with our rhubarb. Alexander of Tralles is the first who speaks of it. He used it in weakness of the liver and dysentery. Paulus Ægineta seems to make a distinction between **Rha** and **Rheon.** For, he says, that, in the crudities and vomiting of pregnant women, we may give "the blood-wort, boiled in water, for drink; and likewise dill, and the Pontic root, called **Rha** in the dialect of that country." In noticing the practice of the ancients, he says, "Alvine discharges they promoted by giving turpentine to the

* Lib. iii. cap. 11.
* De Rhapontico, 1612.
* Lib. viii. cap. 3.
extent of an olive, when going to rest; or, when they wished to **purge more effectually, by adding a little rhubarb** [Rheon] \(^y\). This is the first notice of the purgative properties of rhubarb.

In one of the Arabian authors (Mesue, the younger) we find three kinds of rhubarb mentioned:—The **Indian**, said to be the best: the **Barbarian**; and the **Turkish**, which is the worst of all.

**Botany. Gen. char.**—Calyx petaloid, six-parted, withering. Stamina about nine, inserted into the base of the calyx. Styles three, reflexed. Stigmas peltate, entire. Achenium three-cornered, winged, with the withered calyx at the base. Embryo in the centre of the albumen (Lindley).

It is not yet ascertained what species of *Rheum* yields the officinal rhubarb. Several species, now cultivated in this country, have been at different times declared to be, partially or wholly, the source of it. Formerly, *Rheum Rhaponticum* was supposed to yield it \(^a\).

In 1732, *R. undulatum* was sent from Russia to the Messrs. Jussieu at Paris, and to Rand of Chelsea, as the true rhubarb. This is the species which Linnaeus described as *R. Rhaponticarum* \(^b\). About 1750, at the desire of Kauw Boerhaave, first physician to the Emperor of Russia, the senate commissioned a Tartarian merchant, a dealer in rhubarb, to procure them some seeds of the genuine plant. This he did, or pretended to do; and, on sowing them, two species of *Rheum* were obtained; namely, the *undulatum* and the *palmatum*. In 1762, seeds of the latter species were received by Dr. Hope, of Edinburgh, from Dr. Mouney, at Petersburgh: they were sown, and the plants cultivated with success \(^c\). The root of this species being found to agree, in many of its characters, with that of genuine rhubarb, led to the belief that the palmatum was the true species. The inquiries of Pallas, however, raised some doubts about the correctness of this opinion; for the Bucharians declared themselves acquainted with the leaves of the palmatum, and described the true plant as having round leaves, with a few incisions only at the margin. This description agreed best with *Rheum compactum*, the roots of which were declared, by Millar, who cultivated the plant, to be as good as foreign rhubarb \(^d\). Georgi says, that a Cossack pointed out to him the leaves of the *R. undulatum* as the true species \(^e\). These accounts were not satisfactory to the Russians; and in consequence, in 1790, Sievers, an apothecary, went to Siberia, under the auspices of Catherine II., with a view of settling the question; but, after four years of persevering attempts to reach the country where the true rhubarb grew, or even to obtain the seeds, he was obliged to be satisfied with negative results only. "My travels," says he, "as well as acquaintance with the Bucharians, have satisfied me that as yet nobody—that is, no scientific person—has seen the true rhubarb plant. All that is said of it, by the Jesuits, is miserable, confused stuff; all the seeds procured under the name of true rhubarb are false; all the plantations, from those of the Knight Murray down to the flower-pot of a private individual, will never yield true rhubarb. Until further determination, I hereby declare all the descriptions in all the Materia Medicas to be incorrect\(^f\)."

Himalayan rhubarb is obtained from several species of *Rheum*: viz. *R. Emodi*, Wallich \(^g\); *R. Webbianum*, Royle \(^b\); *R. spiciforme*, Royle; and *R. Moorcroftianum*, Royle. But there are no reasons for supposing that they yield any of the rhubarb.
RHEUM.  1175

barb of European commerce. It is not improbable that the species yielding the official rhubarb is yet undescribed. Dr. Royle¹, after referring to the accounts of different authors, as to the precise locality of the country yielding Russian rhubarb, concludes that it is within 95° of E. long. in 35° of N. latitude—that is, in the heart of Thibet. And he adds, "as no naturalist has visited this part, and neither seeds nor plants have been obtained thence, it is as yet unknown what species yields this rhubarb." Further, it is probable, I think, that the Russian and Chinese rharbabs are procured from different species.

Mr. Anderson, of the Apothecaries’ Botanic Garden, Chelsea, has kindly furnished me with the fresh roots of thirteen species of Rheum: viz. R. palmatum, undulatum, compactum, Rhaponticum, Emodi, crassinervium, caspicum, tataricum, hybridum, confusens, Fischieri, bardanifolium, and ballatum. Having carefully dried these by artificial heat, I found that one species only, viz. R. palmatum, closely resembled Asiatic rhubarb in the combined qualities of odour, colour, and marbling: R. undulatum agreed tolerably well in colour and marbling, but not in odour. It deserves, however, to be noticed that the specimens examined were of unequal ages,—some forming the rootstock, others root-branches of the respective plants,—a circumstance which considerably diminishes the value of a comparative examination of them. Furthermore, all the samples were probably injured by the wet season. The root-branches of R. crassinervium (from a strong plant of six or seven years old, but which had not flowered) did not resemble Asiatic rhubarb in either colour or odour.

Species.—1. Rheum Palmatum, Linn. L. D.—"Leaves roundish-cordate, half palmate; the lobes pinnatifid, acuminate, deep dull green, not wavy, but uneven, and very much wrinkled on the upper side, hardly scabrous at the edge, minutely downy on the under side; sinus completely closed; the lobes of the leaf standing forwards beyond it. Petiole pale green, marked with short purple lines, terete, obscurely channelled quite at the upper end. Flowering stems taller than those of any other species" (Lindley).—Perennial. Grows spontaneously in the Mongolian empire, on the confines of China. Extensively cultivated near Banbury, in Oxfordshire, for the supply of English rhubarb to the London market. Its leaf-stalks make excellent tarts and puddings. Prof. Guibourt² observes that of the roots of R. palmatum, undulatum, compactum, and Rhaponticum, those of the first species only possess the exact odour and taste (grittiness excepted) of the China rhubarb. But rhubarb procured from this species cultivated in England is distinguished by several characters from Asiatic rhubarb. How far these may be the result of climate I am not prepared to say.

2. Rheum Undulatum, Linn. D.—"Leaves oval, obtuse, extremely wavy, deep green, with veins purple at the base, often shorter than the petiole, distinctly and copiously downy on each side, looking as if frosted when young, scabrous at the edge; sinus open, wedge-shaped, with the lower lobes of the leaves turned upwards. Petiole downy, blooded, semicylindrical, with elevated edges to the upper side, which is narrower at the upper than the lower end" (Lindley).—

³ Hist. des Drog.
Perennial. Grows in Siberia (Georgi and Pallas, cited by Murray), and China (Ammann, quoted by Lindley). Cultivated in France, and yields part of the *French rhubarb*. It was formerly cultivated in Siberia as the real officinal plant; but, as genuine rhubarb could not be procured from it, its cultivation has been given up.

3. *Rheum compactum*, Linn. — "Leaves heart-shaped, obtuse, very wavy, deep green, of a thick texture, scabrous at the margin, quite smooth on both sides, glossy and even on the upper side; sinus nearly closed by the parenchyma. Petiole green, hardly tinged with red, except at the base, semicylindrical, a little compressed at the sides, with the upper side broad, flat, bordered by elevated edges, and of equal breadth at each end" (Lindley). — Perennial. Grows in Tartary and China. Cultivated in France, and yields part of the *French rhubarb*. This rhubarb is a very fair imitation of that from China; but is distinguished by its reddish tint, its different odour (common to it, to *R. undulatum*, and *R. rhapsonticum*), its close and radiated marbling, its not tinging the saliva, and its not grating under the teeth.

Fig. 245.

Rheum palmatum.

Rheum compactum.

4. *Rheum Emodi*, Wallich; *R. australe*, Don. — "Leaves cordate, acute, dull green, but little wavy, flattish, very much wrinkled, distinctly rough, with coarse short hairs on each side; sinus of the base distinctly open, not wedge-shaped, but diverging at an obtuse angle, with the lobes nearly turned upwards. Petioles very

---

1 App. Med.
2 Guibourt, Hist. des Drog.
3 Ibid.
4 Guibourt, supra cit.
rough, rounded angular, furrowed; with the upper side depressed, bordered by an elevated edge, and very much narrower at the upper than the lower end" (Lindley).—Perennial. Grows on the Himalayas. Its stalks make excellent tarts and puddings.

5. *Rheum Webbianum*.


These three are Himalayan species. *R. Emodi* and *Webbianum* furnish Himalayan rhubarb, whose properties are very different to those of officinal rhubarb.

8. *R. Rhaponticum*, Linn.—Grows in Thrace; borders of the Euxine sea; north of the Caspian; Siberia, &c. Cultivated in this country for the leaf-stalks, which are used for tarts and puddings. Cultivated also in France, and yields part of the *French rhubarb*.

9. *R. Crassinervium*, Fischer.—Habitation unknown. Its roots possess, according to Mr. Anderson, of the Apothecaries' Garden, Chelsea, the colour and odour of Turkey-rhubarb.

10. *R. Leucorrhizum*, Pallas; *R. nanum*, Sievers.—Said to yield White or Imperial rhubarb.

Preparation.—The method of curing or preparing Asiatic rhubarb for the market varies somewhat in different localities. In China it is as follows:—The roots are dug up, cleansed, cut in pieces, and dried on stone tables heated beneath by a fire. During the process the roots are frequently turned. They are afterwards pierced, strung upon cords, and further dried in the sun. In Tartary the Moguls cut the roots in small pieces, in order that they may dry the more readily, and make a hole in the middle of every piece, through which a cord is drawn, in order to suspend them in any convenient place. They hang them, for the most part, about their tents, and sometimes on the horns of their sheep. Sievers, however, states that the roots are cut in pieces, strung upon threads, and dried under sheds, so as to exclude the solar rays; and the same author tells us, that sometimes a year elapses from the time of their collection until they are ready for exportation.

Description.—I am acquainted with six kinds of rhubarb, namely, Russian, Dutch-trimmed, Chinese, Himalayan, English, and French.
1. Russian or Bucharian Rhubarb; Turkey Rhubarb, offic. (radix rhei russici seu muscovitici, s. bucharici, s. sibirici, s. turcici).—This kind of rhubarb is imported from St. Petersburgh. It is said formerly to have been brought by way of Natolia: hence the name of Turkey rhubarb, which it ordinarily bears in the shops.

According to the treaty entered into between the Russians and Chinese, the commerce between the two nations takes place at the frontiers. Kiachta is the Russian, Maimatschin the Chinese, frontier town. All the so-called Russian rhubarb is brought to Kiachta by Bucharian merchants, who have entered into a contract to supply the government with that drug in exchange for furs. It is collected on that long chain of mountains of Tartary, destitute, for the most part of woods, and which arises not far from the town of Selin, and extends to the south as far as the lake Kokonor, near Thibet. It is conveyed in woollen sacks, on camels, to Kiachta, where it is examined with much care, in the presence of the Bucharians, by the apothecary stationed at Kiachta for the purpose. The worm-eaten pieces are rejected, the others bored to ascertain their soundness, and all the damaged or decayed parts are cut away. In accordance with the terms of the contract, the pieces which do not pass the examination are burned; the remainder is then transmitted to Petersburgh, and from thence to us.

It is imported in boxes or cases, covered with a pitched cloth, on the outside of which is a hide. The size of the pieces is various; but, in commerce, the small ones are preferred, and they are, therefore, picked out, and sold as radix rhei turcici electa—the larger pieces and the dust being employed for powdering. Their shapes are various, being angular, rounded, irregular, &c. The external appearance of many of the pieces seems to show that the cortical portion of the root had been shaved off longitudinally by successive strokes of a knife: hence the angular appearance of the external surface. Holes are observed in many of the pieces: some of them extend completely, others only partially, through. Those which extend only to the centre have been evidently made for the purpose of examining the condition of the interior of the pieces.

Externally the pieces are covered with a bright yellow-coloured powder, usually said to be produced by the mutual friction of the pieces in the chests, during their passage to this country; though many druggists believe it is derived from the process of rousing (that is, shaking in a bag with powdered rhubarb), before its exportation. The odour is strong and peculiar, but somewhat aromatic; it is considered by druggists to be so delicate, that in all wholesale drug-houses a pair of gloves is kept in the Russian rhubarb drawer, with which only are the assistants permitted to handle the pieces. When chewed it feels gritty under the teeth, from the presence of numerous crystals of oxalate of lime: it communicates a

---

bright yellow colour to the saliva, and has a bitter, slightly astringent taste.

Beneath the dust with which the pieces are covered, the surface has a reddish-white tint, owing to the intermixture of white and red parts. The yellowish-white parts have the form of lines or veins, which, by their union with each other, assume a reticular form. Irregularly scattered over the surface we observe small star-like spots and depressions, of a darker colour. The transverse fracture is uneven, and presents numerous brownish-red or dark carmine-coloured undulating veins. The longitudinal fracture is still more uneven, and shows the longitudinal direction of the veins, which are often interrupted with white. The surface obtained by cutting is more or less yellow, and often exposes the veins, disposed in groups.

By boiling very thin slices of the root in water, and then submitting them to the microscope, we observe cellular tissue, annular ducts, and numerous conglomerate raphides (clumps of crystals of oxalate of lime). From 100 grs. of Russian rhubarb, Mr. Quekett procured between 35 and 40 grs. of these raphides. Turpin considered the presence of these crystals sufficient to distinguish Russian and Chinese rhubarb from that grown in Europe; but in some specimens of English rhubarb I have met with these crystals in as great abundance as in foreign rhubarb. According to Raspail, they are situated in the interstices of the elongated cellular tissue; but this statement is erroneous, the situation of the crystals being in the interior of the cells.

The powder of Russian rhubarb is of a bright yellow colour, with a reddish tint; but, as met with in the shops, it is almost invariably mixed with the powder of English rhubarb.

White or Imperial Rhubarb.—When Pallas was at Kiachta, the Bucharian merchants who supplied the crown with rhubarb, brought some pieces of rhubarb as white as milk, with a sweet taste, and the same properties as rhubarb of the best quality. It is not met with in English commerce as a distinct kind; and it is almost unknown in Russia. But in the chests of Russian rhubarb there are occasionally found pieces having an unusually white appearance: these I presume to be the kind alluded to. White rhubarb is said to be the produce of R. leucorrhizum, Pallas (R. nanum, Sievers).

2. Dutch-trimmed or Batavian Rhubarb, offic. (Rhubarbe de Perse, Guibourt). This kind of rhubarb is closely allied to, if it be not identical with, the preceding in its texture. In commerce, however, it is always regarded as distinct. It is imported from Canton and Singa-

---

2. Lindley's Introduction to Botany, 3d ed. p. 553.
5. Grassmann, Pharm. Central-Blatt fär 1831, S. 584.
pore in chests, each containing from 130 to 140 lbs. It is probably Bucharian rhubarb of less fine quality, sent by way of Canton, as mentioned by Murray, and which, in consequence, has been usually confounded, by pharmacological writers, with Chinese rhubarb. In shape, size, and general appearance, it resembles the Russian kind; for the cortical portion of the root seems to have been separated by slicing, and hence the pieces have the same angular appearance on the surface that the Russian rhubarb has. The pieces are frequently perforated, and in the holes are found the remains of the cord by which the root has been suspended. In the drug-trade this kind of rhubarb is said to be trimmed, and, according to the shape of the pieces, they are called flats or rounds. The colour and weight of the pieces are variable.

3. China or East Indian Rhubarb, offic. (radix rhei chinensis, seu indica).—This kind is imported either directly from Canton, or indirectly by Singapore and other parts of the East Indies, and is probably the produce of China (especially of the province of Se-ichuen; Du Halde: of Hoo-nan and Hoo-pih, as well as other provinces; Gutzlaff and Reed). It is imported in chests. The pieces are frequently cylindrical or roundish, but sometimes flattened; in trade they are distinguished as rounds and flats. They appear to have undergone a different process of preparation to that of Russian rhubarb. Thus the cortical portion of the root seems rather to have been scraped than sliced off, and hence the surface is not so angular; and on the worst pieces we observe the remains of the greenish-brown or blackish cortex. Among druggists this kind of rhubarb is frequently termed half-trimmed or untrimmed rhubarb. The pieces are generally perforated with holes, in many of which we find portions of the cords by which the pieces were suspended. These holes are smaller than those observed in Russian rhubarb, and that portion of the root forming their sides is usually dark-coloured, decayed, and of inferior quality. The best pieces are heavier and more compact than that of the Russian kind; they are covered with an easily separable yellow dust. When this is removed we observe that the surface is not so regularly reticulated, is more of a yellowish-brown than reddish white colour, and has coarser fibres than Russian rhubarb. On the finer pieces we notice numerous star-like spots or depressions. The fracture is uneven; the veins, especially towards the middle, have a less determinate direction, and are of a duller or reddish-brown colour, and, in very bad pieces, of an umbre-brown colour, with a gray substrate between the veins.

The odour of this species is much less powerful than that of Russian rhubarb, and is somewhat less aromatic. The taste, grittiness when chewed, and microscopic appearances, are similar to those of Russian rhubarb. The colour of the powder is of a more dull yellow or brownish cast.

4. Himalayan Rhubarb.—This is the produce probably of Rheum Emodi, and Webbianum. The roots of R. spiciforme, and Moorcroft-
tianum, are lighter coloured and more compact in structure. My specimens were furnished by Dr. Wallich, who obtained them from the inhabitants of the Himalayas, who had strung the pieces around the necks of their mules. It has scarcely any resemblance to the officinal rhubarb. The pieces are cylindrical, and are cut obliquely at the extremities; the cortex of the root is not removed; the colour is dark brown, with a slight tint of yellow; they are without odour, and have a coarse fibrous texture. Dr. Royle says that the Himalayan rhubarb makes its way into the plains of India through Kalsee, Almora, and Butan: it has, he adds, a spongy texture, and sells for only one-tenth of the price of the best rhubarb, resembling in quality the Russian, and which is found in India. Dr. Royle has kindly supplied me with the dried roots of *R. Webbianum*, the same as those referred to in the experiments of Mr. Twining. They are short, transverse segments of the root branches, of a dark brownish colour, odourless or nearly so, with a very bitter astringent taste, and do not essentially differ from the roots given me by Dr. Wallich.

5. English Rhubarb (*radix rhei anglici*).—Two kinds of rhubarb are met with in the shops under the name of English rhubarb: one is dressed or trimmed, so as to resemble the Russian kind, and is, I believe, the produce of *Rheum palmatum*; the other is sometimes called stick rhubarb, and is said by Messrs. Stephenson and Churchill to be obtained from *Rheum undulatum*; but I suspect this statement to be erroneous.

The dressed English rhubarb is the produce of Banbury, in Oxfordshire. It is the kind frequently observed in the show-bottles of druggists' windows, and was formerly sold in Cheapside and the Poultry for "Turkey rhubarb," by persons dressed up as Turks. It occurs in various-sized and shaped pieces, which are trimmed and frequently perforated, so as to represent Russian rhubarb: some of the pieces are cylindrical in their form, and are evidently segments of cylinders; others are flat. This kind of rhubarb is very light, spongy (especially in the middle of the pieces), attractive of moisture, pasty under the pestle, and has a reddish or pinkish hue not observed in the Asiatic kinds. Internally it has usually a marbled appearance; the streaks are pinkish, parallel, and have a radiated disposition; and in the centre of some of the larger pieces the texture is soft and woolly, and may be easily indented by the nail. Its taste is astringent and very mucilaginous; it is not at all, or only very slightly, gritty under the teeth: its odour is feeble, and more unpleasant than either the Russian or East Indian kinds. The microscope discovers in it, for the most part, very few crystals of oxalate of lime.

The common stick English rhubarb is sold in herb shops. It occurs in angular or roundish pieces, of about five or six inches long.

---

4. The cultivation of rhubarb in Britain was long since recommended by Sir William Fordyce, in a work entitled *The Great Importance and proper Method of Cultivating and Curing Rhubarb in Britain, for Medical Purposes.* Lond. 1784.
and an inch thick. When fractured it presents the radiated appearance, and the red-coloured streaks, of the kind last mentioned. Its taste is astringent, but very mucilaginous; it is not gritty under the teeth; it breaks very short.

English rhubarb is extensively employed by druggists to adulterate the powder of Asiatic rhubarb.

6. French Rhubarb (radix rhci gallici).—This kind of rhubarb is procured from Rheum rhaponticum, undulatum, and especially compactum. These are cultivated at Rheumpole, a place not far from Lorient, in the department of Morbihan. Rheum palmatum is no longer cultivated there. Through the kindness of Professor Guibourt, I possess two kinds of French rhubarb. One of these he calls flat, and is probably the produce of R. rhaponticum; the other he terms round, and is the produce of R. compactum.

Commerce.—In 1831, the quantity of rhubarb imported from Russia was 6,901 lbs.; from the East Indies, 133,462 lbs. The quantities of rhubarb on which duty (1s. per lb.) has been paid during the last six years, are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>East Indian</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>32,515</td>
<td>10,647</td>
</tr>
<tr>
<td>1836</td>
<td>36,836</td>
<td>7,752</td>
</tr>
<tr>
<td>1837</td>
<td>44,669</td>
<td>5,946</td>
</tr>
<tr>
<td>1838</td>
<td>37,028</td>
<td>7,402</td>
</tr>
<tr>
<td>1839</td>
<td>23,572</td>
<td>12,523</td>
</tr>
<tr>
<td>1840</td>
<td>16,745</td>
<td>22,203</td>
</tr>
</tbody>
</table>

Composition.—The most important analyses of rhubarb are those of Schrader, N. E. Henry, Brande, Hornemann, Peretti, Buchner and Herberger, Lucae, O. Henry, and Brandes.

One hundred grains of the finest Russian Rhubarb, according to Mr. Brande, lost 44.2 grs. by being repeatedly digested in alcohol (sp. gr. 0.815). By evaporation the alcoholic solution yielded a residue of 36 grains (the loss 8.2 grs. may be ascribed to water), of which 10 grains (resin?) were insoluble in water.

The rhubarb left after the action of alcohol weighed when dried at 212° F., 55.8 grs. It yielded to water 31 grains (gum?). The insoluble residue, weighing 24.8 grs., must have consisted of woody fibre, oxalate of lime, &c. It has been already stated (p. 1179) that Mr. Quekett obtained from 35 to 40 per cent. of oxalate of lime from Russian Rhubarb.
<table>
<thead>
<tr>
<th>Chinese Name</th>
<th>English Name</th>
<th>Russian Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheum Fruits</td>
<td>Rheum Berry</td>
<td>Береза</td>
</tr>
</tbody>
</table>
1. Odorous matter of Rhubarb (Volatile Oil)—In none of the analyses of rhubarb is any mention made of an odorous principle; yet such must exist. Professor Guibourf, however, ascribes the odour, colour, and taste of rhubarb to one and the same principle; but this opinion can scarcely be correct, since the degrees of colour and odour bear no proportion to each other in different kinds of rhubarb. The odorous principle is probably a volatile oil, but it has not hitherto been isolated. Dr. Bressy announced, a few years since, to the Académie de Médecine, that he had separated it, but the committee appointed to repeat his experiments was unable to procure it by his process. Zenneck says that the rhubarb odour is imitated by a mixture of nitric acid, aloes, and chloride of iron.

2. Yellow colouring matter of Rhubarb (Rhabarberic acid, Brandes; Rheumin, Hornemann; Rhabarberin, Geiger; Rhein, Auctor.)—Extracted from rhubarb in powder by means of ether, and obtained by distilling off the greater part of the ether from the tincture thus procured, and leaving the residue to spontaneous crystallization. The crystals are purified by repeated solutions and crystallizations in alcohol. When dry, they assume the form of a powder, having an intensely yellow colour, but being without any remarkable taste. Rhabarberic acid is unchanged in the air; heated, it fuses into a yellow fluid, which, by a continuance of the heat, becomes reddish-brown, evolves dense yellow vapours [pyro-rhabarberic acid?], and carbonizes. It requires more than 1000 parts of cold water to dissolve it, but is twice as soluble in boiling water. It is more soluble in alcohol and in ether: the solutions reddens limus. In cold oil of almonds and in oil of turpentine it is slightly soluble; but is much more so when these liquids are hot. It dissolves, with a dark-red colour, in sulphuric and in nitric acids: water precipitates it from these solutions unchanged. Nitric acid attacks it with great difficulty. Alkaline solutions make it dark-red, and generally (time-water excepted) dissolve it. Alum renders it dark-red. The alkaline solutions of it form, with acetate of lead, chloride of calcium, and chloride of barium, yellow precipitates; with sulphate of copper, violet, which, after some time, becomes blue. Brandes regards rhabarberic acid as the active principle of rhubarb. Six grains of the pure acid given to a strong young man caused griping, but did not purge. Dulk is of opinion that the active principle of rhubarb is a difficultly crystallizable substance, which he terms Rhein, and which, by oxidation, becomes Rhabarberic acid. This acid, according to Brandes and Leber, consists of $\text{C}_{20} \text{H}_{10} \text{O}_{19}$.

3. Astringent Matter (Tannic and Gallic acids).—The red veins are the seat of the astringent matter. This is proved by brushing the cut surface of rhubarb with a weak solution of a ferruginous salt: the red veins only undergo a change of colour. From the observations of Brandes, it appears that rhubarb contains gallic, as well as tannic, acid.

4. Bitter Principle.—Rhubarb contains a bitter principle; but most of the substances which have been announced as the bitter principle of rhubarb, under the name of caphopicrite (? from καφέω, I exhale, and πικρός, bitter), or rhabarberin, are themselves compounded of two or more principles. Thus, Pfaff's rhabarberin consists of uncrystallizable sugar, extractive, resin, rhabarberic acid, and tannin. Henry's rhabarberin consists of resin and rhabarberic acid. Buchner and Herberger's rhabarberin is a mixture of extractive, uncrystallizable sugar, and rhabarberic acid. Carpenter's rhabarberin contains some rhabarberic acid. It would appear from the analysis of Brandes that the bitter principle is of the nature of resin; but Buchner admits the existence of a bitter extractive (caphopicrite), which is soluble in water and alcohol, but is insoluble in ether. This extractive, he says, is in intimate combination with rhabarberic, tannic, and gallic acids; the com-

---

* Hist. des Drogu. t. ii. p. 569, 3me éd.
* Dic.t des Drogu. t. iv. p. 425.
* Pharm. Central-Blatt für 1832, S. 237.
* Brandes and Geiger, Ibid. für 1834, S. 607.
* Ibid. für 1836, S. 499.
* Ibid. für 1839, S. 102-105.
* Brandes, Ibid. für 1836, S. 498.
* Ibid. für 1837, S. 821.
pound thus formed being the resin of some chemists. It is obvious, therefore, that a further examination of the bitter matter is required to make out satisfactorily its nature.

5. Rhaponticin. — A yellow, crystallizable, odourless, tasteless substance, obtained from the root of European [English ?] rhubarb. It is insoluble in cold water, ether, and the volatile oils, but soluble in 24 times its weight of boiling water, and twice its weight of absolute alcohol.

6. Oxalate of Lime.—The conglomerate raphides before noticed (p. 1179) are crystals of oxalate of lime. They may be separated in great abundance by boiling Russian or China rhubarb in water until the cohesion of the tissue is completely destroyed. When the decomposed tissue is well shaken with water, the crystals fall to the bottom of the vessel. Heated to redness, they are changed into carbonate of lime. A solution of them in diluted nitric acid, or a solution obtained by boiling the crystals with a solution of carbonate of soda, forms, with nitrate of silver, a white precipitate (oxalate of silver), which explodes when heated.

Chemical Characteristics.—If the powder of rhubarb be heated in a glass capsule over a lamp, an odorous yellow vapour (rhabarberic or pyro-rhabarberic acid) is obtained, which communicates a red colour to a solution of caustic potash. The aqueous infusion of rhubarb forms, with the sesquichloride of iron, a green compound (tannate of iron); with a solution of gelatin, a copious yellow precipitate (tannate of gelatin), which is dissolved on the application of heat, or by the addition of an excess of gelatin; with a solution of sulphate of quina, a yellowish precipitate (tannate of quina); with the alkalis (potash, soda, and ammonia) a red-coloured solution (soluble alkaline rhabarberates); with lime-water, a reddish precipitate (rhabarberate of lime); with the acids (the acetic excepted), precipitates (composed of rhabarberic acid and the precipitant); and with various metallic solutions (as of acetate of lead, protochloride of tin, protonitrate of mercury, and the nitrate of silver), precipitates (principally metallic rhabarberates and tannates).

Paper coloured by rhubarb is not affected by boracic acid, or by the borates rendered acid, whereas tumeric paper is reddened by these agents. A decoction of Russian, Dutch-trimmed, or of China rhubarb, becomes, with a solution of iodine, greenish-blue (iodide of starch); after a few minutes the colour disappears, and no iodine can be detected in the liquor by starch, unless nitric acid be previously added. A decoction of English rhubarb is rendered, by a solution of iodine, intensely blue (iodide of starch), the colour not completely disappearing by standing.

Physiological Effects. a. On Animals.—On the Solipedes rhubarb acts as a tonic, confining its action principally to the stomach, whose digestive power it augments. On the Carnivora it operates, in doses of half a drachm, in the same way; but, in doses of several drachms, as a purgative. On the larger Herbivora it may be given to the extent of several ounces without causing purgation. Tiedemann and Gmelin detected it by its yellow colour in the serum of

---

4 Berzelius, Traité de Chim. vi. 205.
the blood of the mesenteric, splenic, and portal veins, and in the urine of dogs, to which rhubarb had been administered by the mouth. They failed to recognise it in the chyle.

β. On Man.—In small doses (as from four to eight grains) it acts as an astringent tonic, its operation being principally or wholly confined to the digestive organs. In relaxed conditions of these parts it promotes the appetite, assists the digestive process, improves the quality of the alvine secretions, and often restrains diarrhea. In large doses (as from a scruple to a drachm) it operates, slowly and mildly, as a purgative, sometimes causing slight gripping. It never inflames the mucous membrane of the alimentary canal, as jalap, scammony, colocynth, and some other drastic purgatives, are capable of doing. The constipation which follows its cathartic effect has been ascribed to the operation of its astringent matter. In febrile complaints and inflammatory diseases it sometimes accelerates the pulse, and raises the temperature of the body, whence the impropriety of its use in these cases. Its yellow colouring matter (rhubarberic acid) becomes absorbed, and may be recognised in the urine, by the yellow stain which this secretion produces on linen, and by the red colour which it assumes on the addition of potash. By a more prolonged use of rhubarb the sweat (especially of the armpits) becomes tinged yellow. The milk of nurses who have taken it, acquires a purgative property. Rhubarb has for a long period been considered to possess a specific influence over the liver, to promote the secretion of bile, and to be useful in jaundice. These opinions, which, as Dr. Cullen correctly observed, have no foundation either in theory or practice, arose from the absurd doctrine of signatures.

Considered in relation to other medicinal agents, rhubarb holds an intermediate rank between the bitter tonics on the one hand, and the drastics on the other. From the first it is distinguished by its purgative properties; from the latter, by its tonic operation and the mildness of its evacuant effects. As a purgative it is perhaps more closely allied to aloes than to any other cathartic in ordinary use; but is distinguished by its much milder operation, and its want of any specific action on the large intestines.

The comparative power of the several kinds of rhubarb has scarcely been ascertained with precision. The remarks above made apply to the Russian and Chinese varieties, whose power is about equal. From experiments made by Dr. Parry, at the Bath Hospital, it appears that the purgative qualities of the English rhubarb are scarcely so strong as those of the Russian and Chinese varieties; but the difference is not great. Himalayan rhubarb is, according to Dr. Twining, almost equal to Russian rhubarb in its purgative effects; but it is less aromatic, though more astringent.

Uses.—The remedial value of rhubarb depends on the mildness and safety of its operation, and on its tonic and astringent influence over the alimentary canal.

1. As a purgative.—There are many cases in which the above-
mentioned qualities render rhubarb peculiarly valuable as a purgative. In mild cases of diarrhoea it sometimes proves peculiarly efficacious; by first evacuating any irritating matter contained in the bowels, and afterwards acting as an astringent. Given at the commencement of the disease, it is a very popular remedy; and though doubtless it is often employed unnecessarily (since, as Dr. Cullen has justly observed, in many cases no further evacuation is necessary or proper than what is occasioned by the disease) yet it rarely if ever does harm. Sulphate of potash is a very useful adjunct to it, and promotes its purgative operation. Antacids (as chalk or magnesia) are frequently conjoined with it. It is not fitted for inflammatory or febrile cases. As an infant's purgative it is deservedly celebrated. It is well adapted for a variety of children's complaints; but is peculiarly adapted to scrofulous subjects and those afflicted with enlargement of the mesenteric glands, accompanied with timid belly and atrophy. Magnesia, sulphate of potash, or calomel, may be associated with it according to circumstances. For an ordinary purgative in habitual constiveness it is scarcely adapted, on account of the constipation which follows its purgative effect.

2. As a stomachic and tonic.—In dyspepsia, accompanied with a debilitated condition of the digestive organs, small doses of rhubarb sometimes prove beneficial, by promoting the appetite and assisting the digestive process. In scrofulous enlargement of the lymphatic glands, in children, rhubarb, in small doses, is often combined with mercurial alteratives (as the hydrargyrum cum cretâ), or with antacids (as magnesia or chalk), and frequently with apparent advantage.

3. As an external application.—Sir Everard Home used it as a topical application to promote the healing of indolent, non-painful ulcers. The powder is to be lightly strewn over the ulcer and a compress applied. In irritable ulcers an eighth part of opium is to be added. When applied to large ulcers it has produced pretty active purging. The powder of rhubarb, incorporated with saliva and rubbed on the abdomen, proves purgative.

Administration.—The powder of Russian or China rhubarb may be exhibited, as a stomachic and tonic, in doses of from five to ten grains; as a purgative, from a scruple to a drachm. The dose of indigenous rhubarb should be about twice as much as the above.

“By roasting it with a gentle heat, till it becomes friable [Rheum torrefactum], its cathartic power is diminished, and its astringency supposed to be increased” (Lewis).

Infusum Rheum, L. E. D.; Infusion of Rhubarb.—(Rhubarb, sliced [in coarse powder, E.], 5iij. [5 j. E.; 3 j. D.]; Boiling [distilled, L.] Water, Oj. [Oss. wine measure, D.; 1 jvxij. E.]. Spirit of Cinnamon, f3ij. E.) Macerate for two hours in a lightly-covered vessel, and strain [through linen or calico, E.].—Boiling water extracts from rhubarb, rhabarberic acid, resin, tannin, gallic acid, sugar, extractive, and starch. As the liquor cools it becomes turbid, owing to some rhabarberic acid, resin, tannin, gallic acid, and tannate of...
starch being deposited (Brandes). Infusion of rhubarb is stomachic and gently purgative. It is usually employed as an adjunct to, or vehicle for, other mild purgatives or tonics. The alkalis or magnesia are sometimes conjoined. The stronger acids and most metallic solutions are incompatible with it.—Dose, ½j. to ¾j.

2. TINCTURA RHEI, E.; Tincture of Rhubarb.—(Rhubarb, in moderately fine powder, ⅜jss.; Cardamom Seeds, bruised, ⅝s.; Proof Spirit, Oij.) Mix the rhubarb and cardamom seeds, and proceed by the process of percolation, as directed for tincture of cinchona. This tincture may also be prepared by digestion.—The alcoholic tincture of rhubarb contains rhabarberic acid, impure rhabarberic acid (resinous yellow colouring matter of rhubarb), tannin, semi-resin, and uncrystallizable sugar (Brandes). Cordial, stomachic, and mildly purgative.—Dose, as a stomachic, ½j. to ¾j.; as a purgative, ¾ss. to ½j.

3. TINCTURA RHEI COMPOSITA, L. D.; Compound Tincture of Rhubarb.—(Rhubarb, sliced, ⅝jss. [⅞j. D.]; Liquorice, bruised, ⅝j. [⅝s. D.]; Saffron, ⅝j. [⅞j. D.]; [Ginger, sliced, ⅝j. L.; Cardamom Seeds, ⅝s. D.], Proof Spirit, Oij. [wine measure, D.] Macerate for fourteen [seven, D.] days, and strain).—Cordial, stimulant, stomachic, and mildly purgative. A popular remedy in various disordered conditions of the alimentary canal, especially at the commencement of diarrhoea, also in flatulent colic. It is a very useful adjunct to purgative mixtures, in cases in which the use of a cordial and stomachic cathartic is required.—Dose, as a stomachic, ½j. to ¾j.; as a purgative, ¾ss. to ½j.

4. TINCTURA RHEI ET ALOES, E.; Tincture of Rhubarb and Aloes.—(Rhubarb, in moderately fine powder, ⅝jss.; Socotrine or East Indian Aloes, in moderately fine powder, ⅝j.; Cardamom Seeds, bruised, ½v.; Proof Spirit, Oij. Mix the powders, and proceed as for the tincture of cinchona).—A cordial and stomachic purgative, in doses of from ¾ss. to ½j.

5. TINCTURA RHEI ET GENTIANAE, E.; Tincture of Rhubarb and Gentian.—(Rhubarb, in moderately fine powder, ½j.; Gentian, finely cut or in coarse powder, ⅝s.; Proof Spirit, Oij. Mix the powders, and proceed as directed for tincture of Cinchona).—Stomachic, tonic, and feebly purgative.—Dose, as a tonic, ½j. to ¾j.; as a very mild purgative, ¾ss. to ½j.

6. VINUM RHEI, E.; Wine of Rhubarb.—(Rhubarb, in coarse powder, ½v.; Canella, in coarse powder, ½j.; Proof Spirit, ⅝v.; Sherry, Oj. and ½xv. Digest for seven days, strain, express strongly the residuum, and filter the liquors.)—Cordial, stomachic, and mildly purgative. Used in the same cases as the compound tincture of rhubarb.—Dose, as a stomachic, ½j. to ¾j.; as a purgative, ¾ss. to ½j.

7. EXTRACTUM RHEI, L. E. D.; Extract of Rhubarb.—(Rhubarb, powder, ⅘v. [⅞j. D.]; Proof Spirit, Oj. [wine measure, D.]; Distilled Water, Ovij. [wine measure, D.] Macerate for four days with a gentle heat, afterwards strain, and set by, that the dregs may sub-
Pour off the liquor, and evaporate it, when strained, to a proper consistence, L. D.—The process of the Edinburgh College is as follows:—Take of Rhubarb, lb.; Water, Ov. Cut the rhubarb into small fragments; macerate it for twenty-four hours in three pints of the water; filter the liquor through a cloth, and express it with the hands or otherwise moderately; macerate the residuum with the rest of the water for twelve hours at least; filter the liquor with the same cloth as before, and express the residuum strongly. The liquors, filtered again, if necessary, are then to be evaporated together to a proper consistence in the vapour-bath. The extract, however, is obtained of finer quality by evaporation in a vacuum with a gentle heat.)

The principles extracted from rhubarb by water and spirit have been already noticed (p. 1187-88). The Edinburgh College, it will be observed, employ no spirit in the above process. Great care is required in the preparation of this extract, as both the purgative and tonic properties of rhubarb are very apt to become deteriorated by the process. I have some extract prepared in vacuo more than twenty years ago, which still preserves the proper odour and flavour of rhubarb.—The dose of extract of rhubarb, as a purgative, is from gr. x. to 5ss.

8. PILULÆ RHEI, E.; Rhubarb Pills.—Rhubarb, in fine powder, nine parts; Acetate of Potash, one part; Conserves of Red Roses, five parts. Beat them into a proper mass, and divide it into five-grain pills)—Stomachic and purgative. The acetate of potash is employed, I presume, to prevent the pills becoming hard by keeping. Each pill contains nearly three and a half grains of rhubarb.

9. PILULÆ RHEI COMPOSITÆ, L. E.; Compound Pills of Rhubarb.—(Rhubarb, powdered, 3ij. [twelve parts, E.]; Aloes, powdered 5vj. [nine parts, E.]; Myrrh, powdered, 5ss. [six parts, E.]; Soap, 3j. [six parts, E.]; [Oil of Caraway, f5ss. L., Oil of Peppermint, one part, E.]; Syrup, q. s. [Conserve of Red Roses, five parts, E.] Mix them, and beat them into a proper mass [and divide this into five-grain pills. This pill may be also made without oil of peppermint, when so preferred, E.].—Tonic and mildly purgative.—Dose 3j. or four pills.

10. PILULÆ RHEI ET FERRI, E.; Pills of Rhubarb and Iron.—(Dried sulphate of Iron, four parts; Extract of Rhubarb, ten parts; Conserves of Red Roses, about five parts. Beat them into a proper pill mass, and divide it into five-grain pills.)—Tonic.—Dose, two to four pills.

11. PULVIS RHEI COMPOSITUS, E.; Compound Powder of Rhubarb.—(Magnesia, lbj.; Ginger, in fine powder, 3ij.; Rhubarb, in fine powder, 3iv. Mix them thoroughly, and preserve the powder in well-closed bottles).—A very useful antacid and mild stomachic purgative, especially adapted for children.—Dose, for adults, 3j. to 5ss.; for children, gr. v. to gr. x.
2. RU'MEX ACETO'SA, Linn. L. D.—COMMON SORREL.

Sex. Syst. Hexandria, Trigynia.

(Folia, L. D.)

Botany. Gen. Char.—Calyx six-parted; the three outer segments somewhat cohering at the base; the three inner becoming enlarged after flowering. Stamens six. Styles three, reflexed. Stigmas three, cut. Nut with three sharp angles. Embryo on one side. Radicle superior (Bot. Gall. for the most part)

Sp. Char.—Flowers dioecious. Leaves oblong, arrow-shaped. Permanent petals tuberculated (Smith).


Description.—Sorrel leaves have an agreeable, acid, slightly astringent taste.

Composition.—I am unacquainted with any analysis of this plant. The leaves are composed of binoxalate of potash, tartaric acid, mucilage, fecula, chlorophylle, tannic acid, and woody fibre.

Physiological Effects.—Slightly nutritive. Refrigerant and diuretic. Esteemed antiscorbutic.

Uses.—Employed as a pot-herb and salad: from the latter use of it, it has been termed green-sauce. Rarely applied medicinally. A decoction of the leaves may be administered in whey, as a cooling and pleasant drink in febrile and inflammatory diseases. In some parts of Scandinavia, bread is made of it in times of scarcity. Laugier has suggested that the use of aliments containing oxalic acid may, under some circumstances, dispose to the formation of mulberry calculi.

3. RU'MEX HYDROLAP'ATHUM, Hudson.—GREAT WATER DOCK.

Rumex aquaticus, D.

Sex. Syst. Hexandria, Trigynia.

(Radix, D.)


Sp. Char.—Permanent petals ovate-oblong, nearly entire, unequally tuberculated. Leaves lanceolate, acute at each end. Whorls rather crowded, almost entirely leafless (Smith).


Description.—The herb and root were formerly used under the name of herba et radix britannica. The root is inodorous, but has an acrid bitter taste.

Composition.—I am unacquainted with any analysis of the plant. The root contains tannic acid.

* Withering, Bot. vol. ii.
* Clarke, Travels in Scandinavia, Part. III. S. ii. p. 90. 1823.
Physiological Effects.—The root is astringent, and is reputed anti-scorbutic.

Uses.—Scarcely employed. Has been exhibited internally in scurvy, skin diseases, and rheumatism. The powdered root has been used as a dentifrice; the decoction of the root as an astringent gargle for ulcerated or spongy gums.


Sex. Syst. Octandria, Trigynia.

(Radix, D.)

Botany. Gen. Char.—Calyx four- to six-partite, persistent. Stamens five to nine, generally eight. Ovary with two to three styles, and as many stigmas. Cariopsis or nut ovate or triangular. Embryo lateral or central; the radicle superior (Bot. Gall.)

Sp. Char. — Stem simple, with a single, spiked, cluster of flowers. Leaves ovate, wavy, running down into the footstalks (Smith). — Flowers rose-coloured.


Description. — Bistort root (radix bistortae) is twice bent on itself: hence its name from bis, twice; and torta, twisted or bent. It is rugous and brown externally; reddish internally; almost inodorous; it has an austere, strongly astringent taste.

Composition. — This root has not been analyzed. The principal constituents are tannic acid, starch, oxalate of lime, colouring matter, and woody fibre.

Physiological Effects.—The local effect is that of a powerful astringent, depending on the tannic acid which it contains; its remote effects are those of a tonic (vide p. 186). The presence of starch renders the root nutritive: hence in Siberia it is roasted and eaten.

Uses.—It is but little employed. A decoction of the root is sometimes applied as an astringent injection in leucorrhoea and gleet; as a gargle in spongy gums and relaxed sore throat; and as a lotion to ulcers attended with a profuse discharge.

Internally it has been employed, in combination with gentian, in intermittents. It has also been used as an astringent in passive hemorrhages and chronic alvine fluxes.

Administration. — The dose of the powder is from 3 j. to 5 s. The decoction (prepared by boiling 5 j. of the root in 0 jss. of boiling water) may be administered in doses of from f5 j. to f3 j.

OTHER MEDICINAL Polygonaceæ.

An extract prepared from the bark of Coccolo'ba vvi'fera, or the Sea-side Grape, a native of the West Indies, has been used under the name of Jamaica Kino.
Order XXXV.—CHENOPODIACEÆ, Lindley.—THE GOOSE-FOOT TRIBE.

Atriplices, Jussieu.—Chenopodes, Ventenat.

The substance called Barilla (impure carbonate of soda), described at p. 550, is obtained by the combustion of plants belonging to the genera Salicornia, Sal-sola, and Chenopodium. None of the Chenopodiaceæ are employed in medicine in this country. Some few are used as pot-herbs or salads, as Spinach (Spin'cia olera'ceu) and Beet (Be'ta vulga'ris).

Order XXXVI.—LABIATE, Jussieu.—THE MINT TRIBE.

Lamiaceæ, Lindley.

Essential Character.—Calyx tubular, inferior, persistent, the odd tooth being next the axis; regular five- or ten-toothed, or irregular bilabiate or three- to ten-toothed. Corolla monopetalous, hypogynous, bilabiate; the lesser lip undivided or bifid, overlapping the lower, which is larger and three-lobed. Stamens four, didynamous, inserted upon the corolla, alternately with the lobes of the lower lip, the two upper sometimes wanting; anthers two-celled; sometimes apparently unilocular in consequence of the confluence of the cells at the apex: sometimes one cell altogether obsolete, or the two cells separated by a bifurcation of the connective. Ovary deeply four-lobed, seated in a fleshy hypogynous disk; the lobes each containing one erect ovule; style one, proceeding from the base of the lobes of the ovary; stigma bifid, usually acute. Fruit one to four small nuts, enclosed within the persistent calyx. Seeds erect, with little or no albumen; embryo erect; cotyledons flat.

—Herbaceous plants or undershrubs. Stem four-cornered, with opposite ramifications. Leaves opposite, divided or undivided, without stipules, replete with receptacles of aromatic oil. Flowers in opposite, nearly sessile, axillary eymes, resembling

whorls; sometimes solitary, or as if capitulate (Lindley).

Properties.—The medicinal activity of the plants of this family depends on volatile oil, bitter extractive, and astringent matter. The volatile oil resides in small receptacles (by some called globular glands) contained in the leaves. "These glands are placed quite superficially, or rather in depressed points, and are commonly of a shining yellow colour. We may regard them as oleo-resinous matter separated from glands lying on the under surface. When macerated in strong spirit of wine they remain unchanged, and appear under the microscope as transparent, probably cellular, vesicles, filled with a yellow granular matter." The oils of labiate plants, like other volatile oils, consist of éleoptène and stéaroptène: it is the latter substance which is described by some chemists as camphor.

The bitter extractive is found, in greater or less quantity, in all the Labiaceæ. It is this principle which communicates the bitterness to the watery infusion of these plants.

The presence of astringent matter is shown by the green colour produced when a ferruginous salt is added to the infusion of some of the Labiaceæ.

The volatile oil gives to these plants aromatic, carminative, and slightly stimu-
lant properties. The bitter extractive renders them tonic and stomachic. The astringent matter is usually in too small a quantity to communicate much medicinal activity, though it must contribute to the tonic operation.

The perfumer uses some labiate plants on account of their fragrant odour; the cook employs others for their flavour and condimentary properties; the medical practitioner administers them to relieve nausea and colicky pains, to expel wind, to cover the taste of nauseous medicines, and to prevent or relieve griping pains.

1. LAVAN' DULA VE'RA, De Cand. E.—COMMON OR GARDEN LAVENDER.

Lavandula angustifolia, Ehrenberg.—Lavandula Spica, L. D.

Sex. Syst. Didynamia, Gymnospermia.

(Flores, L. D.—The flowering heads; and volatile oil of ditto, E.)

History.—No plant is mentioned, under the name of Lavender, by Hippocrates, Theophrastus, Dioscorides, or Pliny. It is not improbable, however, that lavender may be alluded to, under some other name, by one or more of these authors; but it is impossible now to identify it with any certainty. Sprengel 7 delares, on the authority of Hesychius, that the Κρηνος of Theophrastus 8 is Lavandula Spica.

Botany. Gen. Char. — Calyx tubular, nearly equal, thirteen or rarely fifteen-ribbed, shortly five-toothed, with the four lower teeth nearly equal, or the two lower narrower; the upper either but little broader than the lateral ones, or expanded into a dilated appendage. Upper lip of corolla two-lobed; lower three-lobed; all the divisions nearly equal. Stamens didynamous, declinate. Filaments smooth, distinct, not toothed. Anthers reniform, one-celled (Condensed from Bentham; Lindley).

Sp. Char.—Leaves oblong-linear or lanceolate, quite entire, when young hoary and revolute at the edges. Spikes interrupted. Whorls of six to ten flowers. Floral leaves rhomboid-ovate, acuminate, membranous, all fertile, the uppermost shorter than the calyx. Bracts scarcely any (Bentham).—Shrub, one to two feet high. Flowers purplish-gray.

Lavandula Spica, De Cand. (L. latifolia, Villars) or French Lavender, formerly considered as a variety only of the preceding species, is not used in medicine. It is distinguished by its lower habit, whiter colour, the leaves more congested at the base of the branches, the spike denser and shorter, the floral leaves lanceolate or linear, and the presence of bracts (Bentham). It yields by distillation oil of spike (oleum spicae) sometimes called foreign oil of lavender, or in order to distinguish it from the oil of Lavandula Stæchas, the true oil of spike (oleum spicae verum). This oil is distinguished from the genuine oil of Lavandula vera by its darker green colour, and its less grateful odour. It is used by painters on porcelain, and by artists in the preparation of varnishes.

1 Hist. Rei Herb. t. i. p. 96.
Hab.—South of Europe. Extensively cultivated at Mitcham, in Surrey, from which place the London market is principally supplied.

Properties.—Lavender flowers have a bluish-gray colour, a pleasant odour, and a pungent bitter taste. The flowering stems are collected in June or July, dried in the shade, and made up into bundles for sale. A cold infusion of the flowers is deepened in colour (tannate of iron) by sesquichloride of iron.

Composition.—The principal constituents of the flowers are volatile oil, resin?, tannic acid, a bitter principle, and woody fibre.

Volatile Oil (see below).

Physiological Effects.—The flowers are carminative, mildly stimulant, and somewhat tonic. Kraus¹ says, that when taken internally, they cause torrmina ventris.

Uses.—Lavender flowers are sometimes employed as effrines. They enter into the composition of the pulvis asari compositus, D. (p. 1138). The following are the officinal preparations, with their uses, of lavender flowers:—

1. OLEUM LAVANDULÆ, L. E. D.; Oleum Lavandulae veræ: English Oil of Lavender, offic.—(Prepared by submitting lavender flowers to distillation with water). It has a pale yellow colour, a hot taste, and a very fragrant odour. Its sp. gr. varies from 0·877 to 0·905; the lightest oil being the purest. It boils at 397° F.; and is composed, according to Dr. Kane, of C₁₀ H₁₄ O₂. One pound of oil is obtained from fifty to seventy pounds of the flowers. When the stalks and leaves are distilled with the flowers, the odour of the oil is considerably deteriorated.¹ It is a stimulant and stomachic, and is sometimes given in hysteria and headache; but is more commonly employed as a perfume for scenting evaporating lotions, ointments, liniments, &c.—Dose, gtt. ij. to gtt. v.


Lavender Water.—The fragrant perfume sold in the shops, under the name

¹ Heilmittell, p. 473.
of Lavender Water, is a solution of the oil of lavender and of other odoriferous substances in spirit. There are various formulae for its preparation, scarcely two manufacturers adopting precisely the same one. The following yields a most excellent product:—Oil of Lavender, Oil of Bergamot, aa. f ʒij.; Otto of Roses, Oil of Cloves, aa. gtt. ʒij.; Musk, gr. ʒij.; Oil of Rosemary, fʒij.; Honey, ʒij.; Benzoic Acid, ʒij.; Rectified Spirit, Oij.; Distilled Water, ʒij. Mix, and, after standing a sufficient time (the longer the better), filter. This agreeable perfume may be employed for scenting spirit washes, &c. but is principally consumed for the toilette.


2. MEN’THA VIR’IDIS, Linn. L. E. D.—SPEARMINT.

Sex. Syst. Didynamia, Gymnospermia.

(Herba, D.—Herb, E.)

History.—Hippocrates employed in medicine a plant which he terms Μινθη; but it is uncertain what particular species he referred to. On account of its agreeable odour it was also called ἩδSensitive (from ἡδονη, sweet; and σμῆ, smell), a name by which Dioscorides "designates it. Strabo tells us that Minthe was a concubine of Pluto, and that she was changed by Proserpine into a plant, which was called after her. Ovid also alludes to this fable.

Botany. Gen. Char.—Calyx campanulate or tubular, five-toothed, equal or somewhat two-lipped, with the throat naked inside or villous. Corolla with the tube enclosed, the limb campanulate, nearly equal, four-cleft: the upper segment broader, nearly entire or emarginate. Stamens four, equal, erect, distant; filaments smooth, naked; anthers with two parallel cells. Style shortly bifid, with the lobes bearing stigmas at the points. Achenia dry, smooth (Bentham).
Sp. Char.—Stem erect, smooth. Leaves subsessile, ovate-lanceolate, unequally serrated, smooth; those under the flowers all bract-like, rather longer than the whorls; those last and the calyces hairy or smooth. Spikes cylindrical, loose. Whorls approximated, or the lowest or all of them distant (Bentham).—Creeping-rooted.

Hab.—Marshy places. Indigenous. A native of the milder parts of Europe; also of Africa and America. Perennial. Flowers in August. Selected for medicinal use when about to flower.

Properties.—The whole herb, called green-mint or spearmint [herba menthei viridis), is employed in medicine. It has a strong but peculiar odour, and an aromatic, bitter taste, followed by a sense of coldness when air is drawn into the mouth. Sesquichloride of iron communicates a green colour [tannate of iron) to the cold watery infusion.

Composition.—Its odour and aromatic qualities depend on volatile oil. It also contains tannic acid, resin? a bitter principle, and woody fibre.

Volatile Oil. (See p. 1197.)

Physiological Effects.—Aromatic, carminative, mildly stimulant and tonic. Feebler than Peppermint. Said, though without sufficient foundation, to check the secretion of milk, and to act as an emmenagogue.

Uses.—Employed as a salad and sweet herb. In medicine it is principally used as a flavouring ingredient, and to alleviate or prevent colicky pains. The following are its officinal preparations, with their uses:

1. INFUSUM MENTHE SIMPLEX, D.; Infusion of Spearmint; Spearmint Tea.—(Spearmint leaves, dried, 3ij.; Boiling water, a sufficient quantity to afford six ounces of strained liquor).—Stomachic and carminative. Used in irritable conditions of the stomach; but is ordinarily a vehicle for other remedies.—Dose, fʒ to fʒij. or ad libitum.

2. INFUSUM MENTHÆ COMPOSITUM, D. Compound Infusion of Spearmint.—(Spearmint leaves, dried, ʒij.; Boiling Water, a sufficient quantity to afford six ounces of strained liquor). Digest for half an hour in a covered vessel, and, when the liquor has grown cold, strain; then add Refined Sugar, ʒij.; Oil of Spearmint, gtt. iij. dissolved in

Compound Tincture of Cardamoms, ʒss. Mix.)—A grateful stomachic, slightly stimulant, and diaphoretic. Employed to allay nausea and vomiting, and to cover the taste of disagreeable medicines. —Dose, fʒj. to fʒʒj.

3. OLEUM MENTILE VIRIDIS, L. E. D. Oil of Spearmint. — (Obtained by submitting the fresh herb to distillation with water). It is of a pale yellowish colour, but becomes reddish by age. It has the odour and taste of the plant, and is lighter than water; sp. gr. 0°914. It boils at 320° F.; and is composed, according to Dr. Kane, of $C^{35}H^{28}O$. The average produce of the essential oil is not more than 1-500th of the fresh herb. It is carminative and stimulant. Dose, gtt. ij. to gtt. v. rubbed with sugar and a little water.

4. SPIRITUS MENTILE VIRIDIS, L. D. Spirit of Spearmint.—(Oil of Spearmint, ʒʒj. [by weight, ʒss. D.]; Proof [Rectified, D.]; Spirit, Cong. j. [wine measure, D.]; Water, Oj. [as much as may be sufficient to prevent empyreuma, D.]. Mix them; then, with a slow fire, let a gallon distil. Dose, ʒʒʒj. to ʒʒʒj.—This preparation has no advantage over, while it is much weaker than, the more simple and elegant preparation, the essence of spearmint of the shops.

Essence of Spearmint.—Dissolve fʒj. of Oil of Spearmint in fʒj. of Rectified Spirit. It may be coloured green by spearmint or spinach leaves. Dose, gtt. x. to gtt. xx. taken on sugar or in water.

5. AQUA MENTILE VIRIDIS, L. E. D. Spearmint Water.—(Spearmint leaves, if dried, lb. ij.; if fresh, lb. iv. [or Oil of Spearmint, ʒįj. L.]; Proof Spirit, ʒįįj. [Rectified Spirit, ʒįįj. E.]; Water, Cong. ij. Mix. Let a gallon distil. The Dublin College employs no spirit; and distils a gallon of water from ʒįss. of herb). —Spearmint water is usually made extemporaneously by suspending or dissolving a drachm of the oil in four pints of distilled water, by means of a drachm of rectified spirit and a lump of sugar (see p. 258). Spearmint water is carminative and stomachic. It is commonly used as a vehicle for other medicines. Its dose is fʒj. to fʒįįj.

3. MEN'THA PIPERI'TA, Linn. L E. D.—PEPPERMINT.

Sex. Syst. Didynamia, Gymnospermia.

(Herba, D.—Herb : Volatile oil, E.)

History.—This plant was probably introduced into medicine in the last century; at least Hill 7 in 1751, says that it “has lately got into great esteem;” and Geiger 8 says, it was introduced into Germany as a medicine, through the recommendations of the English, in the latter half of the last century.

Botany. —See Mentha viridis.

8 Hist. of the Mat. Med. p. 358.

Hab. — Watery places. Indigenous. Extensively cultivated at Mitcham, in Surrey, from whence the London market is principally supplied. Found in various parts of Europe; also in Asia, Africa, and America.

Properties.—The whole herb (herba menthe piperite) is officinal. It has a peculiar aromatic odour, and a warm, burning, bitter taste, followed by a sensation of coolness when air is drawn into the mouth. Sesquichloride of iron communicates a green colour (tannate of iron) to the cold infusion of peppermint.

Composition.—The principal constituents are volatile oil, resin?, a bitter principle, tannic acid, and woody fibre.

Volatile Oil (see below).

Physiological Effects.—Peppermint is an aromatic or carminative, stimulant, and stomachic. It is the most agreeable and powerful of all the mints.

Uses.—It is employed in medicine for several purposes, but principally to expel flatus, to cover the unpleasant taste of other medicines, to relieve nausea, gripping pain, and the flatulent colic of children. The following are the officinal preparations, with their uses:

1. Oleum Menthe Piperite, L. E. D.: Oil of Peppermint.—(Obtained by submitting the fresh herb to distillation with water).—It is colourless, or nearly so, sometimes having a pale yellow or greenish tint, and becoming reddish by age. It has a penetrating odour like that of the plant, and a burning aromatic taste, followed by a sensation of cold. The vapour of it applied to the eye causes a feeling of coldness. English Oil of Peppermint is superior to the Foreign kind. Its sp. gr. is 0.902. It boils at 365° F.; and consists, according to Dr. Kane, of $C_{21}H_{20}O_2$. The stearoptene or camphor of oil of peppermint is isomeric with the liquid oil. By the action of oil of vitriol it yields a light oil called menthen ($C_{21}H_{18}$). The stearoptene of American oil of peppermint is said to consist of $C_{10}H_{10}O$ or $C_{20}H_{20}O_2$. In a warm, dry, and favourable season, the produce of oil, from a given quantity of the fresh herb, is double that which it yields in a wet and cold season. The largest produce is three drachms and a half of oil from two pounds of fresh peppermint, and the smallest about a drachm and a half from the same quantity. I was informed by a distiller at Mitcham, that twenty mats of the herb (each mat containing about 1 cwt.) yields about seven lbs. of oil. It is carminative and stimulant, and is used occasionally as an antispasmodic. It is taken on sugar, in doses of from gtt. ii. to gtt. v.

2. Spiritus Menthe Piperite, L. D.; Spiritus Mentheae, E.—(Prepared with the Oil of Peppermint, in the same way as the Spiritus
Mentha viridis, L. D. before described. The Edinburgh College prepares it thus:—Peppermint, fresh, lb. iss.: Proof Spirit, Ovij. Mace-rate for two days in a covered vessel; add a pint and a half of water; and distil off seven pints).—A solution of the oil of peppermint in spirit may with great propriety be substituted for the preparation of the Pharmacopoeias. The spirit of peppermint is given in doses of from ½ to ⅝ of a dram.

Essence of Peppermint.—Dissolve ½ of Oil of Peppermint in ⅝ of Rectified Spirit. Some persons add peppermint or spinach leaves to communicate a green colour. The dose of this essence is from gtt. ⅙ to gtt. ⅖ on sugar.

3. AQUA MENTHÆ PIPERITÆ, L. E. D.—(Prepared with the herb or the oil of peppermint in the same way as the Aqua Menthæ viridis).—Carminative and stimulant. Used to relieve flatulency, and as a vehicle for other medicines. Dose, ⅝ to ⅞ of a dram.

Besides the above, there are several popular preparations of peppermint extensively used.

a. Infusum Menthæ piperitæ (Peppermint Tea) is prepared in the same way as spearmint tea.

β. Oleosaccharum Menthæ piperitæ, Ph. Bor., is prepared by mixing ⅝ of the whitest sugar, in powder, with gtt. ⅘ of the oil of peppermint.

γ. Rotula Menthæ piperitæ (in plano-convex masses, called peppermint drops, or flat circular disks, termed peppermint lozenges) should consist of sugar and oil of peppermint only, though flour is sometimes introduced.

The liqueur sold at the spirit-shops as mint or peppermint is used as a cordial (see p. 364).

4. MEN'THA PULE'GIUM, Linn. L. E. D.—PENNYROYAL.

Sex. Syst. Didynamia, Gymnospermia.

(Herba, D.—Herb, E.)

History.—This plant was employed in medicine by the ancient Greeks and Romans. It is the Πλέγγιον of Hippocrates and Dioscorides, and the Pulegium of Pliny.


Sp. Char.—Stem very much branched, prostrate. Leaves petiolated, ovate. Whorls all remote, globose, many-flowered. Calyxes hispid, bilabiate, villous in the inside of the throat (Bentham).—Creeping-rooted.

Hab.—Wet commons and margins of brooks. Indigenous. A native of most parts of Europe, of the Caucasus, Chili, and Teneriffe.

Properties.—The herb with the flowers (herba seu summitas pulégii) is employed in medicine. It has a strong but peculiar odour; a hot, aromatic, bitter taste, followed by a feeling of coolness in the mouth. Sesquichloride of iron causes a green colour (tannate of iron) with the cold infusion of pennyroyal.

Composition.—Its principal constituents are volatile oil, a bitter matter, resin, tannic acid, and woody fibre.
Volatile Oil (see below).

Physiological Effects.—Its effects are analogous to the other mints. Emmenagogue and antispasmodic properties are ascribed to it by the public, and formerly by medical practitioners.

Uses.—A popular remedy for obstructed menstruation, hysterical complaints, and hooping-cough. Rarely employed by the professional man. The following are its officinal preparations, with their uses:—

1. OLEUM MENTHE PULEGII, L. E. D.; Oleum Pulegii, offic.; Oil of Pennyroyal.—(Obtained by submitting the herb to distillation with water.)—It has a pale colour, a warm taste, and the peculiar odour of the herb. It boils at 395° F. Its sp. gr. is 0.925; and is composed, according to Dr. Kane, of C\(^1\)\(^0\) H\(^3\) O. The fresh herb yields from 1-120th to 1-100th of its weight of oil\(^f\). It is stimulant and carminative, and is used, as an antispasmodic and emmenagogue, in doses of from gtt. ij. to gtt. v. taken on sugar.

2. SPIRITUS MENTHE PULEGII, L.; Spiritus Pulegii. Spirit of Pennyroyal.—(Prepared with Oil of Pennyroyal as the Spiritus Menthe viridis).—Usually prepared by dissolving the oil in spirit. Stimulant and carminative. Employed as an antispasmodic and carminative.—Dose, f\(^3\)ss. to f\(^3\)ij.

Essence of Pennyroyal (prepared by dissolving f\(^3\)j. of the volatile oil in f\(^3\)j. of rectified spirit) may be given in doses of from gtt. x. to gtt. xx.

3. AQUA MENTHE PULEGII, L. E. D.; Aqua Pulegii, offic.; Pennyroyal Water.—(Prepared with the herb or oil like AQUA MENTHA viridis).—Carminative and stomachic.—Dose, f\(^3\)j. to f\(^3\)ij.

The liquid sold in the shops as Pennyroyal and Hysteric Water is prepared by adding f\(^3\)ss. of the compound spirit of bryony to Oss. of pennyroyal water.

5. ROSMARINUS OFFICINALIS, Linn. L. E. D.—COMMON ROSEMARY.

History.—The \(\Delta\)\(\beta\)\(\alpha\)\(\nu\)\(\omega\)\(\alpha\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\) \(\sigma\)\(\tau\)\(\phi\)\(\alpha\)\(\nu\)\(\omega\)\(\mu\)\(\alpha\)\(\tau\)\(\iota\)\(k\)\(u\) of Dioscorides\(^\circ\), is supposed to be our officinal rosemary, which received its name, \(\Delta\)\(\beta\)\(\alpha\)\(\nu\)\(\omega\)\(\alpha\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\)\(\iota\) (from \(\Delta\)\(\beta\)\(\alpha\)\(\nu\)\(\omega\), Thus) on account of its colour, and \(\sigma\)\(\tau\)\(\phi\)\(\alpha\)\(\nu\)\(\omega\)\(\mu\)\(\alpha\)\(\tau\)\(\iota\)\(k\)\(u\) (\(\sigma\)\(\tau\)\(\phi\)\(\alpha\)\(\nu\)\(\omega\)\(\mu\)\(\alpha\)\(\tau\)\(\iota\)\(k\)\(o\)\(e\), coronarius) from its use in making garlands. Pliny\(^h\) calls it Rosmarinum. The flowers are termed anthos (from \(\alpha\)\(υ\)\(ν\)\(ο\), a flower), signifying they are the flowers par excellence; just as we call cinchona the bark, and the inspissated juice of the poppy, opium (i.e. the juice).

Botany. Gen. Char.—Calyx ovate-campanulate, two-lipped; the upper lip entire, the lower bifid, the throat naked within. Corolla

\(^{f}\) Brande, Dict. Mat. Med. p. 357.

\(^{g}\) Lib. iii. cap. 89.

COMMON ROSEMARY.  

with a protruding tube, smooth and not ringed in the inside, somewhat inflated in the throat; limb bilabiate; lips nearly equal, the upper one erect and emarginate, the lower spreading, trifid, with the lateral lobes erect, somewhat twisted; the middle lobe very large, concave, and hanging down. No rudiments of the superior stamens: fertile (inferior) ones, two, ascending, protruding: filaments inserted in the throat of the corolla, short-toothed near the base: anthers linear, subbilocular; the cells straggling, confluent, connate at the margin. Upper lobe of the style very short. Stigmas minute, terminal. Achenia dry, smooth (Bentham).

Sp. Char.—The only species. — Leaves sessile, linear, revolute at the edge, hoary beneath. Calyx purplish. Corolla white or pale purplish-blue.

Hab.—South of Europe; also Asia Minor.

Properties.—The flowering tops (cacumina rosmarini) are the officinal parts. They have a strong and remarkable odour, and a warm, bitter taste.

Composition.—The peculiar odour and flavour of this plant depend on volatile oil. Besides this, the tops contain tannic acid, a bitter matter, resin? and woody fibre.

Volatile Oil (see below).

Physiological Effects. — Carminative and mildly stimulant, analogous to the other labiate plants.

Uses.—Rarely employed medicinally. Infusion of rosemary (rosemary tea) is sometimes used as a substitute for ordinary tea by hypochondriacal persons. The admired flavour of Narbonne honey depends on the bees collecting this substance from rosemary plants which abound in the neighbourhood of Narbonne: hence sprigs of rosemary are sometimes added to the honey of other places, in order to imitate the flavour of Narbonne honey.

1. OLEUM ROSMARINI, L. E. D.; Oleum Ant hors, offic.; Oil of Rosemary.—(Prepared by submitting the rosemary tops to distillation with water). — This oil was first procured by Raymond Lully. It is transparent and colourless, with the odour of rosemary, and a hot, aromatic taste. Its sp. gr. is 0·897; and it boils at 365° F. It consists, according to Dr. Kane, of C\textsubscript{10}H\textsubscript{16}O\textsubscript{3}. One pound of the fresh herb yields about one drachm of the oil. It is rarely taken internally, but is not unfrequently used externally, in conjunction with other substances, as a stimulating liniment; for example, in alopecia or baldness, and also as a perfume.—Dose, gtt. ij. to gtt. v.

2. SPIRITUS ROSMARINI, L. E. D.; Spirit of Rosemary.—(Oil of Rosemary, 5ij.; Rectified Spirit, Cong. j.; Water, Oj. Mix them; then with a slow fire let a gallon distill, L.—The Edinburgh and Dublin Colleges submit the tops [lb. ijs. E. lb. jss. D.] to distillation

Thomson's Hist. of Chem. vol. i. p. 41.

Brande, Dict. of Mat. Med. p. 466.
with a gallon of Spirit [Rectified, E.; Proof, wine-measure, D.], so as to obtain seven [five, D.] pints of the distilled spirit).—It is usually prepared merely by dissolving the oil in spirit, distillation being superfluous. Seldom employed internally. Its principal use is as an odoriferous adjunct to lotions and liniments. It is a constituent of the Linimentum Saponis (p. 568), and Tinctura Lavandulae composita (p. 1195).

Aqua Hungarica; Aqua Rosmarini seu Anthos composita; Hungary Water.—Various formulae for the preparation of this perfume have been given. The following is from the Pharm. Wurtem. and Bav.:-Take of fresh Rosemary, in blossom, lbs. iv.; fresh Sage, in blossom, 3vi.; Zingiber, 3ii. Cut into pieces, and add Rectified Spirit, lb. xii.; Common Water, Oij. Let eleven pints distil by a gentle heat. A hermit is said to have given the formula for the preparation of this perfume to a queen of Hungary; whence this water has been called the Queen of Hungary's water (Aqua Reginae Hungarie). Hungary water is frequently imitated by mixing Spirit of Lavender, 3iij. with Spirit of Rosemary, 3iv. —This liquid is employed principally as a perfume for the toilette; also as an excitant and restorative in fainting. Externally it is used as a stimulating liniment.

6. ORIGANUM VULGARE, L. E. D.—COMMON MARJORAM.

Sex. Syst. Didynamia, Gymnospermia.

(Herb, E.—Oleum ex herba, D.)

History.—Several kinds of 'Opiyavoc are mentioned by the Greek and Latin writers, but their descriptions are too vague to enable us to determine with precision the particular plants referred to.

Botany. Gen. Char.—Calyx ovate, tubular, ten to thirteen-nerved, striated, with five equal or three superior scarcely longer teeth: throat villous within. Tube of the corolla almost the length of the calyx, or scarcely longer; limb sub-bilabiate; upper limb nearly erect, emarginate; the lower spreading, trifid, with nearly equal lobes. Stamina four, protruding, distant, somewhat didynamous, the lower ones longer. Style cleft at the point into two nearly equal parts. Achenia dry, somewhat smooth (Bentham).

Sp. Char.—Erect, villous. Leaves petiolate, broad-ovate, obtuse, subserrate, rounded at the base, green on both sides. Spikes oblong or cylindrical, clustered in corymbose panicles. Bracts ovate, obtuse, coloured, half as long again as the calyx (Bentham).—Creeping-rooted. Flowers light purple.

Hab.—In bushy places, on a limestone and gravelly soil. Indigenous. A native of several parts of Europe; also of Asia. Flowers in July and August.

Properties.—The whole herb (herba origani) is officinal. It has a peculiar aromatic odour, and a warm, pungent taste. Sesquisalicylate of iron produces a green colour (tannate of iron) with the cold infusion of origanum.

Composition.—Volatile oil, resin?, tannic acid, a bitter principle, and woody fibre, are the principal constituents of this plant.

Physiological Effects.—Stimulant and carminative, like the other labiate plants.
Uses.—Principally employed to yield the volatile oil. The dried leaves have been used as a substitute for China tea. The infusion of origanum has been administered in chronic cough, asthma, and amenorrhoea.

OLEUM ORIGANI. L. E. D.; Oil of Common Marjoram; Oil of Thyme, offic.—(Obtained by submitting the herb to distillation with common water). As imported it has a red colour, of which it may be deprived by redistillation. Mr. Whipple has shewn me a sample, obtained by him, which was as colourless as water. The taste of this oil is acrid, its odour that of the plant. It boils at 354° F., and is composed, according to Dr. Kane, of C\(^50\) H\(^40\) O. Its sp. gr. is 0.867. The average produce of essential oil from the herb is one pound from two hundred weight; but it varies exceedingly with the season and culture of the plant. It is a powerful acrid and stimulant; and is applied to carious teeth by means of lint or cotton, to relieve toothache. Mixed with olive oil, it is frequently employed as a stimulating liniment against alopecia or baldness, rheumatic or paralytic affections, sprains, bruises, &c.

7. MAJORA’NA HORTEN’SIS, Mæch.—SWEET MARJORAM.

Origanum Majorana, Linn. D.

Sex. Syst. Didynamia, Gymnospermla.

(Herba, D.)

History.—Some botanists regard the ἄμάρακος of Hippocrates, the σαψψήχων of Dioscorides, the Amaracum or Sampsuchum of Pliny, as being the Majorana hortensis.

Botany. Gen. Char.—Calyx very shortly campanulate at the base; the limb cleft superiorly, flattened and dilated, quite entire, orbicular; the margin rolled in beneath the base; fauces naked. Tube of the corolla as long as the calyx; limb sub-bilabiate, the upper lip nearly erect, emarginate, the lower one spreading, trifid, with almost equal lobes. Stamens four, protruding, distant, didynamous, the inferior ones longest. Anthers two-celled; the cells parallel, diverging or becoming straggling. Style cleft into two nearly equal parts. Stigmas minute (Bentham).

Sp. Char.—Branches smoothish, racemose-paniculate. Leaves petiolate, oblong-ovate, obtuse, quite entire, on both sides hoary-tomentose. Spikelets oblong, on sessile, crowded branchlets (Bentham).—Flowers purple or white.

Hab.—Africa and Asia. Cultivated in kitchen-gardens.

Properties.—The whole plant (herba majoranae) has a warm aro-
matic flavour, and a peculiar savoury smell. Its watery infusion is deepened in colour (tannate of iron) by sesquichloride of iron.

**Composition.**—By distillation the plant yields volatile oil. The other constituents are tannic acid, resin?, bitter matter, and woody fibre.

Oil of Sweet Marjoram (Oleum Majorana) is pale yellow or brownish, with the strong odour and taste of marjoram.

**Physiological Effects.**—Tonic and mild stimulant.

**Uses.**—Principally employed as a sweet herb by the cook (see p. 181). Its powder is sometimes used, either alone or mixed with some other powder, as an erthine. *Marjoram tea* is occasionally employed as a popular remedy for nervous complaints.

---

**S. Meliss'Officinalis, Linn. E. D.—COMMON BALM.**

**History.**—Sprengel* considers this plant to be the *Melissophyllum* of Dioscorides*.

**Botany.** *Gen. Char.—Calyx* tubular, 13-nerved, generally striated, bilabiate; upper lip spreading, three-toothed; lower bifid; fauces naked or villous. Tube of corolla straight or bent, naked within, generally protruding; fauces inflated; limb bilabiate; the upper lip erect, flat; the lower spreading. *Stamina* four, didynamous, generally approximated in pairs; upper ones sometimes sterile; filaments toothless; *anthers* free, two-celled; *connective* often thickened. *Achenia* dry, smooth (condensed from Bentham).

**Sp. Char.—Herbaceous, erect, branching. Leaves** broad-ovate, crenate, truncate or cordate at the base. *Whorls* axillary, loose, one-sided. *Bracts* few, ovate. *Corolla* longer by half than the calyx (Bentham).

**Hab.**—South of France.

**Properties.**—The fresh herb (*herba melissae*) has a strong, peculiar odour, which is somewhat similar to that of lemons. By drying, this is, for the most part, lost. The taste is aromatic, bitter, and somewhat austere. Sesquichloride of iron gives a greenish colour (tannate of iron) to the cold infusion.

**Composition.**—The principal constituents of balm are volatile oil, resin, bitter matter, gum, tannic acid, and woody fibre*.

Oil of Balm (Oleum Melissae) is pale yellow, and has the peculiar odour of balm. Its sp. gr. is 0·975. Oil of lemon is said to be frequently substituted for it.

**Physiological Effects.**—The effects of balm are similar to, though milder than, those of the labiate plants already described.

---

* Hist. Rei Herb. t. i. p. 100.
* Lib. iii. cap. 118.
The mildness of its operation arises from the small portion of volatile oil which the plant contains.

Uses.—*Balm tea* is sometimes employed as a diaphoretic in fevers, as an exhilarating drink in hypochondriasis, and as an emmenagogue in amenorrhoea and chlorosis.


*Sex. Syst.* Didynamia, Gymnospermia.

*History.*—This is the plant which is called *Πορτις* by Hippocrates, Theophrastus, and Dioscorides; and *Marrubium* by Pliny.

*Botany. Gen. Char.*—Calyx tubular, five- to ten-nerved, equal, with five to ten acute, spiny teeth. Corolla with the upper lip erect, the lower spreading and trifid, with the middle lobe broader and generally emarginate. Stamens didynamous, inclosed; anthers with diverging, somewhat confluent lobes, all nearly of the same form. Style with short obtuse lobes (condensed from Bentham).

*Sp. Char.*—Branches white-woolly. Leaves ovate or rounded, softly villous, greenish- or white-woolly beneath, crenate. Whorls many-flowered. Calyx villose, woolly, with ten subulate, recurved-spread- ing teeth. Corolla with an oblong helmet, bifid at the point (Bentham). Flowers white.

*Hab.*—Dry waste grounds. Indigenous. Grows in most parts of Europe; also in Asia and America.—Flowers in July.

*Properties.*—The whole herb (herba marrubii) is used in medicine. It has an aromatic odour, and a bitter taste. Sesquichloride of iron communicates an olive green tint (tannate of iron) to the cold watery infusion.

*Composition.*—Its bitterness depends on extractive: its aromatic properties on volatile oil. Besides these principles it contains resin, tannic acid, bitter matter, and woody fibre.

*Physiological Effects.*—Horehound is tonic, mildly stimulant, and, in large doses, laxative. Taken in the form of infusion, it promotes the secretions of the skin and kidneys. It was formerly supposed to possess emmenagogue properties.

*Uses.*—It is rarely employed by medical practitioners. As a domestic remedy it is used in chronic pulmonary complaints, especially catarrh. It was formerly given in uterine and hepatic affections.

*Administration.*—*Horehound tea* (prepared by infusing an ounce of the herb in a pint of boiling water) is taken in the dose of a wine-glassful. *Syrup of horehound* (prepared with the infusion and sugar) is a popular remedy, and is kept in the shops. *Candied horehound* ought to be made of the same ingredients.

---

1. Pages 686, 874, and 878, ed. Fes.
2. Lib. iii. cap. 119.
OTHER MEDICINAL AND DIETETICAL LABIATEA.

The following species, enumerated by Loudon, are cultivated in this country as sweet herbs (see p. 181):—Common or Garden Thyme (Thymus vulgaris, Linn.), Lemon Thyme (T. citriodorus, Schreb.), Sage (Salvia officinalis, Linn.), Clary (S. Schlera, Linn.), Peppermint (Men'omba piperita, Linn.), Spearmint, (M. viridis, Linn.), Pennyroyal (M. Pulegium), Common Marjoram (Origanum vulgare, Linn.), Winter Sweet Marjoram (O. heracleoticum, Linn.), Sweet Marjoram (Majorana hortensis, Mich.), Pot Marjoram (M. Officinalis, Kentli.), Winter Savory (Satureja montana, Linn.), Summer Savory (S. hortensis, Linn.), Sweet or Larger Basil (Ocimum Basilicum, Linn.), Bush or Least Basil (O. minutum, Linn.), Rosemary (Rosmarinus officinalis, Linn.), and Garden Lavender (Lavandula vera, De Cand.). Some of these species have been, or are, used in medicine, and several of them are officinal. The general effects and uses of the sweet or savoury herbs have been before pointed out.

Besides the labiate plants above described, and which are the only official ones in the British pharmacopoeias, a considerable number of other species have been at different times introduced into medicinal use. Some of these are deficient in volatile oil, but abound in a bitter principle, on which account they have been employed as stomachics and tonics: such are Water Germander (Teucrium Scordium, Linn.), Wall Germander (T. Chamaderys, Linn.), and Ground Pine (Ajuga Chamaepitys, Smith): the two last of which have been used, as I have before mentioned, as anti-arthritic remedies (p. 1138). Others abound in essential oil, and are consequently more aromatic, stimulant, and carminative: such are Cat-Thyme (Teucrium Matrum, Linn.), Common Hyssop (Hyssopus officinalis, Linn.), Dittany of Crete (Amaraeus Dictamnus, Benth.), &c.

Order XXXVII.—Scrophulariaceae, Lindley.—The Figwort Tribe.

Essential Character.—Calyx free, five-divided, or more generally (by abortion) four-divided: the sepals more or less united, or sometimes free, unequal; the upper one largest; the lateral ones smallest; imbricated in aestivation. Corolla monopetalous, five-divided or (by the cohesion of the two upper petals to the apex) four-divided; the tube short, or elongated; the limb expanded or erect, nearly equaly parted or bilabiate; imbricated in aestivation. Stamens simple, opposite the sepals; the upper stamens entirely wanting, or sterile, very rarely fertile; shorter than the others; the two lateral equal, rarely abortive; the two lower equal to, or longer than, the lateral ones; sometimes wanting. Anthers two or one-celled, dehiscing longitudinally. Ovary free, two-celled; the cells two- or many-seeded. Style simple, rarely slightly bifid. Fruit capsular, rarely baccate, two-celled, two-seeded, dehiscing by valves or pores. Dissepiment parallel, or opposite to the valves, becoming loose in the centre, or altogether free. Placenta adhering to the dissepiments; sometimes separating when ripe. Seeds generally indefinite. Embryo variously placed in the albumen.—Inodorous or fetid herbs or shrubs (Macreight).

Properties.—Not uniform; suspicious.

1. Digitalis purpurea, Linn. L. E. D.—Purple Foxglove.

Sex. Syst. Didynamia, Angiospernia.

(Folia; Semina, L.—Folia, D.—Leaves, E.)

History.—It appears very improbable that the ancients should have overlooked so common and elegant a plant as foxglove; yet in
none of their writings can we find any plant whose description precisely answers to the one now under examination. Fabricius Columna thought that it was the 'Εφυμερον of Dioscorides, but the description of the latter does not at all agree with foxglove. The Βάκχωρε of the same writer has also been referred to, but with little more probability of correctness. The term Φοξγλώπε occurs in a MS., Glossarium Ælfrici, probably written before the Norman Conquest (A.D. 1066), and in a MS. Saxon translation of L. Apulius; both of which are among the Cottonian manuscripts in the British Museum. Fuchsius is usually regarded as the earliest botanist who mentions this plant, which he named Digitalis (from Fingerhut, a finger-stall, on account of the blossoms resembling the finger of a glove). Fuchsius states, that until he gave it this appellation, the plant had no Greek or Latin name.

Botany. Gen. char — Calyx five-partite, unequal. Corolla campanulate: the limb obliquely four-lobed; the lobes unequal. Stamens four, didynamous; no vestige of the fifth apparent. Stigma simple or bilamellate. Capsule ovate-acuminate (Bot. Gall.)

Sp. char.—Segments of the calyx ovate, acute. Corolla obtuse; its upper lobe scarcely cloven. Leaves downy (Smith).

Herbaceous. Root of numerous long and slender fibres; biennial. Stem erect, three or four feet high, commonly simple, roundish with several slight angles, downy. Leaves alternate, ovate-lanceolate or elliptic-oblong, crenate, downy, rugged, and veiny, of a dull green; tapering at the base into winged footstalks; lower ones largest. Raceme terminal, erect, one-sided, long, simple, of numerous, large, pendulous, odourless flowers. Corolla crimson, elegantly marked with eye-like spots, as well as hairy, within.

A variety with white flowers, spotted with shades of cream-colour or pearl, is met with in gardens: it remains tolerably constant from seed.

Hab.—Indigenous: in pastures and about hedges or banks, on a gravelly or sandy soil.

Description.—The officinal parts are the leaves and seeds; the latter, however, are rarely employed. As some doubts have been expressed as to the equal activity of cultivated specimens, wild or native plants are to be preferred.

1. Foxglove leaves (Folia Digitalis).—The leaves should be gathered when the plant is in the greatest perfection,—that is, just before or during the period of inflorescence; and those are to be preferred which are full-grown and fresh. As the petioles possess less activity than the laminae or expanded portions of the leaves, they ought to be rejected. Dr. Withering directs the leaves to be dried either in the sunshine, or in a tin pan or pewter dish before the fire; but the more usual, and, I believe, better mode of proceeding, is to dry them
in baskets in a dark place, in a drying stove. Both dried leaves and powder should be preserved in well-stoppered bottles, covered externally by dark-coloured paper, and kept in a dark cupboard. As both undergo changes by keeping, whereby their medicinal activity is considerably diminished, they ought to be renewed annually. Dried foxglove leaves have a dull green colour, a faint odour, and a bitter nauseous taste.

2. Foxglove seeds (Semina Digitalis).—The seeds of the foxglove are small, roundish, and of a grayish-brown colour.

Composition.—The chemistry of digitalis is in an unsatisfactory state. This arises from the inconclusive and discordant results obtained by those who have submitted this plant to chemical examination. Analyses of it have been published by Destouches, Bidault de Villiers, Rein and Haase, Le Royer, Welding, Radig, and Brault and Poggiale. Schlesinger in 1839, analyzed the leaves of a Digitalis (folia Digitalis ambigua).

<table>
<thead>
<tr>
<th>Radig's Analysis</th>
<th>Brault and Poggiale's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picrin (Digitalis of Le Royer)</td>
<td>Resin.</td>
</tr>
<tr>
<td>Digitalin (of Lancelot)</td>
<td>Fatty matter.</td>
</tr>
<tr>
<td>Snapthin (neutral extractive)</td>
<td>Chlorophyll.</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>Starch.</td>
</tr>
<tr>
<td>Oxide of iron</td>
<td>Gum.</td>
</tr>
<tr>
<td>Potash</td>
<td>Ign.</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>Tannin.</td>
</tr>
<tr>
<td>Vegetable albumen</td>
<td>Sols of lime and potash.</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Foxglove leaves</td>
<td>Fixed oil.</td>
</tr>
<tr>
<td></td>
<td>Oxalate of potash.</td>
</tr>
</tbody>
</table>

1. Digitalina of Lancelot ^ and of Radig. This substance has been obtained by Radig in small crystals, whose forms were not accurately determined. It is colourless, has an acid taste, is unchanged in the air, renders syrup of violets green, and restores the blue colour of reddened limps. It is soluble in alcohol and in acids; the solutions were very bitter, and were decomposed by water, by diaacetate of lead, and by infusion of muguels. Concentrated sulphuric acid first reddens digitalina, and then makes it olive-green. By distillation it does not evolve ammonia. Dr. David found that, when from \( \frac{1}{3} \) to \( \frac{1}{2} \) grains were injected into the veins of an animal, death speedily ensues without convulsions, and with the same effect upon the pulse which characterizes digitalis.

2. Picrin (from πικρός, bitter).—The substance which Radig calls picrin, and which he says is identical with the digitalin of Le Royer, is bitter, hygroscopic, soluble in water, alcohol, and ether, and precipitable from its watery solution by bicloride of mercury, ferro-cyanide of iron, and acetate of lead. Brault and Poggiale, however, declare the digitalin of Le Royer to be a compound of chlorophyll, resin, a fatty matter, and some traces of salts of lime and potash; and they ascribe the activity of foxglove to the combination of all the principles of which this plant is composed, but especially to the resin.

---

^ Bull. de Pharm. t. i. p. 123.
* Essai sur les Propr. méd. de la Digit., pourp. 3e édit. 1812.
† Diss. de Digit, purp. 1812, quoted in Schwartz's Pharm. Tabell.
| Journ. of the Philadelphia Coll. of Pharm. July 1833.
| Pharm. Central-Blatt für 1835, S. 299.
| Journ. de Pharm. t. xxvi. p. 139, 1835.
| Pharm. Central-Blatt für 1839, p. 632.
| Ibid. 1833, p. 620.
3. Scaptin.—Radig has applied the term scaptin to a brown, almost tasteless extractive, which leaves an acrid sensation in the throat.

4. Empyreumatic Oil of Foxglove (Pyrodigitalina).—By the destructive distillation of the dried leaves of foxglove, Dr. Morries obtained a coloured, disagreeable, empyreumatic oil, which was semi-solid at 60° F. and soluble in boiling alcohol and ether; the solution, on cooling, let fall a flocculent precipitate composed of two substances, one crystalline, the other globular. Given to a rabbit, it caused paralysis of the hind legs, convulsions, laborious and rapid breathing, and accelerated action of the heart. It does not contain the sedative principle of foxglove.

**Chemical Characteristics.**—Sesquichloride of iron causes a dark precipitate (tanno-gallate of iron) with decoction of foxglove leaves, as well as with the tincture diluted with water. A solution of gelatine, added to the decoction, causes, after some time, a scanty precipitate (tannate of gelatine). Tincture of nutgalls has scarcely any effect (perhaps a slight turbidness) when added to the decoction or to the tincture diluted with water.

**Physiological Effects.**

a. On Vegetables.—Marcet found that a solution of the watery extract of foxglove killed a haricot plant (Phaseolus vulgaris) in twenty-four hours.

b. On Animals generally.—The effects of foxglove have been tried on dogs, horses, rabbits, turkeys, the domestic fowl, and frogs; and on all it has been found to act as a poison. One drachm of the powder may be given to horses as a sedative in inflammation. Two ounces have produced death in twelve hours. According to the experience of Orfila, the first symptoms of poisoning observed in [carnivorous] animals is vomiting. The influence of the poison over the heart does not appear to be uniform; for in some cases he found the pulsations of this viscus unaltered, in others accelerated, while occasionally they were retarded. In the horse killed by two ounces of foxglove, the pulse was 130 per minute, a short time before death (Moiroud): the standard pulse of the horse being 40 or 42 per minute. The cerebro-spinal symptoms observed in animals, are diminished muscular power, convulsive movements, tremors, and insensibility. The powder acts as a local irritant, giving rise to inflammation of parts to which it is applied (Orfila).

c. On Man.—We may, for convenience, establish three degrees of the operation of foxglove.

In the first degree, or that produced by small and repeated doses, foxglove sometimes affects what are termed the organic functions, without disordering the animal or cerebro-spinal functions. Thus we sometimes have the stomach disordered, the pulse altered in frequency, and sometimes also in fulness and regularity, and the secretion of urine increased, without any other marked symptoms. The order in which the symptoms just mentioned occur is not uniform: sometimes

---


*Ortila, Toxicol. Gen.*


*Salerne, Hist. de l'Acad. des Sav. 1718, p. 84.*

*Youatt, The Horse, in Libr. of Usef. Knowledge.*

*Moiroud, Pharm. Peter. p. 354.*
the diuresis, at others nausea, and occasionally the affection of the circulation, being the first obvious effect.

The influence of foxglove over the circulation is not at all constant. In some cases the frequency of the pulse is augmented, in others decreased, while in some it is unaffected. Lastly, in a considerable number of instances, the pulse becomes irregular or intermittent under the use of foxglove. A few drops of the tincture will, in some cases, reduce the frequency of the pulse, and render it irregular and intermittent, while in other instances much larger doses may be taken without any obvious effect on it. Dr. Withering mentions one case in which the pulse fell to 10, and I have several times seen it reduced to 50. In some cases the slowness of the pulse is preceded by an increased activity of the vascular system. From Sandras's reports this would appear to occur more frequently after small than large doses of foxglove. Dr. Sanders indeed asserts, that foxglove invariably excites the pulse, and refers to an experience of 2000 cases in proof. He says, that he has seen the pulse rise from 70 to 120 under the use of foxglove, and at the end of twenty-four hours, or sooner, fall with greater or less rapidity to forty, or even below this. But an experience of the use of foxglove in only twenty cases, will, I believe, convince most persons that Dr. Sanders has fallen into an error in the sweeping assertion which he has made. A great deal, however, depends on the position of the patient. If it be desired to reduce the frequency of the pulse, the patient should be kept in a recumbent posture. The important influence of posture was first pointed out, I believe, by Dr. Baildon. His own pulse, which had been reduced by this plant from 110 to 40 beats per minute while he was in the recumbent position, rose to 70 when he sat up, and to 100 when he stood. We have a ready explanation of this fact. In a state of health the pulsations of the heart are more frequent (usually to the extent of five or six in the minute) in the erect than in the horizontal position; and it is very obvious that greater force is required to carry on the circulation in the former than in the latter, since, in the erect position, the heart and arteries have to send blood to the head against gravity. Now, the power of the heart being enfeebled by foxglove, when a demand is made on this viscus for an increase in the force of contractions by the change from the recumbent to the standing attitude, it endeavours to make up for its diminished force by an increase in the frequency of its contractions. I need scarcely add that the sudden change of position in those who are much under the influence of this medicine, is attended with great danger, and in several instances has proved fatal; for, in consequence of the heart not having sufficient power to propel the blood to the head against gravity, fatal syncope has been the result. The
influence of digitalis over the pulse is more marked in some individuals or cases than in others; thus the reduction of the frequency of the pulse is in general more readily induced in weak and debilitated constitutions than in robust and plethoric ones. Occasionally no obvious effect on the number, force, or regularity of the pulse is produced, though the foxglove may be given to an extent sufficient to excite vomiting and cerebral disorder. Shroek¹ experienced, from two grains of foxglove, nausea, headache, small, soft, and quick pulse, dryness of the gums and throat, giddiness, weakness of limbs, and increased secretion of saliva. Some hours after he observed sparks before the eyes, his vision became dim, and he experienced a sensation of pressure on the eye-balls.

A most important fact connected with the repeated uses of small doses of it, is the cumulative effect sometimes observed. It has not unfrequently happened that, in consequence of the continued use of small doses of this medicine, very dangerous symptoms, in some cases terminating in death, have occurred. The most prominent of these were great depression of the vascular system, giddiness, want of sleep, convulsions, and sometimes nausea and vomiting. A knowledge of its occasional occurrence impresses us with the necessity of exercising great caution in the use of this remedy, particularly with respect to the continuance of its administration and increase of dose; and it shows that after the constitutional effect has become obvious, it is prudent to suspend from time to time the exhibition of the remedy in order to guard against the effects of this alarming accumulation. I may add, however, that I have used it, and seen others employ it, most extensively, and in full doses, and have rarely seen any dangerous consequences; and I believe, therefore, the effects of accumulation to be much less frequent than the statements of authors of repute would lead us to expect. The experience of Dr. Holland ² is to the same effect. "Though employing the medicine somewhat largely in practice," he observes, "I do not recollect a case in which I have seen any injurious consequences from this cause."

The diuretic operation for which we employ foxglove is very inconstant. Dr. Withering stated, that this medicine more frequently succeeds as a diuretic than any other, and that if it fail, there is but little chance of any other remedy succeeding. My experience, however, is not in accordance with Dr. Withering's. I have frequently seen foxglove fail in exciting diuresis, and have often found the infusion of common broom (Cytisus scoparius) subsequently succeed. It has been asserted by some, that the diuretic effect of foxglove was only observed in dropsical cases, and that it, therefore, depended on the stimulus given to the absorbent vessels, and not to any direct influence exerted over the kidneys; but the statement is not true, since foxglove is sometimes found acting as a diuretic even in health.

² See the cases published by Dr. Withering, op. cit. Also a fatal case recorded by Dr. Blackall, On Dropsy, p. 175, 4th ed.
In some cases the bladder has appeared more irritable than usual, the patient having a frequent desire to pass his urine.

An increased flow of saliva is an occasional consequence of the continued use of moderate doses of foxglove. Dr. Withering at first noticed this effect. Dr. Barton has also seen it produced from ordinary doses.

2. The second degree of operation of digitalis, or that ordinarily resulting from the use of too large or too long-continued doses, is manifested by the disordered condition of the alimentary canal, of the circulating organs, and of the cerebro-spinal system. The more ordinary symptoms are nausea or actual vomiting, slow and often irregular pulse, coldness of the extremities, syncope or tendency to it, giddiness, and confusion of vision. Sometimes the sickness is attended with purging, or even with diuresis; at other times the patient is neither vomited nor purged; and the principal disorder of system is observed in the altered condition of the nervous and vascular organs. External objects appear of a green or yellow colour; the patient fancies there is a mist, or sparks, before his eyes; a sensation of weight, pain, or throbbing of the head, especially in the frontal region, is experienced; giddiness, weakness of the limbs, loss of sleep, occasionally stupor or delirium, and even convulsions, may also be present. The pulse becomes feeble, sometimes frequent, sometimes slow; there may be actual syncope, or only a tendency to it, and profuse cold sweats. Salivation is sometimes induced by poisonous doses of foxglove. It was observed in a case, narrated by Dr. Henry, and has been known to last three weeks.

The quantity of digitalis that may be given to a patient without destroying life, is much greater than is ordinarily imagined. In one instance I saw twenty drops of the tincture given to an infant labouring under hydrocephalus, three times daily for a fortnight, at the end of which time the little patient was completely recovered, without one untoward symptom. I have frequently given a drachm of the tincture (of the best quality) three times daily to an adult, for a fortnight, without observing any marked effect. I know that some practitioners employ it in much larger doses (as an ounce or half an ounce of the tincture), with much less effect than might be imagined. The following communication on this subject, from my friend Dr. Clutterbuck, illustrates this point:—"My first information on this subject was derived from an intelligent pupil, who had been an assistant to Mr. King, a highly respectable practitioner at Saxmundham, in Suffolk, who, on a subsequent occasion, personally confirmed the statement. This gentleman assured me, that he had been for many years in the habit of administering the tincture of digitalis, to the extent of from half an ounce to an ounce at the time, not only with safety, but with the most decided advantage, as a remedy for acute inflammation,—not, however, to the exclusion of blood-letting, which,
on the contrary, he previously uses with considerable freedom. To adults he often gives an ounce of the tincture (seldom less than half an ounce), and awaits the result of twenty-four hours, when, if he does not find the pulse subdued, or rendered irregular by it, he repeats the dose; and this, he says, seldom fails to lower the pulse in the degree wished for; and when this is the case, the disease rarely fails to give way, provided it has not gone the length of producing disorganization of the part. He has given as much as two drachms to a child of nine months. Sometimes vomiting quickly follows these large doses of the digitalis, but never any dangerous symptom, as far as his observation has gone, which has been very extensive. In less acute cases he sometimes gives smaller doses, as thirty drops, several times in a day.

"Such is the account I received from Mr. King himself, and which was confirmed by his assistant, who prepared his medicines. I do not see any ground for questioning the faithfulness of the report. I have myself exhibited the tincture to the extent of half an ounce (never more), in not more than two or three instances (cases of fever and pneumonia). To my surprise there was no striking effect produced by it; but I did not venture to repeat the dose. In numerous instances I have given two drachms; still more frequently one drachm; but not oftener than once in twenty-four hours, and not beyond a second or third time. Two or three exhibitions of this kind I have generally observed to be followed by slowness and irregularity of pulse, when I have immediately desisted." Dr. T. Williams states, that a man, in a state of intoxication, took two ounces of tincture of foxglove in two doses, in quick succession, without the slightest inconvenience.

3. The third degree of the operation of foxglove, or that resulting from the use of fatal doses, is characterized usually by vomiting, purging, and griping pain in the bowels; slow, feeble, and irregular pulse, great faintness, and cold sweats; disordered vision; at first giddiness, extreme debility; afterwards insensibility and convulsions, with dilated insensible pupils.

If we compare the effects of foxglove with those of other medicinal agents, we find they approximate more closely to those of tobacco than of any other cerebro-spinant. These two agents especially agree in their power of enfeebling the action of the heart and arteries (see p. 176). Green tea agrees with foxglove in its property of preventing sleep. Considered as a diuretic, foxglove is, in some respects, comparable with squills. I have already pointed out the peculiarities attending the operation of each of these.

Uses.—We employ foxglove for various purposes, as,—1stly, to reduce the frequency and force of the heart's action; 2dly, to promote the action of the absorbents; 3dly, as a diuretic; and 4thly, sometimes on account of its specific influence over the cerebro-spinal system.
In the following remarks on the uses of foxglove in particular diseases, I refer to the administration of this remedy in the doses in which it is ordinarily employed. I have no experience of its therapeutic effects, when given in the enormous quantities mentioned by Dr. Clutterbuck.

1. In fever.—Digitalis is occasionally useful in fever to reduce the frequency of the pulse, when the excitement of the vascular system is out of proportion to the other symptoms of fever, such as the increased temperature, and the cerebral or gastric disorder. It cannot, however, be regarded, in the most remote way, as a curative means; on the other hand, it is sometimes hurtful. Thus, not unfrequently it fails to reduce the circulation; nay, occasionally, it has the reverse effect, accelerates the pulse, while it increases the cerebral disorder, and perhaps irritates the stomach. In estimating its value as a remedial agent for fever, we must not regard it as a sedative means (I refer now to the vascular system) merely; it is an agent which exercises a specific influence over the brain; and, therefore, to be able to lay down correct indications and contra-indications for its use in disordered conditions of this viscus, we ought to be acquainted, on the one hand, with the precise nature of the influence of the remedy, and, on the other, with the actual condition of the brain in the disease which we wish to ameliorate. Now as we possess neither of these data in reference to fever, our use of foxglove is, with the exception of the sedative influence over the circulation, empirical; and experience has fully shewn us it is not generally beneficial. But, I repeat, where the frequency of pulse bears no relation to the local or constitutional symptoms of fever, foxglove may be serviceable.

2. Inflammation.—Foxglove has been employed in inflammatory diseases, principally on account of its power of reducing the frequency of the pulse, though some have referred part of its beneficial operation to its influence over the absorbent system. Inflammation, of a chronic kind, may be going on in one part of the body, to an extent sufficient to produce complete disorganization, and ultimately to cause the death of the patient, without the action of the larger arterial trunks (i.e. of the system generally) being remarkably increased. In such cases, digitalis is, for the most part, of little use. Again, in violent and acute inflammation, accompanied with great excitement of the general circulation, especially in plethoric subjects, foxglove is, in some cases, hurtful; in others, it is a trivial and unimportant remedy; and we, therefore, rely, in our treatment, on blood-letting, and other powerful antiphlogistic measures; and foxglove, if serviceable at all, can only be used after the other means.

As a remedy for inflammation, foxglove is principally useful in less violent cases, particularly when accompanied with increased frequency of pulse, and occurring in subjects not able to support copious evacuations of blood. Moreover, it has more influence over inflammation of some parts of the body (as the arachnoid membrane, the pleura, the pericardium, and the lungs) than of others. In gastric and enteritic inflammation, it would appear to be objectionable on account of its irritant properties; while its specific influence over
the brain would make it a doubtful remedy in phrenitis. In arachnitis of children it is certainly a most valuable agent.

In conclusion, then, it appears that digitalis, as a remedy for inflammation, is principally valuable where the disease has a tendency to terminate in serous effusion. But in no case can it be regarded as a substitute for blood-letting. Its powers as an antiphlogistic remedy have, I suspect, been greatly over-rated.

3. Dropsy.—Of all remedies for dropsy none have gained more, and few so much, celebrity as foxglove. It has been supposed to owe its beneficial operation to its repressing arterial excitement (a frequent cause of dropsical effusion), to its promoting the functions of the absorbent vessels, and particularly to its diuretic effects. Whatever may be its modus operandi, its powerful and salutary influence in many dropsies cannot be a matter of doubt. Dr. Withering has correctly observed, that "it seldom succeeds in men of great natural strength, of tense fibre, of warm skin, of florid complexion, or in those with a tight and cordy pulse." “On the contrary, if the pulse be feeble or intermittent, the countenance pale, the lips livid, the skin cold, the swollen belly soft and fluctuating, or the anasarccous limbs readily pitting under the pressure of the finger, we may expect the diuretic effects to follow in a kindly manner.” In those with a florid complexion, blood-letting and purgatives will often be found useful preparatives for foxglove. In some forms of dropsy foxglove is more-serviceable than in others. Thus, anasarca, ascites, hydrothorax, and phlegmasia dolens, are sometimes benefited by it; whereas ovarian dropsy and hydrocephalus are not relieved by it. Its diuretic effect is greatly promoted by combining other diuretics with it, especially squills (as in the Pilulae Digitalis et Scillae, Ph. Ed.), calomel, or the saline diuretics (as the acetate of potash). A combination of vegetable bitters (as infusion of gentian or calumba) with foxglove, forms, I think, a valuable form of exhibition in many old dropsical cases. Infusion of common broom (Cytisus scoparius) might probably be advantageously conjoined with foxglove, where a powerful diuretic is required. In old cases of general dropsy, in oedematous swellings from debility, and in anasarca following scarlet fever, where, together with weakness, there is still left an excited and irritable state of the arterial system, chalybeates (as the tinctura ferri sesquichloridi) may be conjoined with foxglove, with the happiest effects.

4. In Hemorrhages.—In active hemorrhages from internal organs, accompanied with a quick, hard, and throbbing pulse, foxglove as a sedative is oftentimes serviceable. Epistaxis, hemoptysis, and menorrhagia, are the forms of hemorrhage more frequently benefited by the use of foxglove.

5. Diseases of the Heart and Great Vessels.—An important indication in the treatment of many diseases of the heart and great vessels is to reduce the force and velocity of the circulation. The most effectual means of fulfilling this indication are,—the adoption

---

1 Holland, Med. Notes and Reflect. p. 546.
of a low diet, repeated blood-letting, and the employment of foxglove. There are, perhaps, no diseases in which the beneficial effects of foxglove are more marked, than in those of the heart and great vessels. In *aneurism of the aorta*, our only hope of cure is by the coagulation of the blood in the aneurismal sac, and the consequent removal of the distensive pressure of the circulation. To promote this, we endeavour to retard the movement of the blood within the sac, by diminishing the quantity of blood in the system generally, and by reducing the force and velocity with which it circulates. Blood-letting and digitalis are, in these cases, very important agents: and under their use cases now and then recover. Again, in *simple dilatation* of the cavities of the heart, our objects are to remove, if possible, the cause (usually obstruction in the pulmonic or aortic system), to strengthen the muscular fibres of the heart, and to repress any preternatural excitement of the vascular system. Digitalis is useful to us in attaining the latter object. In *simple hypertrophy or hypertrophy with dilatation*, we have to reduce the preternatural thickness of the heart's parietes, and this we do by removing, when it can be done, any obstruction to the circulation, by using a low diet, by repeated blood-letting, and by the employment of foxglove. No means, says Dr. Davies¹, excepting the abstraction of blood, diminishes the impulsion of the heart so completely and so certainly as digitalis. "I have been," adds he, "in the habit of using it for several years for these affections, and have rarely seen it fail in producing at least temporary relief." "The enlarged and flaccid heart," observes Dr. Holland², "though, on first view, it might seem the least favourable for the use of the medicine, is, perhaps, not so. At least we have reason to believe, that, in dropical affections, so often connected with this organic change, the action of digitalis, as a diuretic, is peculiarly of avail." *In some disordered conditions of innervation of the heart and great vessels*—as in angina pectoris, nervous palpitation of the heart, and augmented arterial impulsion, foxglove is also at times beneficial. In patients affected with an intermittent or otherwise irregular pulse, I have several times observed this medicine produce regularity of pulsation;—a circumstance also noticed by Dr. Holland. Besides the preceding, there are *various other affections of the heart* in which foxglove may be found serviceable, either by its sedative influence over the circulation, or by its power of relieving dropical effusion through its diuretic property.

6. *In Phthisis.*—Digitalis has been declared capable of curing pulmonary consumption, and numerous cases of supposed cures have been published. Bayle¹ has collected from the writings of Sanders⁴, Kinglake, Fowler, Beddoes⁶, Drake, Mossman⁷, Maclean, Ferriar⁸, Magennis, Moreton, and others, reports of 151 cases treated by foxglove. Of these, 83 are said to have been cured, and 35 relieved.

⁴ *Op. ante cit.
⁵ *Observ. on the Management of the Consumptive.* 1801.
⁶ *Essay to elucidate the Nat. Orig. and Connex. of Scroph. and Gland. Consumption.
⁷ *On Digitalis.*
But a more accurate and extended experience has fully proved, that this medicine possesses no curative, and very slightly palliative, powers in genuine phthisis: it is totally incapable of preventing or of causing the removal of tubercular deposits, and has little, if any influence, in retarding the progress of consumption. Its power of diminishing the rapidity of the circulation cannot be doubted; but this effect is, as Dr. Holland " justly remarks, "of less real moment than is generally supposed."

7. In Insanity and Epilepsy.—In these maladies foxglove may prove occasionally serviceable by repressing excessive vascular excitement, which sometimes accompanies them. Furthermore, the specific influence of this remedy over the cerebro-spinal system may now and then contribute to the beneficial operation of foxglove. But the precise nature of this influence not having as yet been accurately ascertained, while the pathology of the above-mentioned diseases is involved in considerable obscurity, it follows that the therapeutic value of this influence can only be ascertained empirically. In insanity, Dr. Hallaran t recommends foxglove to reduce vascular action after the employment of depletion and purgation. It has been used in this disease, with success, by Dr. Currie s, and by Fanzago t. In epilepsy it is, I conceive, less likely to be serviceable, because this disease is less frequently accompanied with the vascular excitement, against which foxglove is most successful. Accordingly, while in some few cases it has proved serviceable t, in others it has either been unsuccessful t, or has only given temporary relief t.

8. In various other diseases.—Besides the preceding, there are several other maladies against which foxglove has been employed with occasional benefit, as scrofula t and asthma t. For other diseases relieved by foxglove I must refer the reader to the works of Murray t and Bayle a.

Administration.—The ordinary dose of foxglove, in powder, is from gr. ss. to gr. iss. repeated every six hours.

Antidotes.—In a case of poisoning by foxglove, or its preparations, expel the poison from the stomach by the stomach-pump or by emetics, if vomiting should not have already commenced; assist the vomiting, when it is established, by the use of diluents; and counteract the depressing influence of the poison on the circulation by the use of ammonia and brandy; and keep the patient in a recumbent posture, to guard against syncope. I am unacquainted with any chemical antidote for foxglove; perhaps infusion of nutgalls or green tea might prove serviceable, especially if the active principle of this plant be an alkali.

— Inquiry, &c. with Observ. on the Cure of Insanity, 1819.
— Quoted by Bayle, Bibli Therap. t. iii. p. 329.
— Currie, op. supra cit.
— Haller, Merz, Schiemann, and Hufeland, quoted by Bayle, Bibli Ther. t. iii. p. 369.
— App. Med. vol. i.

Macerate the foxglove leaves in the water for four hours, in a vessel lightly covered, and strain [through linen or calico, E.]; then add the spirit of cinnamon.)—I believe this, when properly made, to be the most effective of the preparations of foxglove. The dose of it is from f3ss. to f3j. repeated every six hours. I have known it given to the extent of f3ij.


Macerate for fourteen days [seven, Z.], and strain. “This tincture is best prepared by the process of percolation, as directed for the Tincture of Capsicum. If forty fluidounces of spirit be passed through, the density is 944 [0.944], and the solid contents of a fluidounce amount to twenty-four grains. It may also be made by digestion,” E.)—The usual dose of this preparation, for an adult, is from mxx. cautiously increased to mlxl., repeated every six hours. I usually begin with mlxxx. The largest dose I have employed is f5j.; but, as I have already stated, it has been given to the extent of one ounce! The colour of this preparation is somewhat affected by exposure to strong solar light.

**Succus Digitalis.**—The preserved juice of foxglove may be employed as a substitute for the tincture. The mode of preparing it has been already explained (see p. 365). Mr. Bentley informs me, that from 1 cwt. 2 qrs. 26 lbs. of digitalis gathered in May, he procured 49 pints of juice.

3. **EXTRACTUM DIGITALIS, L. E. Extract of Foxglove.**—(Fresh Foxglove leaves, lb. j. Bruise them, sprinkled with a little water, in a stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence, L.—This extract is best prepared from the fresh leaves of digitalis, by any of the processes indicated for extract of Conium,” E.)—Recently introduced into the pharmacopoeias of London and Edinburgh. Its preparation requires very great care and attention, or the virtues of the plant may be destroyed during the process.—Dose, gr. j. cautiously increased.

4. **PILULÆ DIGITALIS ET SCILLÆ, E. Pills of Foxglove and Squill.**—(Digitalis; Squill, of each, one part; Aromatic Electuary, two parts. Beat them into a proper mass with conserve of red roses; and divide the mass into four-grain pills).—A valuable diuretic compound. Used in dropsies.—Dose, one or two pills.

2. **VERBASCUM THAPSUS, Linn. D.—GREAT MULLEIN OR HIGH TAPER.**

Sex. Syst. Pentandria, Monogynia.
(Folia, D.)

**History.**—This plant is, according to Sprengel b, the φλόρας ἄγκεια of Dioscorides c.

---

1 Histor. Rei Herb. vol. i. p. 151.
2 Lib. iv. cap. 104.
Botany. Gen. Char.—Calyx campanulate, five-partite, nearly equal. Corolla with a very short tube; the limb flat, expanded, somewhat rotate, five-partite; the lobes rounded, nearly equal, or the lower ones equal. Stamens five, inclining; the lower ones longer; all fertile; the filaments either all, or the three upper, barbate; anthers generally adnate, and (by the confluence of the cells) unilocular. Style simple, thick at the apex. Stigma entire or bifid. Capsule ovate or somewhat globose; the valves bifid at the apex (Macreight).

Sp. Char.—Leaves decurrent, crenate, woolly on both sides. Stem simple. Cluster dense. Flowers almost sessile (Smith).—Corolla golden-yellow; stamens red; stigma green.


Description.—The leaves (folia verbasci) have a mucilaginous, bitterish taste, and a very slight odour. They communicate their virtues to water.

Composition. — Morin\(^d\) analyzed the flowers of Verbascum Thapsus, and obtained a yellow volatile oil, a fatty acid, free malic and phosphoric acids, malate and phosphate of lime, acetate of potash, uncrystallizable sugar, gum, chlorophylle, and yellow resinous colouring matter.

Physiological Effects.—Emollient, demulcent, and, supposed to be, feebly narcotic. Fishes are stupified by the seeds of Verbascum\(^e\).

Uses.—In the form of decoction (prepared of \(\frac{3}{4}\) of the leaves and \(\frac{1}{2}\) of water) mullein has been used in catarrhs and diarrheas: the dose is 31/2v. Dr. Howe\(^f\) found it serviceable in the latter complaint only. Fomentations and cataplasms made of great mullein have been used as applications to hemorrhoidal tumors and indurated glands.

3. SCROPHULA'RIA NODO'SA Linn. D.—KNOTTY-ROOTED FIGWORT.

Sex. Syst. Didynamia, Angiospermia.

(Folia, D.)

History.—The earliest notice of this plant occurs in the work of Brunfels\(^g\).

Botany. Gen. Char.—Calyx five-parted or more frequently five-cleft, nearly equal. Corolla globose, with a short five-lobed limb, the segments of which are rounded, and the uppermost united into an upper lip. Stamens didynamous, inclining, with one-celled, transverse anthers; a fifth rudimentary stamen with a lamelliform anther often present. Stigma emarginate. Capsule roundish, often acuminate, with the valves entire, or just bifid (Lindley).

\(^e\) Bergius, Mat. Med.
\(^f\) Clin. Exp. and Hist.
\(^g\) Sprengel, Hist. Rei Herb.Pref. xi.
Sp. Char.—Leaves heart-shaped, acute; three-ribbed at the base. Stem sharp-edged. Root tuberous. (Smith).—Corolla dull green, with a livid purple lip.


Description.—The fresh leaves (folia scrophulariae nodosae) have, when bruised, a fetid odour: their taste is bitter, and somewhat acrid. Water extracts the virtues of the plant: the infusion is darkened by the sesquichloride of iron, but is unchanged by tincture of nutgalls.

Composition.—The whole plant (root and herb) was analysed in 1830 by Grandoni. He obtained brown bitter resin 0.31, extractive with gum 4.84, extractive having the odour of benzoic acid 0.88, chlorophylle 1.58, starch 0.23, greenish fæcula 0.18, mucilage 0.27, inulin 0.16, malic acid 0.15, pectic acid 0.15, acetic acid 0.13, woody fibre 19.80, water 70.31, sulphate and carbonate of potash 0.59, alumina 0.20, oxalate and carbonate of lime 0.46, magnesia 0.26, silica 0.07, odorous matter and loss 0.31.

Physiological Effects.—But little known. Judging from their taste, the leaves possess acrid properties. When swallowed they occasion vomiting and purging. They are said to be diuretic and narcotic.

Uses.—Rarely employed. In the form of a fomentation the leaves are sometimes applied to piles and other painful tumors. The ointment is used in skin diseases. The tuberous root was formerly esteemed in scrofula.

UNGUENTUM SCROPHULARIE, D.; Ointment of Scrophularia.—(Fresh leaves of Scrophularia nodosa; Prepared Hog's Lard, of each, Ibij.; Prepared Mutton Suet, Ib. j. Boil the leaves in the fat until they become crisp, then strain by expression.)—Recommended by Dr. W. Stokes for the cure of a disease of children, commonly termed burnt-holes, but which he calls Pemphigus gangrenosus [Rupia escharotica?]. It has also been used in tinea capitis, impetigo, and other cutaneous affections.

OTHER MEDICINAL SCROPHULARIACEÆ.

1. Grati'ola officina'lis, or Hedge Hyssop, is cathartic, diuretic, and emetic, acting in large doses as an acrid poison. It has been used in visceral obstructions, liver affections, dropsies, scrofula, and venereal diseases.—Dose of the powder, gr. xv. to fss.: of the infusion (prepared with 3ij. of the dried herb and Oss. of boiling water), fss. to f3j, three times a day.

2. Veron'ica Beccabun'ga, or Brooklime, is considered antiscorbutic. It may be eaten as a salad.
3. Euphrasia officinalis, or Common Eye-bright, is nearly inert, though it is a popular remedy for diseases of the eyes.

ORDER XXXVIII.—SOLANACEÆ, Lindley.—THE NIGHT-SHADE TRIBE.

Solanaceæ, Jussieu.

Essential Character.—Calyx five-parted, seldom four-parted, persistent, inferior. Corolla monopetalous, hypogynous; the limb five-lobed, seldom four-lobed, regular, or somewhat unequal, deciduous; the stamens inserted upon the corolla, as many as the segments of the limb, with which they are alternate; anthers bursting longitudinally, rarely by pores at the apex. Ovary two-celled, rarely four or many-celled, with two polyspermous placentae; style continuous; stigma simple. Pericarp with two or four or many cells, either a capsule with a double dissepiment parallel with the valves, or a berry with the placenta adhering to the dissepiment. Seeds numerous, sessile; embryo straight or curved, often out of the centre, lying in a fleshy albumen; radicle next the hilum.—Herbaceous plants or shrubs. Leaves alternate, undivided, or lobed, sometimes collateral; the floral ones sometimes double, and placed near each other. Inflorescence variable, often out of the axil; the pedicels without bracts (Lindley).

Properties.—Not uniform. 1. Narcotics (cerebro-spinants, Pereira, p. 174) are obtained from the genera Hyoscyamus, Atropa, Datura, Nicotiana, Solanum, and Mandragora: of these some are also acrids (acro-narcotic solanaceæ). 2. Acro-aromatics are procured from the genus Capsicum. 3. Bitter-tonics are found in the genera Solanum (as S. Pseudoquina and crispum), and Cestrum (C. diurnum). 4. Nutrients are obtained from the genus Solanum (as S. Lycopersicum, Melonzena, and tuberosum.) The heat used in preparing some of these for the table may, perhaps, volatilize or decompose any noxious matter which they contain. The generalizations of some late French writers with respect to the identity of the operation of the narcotic Solanaceæ, do not appear to me to be founded in fact. Hyoscyamus, Belladonna, and Stramonium, agree in causing dilatation of the pupil, and in producing delirium. Hyoscyamus, given in moderate doses, sometimes occasions sleep, though this has been denied. Tobacco depresses the muscular and vascular systems.

1. Hyoscy'amus Ni'ger, Linn., L. E. D.—COMMON HENBANE.

Sex. Syst. Pentandria, Monogynia.

History.—This plant is the ὑσκναμος μέλας of Dioscorides. The ὑσκναμος of Hippocrates is probably Hyoscyamus albus. The plant is the Hyoscyamus of the ancient physicians. The parts used are the root and the leaves. The root is a powerful remedy for the treatment of certain diseases of the nervous system. The leaves are used in the preparation of a tincture, which is applied externally to the skin to relieve pain and itching.

Botany. Gen. Char.—Calyx tubular, five-cleft. Corolla funnel-shaped; limb spreading, oblique, five-lobed, unequal. Stigma capitate. Capsule ovate, compressed and furrowed on each side; apex circumscissile or operculate (Bot. Gall.)

Sp. Char.—Leaves sinuated, clasping the stem. Flowers sessile (Smith).

Root spindle-shaped. Stem bushy. Leaves sessile, soft and pliant, sharply lobed, downy, and viscid, exhalating a powerful and oppres-

---

[a] Vide Trousseau and Pidoux, Traité de Thérap. t. i. p. 206.
[b] Lib. iv. cap. 69.
sive odour, like all the rest of the plant. Flowers numerous from the bosoms of the crowded upper leaves, almost entirely sessile, of an elegant straw colour, pencilled with dark purple veins.

Hab.—Indigenous: waste ground, banks, and commons. Flowers in July.

There are two varieties of this species; one biennial, the other annual. Both are cultivated at Mitcham.

Botanists are not agreed as to the duration of *Hyoscyamus niger*. Linnaeus, Andr. Murray, Persoon, Woodville, Lindley, and T. F. L. Nees von Esenbeck, Weyhe, Wolter, and Funke (editors of the *Beschreibung officineller Pflanzen*) declare it to be biennial; whereas Hudson, Withering, Smith, Hooker, Richard, and T. F. L. Nees von Esenbeck and Ebermaier state that it is annual. Loudon, Geiger, and J. L. Wheeler, on the other hand, regard it as both annual and biennial. Herbalists are well acquainted with two kinds of Hyoscyamus, grown for the London market, and distinguished as the annual and biennial varieties. On carefully comparing them I cannot discover any essential specific difference between them. The biennial variety is usually branched, and is a stronger plant than the annual one.

*Hyoscyamus agrestis* Kitaibel is distinguished from the common *Hyoscyamus niger* by the following characters:—it is annual, has a simple stem, its leaves are less deeply incised and less hairy, and its corolla is not so strongly marked with violet veins, or even is entirely yellow. The last-mentioned character belongs also to *Hyoscyamus pallidus* Kitaibel. It would appear, however, from the observations of Brandt and Ratzeburg, who have carefully examined Kitaibel's original specimens in Willdenow's herbarium, that *H. agrestis* is only a variety, *minor* of *Hyoscyamus niger*, and that *H. pallidus* belongs also to the same species. *Hyoscyamus albus* has petiolated leaves, which are subcordate, ovate, and bluntly toothed.

Since the two preceding paragraphs were in type, I have received a letter from Sir W. J. Hooker, in which he states that he has native specimens of *H. agrestis* and *pallidus* in his Herbarium; and he adds, "I have no hesitation in saying that they are identical with *H. niger*; and *niger* ought to be marked 'annual or biennial'."

**Description.**—Mr. Houlton says the plant is fit for medicinal purposes in the second year only of its duration. It should be gathered when in full flower. The herb (*herba hyoscyami*), when fresh, has a strong, unpleasant, narcotic odour, a mucilaginous, slightly acrid taste, and a clammy feel. By drying it almost wholly loses these properties. One hundred pounds of the fresh herb yield about fourteen pounds when dried. The leaves (*folia hyoscyami*), when fresh, are pale, dull green. The seeds (*semina hyoscyami*) are small, compressed, uniform, roundish, finely dotted, of a yellowish grey colour, and have the odour of the plant, and an oleaginous, bitter taste.

**Composition.**—The seeds of *Hyoscyamus niger* were analyzed, in 1816, by Kirchof; and, in 1820, by Brandes. The extract of the herb was analyzed by Lindbergson.

---

* It is somewhat remarkable, that in the two works above quoted, of which T. F. L. Nees von Esenbeck was part editor, the statements with regard to the duration of this plant should be so discordant.
* Deutschlands phanerogamische Giftgewächse, S. 60. Berlin, 1834.
* Martius, Pharmakogn.
Common Henbane.

Lindbergson's Analysis.

<table>
<thead>
<tr>
<th>Brander's Analysis.</th>
<th>Lindbergson's Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty oil</td>
<td>Narcotic extractive soluble in water and alcohol.</td>
</tr>
<tr>
<td>Waxy fat</td>
<td>Bitter extractive.</td>
</tr>
<tr>
<td>Resin insoluble in ether</td>
<td>Gummy extractive.</td>
</tr>
<tr>
<td>Malate of hyoscyamina with malates of lime and magnesia, and a salt of potash and ammonia.</td>
<td>Malates, phosphates, sulphates, and muriates of magnesia.</td>
</tr>
<tr>
<td>Uncrystallizable sugar</td>
<td>Extract of the herb.</td>
</tr>
<tr>
<td>Gum 1.2, Bassorin 2.4, and Starch 1.5...</td>
<td></td>
</tr>
<tr>
<td>Albumen</td>
<td></td>
</tr>
<tr>
<td>Vege-animal matter</td>
<td></td>
</tr>
<tr>
<td>Malate, phosphate, sulphate, and muriate of potash</td>
<td></td>
</tr>
<tr>
<td>Malates of lime and magnesia</td>
<td></td>
</tr>
<tr>
<td>Phosphates of lime and magnesia</td>
<td></td>
</tr>
<tr>
<td>Woody fibre</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Seeds of Hyoscyamus 10.4</td>
<td></td>
</tr>
</tbody>
</table>

The ashes contained carbonate, phosphate, sulphate, and muriate of potash, carbonate and much phosphate of lime, much silica, manganese, iron, and minute traces of copper.

1. Hyoscyamia or Hyoscyamina.—This term has been applied to a vegetable alkali procured from the seeds and herbs of Hyoscyamus niger by Brandes, whose statements have been confirmed by Geiger and Hesse, as well as by Mein. However, Chevallier, as well as Brault and Poggiale, have failed to procure it. The properties assigned to it are almost identical with those of Atropina, from which it differs in being more soluble in water. It is crystallizable, has an acrid taste, and, when volatilized, yields ammonia. Reisinger says, that a drop of a solution of one grain of this substance in ten grains of water caused dilatation of the pupil, but did not give rise to irritation of the eye. A solution of double this strength acted as an irritant.

2. Empyreumatic Oil of Henbane (Pyro-Hyoscyamia?).—This was obtained by Dr. Morries by the destructive distillation of henbane. Its chemical properties are identical with those of the empyreumatic oil of foxglove. It proved a powerful narcotic poison.

Physiological Effects. a. On Vegetables.—Water holding in solution extract of henbane proved poisonous to Hyoscyamus niger.

b. On Animals.—Its effects on herbivorous animals are slight. Given to horses, in large quantities, it causes merely dilatation of the pupils, spasmodic movements of the lips, and frequency of pulse. On dogs its effects appear to be analogous to those on man. It does not cause any local irritation. Its constitutional effects are, dilatation of pupil, weakness of the posterior extremities, staggering, and insensibility.

c. On Man.—In small and repeated doses henbane has a sedative and tranquillizing effect. This is especially observed in persons suffering with great nervous irritability, and with a too active condition of the sensorial functions. In such it frequently causes calmness, with a tendency to sleep. It frequently allays irritation and preternatural sensibility existing in any organ. It does not quicken the pulse, check secretion, or cause constipation. Large doses sometimes induce quietude and sleep. Fouquier, however, denies this.
He says, henbane causes headache, giddiness, dimness of sight, dilatation of pupil, a greater or less tendency to sleep, and painful delirium. In some cases these symptoms are followed by thirst, nausea, griping, and either purging or constipation; and, in a few instances, febrile heat and irritation of skin are induced. But I have frequently seen sleep follow its use, though its hypnotic properties are neither constant nor powerful. It more frequently fails to occasion sleep in those accustomed to the use of opium. Very large doses are apt to be followed by delirium rather than by sleep. Its power of alleviating pain and allaying spasm is greatly inferior to that of opium. In poisonous doses it causes loss of speech, dilatation of pupil, disturbance of vision, distortion of face, coma, and delirium (the typhomania of some authors) generally of the unmanageable, sometimes of the furious kind, and paralysis, occasionally with convulsive movements. Irritation of the stomach and bowels (manifested by nausea, vomiting, pain, and purging) is occasionally induced. One author says hyoscyamus renders the hair grey, while another states that it darkens it.

In its operation on the body, henbane presents several peculiarities. From opium it is distinguished by the sedative, rather than stimulant, effects of small doses; by its not confining the bowels; by the dimness of sight; and, when swallowed in large doses, by its producing dilatation of the pupil, and by its being more apt to occasion delirium. The last-mentioned peculiarity is noticed by Dr. Cullen. Furthermore, in some individuals, opium causes headache, and other distressing symptoms, which henbane is not so apt to produce. From belladonna and stramonium, to which it is in several respects closely allied, it is distinguished by the very rare occurrence of any symptoms of gastro-intestinal irritation after the ingestion of large doses of it. Sundelin says, “that it wants the resolvent operation and the stimulant influence over the vascular system which belladonna possesses.” Vogt ranks hyoscyamus between belladonna and hydrocyanic acid. But, with every respect for the opinions of so profound a writer, I cannot concur in the propriety of this arrangement. I have never seen, from the use of hydrocyanic acid, the same tranquillizing and soothing influence over the mind and external senses which I have repeatedly witnessed from the use of small doses of hyoscyamus; and the effects of poisonous doses of these two agents more strikingly display the difference of their operation; for, while hydrocyanic acid causes insensibility and convulsion, henbane produces delirium and paralysis.

Uses.—Hyoscyamus is said to alleviate pain and irritation in various organs, to promote sleep, to procure quietude, and to obviate spasm. For any of these objects it is greatly inferior to, and less con-
fidently to be relied on than, opium. Yet it is, on various occasions, preferred to the latter; as where opium causes headache, or other distressing cerebral symptoms, or where it occasions constipation. Again, the stimulant influence of small doses of opium over the vascular system, and the tendency of this narcotic to lock up the secretions and excretions, form objections to its use in the maladies of children; in such, therefore, hyoscyamus is frequently preferred. Fouquier, whose observations with respect to the effects of henbane I have already had occasion to refer to, can find in this narcotic no useful property; and he thinks it ought to be banished from the Materia Medica.

The following are the principal purposes for which it is ordinarily employed in this country:—

1. *As an anodyne* where opium disagrees, or is from any circumstance objectionable. It may be used in neuralgia, rheumatism, gout, periostitis, the milk abscess, painful affections of the urino-genital organs, scirrhus, and carcinoma.

2. *As a soporific* it is available in sleeplessness, accompanied with great restlessness and mental irritability, and where opium, from its stimulant or other properties, proves injurious. Sometimes, where it fails to cause actual sleep, it proves highly serviceable by producing a calm and tranquil state conducive to the well-doing and comfort of the patient.

3. *As an antispasmodic* it occasionally proves serviceable in spastic affections of the organs of respiration (e.g. spasmodic asthma), and of the urino-genital apparatus (e.g. spasmodic stricture and spasm of the sphincter vesicae). Notwithstanding the favourable reports of Storck to the contrary, it is rarely calculated to be of any service in epilepsy.

4. *As a sedative*, to allay irritation and preternatural sensibility. In troublesome cough it sometimes proves useful by dulling the sensibility of the bronchial membrane to the influence of the cold air. In nephritic and vesical irritation, and in gonorrhœa, it is sometimes a useful substitute for opium. In the irritation of teething it is valuable from its power of relieving pain and convulsion. Its advantages over opium, in the disorders of children, have been already pointed out.

5. *To dilate the pupil* the extract may be used as a substitute for extract of belladonna, than which it is less powerful.

6. *As a topical sedative and anodyne*, fomentations of the herb, or the extract, are sometimes applied to painful glandular swellings, irritable ulcers, hemorrhoids, and parts affected with neuralgia. In irritation of the rectum or bladder it is sometimes used per anum.

**Administration.**—The powder of the leaves is rarely employed: the dose is from three to ten grains. The extract and tincture are the preparations commonly used.

**Antidotes.**—The treatment of a case of poisoning by henbane is the same as that by opium.

1. Tinctura Hyoscyami, L. E. D. Tincture of Henbane.—(Henbane leaves, dried, [in moderately fine powder, E.] 3v.; Proof Spirit, Oij. [wine-measure, D.] Macerate for fourteen [seven, D.] days, and strain. "This tincture is best prepared by the process of percolation, as directed for tincture of Capsicum; but it may also be obtained, though with greater loss, by the process of digestion," E.)—Dose, f.5s. to f.5j.

Succus Hyoscyami.—The Preserved Juice of Henbane (see p. 365) may be substituted for the tincture. Mr. Bentley informs me that he obtained the following quantities of juice from henbane leaves:

<table>
<thead>
<tr>
<th>Date</th>
<th>Quantity of Leaves</th>
<th>Yielded Juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 24th.</td>
<td>3 cwt.</td>
<td>42</td>
</tr>
<tr>
<td>&quot;28th.</td>
<td>2 cwt.</td>
<td>22</td>
</tr>
<tr>
<td>Aug. 3rd.</td>
<td>2 cwt.</td>
<td>25</td>
</tr>
</tbody>
</table>

2. Extractum Hyoscyami, I. E.; Succus spissatus Hyoscyami, D. Extract of Henbane.—(Fresh Henbane leaves, lb. j.) Bruise them, sprinkle with a little water, in a stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence, L.—"This extract is to be prepared from the fresh leaves of hyoscyamus by any of the processes directed for Extract of Conium," E.—The Dublin College orders it to be prepared from the fresh plant of henbane, in the manner directed for the Succus spissatus Aconiti).—The average produce of extract is stated by Mr. Brande to be from 4 to 5 lbs. from 112 lbs. of the fresh herb. Mr. Squire states the following as the products (obtained by a common screw press and water-bath) from 112 lbs. of matured hyoscyamus, gathered dry and in good order; the season, however, being rather more rainy than the average:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Yielded of Juice</th>
<th>Yielded of Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbs.</td>
<td>lbs. oz.</td>
<td>lbs. oz.</td>
</tr>
<tr>
<td>70</td>
<td>42</td>
<td>4 10</td>
</tr>
<tr>
<td>25</td>
<td>17 ½</td>
<td>0 15</td>
</tr>
<tr>
<td>3 ½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ½</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>59 ½</td>
<td>5 9</td>
</tr>
</tbody>
</table>

The quality of the extract met with in the shops is extremely variable. This arises principally from the unequal care with which it has been prepared. The dose is from gr. v. to 3j. Occasionally very much larger doses have been taken without any injurious effects. It is said to be a valuable addition to the compound extract of colocynth, whose operation it renders milder, though not less efficacious. It is sometimes used as a topical application to inflamed or tender parts: thus, alone, or in the form of ointment, it is applied to painful hemorrhoids; spread on linen it forms a plaster, which has been used in neuralgia, rheumatic pains, painful glandular swellings, &c.

My friend Dr. Wm. Lobb and nearly a dozen other persons in 1841 experienced symptoms like those of poisoning by belladonna, from the employment of several grains of an extract sold by a most respectable country chemist as

* Pharmaceutical Transactions, p. 97.
that of hyoscyamus. The greater part of the extract sold by this chemist had been most carefully prepared by himself, but not having made sufficient for the year's consumption, he purchased some in London, and the extract used on these occasions might have been that which was bought. The extract employed had an unusually greenish colour, and the hyoscyamus odour. The effects produced were difficulty of swallowing, a sensation as if the parts about the throat had been powdered with tow dust, impaired vision, eyes bloodshot, pupils dilated, feeling of suffocation, strangury, cessation of cough and expectoration which had been previously troublesome. The vision was greatly improved by the use of a magnifier. The third day the symptoms had disappeared, but great prostration of strength supervened. In some of the patients an eruption like that of scarlatina appeared, with intense redness of the palms of the hands.

2. **Atropa Belladonna**, Linn. L. E. D.—Common Dwale; Deadly Nightshade.

**Sex. Syst.** Pentandria, Monogynia.

(Folia, L.—Leaves, E.—Folia et radix, D.)

**History.**—Some persons have suggested that this plant may be the *mondavagoras* of Theophrastus, the fruit of which, this ancient botanist says, "is black, racemed, and, to the taste, vinous." But the plant noticed under this name by Dioscorides, had yellow fruit, and is universally admitted to be the *Mandragora officinalis*. The earliest undoubted notice of belladonna occurs in the work of Tragus (A.D. 1532,) who calls it *Solanum hortense nigrum*. It has been supposed that it was this plant which produced such remarkable and fatal effects on the Roman soldiers, during their retreat from the Parthians. Buchanan relates, that the Scots mixed the juice of this plant with the bread and drink, which, by their truce, they were to supply the Danes, which so intoxicated them, that the Scots killed the greatest part of Sweno's army while asleep. Shakspere is supposed to allude to it under the name of the insane root.

**Botany. Gen. Char.**—Calyx campanulate, five-cleft. Corolla campanulate, twice the length of the calyx, five-lobed, equal. Filaments five, filiform. Berry globose, seated in the calyx (Bot. Gall.)

**Sp. Char.**—Stem herbaceous. Leaves ovate, undivided. Flowers solitary (Smith).

Root fleshy, creeping. Whole plant fetid when bruised, of a dark and lurid aspect, indicative of its deadly narcotic quality. Stems herbaceous, three feet high, round, branched, leafy, slightly downy. Leaves lateral, mostly two together of unequal size, ovate, acute, entire, smooth. Flowers imperfectly axillary, solitary, stalked, drooping, dark full purple in the border, paler downwards, about an inch long. Berry of a shining violet black, the size of a small cherry, sweetish, and not nauseous (Smith).

**Hab.**—Indigenous: hedges and waste ground, on a calcareous soil. Flowers in June.

**Description.**—The root (*radix belladonnae*), when fresh, is one or more inches thick, and sometimes a foot or more long: it is branching, fleshy, internally white, externally grayish or brownish-white.

---

*See Plutarch's *Life of Antony.*

"*Rerum Scot. hist. bd. vii.*"

"*Macbeth, Act i. Scene 3d.*"
Its taste is slight, sweetish: its odour is feeble. It may be collected in the autumn or early in the spring. The flowering stems (herba belladonnae) are collected in June or July; they are then deprived of leaves (folia belladonnae), which are to be carefully dried. The leaves, when fresh, have a feeble, bitterish, sub-acid taste.

Composition.—The leaves of belladonna were analyzed, in 1808, by Melandri: the expressed juice, in 1808, by Vauquelin; and the dried herb, in 1819, by Brandes. Besides these there have been several less complete examinations of this plant by other chemists, which have yielded more or less interesting results.

**Brandes's Analysis.**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermalate of Atropin</td>
<td>1.51</td>
</tr>
<tr>
<td>Pseudo-toxin with malate of atropia and potash salts</td>
<td>16.65</td>
</tr>
<tr>
<td>Wax</td>
<td>0.70</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>8.84</td>
</tr>
<tr>
<td>Phytocolla (a nitrogenous substance insoluble in alcohol)</td>
<td>6.59</td>
</tr>
<tr>
<td>Gum</td>
<td>8.33</td>
</tr>
<tr>
<td>Starch</td>
<td>12.25</td>
</tr>
<tr>
<td>Albumen</td>
<td>10.70</td>
</tr>
<tr>
<td>Lignum</td>
<td>7.47</td>
</tr>
<tr>
<td>Salt</td>
<td>25.50</td>
</tr>
<tr>
<td>Water</td>
<td>2.05</td>
</tr>
<tr>
<td>Loss</td>
<td>265</td>
</tr>
<tr>
<td><strong>Dried herb of Belladonna</strong></td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. Atropia (Atropa seu Atropium).—The most improved processes for extracting this vegetable alkali are those of Mein, and Thomson, and Richter. By the first, 12 oz. of belladonna root yielded not quite 12 grains of pure atropia. This vegetable alkali crystallizes in transparent silky prisms. It is odourless, soluble in alcohol, ether, and very slightly so in water. The solution is bitter, restores the blue colour of reddened litmus paper, is precipitated white by infusion of nutgalls, yellow by chloride of platinum, and yellow by chloride of gold: the precipitate caused by the latter assumes a crystalline appearance. At a temperature above 212° F. it is converted into vapour, which is deposited like a coat of varnish. Heated in the open air, it readily becomes empyreumatic. It dissolves in acids, with which it unites to form salts. The hydrochlorate and sulphate are crystallizable. Three analyses of it have been made by Liebig: according to the latest, its composition is C_{34}H_{23}N_{6}O_{6}; hence its atomic weight is 289. Atropia is a powerful poison. An imponderable quantity is sufficient, when applied to the eye, to cause dilatation of the pupil. Given to dogs and cats it caused vomiting, dilatation of the pupil, and stupor. A tenth of a grain caused, in the human subject, dryness of the mouth, constriction of the throat, difficulty of swallowing, stupor, dilatation of pupil, and headache.

2. Pseudotoxin.—A substance obtained by Brandes from the watery extract of belladonna. It is brownish-yellow, soluble in water, insoluble in absolute alcohol and ether, is coloured green by the salts of iron, and is totally precipitated from its watery solution by the salts of lead and by tincture of galls.

3. Belladonnin.—Under this name, Luebekind has described a volatile vegetable alkali, which, he says, is distinct from atropia. It is crystallizable, and has an ammoniacal odour. It consists of carbon 28-5, hydrogen 22-4, nitrogen 32-1, oxygen 17-0. The crystals contain three equivalents of Water. Two grains caused extreme heat in the throat and constriction of the larynx.

4. Atropic acid.—This name has been given by Richter to a volatile, crystallizable acid, distinguished from benzoic acid by its not precipitating the salts of iron.

---

* Ann. de Chim. lxxv. 222.  
* Ibid. lxiii. 53.  
* Gmelin's Hand. d. Chem. ii. 1305.  
* Pharm. Central-Blatt für 1833, S. 771.  
* Pharm. Central-Blatt für 1837, S. 613.  
* Geiger and Hesse, Ibid. für 1837, S. 81.  
* Ibid.  
* Ibid. für 1833, S. 773.  
* Pharm. Central-Blatt für 1839, S. 448.  
* Ibid. für 1837, S. 614.
Physiological Effects. a. On Vegetables.—An aqueous solution of extract of belladonna is poisonous to plants.

β. On Animals generally.—Belladonna proves poisonous to animals and birds; but much less so to herbivorous than to carnivorous animals. Eight pounds (Troy) of the leaves have been eaten by a horse without any ill effects. Mr. Anderson tells me that the blackbirds eat the seeds at the Chelsea Garden. A pound of ripe berries has been given to an ass with very little effect. Given to dogs, belladonna causes dilatation of pupil, plaintive cries, efforts to vomit, weakness of the posterior extremities, staggering, frequent pulse, a state like intoxication, and death. Forty or fifty grains of the watery extract, injected into the jugular vein of dogs, have proved fatal. Flourens thinks that the tubercula quadrigemina are the parts of the nervous centres on which this poison specifically acts. His inferences were drawn from experiments made on birds. The topical action of belladonna is that of an acrid, though not a very violent one.

γ. On Man.—In the first degree of its operation, belladonna diminishes sensibility and irritability. This effect (called by some sedative) is scarcely obvious in the healthy organism, but is well seen in morbid states, when these properties are preternaturally increased. A very frequent and sometimes the earliest obvious effect of belladonna is dryness of the mouth and throat, frequently attended with thirst. The other secretions and the circulation are oftentimes not affected, though occasionally they are augmented. Mr. Bailey asserts that belladonna affects neither the stomach nor bowels, nor any of the secretions nor excretions, those of the salivary glands excepted. The asserted influence of belladonna over the organic functions is said to be shown by its power of inducing, in some cases, resolution of swellings and tumours of various kinds, as will be presently noticed.

In the second degree of its operation belladonna manifests, both in healthy and morbid conditions, its remarkable influence over the cerebro-spinal system. It causes dilatation of the pupils, obscurity of vision, or absolute blindness (amaurosis), visual illusions, suffused eyes, occasionally disturbance of hearing (as singing in the ears, &c.) numbness of the face, confusion of head, giddiness, and delirium, which at times resembles intoxication, and may be combined with or followed by sopor. These symptoms are usually preceded by a febrile condition, attended with a remarkable affection of the mouth, throat, and adjacent parts. Besides dryness of these parts, it causes difficulty of deglutition and of articulation, a feeling of

---

1 Moiroud, Pharm. Vét. p. 344.
1 Orfila, Toxicol. Gen.
constriction about the throat, nausea, and sometimes actual vomiting and, now and then, swelling and redness of the face. The pulse is usually hurried and small. The cutaneous, renal, and mucous secretions are frequently augmented. An exanthematous eruption, like that of scarlet fever, has been noticed; and irritation of the urinary organs has in some instances occurred.  

In some cases very severe effects have been induced by the application of the extract to abraded surfaces. The continued application of it to the sound skin has also been attended with similar effects.  

In the third degree of its operation, belladonna produces effects similar to the preceding, but in a more violent form. The following are the symptoms experienced by above 150 soldiers, who were poisoned by the berries of belladonna, which were gathered at Pirna, near Dresden:—"Dilatation and immobility of the pupil; almost complete insensibility of the eye to the presence of external objects, or at least confused vision; injection of the conjunctiva with a bluish blood; protrusion of the eye, which in some appeared as if it were dull, and in others ardent and furious; dryness of the lips, tongue, palate, and throat; deglutition difficult or even impossible; nausea not followed by vomiting; feeling of weakness, lipotymia, syncope; difficulty or impossibility of standing; frequent bending forward of the trunk; continual motion of the hands and fingers; gay delirium, with a vacant smile; aphonia or confused sounds, uttered with pain; probably ineffectual desires of going to stool; gradual restoration to health and reason, without any recollection of the preceding state."  

In comparing the operation of belladonna with that of other cerebro-spinants (narcotics, auct.), the most remarkable symptoms which attract our attention are the dilatation of the pupils, with insensibility of the irides to light, disturbance of vision, diminished feeling, giddiness, staggering, the delirium (extravagant, pleasing, or furious), followed by sopor, and the remarkable affection of the mouth and throat (dryness of the throat, difficulty of deglutition and of articulation). Convulsions are rare, and, when they occur, are slight. Lethargy or sopor occurs subsequently to the delirium. Local irritation is not well marked.  

These characters distinguish the effects of belladonna from those of any other substance, except henbane (see p. 1224), stramonium (see p. 1238), and perhaps from some other solanaceous species.  

When applied to the eyebrow, belladonna causes dilatation of the pupil, without necessarily affecting the other eye or disturbing vision. Segalas has rendered it probable that absorption or imbibition is essential to this effect. But the action on the iris depends, according to Müller, not on the operation of the belladonna on the ceraul

---

10 Gaultier de Claubry, in Orfila's Toxicol. Gen.  
12 Physiology, vol. i. p. 630.
organs of the nervous system, but on its topical, paralyzing influence on the ciliary nerves. When, however, belladonna is swallowed, it is obvious that the irides can become affected through the general system only, and in this case the dilatation of the pupil is accompanied with disturbance of vision\(^*\). The pneumogastric nerve is obviously concerned in producing the affection of the mouth and the difficulty of deglutition and articulation.

The disorder of the intellect and of the external senses caused by belladonna proves that the influence of this agent is not limited to the excito-motory system, but is extended to those portions of the nervous centres which are the seat of the intellect and of sensibility.

Uses.—Belladonna has been employed to allay pain and nervous irritation (erethismus nervosus) of some authors; to diminish the sensibility of the retina to the impression of light; to produce dilatation of the pupil; to counteract that condition of brain which is accompanied with contraction of the pupil; and to lessen rigidity and spasmodic contraction of muscular fibres. These uses obviously arise out of the ascertained physiological effects of the remedy. There are others, however, which may be regarded as altogether empirical: such as its employment to resolve or discuss scirrhous tumours.

The indications and contra-indications for its use are not sufficiently established to induce us to place much confidence in them. My own experience leads me to believe that it is not a remedy fitted for plethoric constitutions, or for febrile and acute inflammatory cases; and I am not disposed to admit the observations of Dr. Graves, hereafter to be mentioned, as offering any valid objections to these statements.

1. To allay pain and nervous irritation.—As an anodyne in most internal pains no remedy hitherto proposed is equal to opium; but this agent totally fails us in many of those external pains known as neuralgia, prosopalgia, or tic douloureux. In such, belladonna occasionally succeeds in abating, sometimes in completely removing, pain; while it totally fails to give relief in the internal pains for which experience has found opium so efficacious. It is remarkable, therefore, that while both these cerebro-spinants (narcotics, auctor.) agree in lessening pain, they totally disagree as to the cases in which they succeed, and for which they are individually applicable. In the treatment of neuralgia, belladonna is employed both internally and externally. I believe that, to be successful, it requires, in many cases, to be persevered in until dryness of the throat, dilatation of pupil, and some disorder of vision, are produced. Just as in many diseases for which mercury has been found a most efficient remedy, it is necessary to continue the use of this mineral until the mouth be affected, and often even to use it for some time afterwards. Of the success of belladonna in the treatment of neuralgia, we have abundant evidence

\(^*\) For some interesting observations on the associated functions of the retina and iris, consult Grainger's Observations on the Structure and Functions of the Spinal Cord, p. 72, et seq.
in the published cases of Mr. Bailey, and of several other practitioners. My own experience of the use of this remedy leads me to regard it as very much inferior to aconite as a local remedy for this disease.

Besides neuralgia there are many other painful affections against which belladonna is used as a local anodyne. Such are arthritic pains, painful ulcers, glandular enlargements which are tender to the touch, &c. Dr. Osborne states, that given internally it causes an immediate cessation of the migratory or flying pains of rheumatism, without producing any effect on the fixed pains.

2. As an antispasmodic.—To relieve rigidity and spasmodic contraction of muscular fibres, belladonna sometimes proves serviceable as a local remedy. In rigidity of the os uteri, during lingering labours or puerperal convulsions, the extract or an ointment of belladonna (see unguentum belladonna) has been applied to the part by way of friction. Though the practice has been lauded by Chauvrier, and adopted by Velpeau, Conquest, and others, yet it has not found much favour with British practitioners. It cannot be regarded as a substitute for, but only an adjuvant to, depletion; and its use is not devoid of danger; for, not to insist on the possibility of absorption, and the consequent injurious effects therefrom, it is obvious that the long-continued friction of the tender womb, and the removal of the lubricating mucus, may dispose to inflammation. In spasmodic stricture of the urethra, and of the sphincters of the bladder and rectum, and in spasmodic contraction of the uterus, the topical use of the extract (smear on a bougie, applied to the perineum or other parts, or employed by way of a enema) has in some cases appeared to give relief. In strangulated hernia it has been employed to produce relaxation of the abdominal muscles.

In a case of angina pectoris, unconnected with organic disease, the application of a belladonna plaster to the chest (before the ulcerations caused by tartar emetic ointment had healed) produced alarming signs of poisoning; but when these had subsided, all symptoms of the angina had totally disappeared.

Considerable relief has been gained in several cases of hooping-cough by the use of belladonna. Its occasional efficacy depends in part, probably, on its lessening the necessity of respiration, as well as on its power of obviating spasm of the bronchial tubes, and of decreasing the susceptibility of the bronchial membrane to the in-
fluence of the exciting causes of the paroxysms. But like all other vaunted specifics for this peculiar disease, it frequently fails to give the least relief.

3. In Maladies of the Eyes.—Belladonna is applied to the eye for two purposes: the first, and the most common, is to dilate the pupil; the other is to diminish the preternatural sensibility of the retina to the impression of light. Dilatation of the pupil is sometimes produced, in certain diseases of the eye, in order to enable us to examine the condition of the refractive humours, and thereby to ascertain the nature and extent of the malady; as in cases of incipient cataract, which might otherwise be occasionally confounded with glaucoma or amaurosis. In the operation of cataract by solution or absorption (keratonyxis), the full dilatation of the pupil by belladonna is essential. In iritis, dilatation of the pupil is important, in order to prevent, or in recent cases to rupture, adhesions of the uvea to the capsule of the crystalline lens. Some surgeons consider it an objectionable remedy during the early stage of the disease. In prolapsus iridis benefit is, under some circumstances, gained by the use of belladonna; as, where there is opacity of the cornea covering the pupil, the dilatation of the aperture, so as to get its circumference beyond the opaque spot, is attended with an improvement of vision. These are some of the cases in which dilatation of the pupil by belladonna is advisable. It is usually effected by applying the extract (see extractum belladonae) to the parts around the eye, or to the conjunctiva. The dilatation usually takes place within a few minutes, and sometimes continues for twenty-four hours.

Belladonna is sometimes employed in inflammatory and other affections of the eye, to diminish the morbid sensibility of this organ to the influence of light.

4. As a resolvent or discutient.—In enlargement and induration of the lymphatic glands, in scirrhus and cancer (or diseases which have been supposed to be such), belladonna has gained no slight repute from its supposed resolvent or discutient properties. That it may give relief by its anodyne powers we can easily understand, but that it has any real resolvent or discutient properties in the diseases just enumerated, may be reasonably doubted, notwithstanding the favourable reports of Gataker, Cullen, Blackett, and others. Bromfield and others have reported unfavourably of it, and no one, I think, now places any reliance on it.

5. As a prophylactic against Scarlatina.—The introduction of belladonna into practice as a preventive of scarlet fever, is owing to the absurd homœopathic axiom of "similia similibus curantur:" for as this plant gives rise to an affection of the throat, and sometimes to a
scarlet rash on the skin, its power of guarding the system against the reception of scarlet fever has been assumed; and the assumption has been endeavoured to be established by an appeal to experience. Bayle⁹ has collected from various publications 2,027 cases of persons who took this medicine, and were exposed to the contagion; of these 1,948 escaped. Oppenheim¹⁰ gave it to 1,200 soldiers, and only twelve became affected. To the authorities here referred to may be added Hufeland¹¹ and Koreff¹², who admit, from their own personal observations, the efficacy of the remedy, though they have not specified the number of cases in which they have tried it. But bearing in mind the well-known capriciousness evinced by scarlet fever (as indeed by other contagious disorders) in regard to the subjects of its attacks, and the large number of those who, though exposed to its influence, escape, the best evidence hitherto adduced in favour of the notion must be admitted to be inconclusive. While, therefore, the facts brought forward in favour of the existence of this prophylactic power are only negative, those which can be adduced against it are positive. For I conceive twenty cases of failure are more conclusive against the opinion here referred to, than one thousand of non-occurrence are in favour of it. Now Lehman, Barth, Wendt, Murbeck, Hoffmann, Bock, and many others that I could refer to, declare it has failed in their hands to evince its prophylactic powers. In this country we have no extended series of observations to quote; but the cases which I am acquainted with are decidedly against the efficacy of the remedy. A remarkable failure is mentioned by Dr. Sigmond of a family of eleven persons who took the supposed specific, yet every individual contracted the disease.

6. In Fever, with contraction of the pupil.—Dr. Graves¹³ has recently proposed the use of belladonna in those cases of fever with cerebral disease which are attended with contraction of the pupil. It is not unreasonable, he observes, "to suppose that the state of the brain which accompanies dilatation of the pupil is different from that which accompanies contraction; and if belladonna has an effect in producing that cerebral state which is attended with dilatation, it is not going too far to infer, that its administration may do much towards counteracting the opposite condition; neither is it unphysiological to conclude, that if a remedy be capable of counteracting, or preventing, one very remarkable effect of a certain morbid state of the brain, it may also counteract other symptoms connected with the same condition." This line of argument, it must be admitted, is in-

---

⁹ Bibl. Therap. t. ii. p. 64.
¹¹ Lancet, May 2, 1829.
¹⁴ Ibid.
¹⁷ Ibid. Bd. xxv. S. 115.
¹⁸ Ibid. S. 80.
genious and plausible, and is supported by reference to several apparently successful cases treated on the principles here laid down. But I would observe, if the above reasoning were valid, opium should be serviceable in cerebral diseases attended with dilatation of pupil, since it causes contraction of this aperture. Now this is in direct opposition to our every-day experience of the uses of this important narcotic.

7. In other diseases.—Cruveilhier\(^a\) has found belladonna-smoking relieve some cases of phthisis. The fresh leaves were infused in a strong solution of opium, and then dried like tobacco: the patients began by smoking two pipes a day, and the quantity was gradually increased to six pipes. Perhaps this practice would be beneficial in spasmodic asthma and old catarrhs. In hydrophobia, notwithstanding the asserted prophylactic powers of this medicine\(^b\), there is no valid ground for believing in its efficacy. I tried it in one case without success. In epilepsy, mania, hysteria, chorea, and some other maladies of the centro-spinal system, occasional benefit has resulted by the use of belladonna. In ileus\(^c\) it has been most successfully used in the form of clyster, as a substitute for tobacco, which is objectionable on account of the horrible sickness and great depression which it causes.

Administration.—The dose of the powder for an adult is one grain, which should be gradually increased until dryness of the throat, dilatation of pupil, or some head symptoms, are produced. For children the dose at the commencement should be one-eighth of a grain. For internal as well as external use the extract or tincture is, however, commonly employed. For external use an infusion of the leaves is sometimes used as a fomentation, or is made into a poultice with bread or linseed meal.

Antidotes.—Similar to those for opium. After the use of evacuants the vegetable acids have appeared to give great relief. Decoction of nutgalls or green tea might probably prove serviceable.

1. EXTRACTUM BELLADONNAE, L. E.; Succus spissatus Belladonnae, D.; Extract of Belladonna.—(Fresh Belladonna leaves, lb. i. Bruise them, sprinkled with a little water, in a stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence, L.—The Edinburgh College directs the expressed juice to be filtered, and then to be evaporated, in the vapour-bath, to the consistence of firm extract, stirring constantly towards the close.—The Dublin College prepares it as the Succus spissatus Aconiti, D.)—1 cwt. of fresh belladonna yields from 4 to 6 lbs. of extract.\(^d\) Dose gr. i. to gr. v. cautiously increased. As the strength of the extract is extremely variable, some writers recommend only one-quarter or one-half of a grain to be given at the commencement of its use, and to be repeated three times a day; and the dose to be increased until the well-known

---

\(^a\) *Lancet*, 1828-9, vol. i. p. 590.


effects of the remedy are produced. Mr. Bailey observes, that he at
first began with one grain, and repeated it every four hours until
relief followed; but further experience induced him to commence
with three times that quantity, and, if a repetition were necessary, to
give it in diminished doses afterwards. Spread upon leather the
extract is frequently used as a plaster to relieve neuralgic and other
pains (see Emplastrum Belladonna). Diluted with water to the con-
sistency of cream, it is applied to the eyebrow to produce dilatation
of the pupil; or an aqueous solution of the extract is dropped be-
tween the lids. Mixed with lard or spermaceti ointment it is used
as a topical anodyne and antispasmodic in various diseases (see
Unguentum Belladonna). A bougie smeared over with the extract
and oil, is sometimes used with benefit in strictures. A drachm or
two of the extract, either alone or in the form of ointment, may be
applied to the os uteri to diminish rigidity. In irritation of the
bladder, urinary organs, or rectum, clysters holding in solution the
extract are sometimes used. Rubbed into the perineum or over the
track of the urethra, the extract or ointment is useful in preventing
chordee, and alleviating spasm of the neck of the bladder.

2. EMPLASTRUM BELLADONNE, L. E. D.; Plaster of Belladonna.—
(Extract of Belladonna, 3iss. [3j. D.]; Plaster of Resin, 5ij. [Soap
Plaster, 3ij. D.] Add the extract to the plaster, melted by the heat
of a water-bath, and mix).—Anodyne and antispasmodic. Ap-
plied for the relief of neuralgic, rheumatic, and other pains. It is
said to relieve the pain of dysmenorrhea when applied to the sacrum.
In spreading it, care must be taken not to employ a very hot spatula,
or the properties of the extract will be injured.

3. UNGUENTUM BELLADONNE, Ointment of Belladonna.—(Sperma-
ceti Ointment [or Lard] 3j.; Extract of Belladonna, 3ij. to 5ij. Mix.)
—Though not contained in any of the British pharmacopoeias, it is a
very useful preparation; and may be used as an anodyne and anti-
spasmodic in some of the before-mentioned cases.

4. TINCTURA BELLADONNE, Tincture of Belladonna.—(Belladonna
leaves, dried, 3ij. ; Proof Spirit, 5xvj. Macerate for twenty [fourteen]
days, and strain. Bailey.)—Is not contained in the British pharma-
copoeias. Mr. Bailey’s formula here given contains the same propor-
tions of leaves and spirit as those used in the preparation of Tinctura
Hyoscyami, L.—Dose, mxx. to mxl. Mr. Blacket prepared a satu-
rated tincture of belladonna by macerating, for fourteen days, 5x. of
extract of belladonna in lb. j. of proof spirit; then straining. The
dose of this is mlij. or mlij. gradually increased: in the form of lotion,
a drachm of it was added to eight ounces of liquid.

SUCCUS BELLADONNA.—The Preserved Juice of Belladonna (see p. 363) may be
substituted for the tincture. Mr. Bentley informs me that from 2 cwt. of bella-
donna leaves gathered towards the end of June he procured 36 imperial quarts
of juice.

3. DATURA STRAMONIUM, L. E. D.—COMMON THORNAPPLE.

Sex. Syst. Pentandria, Monogynia.

(Folia et Semina, L.—Herb, E.—Herba et Semina, D.)

History.—Some writers consider this plant to be the στρόχων μανίκων of Dioscorides, an opinion scarcely tenable, as this ancient pharmacologist describes his plant as having a black flower and black fruit. Datura Stramonium is mentioned by Fuchsius in 1542.

Botany. Gen. Char.—Calyx large, tubular, ventricose, five-angled; apex five-cleft, caducous; base orbiculate, peltate, persistent. Corolla large, funnel-shaped; tube long; limb five-angled, five-plicate, five-acuminate. Stamens five. Stigma two-lamellar. Capsule bristly or smooth, ovate, two-celled; cells two- or many-parted with a prominent dissepiment (Bot. Gall.)

Sp. Char.—Fruit spinous, ovate, erect. Leaves ovate, smooth, sinuated (Smith).

A bushy, smooth, fetid herb. Stem much branched, forked, spreading, leafy. Leaves from the forks of the stem, large, unequal at the base, variously and acutely sinuated and toothed, simple-ribbed, veiny, of a dull-green. Flowers axillary, erect, white, sweet-scented, especially at night, about three inches long. Fruit as big as a walnut, in its outer coat very prickly. Seeds black (Smith).


Description.—The herb (herba stramonii) should be collected when the plant is in flower. The leaves (folia stramonii) are then to be carefully dried. In the fresh state their odour, when bruised, is unpleasant and narcotic; their taste nauseous and bitter. By drying the odour is lost, but the bitter taste remains. The seeds (semina stramonii) are small, compressed, kidney-shaped, roughish, dark-brown or blackish, dull, and odourless: they have a bitter, nauseous, somewhat acrid taste.

Composition.—The herb was analyzed, in 1815, by Promnitz; the seeds, in 1820, by Brandes.

Promnitz's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>0.12</td>
</tr>
<tr>
<td>Extractive [containing the Daturia]</td>
<td>0.60</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>0.58</td>
</tr>
<tr>
<td>Green flour</td>
<td>0.64</td>
</tr>
<tr>
<td>Albumen</td>
<td>0.15</td>
</tr>
<tr>
<td>Phosphatic and vegetable salts of lime and magnesia</td>
<td>0.23</td>
</tr>
<tr>
<td>Water</td>
<td>91.25</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>5.15</td>
</tr>
<tr>
<td>Loss</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Fresh Herb of Stramonium... 100'00

Brandes's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malate of daturia with some uncrystallizable sugar</td>
<td>1.80</td>
</tr>
<tr>
<td>Fixed oil with some chlorophyle</td>
<td>16.05</td>
</tr>
<tr>
<td>Wax</td>
<td>1.40</td>
</tr>
<tr>
<td>Resin insoluble in ether</td>
<td>9.90</td>
</tr>
<tr>
<td>Extractive</td>
<td>0.60</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>6.00</td>
</tr>
<tr>
<td>Gum and Bassoerin with some salts</td>
<td>11.30</td>
</tr>
<tr>
<td>Albumen and phytocolla</td>
<td>6.45</td>
</tr>
<tr>
<td>Glutenoin</td>
<td>5.50</td>
</tr>
<tr>
<td>Malates of daturia, potash, and lime, and acetate of potash</td>
<td>0.60</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>23.35</td>
</tr>
<tr>
<td>Water</td>
<td>13.10</td>
</tr>
<tr>
<td>Loss</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Seeds of Stramonium... 100'00
1. **DATURIA** (*Daturina* or *Daturium*).—A vegetable alkali said to exist in stramonium. The properties assigned to it by Geiger and Hesse\(^1\) are the following:

- It crystallizes in colourless, odourless, brilliant prisms, which have at first a bitterish, then a tobacco-like flavour. It requires 2.5 parts of cold, or 7.2 parts of boiling water, to dissolve it: it is very soluble in alcohol, less so in ether. In most of its properties it agrees with hyoscyamia. It strongly dilates the pupil, and has a poisonous action on animals.

2. **EMPYREUMATIC Oil of STRAMONIUM** (*Pyrodaturia*?);—Resembles tar and the aqueous fluid which distils along with its acid. This arises from the woody part of the plant having been employed. The oil itself does not differ, in its physical and chemical properties, from the empyreumatic oil of foxglove, before (p. 1209) described\(^2\).

**Physiological Effects.**

a. **On Vegetables.**—A branch of stramonium was killed by immersing it in a watery solution of the extract of its own species\(^3\).

b. **On Animals generally.**—Its influence on herbivorous animals is much less than that on man. Five ounces of the expressed juice given to the horse causes merely slight drowsiness and gaping\(^4\). Two pounds and a half of the seeds killed a horse in fifty-two hours\(^5\). From Orfila’s experiments with it on dogs\(^6\) it does not appear to act powerfully as a local irritant. Its effects were very similar to those caused by belladonna.

c. **On Man.**—The symptoms produced on man closely resemble those caused by belladonna. In small but gradually increased doses it diminishes sensibility, and thereby frequently alleviates pain. It does not usually affect the pulse; it slightly and temporarily dilates the pupil, and has no tendency to cause constipation, but rather relaxation. Though it allays pain it does not usually produce sleep. In larger doses it causes thirst, dryness of the throat, nausea, giddiness, nervous agitation, dilatation of the pupil, obscurity of vision, headache, disturbance of the cerebral functions, perspiration, occasionally relaxation of bowels, and in some cases diuresis. It has no direct tendency to induce sleep, and hence it cannot be called soporific. But indirectly, by alleviating pain, and thereby producing serenity and ease, it often disposes to sleep. In fatal doses the leading symptoms are flushed countenance, delirium (usually maniacal), dilatation of the pupil, dryness of the throat, loss of voice, difficulty of deglutition, convulsions, and, in some cases, palsy. A very interesting fatal case of poisoning by 100 seeds, is related by Mr. Duffin\(^7\). The patient (his own child) was two years and a quarter old. In addition to the preceding symptoms there were a hot, perspiring skin, flushed, slightly swollen face, pulse almost imperceptible, but, as far as could be felt, it was natural in regard to frequency, and coldness of the inferior extremities. The anterior fontanelle was neither tense, hot, nor in the slightest degree raised by the cerebral pulsations; so that there did not seem to be any active

---

\(^{1}\) Pharm. Central-Blatt für 1835, p. 85.
\(^{6}\) Toxicol. Gén.
determination of blood to the brain. During the continuance of the coma the pulse became extremely rapid. Death occurred twenty-fours after swallowing the seeds.

Vogt says, stramonium is probably distinguished from belladonna by the following peculiarities:

1. Its effects are more similar to those of acrid vegetables, especially of Helleborus.
2. It operates more strongly, but more in the manner of the acrid substances, on the nervous system, especially on the central organs, viz. the ganglia, spinal cord, and brain.
3. Its secondary effects on the irritable system are not so marked; for most observers have failed to detect any alteration of pulse, and a slow pulse is more frequently mentioned than a quick one.
4. It operates on the organic life more strongly. It more strongly and directly promotes all the secretions, especially the secretion of the skin.
5. Marcet and Begbie have inferred, from numerous observations, that it possesses an anodyne property, which it frequently evinces where opium and belladonna fail.

Uses.—A more extended experience of this plant is requisite to enable us to speak with much confidence of its employment. The similarity of its effects with those of belladonna would lead us to expect a similarity of uses. Like the last-mentioned plant it has been successfully employed to diminish sensibility, and thereby to relieve external pain. Some of the other uses made of it require a more impartial examination ere we can form any just estimate of their value. The indications and contra-indications for its employment are probably similar to those of belladonna. In persons disposed to apoplexy it is a very dangerous remedy.

In neuralgia (tic douloureux, sciatica, &c.) it has been employed with considerable success, by Lentin, Marcet, and Begbie. It was given internally in the form of extract. Its external application has scarcely been tried. In rheumatism it has frequently proved serviceable from its anodyne qualities. In enterodynia (that is, spasmodic pain of the bowels unconnected with inflammatory action or the presence of irritating substances), Dr. Elliotson found it most successful.

In some cases of spasmodic asthma, smoking the herb has given at least temporary relief; but the practice requires very great caution, as it has proved highly injurious, and in some instances fatal. Dr. Bree tried it in 82 asthmatic cases: in 58 of these it had no permanent effect, and in the remaining 24 it acted

---

* Pharmahodynam. Bd. i. S. 164.
* Trans. of the Med. Soc. Edinb. t. i.
* Bayle, Bibl. Ther. t. ii.
* Trans. Med.-Chr. Soc. of Edinb. vol. i.
* See the reports of Kirckhoff, Engelhart, Van-Nuffal, and Amelung, in Bayle, op. cit.; also Eberle, Med. Med.
injuriousl}'. General Gent, who was instrumental in introducing the practice, fell a victim to it. Aggravation of the dyspnœa, paralytic tremblings, epilepsy, headache, and apoplexy, are some of the evils said to have been induced in the cases above referred to. In persons disposed to head afflictions, and in aged persons, it is, therefore, a highly dangerous practice.

The diseases in which stramonium has been principally used are mania and epilepsy. Bayle has collected from the works of Storck, Schemalz, Razoux, Reef, Meyer, Othelius, Durande, Maret, Bergius, Greding, Schneider, Bernard, and Amelung, fifty-five cases of the first, and forty-five of the latter malady, treated by stramonium: in both diseases a considerable majority of cases are said to have been either cured or relieved by it. Without denying the occasional benefit of stramonium in these diseases, I believe the cases in which it is serviceable to be very rare, while those in which it is calculated to be injurious are very common. Dr. Cullen observes, that he has no doubt that narcotics may be a remedy for certain cases of mania and epilepsy; but he very justly adds, "I have not, and I doubt if any other person has, learned to distinguish the cases to which such remedies are properly adapted."

Stramonium has been used to dilate the pupil and to diminish the sensibility of the retina to the influence of light; but for both of these purposes belladonna is preferred by British oculists. Wendt used it to lessen venereal excitement, as in nymphomania. An ointment (made with 3 of the powdered leaves, and 5iv. of lard) has been used as an anodyne application to irritable ulcers and to painful hemorrhoids. The application of the leaves to burns has been attended with dangerous results.

Administration.—The dose of the powdered leaves is one grain; of the seeds half a grain. These doses are to be repeated twice or thrice a-day, and to be gradually increased until some obvious effect is produced.

1. EXTRACTUM STRAMONII, L. E. D. Extract of Thornapple.—(Thornapple seeds, 5xx. [lj. D.]; Boiling distilled water, Cong. j. Macerate for four hours in a vessel slightly covered, near the fire; afterwards take out the seeds, and bruise them in a stone mortar: return them, when bruised, to the liquor. Then boil down to four pints, and strain the liquor while hot. Lastly, evaporate to a proper consistence. L. D.—The directions of the Edinburgh College are as follows:—Take of the seeds of stramonium, any convenient quantity; grind them well in a coffee-mill. Rub the powder into a thick mass with proof spirit; put the pulp into a percolator, and transmit proof spirit till it passes colourless; distil off the spirit, and evaporate what remains in the vapour-bath to a proper consistence.)—Of the above modes of preparation, that of the Edinburgh College is doubtless the
best, as yielding a more efficient preparation. The product, according to the London and Dublin process, is about 12 per cent. Recluz 1 states, that 16 ozs. of the seeds yield 2 ozs. 2 drs. by maceration in dilute alcohol: this is about 14 per cent. The dose of extract of stramonium, at the commencement, is about a quarter of a grain, which should be gradually increased until some obvious effect is produced.

2. TINCTURA STRAMONII, Ph. United States. Tincture of Thornapple.—(Stramonium seeds, bruised, 3iv.; Proof Spirit, 3xxxij. Macerate for fourteen days, and filter through paper).—Dose 1/8 x. to 1/4x. twice or thrice a day, gradually increased until it occasions some obvious effect on the system. This preparation is applicable to all the cases for which stramonium is used.

ANTIDOTES.—The same as for belladonna.

4. NICOTIA'NA TABA'CUM, L. E. D.—VIRGINIAN TOBACCO.

Sex. Syst. Pentandria, Monogynia.

(Folia exsiccata, L.—Leaves, E.—Folia, D.)

History.—The inhalation of the fumes of burning vegetable substances, both for causing inebriation and for medicinal purposes, seems to have been very anciently practised. Herodotus tells us, that the Babylonians intoxicated themselves by this means; and both Dioscorides and Pliny declare the efficacy of smoking Tussilago in obstinate cough.

Humboldt says, that the tobacco plant has been cultivated, from time immemorial, by the natives of Oronoko. It does not appear, however, to have been known to Europeans prior to the discovery of America; though it is not improbable that the Asiatics were acquainted with it long before that time, as Pallas, Rumphius, and Loureiro, have supposed. But it is not probable, I think, that Europeans learned the use of it from the Asiatics, as Ulloa has endeavoured to show.

When Columbus and his followers arrived at Cuba, in 1492, they, for the first time, beheld the custom of smoking cigars. Hernandez de Toledo introduced the plant into Spain and Portugal; and, from the latter place, Joan Nicot sent the seeds or the plant to France about 1559-60. In 1586, on the return of Sir Francis Drake, with the colonists, from Virginia, the practice of smoking was introduced into England; and, being adopted by Sir Walter Raleigh and other courtiers, soon became common.
Various attempts, by writings, impost, or bodily punishments, were made in Europe to restrict or put down its use. It is said, that upwards of a hundred volumes were written to condemn its employment; and not the least curious of these is the celebrated "Counterblaste to Tobacco" of James I. Despite, and partly, perhaps, as a consequence of these attempts, the use of tobacco rapidly spread, and is now universal throughout the world.

The generic appellation Nicotiana is obviously derived from Nicot, the name of an individual above referred to. The origin of the specific name Tabacum is less satisfactorily ascertained. It is probable, however, that the word is derived from tabac, an instrument used by the natives of America in smoking this herb; though some derive it from Tobago, others from Tabasco, a town in New Spain.


Sp. Char.—Leaves sessile, oblong-lanceolate, acuminate, the lower ones decurrent. Throat of the corolla inflate-ventricose; limb with acuminated segments (Bot. Gall.)

A viscid herb. Root branching, fibrous. Stem three to six feet high, erect, round, hairy, branching at the top. Leaves very large, pale green, with glandular short hairs. Bracts linear, acute.

---


\(^{2}\) Works, p. 214, fol. 1616.

\(^{3}\) Asiat. Journ. vol. xxii.

Hab. — America. Extensively cultivated in most parts of the world, especially the United States of America. Virginia is the most celebrated for its culture. North of Maryland the plant is rarely seen. In England the cultivation is restricted; not more than half a pole being allowed "in a physic or university garden, or in any private garden for physic or chirurgery.""
Consumption of Tobacco per Head of Population, calculated from the number of lbs. on which duty was paid.

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate of Duty</th>
<th>Consumption per Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>1801</td>
<td>1 7/12 England</td>
<td>17 2/3 oz.</td>
</tr>
<tr>
<td>1811</td>
<td>2 2/3 Ireland</td>
<td>14 3/4 oz.</td>
</tr>
<tr>
<td>1821</td>
<td>4 0</td>
<td>12 5/8 oz.</td>
</tr>
<tr>
<td>1831</td>
<td>3 0</td>
<td>12 5/8 oz.</td>
</tr>
<tr>
<td>1841</td>
<td>3 1/2</td>
<td>say 12 5/8 oz.</td>
</tr>
</tbody>
</table>

Hence the consumption is materially affected by the rate of duty.

Description.—Tobacco (folia tabaci seu nicotiana) as met with in commerce, has a brownish colour, a strong narcotic but peculiar odour, and a bitter, nauseous taste. The darker-coloured tobaccos are the strongest. For medicinal purposes Virginian tobacco in leaf should be employed. When this cannot be procured, shag may be substituted. The following are the principal commercial kinds:

1. American.—The Virginian is one of the strongest kinds, and is, therefore, not fit for cigars, but is adapted for pipes and snuff, and for medicinal use. It is imported in leaves or heads contained in hogsheads. Its colour is dark mottled brown; the leaves feel unctuous. The Maryland is paler, yellower, weaker, and adapted for smoking; the pale cinnamon is the best, the scrubs the commonest. The Kentucky is intermediate between the two preceding; it is paler and weaker than the Virginian. The Carolina is less frequently met with, and is of inferior quality. The Havana is most esteemed for smoking; its colour is yellowish-brown; its odour is musky or spicy. It is imported in heads. The Cuba is an excellent kind; it is darker than the Havana. Both these kinds, as well as the Columbian, are remarkable for the light yellow spots on the leaves. The Columbian is imported in heads and leaves, and is much esteemed for cigars; for which it is more used than any other kind. It is dark brown, but not mottled like the Virginian. The Varinas is brought over in rolls and in hands. It is spotted like the preceding. It is a mild tobacco, suitable for smoking only. The Porto Rico is allied to the Varinas. It comes in rolls. The St. Domingo is imported in leaves; it is deficient in flavour. Orinoko comes in leaves.

2. European.—The only European tobacco extensively consumed in this country is Amersfoort, a Dutch tobacco. It is very mild and deficient in flavour. The darker kind is the strongest, and is much esteemed for snuff; while the lighter and weaker kind is employed in the manufacture of the commonest cigars. Several German, Hungarian, and Ukraine tobaccos are occasionally met with.

3. Asiatic.—East Indian tobacco has never obtained a high repute, doubtless from the inattention to its cultivation. The Manila is dark coloured, and is much esteemed for cheroots. The Shiraz, the Salonica (the ancient Thessalonica), the Latakia (Laodicea), are other valued Asiatic kinds. Turkey tobacco is pale and yellowish. It occurs in small, short, broad leaves. It is a weak tobacco, and is cut for smoking.

Manufactured Tobacco.—Under this head are included the different forms of tobacco prepared for chewing and smoking, and for taking as snuff.

---

* Sinhein, Die Rauch. u. Schuftpstabaks-Fabrikation. 1826.
* Royce, Illustrations, p. 283.
1. Chewing and Smoking Tobaccos.—Manufacturers distinguish chewing tobaccos and those used in pipes into two kinds, called respectively cut and roll tobacco. For smoking in the pipe cut tobacco is principally used in England,—the roll, in Scotland and Ireland. Cigars and cheroots form a third kind.

a. Cut Tobaccos.—Among these Shag deserves the first notice. It is prepared by moistening (with liquor) and compressing leaves of tobacco (Virginian and Kentucky kinds principally) deprived of their midribs, then cutting the compressed mass with knife-edged chopping stamps. Returns is a lighter coloured and milder smoking tobacco. It derives its name from its being formerly prepared by returning shag for re-cutting. Bird's-eye is prepared like shag, with the exception that it contains the midribs of the leaves, the slices of which have been compared to the eyes of birds. Maryland is another kind of cut tobacco. Canaster or Kanaster is a favourite kind. It received its name from canastra (a Spanish word, signifying a basket), because it was imported in baskets. It is prepared from Varinas tobacco. Oronoko, Turkey, Persian, and Varinas, are also cut tobaccos.

b. Roll or Twist Tobaccos.—These are prepared by twisting tobacco into a kind of rope, which is moistened with liquor, and is usually made up into cylindrical or barrel-shaped rolls, which are subjected to pressure before they are considered fit for sale. Pigtail, Negro-head, Bogie, Alloa, Cavendish, and Irish Twist, are roll tobaccos for chewing and smoking.

c. Cigars.—These are small rolls of tobacco, permeable to air, and adapted for smoking. Cigars were originally derived from the New World. They are distinguished from Cheroots by their pointed extremity called the curl or twist. The Havannah Cigars are in great request by smokers. Cigars, however, are extensively made in London. Cheroots were originally derived from the East. They are characterized by their truncated extremities. Manilla Cheroots are much valued by smokers. Cheroots, however, like cigars, are extensively manufactured in London.

2. Snuffs.—In the manufacture of snuff, tobacco, cut in small pieces, is first fermented by placing it in heaps and sprinkling it with water or a solution of salt; the latter prevents the tobacco becoming mouldy. The heaps soon become hot and evolve ammonia. The extent to which this process is allowed to proceed, varies with different kinds of snuff. The usual time is two or three months,—seldom less than one month. The fermented tobacco is then ground in mills, or powdered with a kind of pestle and mortar. The Scotch and Irish are prepared for the most part from the midribs; the Strasburgh, French, and Russian snuffs, from the soft part of the leaves. The siftings, sometimes termed thirds, are usually reground. Sal ammoniac is occasionally added to snuffs.

The immense varieties of snuffs found in the shops are reducible to two kinds, dry and moist snuffs.

a. Dry Snuffs.—These derive their characteristic property from being dried at a high temperature. Scotch, Irish, and Welsh, are well known high-dried snuffs. The latter contains lime, the particles of
which may be usually distinguished by the naked eye; hence its
desiccating effect on the pituitary membrane. Spanish snuff is also
da dry snuff.

\subsection{Moist Snuffs: Rappees.}
It is sometimes said that pearlash is added to these snuffs to keep them moist, but several respectable
manufacturers assure me this is not usual. The rappees of the shops
may be divided into three classes:

\begin{itemize}
  \item \textit{aa. Simple Rappees.}—Ex. Brown, Black, Cuba, Carotte, and
      Bolangero
  \item \textit{gc. Scented Rappees.}—Ex. Prince's Mixture and Princeza, &c.
\end{itemize}

It is said that tobacconists employ, in the preparation of tobacco,
a solution of sea-salt, (sp. gr. 1.07), which is termed the sauce or
liquor, but I am assured that this is not generally the case. This
liquor, it is further stated, is sometimes coloured by treacle or liquorice.

\subsection{Composition.}
The juice of the fresh leaves of tobacco was ana-
lysed in 1809 by Vauquelin. Subsequently this chemist analysed
manufactured tobacco in 1821 Hermstädt discovered nicotin.e. In 1827 the leaves were analyzed by Posselt and Reinmann, and in
1831 by Dr. Conwell.

\begin{center}
\begin{tabular}{|c|c|}
\hline
\textit{Vauquelin's Analysis.} & \textit{Posselt and Reinmann's Analysis.} \\
\hline
An acrid volatile principle (nicotia). & Nicotina 6.06 \\
Albumen. & Concrete volatile oil (nicotiam). 6.01 \\
Red matter, soluble in alcohol and water. & Butter-extractive 2.87 \\
Acetic acid. & Gum with mate of lime 1.74 \\
Supernatant of lime. & Chlorophyll 0.627 \\
Chlorophyll. & Albumen and gluten 1.398 \\
Nitrate of potash and chloride of potassium. & Malic-acid 0.951 \\
Sal ammoniac. & Magnesia and a trace of starch 4.369 \\
Water. & Salts (sulphate, nitrate, and malate of potash, chloride of potassium, phosphate and malate of lime, and malate of ammonium) 0.734 \\

\hline
\textit{Expressed juice of the leaves.} & Silica 0.088 \\
\hline
The leaves contained, in addition to the above, 
water, fibre, oxide of iron, and silica. The two latter substances
were obtained from the ashes. & Water 82.329 \\
Manufactured tobacco contained the same principles; and in addition, carbonate of ammonia
and chloride of calcium, perhaps produced by the reaction of sal ammoniac and lime, which
are added to tobacco to give it pungency. & Fresh leaves of tobacco 100.356 \\
\hline
\end{tabular}
\end{center}

\subsection{Nicotia (Nicotia).}

1. \textit{Nicotia (Nicotia).}—Exists not only in the leaves, but also in the root and
in the seeds of tobacco. It is obtained by infusing the leaves in water acidulated
with sulphuric acid, concentrating the infusion, and distilling with lime or magnesia.
The distilled product is a solution of ammonia and nicotia, and is to be
saturated with sulphuric acid, and evaporated to dryness: the sulphate of nicotia
is then to be dissolved out by ether, and decomposed by hydrate of baryta. The
nicotia is obtained by spontaneous evaporation. To obtain it pure, it should be
distilled by an oil-bath at the temperature of 288° F. The following are its
leading properties:—It is a colourless, liquid, volatile alkali, with the odour of
tobacco, and an acrid, burning taste. It restores the blue colour of reddened

\footnotesize
\begin{itemize}
  \item \textsuperscript{a} Ann. de Chim. Ixxi. 139.
  \item \textsuperscript{b} Annal. du Mus. d'Hist. Nat. t. xix.
  \item \textsuperscript{c} Schweigg.ber's Journ. fur Chem. XXXI. 441.
  \item \textsuperscript{d} Gmelin, Handb. d. Chem. ii. 1303.
  \item \textsuperscript{e} Silliman's Journ. xvii. 393.
  \item \textsuperscript{f} E. Davy, Lond. and Ed. Phil. Mag. vol. vii. p. 393.
  \item \textsuperscript{g} Buchner, Report. Bd. xxiii.
\end{itemize}
litmus, and renders tumeric brown. At 375° F. it boils, and at the same time undergoes decomposition. By exposure to the air it becomes brown and thick. It is readily combustible with the aid of a wick. It is soluble in water, ether, alcohol, and the oils (fixed and volatile). It combines with acids and forms salts: the sulphate, phosphate, oxalate, and tartrate, are crystallizable; the acetate is not. Its atomic weight is about 210. The acetate of nicotina yields a white flocculent precipitate with a solution of bichloride of mercury, and a yellow granular precipitate with chloride of platinum. The precipitates (which are double salts) lead to a suspicion that ammonia was present in the nicotina salt. Heated with water the yellow precipitate obtained by chloride of platinum is converted into the platinum-bichloride of ammonium. Mr. E. Davy found that nicotina acted as a narcotic poison on insects. The following are the quantities of nicotina yielded by 1000 parts of various kinds of tobacco:

<table>
<thead>
<tr>
<th>Tobacco Type</th>
<th>Nicotina Yield (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuba</td>
<td>864</td>
</tr>
<tr>
<td>Maryland</td>
<td>528</td>
</tr>
<tr>
<td>Virginia</td>
<td>100</td>
</tr>
<tr>
<td>He de Vilain</td>
<td>1120</td>
</tr>
<tr>
<td>Lot</td>
<td>648</td>
</tr>
<tr>
<td>North</td>
<td>1128</td>
</tr>
<tr>
<td>Lot et Garonn</td>
<td>820</td>
</tr>
</tbody>
</table>

2. Concrete Volatile Oil of Tobacco (Nicotianin, Hermbstädt; Tobacco-camphor, Gmelin).—Obtained by submitting tobacco leaves, with water, to distillation. Six pounds of the leaves yielded eleven grains of oil, which swims on the surface of the liquor. This oil is solid, has the odour of tobacco, and a bitter taste. It is volatile, insoluble in water and the dilute acids, but soluble in ether and caustic potash. According to Landerer, fresh tobacco leaves yield no nicotianin, which, therefore, would appear to be developed by the drying of the leaves under the influence of air and water. Nicotianin excites, in the tongue and throat, a sensation similar to that caused by tobacco smoke. Hermbstädt swallowed a grain of it, and experienced, soon after, giddiness, nausea, and inclination to vomit. Applied to the nose, it causes sneezing.

3. Empyreumatic Oil of Tobacco. — Is rather less solid than the empyreumatic oil of fox-glove (see p. 1209); but it is indistinguishable from the latter by either taste or smell. It is produced, in part at least, by the decomposition of some of the constituents of tobacco. It has been suggested, that this oil is "the juice of cursed hebenon," alluded to by Shakespeare, who also calls it a "distilmei." 

4. Tobacco Smoke.—The constituents of tobacco smoke, according to Raab, are much carbonate of ammonia, acetate of ammonia, nicotianin, empyreumatic oil, carbonaceous matter (soot), moisture, and several gases. Unverdorben obtained, by the dry distillation of tobacco, water, oil, and resin. These products consisted of, a volatile oil, an oleaginous acid, an empyreumatic acid (Brandsäure), resin, traces of a powder insoluble in potash and acids, a small quantity of odorin, a base soluble in water (nicotin?), fuscin, red matter soluble in acids, and two extractive matters, one forming a soluble, the other an insoluble, compound with lime.

**Physiological Effects. a. On Animals generally.**—In the carnivora tobacco causes nausea, vomiting, sometimes purging, universal trembling, staggering, convulsive movements, and stupor. Five drachms and a half of rappee introduced into the stomach of a dog, and secured by a ligature on the oesophagus, caused death in nine hours. In another experiment, two drachms applied to a wound killed the animal in an hour. Sir B. Brodie found that the infusion of tobacco, thrown into the rectum, paralyzed the heart, and caused death in a few minutes. But if the head of the animal be previously removed, and artificial respiration kept up, the heart remains unaf-
fected; proving that tobacco disorders this organ through the medium
of the nervous system only. In the herbivora the effects of tobacco,
as of other vegetable poisons, are much less marked; vomiting does
not occur. Schubarth gave four ounces of the leaves to a horse, at
three times, within two hours. The pulse became irregular, then
slower, afterwards quicker; respiration and the pupils were scarcely
affected. For two days the stools and urine were more frequent.
Moiroud observed no remarkable effect from the exhibition of a de-
cocction of four ounces of tobacco to a horse.

It is remarkable that the empyreumatic oil of tobacco does not
possess the same power of paralysing the heart. Applied to the
tongue of a cat, one drop caused convulsions, and in two minutes
death: on opening the body, the heart was beating regularly and
with force. Its operation, therefore, is analogous to that of hydro-
cyanic acid. Dr. Morries says, it has less tendency to induce con-
volutions than the empyreumatic oils of foxglove, henbane, or the
thornapple.

β. On Man.—In small doses, tobacco causes a sensation of heat in
the throat, and sometimes a feeling of warmth at the stomach; these
effects, however, are less obvious when the remedy is taken in a
liquid form, and largely diluted. By repetition it usually operates as a
diuretic, and less frequently as a laxative. Accompanying these
effects are oftentimes nausea and a peculiar feeling usually described
as giddiness, but which scarcely accords with the ordinary accep-
tation of this term. As dropscil swellings sometimes disappear
under the use of these doses, it has been inferred that the remedy
promotes the operation of the absorbents. In larger doses it provokes
nausea, vomiting, and purging. Though it seldom gives rise to ab-
dominal pain, it produces a most distressing sensation of sinking at
the pit of the stomach. It occasionally acts as an anodyne, or more
rarely promotes sleep. But its most remarkable effects are languor,
feebleness, relaxation of muscles, trembling of the limbs, great
anxiety, and tendency to faint. Vision is frequently enfeebled; the
ideas confused; the pulse small and weak; the respiration somewhat
laborious; the surface cold and clammy, or bathed in a cold sweat;
and, in extreme cases, convulsive movements are observed. In ex-
cessive doses the effects are of the same kind, but more violent in
degree. The more prominent symptoms are nausea, vomiting, and,
in some cases, purging, extreme weakness and relaxation of the
muscles, depression of the vascular system (manifested by feeble
pulse, pale face, cold sweats, and tendency to faint), convulsive
movements, followed by paralysis and a kind of torpor, terminating
in death.

Taken in the form of snuff its principal effect is topical. It causes
increased secretion of nasal mucus, and, in those unaccustomed to its

---

* Brodie, op. cit.
use, sneezing. Getting into the throat it produces a feeling of acridity and sometimes nausea. From some kinds of rappee I have experienced giddiness and great prostration of strength. Lanzoni\(^1\) states, that an individual fell into a state of somnolency, and died lethargic on the twelfth day, in consequence of taking too much snuff. Reasonable doubt, however, may be entertained, I think, whether these accidents really arose from snuff. The habitual use of this substance blunts the sense of smell and alters the tone of voice; but I am unacquainted with any other well-ascertained effects, though Cullen\(^2\) ascribes loss of appetite and dyspepsia to it; and Dr. Prout\(^3\) observes, that “the severe and peculiar dyspeptic symptoms sometimes produced by inveterate snuff-taking are well known; and I have more than once seen such cases terminate fatally with malignant diseases of the stomach and liver.” I have known several inveterate snuff-takers who, after many years’ use of this substance, have discontinued it with impunity; but Dr. Cullen thinks that when the discharge of mucus is considerable, the ceasing or suppression of it, by abstaining from snuff, is ready to occasion the very disorders of headache, toothache, and ophthalmia, which it had formerly relieved. There does not appear to be any good grounds for the supposed baneful effects of the manufacture of snuff on the workmen\(^4\). Sir W. Temple\(^5\) recommends the introduction of a tobacco leaf into the nostrils for the relief of affections of the eyes and head.

The smoking of tobacco by those unaccustomed to it, gives rise to all the before-described effects of large and excessive doses. A very interesting case, which had almost terminated fatally, is related by Dr. Marshall Hall\(^6\). It was that of a young man, who, for his first essay, smoked two pipes. Gmelin\(^7\) mentions two cases of death from smoking, in the one of seventeen, in the other of eighteen, pipes at a sitting.

In habitual smokers, the practice, when employed moderately, provokes thirst, increases the secretion of saliva and buccal mucus, and produces a remarkable soothing and tranquillizing effect on the mind, which has made it so much admired and adopted by all classes of society, and by all nations civilized and barbarous. I am not acquainted with any well-ascertained ill effects resulting from the habitual practice of smoking. A similar observation is made by Dr. Christison\(^8\). Yet Dr. Prout says it “disorders the assimilating functions in general, but particularly, as I believe, the assimilation of the saccharine principle. I have never, indeed, been able to trace the development of oxalic acid to the use of tobacco; but that some analogous and equally poisonous principle (probably of an acid na-

\(^1\) Christison, On Poisons.
\(^2\) Mat. Med. ii. 274.
\(^3\) On the Nature and Treatment of Stomach and Urinary Diseases, p. 25. Lond. 1840.
\(^4\) Christison, op. cit.
\(^5\) Letters, p. 260, fol. 1720.
\(^7\) Quoted by Christison.
ture) is generated in certain individuals by its abuse, is evident from their cachetic looks; and from the dark, and often greenish yellow tint of their blood. There do not appear to be any good grounds for supposing that smoking is a prophylactic against contagious and epidemic diseases—an opinion at one time entertained.

The practice of chewing tobacco is principally confined to sailors, and is less frequently submitted to our observation, so that we are not so competent to speak of its effects, which, probably, are similar to those caused by smoking.

The application of tobacco to abraded surfaces is a very dangerous practice, and has in some instances been attended with violent or even fatal results. Mr. Weston has related a case, in which the expressed juice of tobacco was applied to the head of a boy, aged eight years, for the cure of tinea capitis. Death took place three hours and a half after the application.

In the form of clyster, tobacco has frequently proved fatal, sometimes from the use of inordinate doses by ignorant persons, and occasionally in the hands of the well-informed practitioner. Desault has witnessed the smoke proof fatal. Sir A. Cooper has seen two drachms, and even one drachm, destroy life. In a case related by Sir Charles Bell death probably occurred from the same cause.

In a case related by Sir Charles Bell death probably occurred from the same cause. Dr. Copland saw half a drachm in infusion prove fatal. More recently a decoction of 12 grs. of tobacco in six ounces of water used as an enema proved fatal.

The operation of tobacco resembles that of 

**Uses.**—The principal remedial value of tobacco consists in its power of relaxing muscular fibres, whereby it becomes a valuable
antispasmodic. As a purgative, but especially as an antispasmodic and purgative conjoined, it is exceedingly serviceable in alvine obstructions. As a sedative to the vascular system it has not been much used. I tried it somewhat extensively a few years since, as a substitute for blood-letting in inflammatory affections. But, while it produced such distressing nausea, and depression, that it was with difficulty I could induce patients to persevere in its use, I did not find its antiphlogistic powers at all proportionate, and eventually I discontinued its employment. As an anodyne, diuretic, or emetic, it is much inferior to many other articles of the Materia Medica.

1. In Colic, Ileus (Volvulus), Strangulated Hernia, and Constipation.—The efficacy of tobacco in these diseases depends principally on its power of relaxing muscular fibres and on its purgative properties. These effects are usually accompanied by nausea and giddiness. The remedy is applied in the form of clyster, consisting either of the infusion, or of the smoke. The latter was at one time supposed to be more efficacious. Heberden says, it causes less giddiness than the infusion. It probably extends farther up the intestines than the liquid enema, and, therefore, acts on a larger surface. But the difficulties and inconvenience of applying it, and the uncertainty of its effects, have led, for the most part, to the discontinuance of its use. In ileus the tobacco clyster has been recommended by Sydenham, by Heberden, by Abercrombie, and by several other distinguished authorities. The earlier it is resorted to, the more successful is it likely to prove. Indeed, when employed in the last stage of the disease, it sometimes hastens the fatal termination by exhausting the already depressed vital powers. As it is occasionally necessary to repeat the injection, it is of importance to begin cautiously. Dr. Abercrombie uses only fifteen grains of tobacco infused in six ounces of boiling water for ten minutes; and he repeats this in an hour if no effect have been produced. I have generally employed a scruple, and have not experienced any dangerous effects from its application; and it is possible that, in persons long accustomed to the use of tobacco, a somewhat larger dose might be required; but I have never met with any cases in which a scruple did not produce the full effect on the system that was desired. In strangulated hernia the tobacco clyster has frequently effected the return of the protruded parts when the operation appeared almost inevitable; and every surgical writer speaks in the highest terms of its use. A tense hernial tumor sometimes becomes soft and relaxed by the diminished force of circulation produced by tobacco. Notwithstanding these facts, this remedy is much less frequently resorted to than formerly. Three circumstances have, I suspect, led to the infrequency of its use:—first, the dangerous, if not fatal, consequences which have sometimes resulted from its employment; se-

---

2 Comment, on the Hist. and Cure of Diseases, p. 270, 3d ed. 1806.
1 Whole Works, 4th ed. by Peechey, p. 428.
4 On Diseases of the Abdominal Viscera.
condly, the frequency of its failure and the consequent loss of time, by which the chance of recovery is diminished; thirdly, the operation for hernia being much less dreaded now than formerly, for experience has fully proved that death rarely (Mr. Pott says only once in fifty times) results from it. In colic from lead, and in obstinate constipation from spasmodic constriction, the tobacco clyster has sometimes proved most beneficial. Of the application in lead colic, of compresses, soaked in a strong decoction of tobacco to the abdomen, as recommended by Dr. Graves, I have no experience. The practice is, of course, calculated to be beneficial, but is less certain and speedy in its effect than tobacco clysters.

2. In Ischuria and Dysury. — When retention of urine arises from spasm of the neck of the bladder or from spasmodic stricture, tobacco, by its powerfully relaxing properties, is an agent well calculated to give relief. Mr. Earle has published several cases illustrative of its efficacy. In dysury, also, tobacco proves serviceable; it abates pain, relaxes the urinary passages, promotes the secretion of urine, and, by diminishing the sensibility of the parts, facilitates the expulsion of calcareous matter.

3. Tetanus. — The relaxing influence over the muscular system possessed by tobacco, suggested the employment of this remedy in tetanus. Its effects have been, like those of most other medicines in this disease, unequal. Sir J. Macgrigor says, that, in the advanced stage of the malady the tobacco clyster had no effect. Mr. Earle, however, thought it afforded temporary alleviation in a case in which he tried it. Since then several cases have been successfully treated by tobacco. Dr. O’Beirne obtained most marked relief by its use. He employed it in the form of clyster (containing a scruple of tobacco), which was repeated twice or thrice or oftener daily during eighteen days; and it was observed, that if by design or accident the remedy was discontinued, the spasms recurred with force. Mr. Anderson employed a decoction of the fresh leaves in the form of enema, and both with good effect. Mr. Curling has collected accounts of nineteen cases (including those of Earle, O’Beirne, and Anderson, above referred to) treated by tobacco; of these nine recovered; and, in seven of the fatal cases, the remedy had not a fair trial; while in the eighth organic disease of the brain was found. Mr. Curling observes, that more has now been advanced in proof of the efficacy of tobacco than can be adduced in favour of any other remedy yet resorted to. “I have not,” he adds, “succeeded in finding a single case, in which, being fully and fairly tried before the constitution had given way, it has been known to fail.”

4. Other Spasmodic Diseases. — The success attending the use of

---

Footnotes:

- Dublin Hospital Reports, vol. iv.
- Ibid. p. 92
- Treat. on Tetanus, p. 108. 1836.
tobacco in tetanus, has led to its employment in hydrophobia, but hitherto without avail. In a case of periodical epilepsy, Dr. Currie\(^x\) prevented the return of the disease by the application of a tobacco cataplasm to the scrobiculus cordis, half an hour before the expected paroxysm. In a very bad case of spasm of the rima glottidis, which resisted powerful depletion by the lancet, Dr. Wood\(^y\) applied with success a tobacco cataplasm to the throat. In spasmodic asthma, tobacco, either smoked or taken internally, in nauseating doses, has been found occasionally to give relief. My own observation is unfavourable to the use of tobacco smoke, which I have repeatedly found to bring on convulsive cough and spasmodic difficulty of breathing in persons afflicted with chronic catarrh. Dr. Sigmond\(^z\) says, the tincture of tobacco has been sold and used to a great extent, under the name of tincture of lobelia, and that it proved successful in spasmodic asthma. In rigidity of the os uteri, a tobacco clyster failed to produce relaxation, while it caused alarming constitutional symptoms\(^a\).

5. In Dropsy.—Tobacco was recommended, as a diuretic in dropsy, by Dr. Fowler\(^b\), who published a number of cases of anasarca and ascites which had been relieved by it\(^c\). Whatever benefit may have been obtained, in these cases, by the use of tobacco, should be ascribed, I suspect, rather to the sedative powers of this agent, than to its influence over the kidneys. In small doses it is an uncertain diuretic, and in larger doses it causes such distressing nausea and depression, that practitioners have long since ceased to use it in dropical cases. The ashes of the tobacco plant have also been used in dropsy\(^d\).

6. As a topical remedy.—Dr. Vetch\(^e\) recommends the infusion, as an anodyne and sedative topical application, in gouty and rheumatic inflammation of the joints, testicle, and sclerotic coat of the eye, and in erysipelas inflammation. Bergius\(^f\) recommends a fomentation of tobacco leaves in phimosis and paraphimosis. An infusion or ointment of tobacco has been used in porrigio and other skin diseases, as well as in some obstinate ulcers. The smoke, applied to the hair, is a popular means of destroying pediculi, and has been used in the form of clyster, to destroy ascarides. Dr. Sigmond\(^g\) says, tobacco promotes the growth of the hair. Toothache has been relieved by tobacco smoke.

In addition to the preceding, there are various other diseases against which tobacco has been employed. Thus in soporose affections and asphyxia, tobacco clysters have been employed; but they

\(^{a}\) Med. Rep. vol. i. p. 163.
\(^{b}\) United States' Dispensatory.
\(^{d}\) Dr. Dewees, Comp. Syst. of Midwif. p. 378. 1825.
\(^{e}\) Op. supra cit.
\(^{f}\) See also Garret, in Duncan's Med. Comment, for 1797, Dec. 11, vol. vi.
\(^{i}\) Mat. Med. i. 222.
are more likely to do harm than good. Tobacco has also been used as an anthelmintic.

Administration.—Tobacco is rarely administered in substance. Five or six grs. of snuff have been taken as an emetic, and are said to have operated as effectually as two grains of emetic tartar. For internal administration the wine of tobacco is generally employed. Dr. Fowler used an infusion (prepared with an ounce of Virginian tobacco to a pound of boiling water), which he gave in doses of from sixty to a hundred drops. The best time for administering it he found to be two hours before dinner, and at bed-time. The usual tobacco enema is the infusion prepared according to the Pharmacopoeia. The tobacco-smoke clyster (clyster et fume tabaci) is applied by means of a proper apparatus, formerly kept by the instrument-makers. Various extemporaneous methods of employing it have been devised. For external use tobacco is used in the form of cataplasm (made of the leaves and water and vinegar), infusion (the tobacco water of the shops), smoke, and ointment: all these, however, require great caution in their use, especially when applied to abraded surfaces.

Antidotes.—If the poison have been swallowed, let the contents of the stomach be withdrawn as speedily as possible. No chemical antidote has as yet been demonstrated; but the vegetable astringents (infusion of nutgalls, green tea, &c.) deserve examination. As anti-narcotics, the vegetable acids and coffee may be administered. The other parts of the treatment must be adapted to circumstances. When the depression of the vascular system is extreme, ammonia and brandy may be administered with good effect, and frictions employed: even acupuncture of the heart (!) has been suggested. Artificial respiration should not be omitted, when other means have failed. If apoplectic symptoms present themselves, blood-letting may, perhaps, be requisite, as in the case related by Dr. M. Hall.

1. ENEMA TABACI, L. E.; Infusum Tabaci, D.; Tobacco Clyster.—(Tobacco, 5iij.; Boiling Water, Oij.)—The want of uniformity in the formula of the British Colleges is greatly to be regretted; and I cannot but think that the latitude permitted by the Edinburgh College, in the quantity of tobacco employed, is highly objectionable, and calculated to lead to serious errors in dispensing. The tobacco clyster is used, as I have already stated, in ileus (volvulus), strangulated hemia, obstinate constipation, retention of urine, &c. It is not to be forgotten that two drachms, one drachm, and even half a drachm of tobacco,—nay twelve grains only—infused in water, have proved fatal, as I have before mentioned. The cautious practitioner, therefore, will not use more than 15 or 20 grains.

2. VINUM TABACI, E.; Wine of Tobacco.—(Tobacco, 3ij.; Sherry, Oij.)—Digest for seven days, strain, express strongly the residuum,
and filter the liquors. Sedative and diuretic. Employed in dropsy, dysuria, &c. Rarely used.—Dose from m\text{x} to m\text{l}.

3. \textit{INGUENTUM TABACI}, Ph. United States; \textit{Ointment of Tobacco}.—(Fresh Tobacco, cut in pieces, $\frac{3}{j}$; Lard, lbj. Boil the tobacco in the lard, over a gentle fire, until it becomes friable; then strain through linen).—Employed as an application to irritable ulcers and skin diseases, especially tinea capitis; but its use requires great caution.

An \textit{ointment}, prepared with twenty drops of the empyreumatic oil of tobacco and an ounce of simple ointment, has been applied with advantage by American practitioners, to indolent tumors and ulcers; but, like all other preparations of tobacco, when employed externally, must be used with great caution.

5. \textit{SOLANUM DULCAMA'RA}, Linn, L. E. D.—\textbf{WOODY NIGHTSHADE}; BITTER-SWEET.

\textit{Sex. Syst.} Pentandria, Monogynia.

\textit{Caulis, L.—Twigs, E.—Caules, D.)}

\textbf{History.}—Sprengel\textsuperscript{1} considers this plant to be the \textit{Citocatia} of the Abbess Hildegard, of Bilgen, who died A. D. 1180. But the derivation of the word \textit{Citocatia} \textsuperscript{[cito and cacare]} negatives, in my opinion, this supposition. The first undoubted notice of Dulcamara occurs in the work of Tragus\textsuperscript{2}.

\textbf{Botany.} \textit{Gen. Char.}—Calyx permanent, five- to ten-parted. Corolla rotate; the tube very short; the limb four- to six-divided, spreading. Anthers four to six, oblong, dehiscing at the apex by two pores. Berry roundish, two- to six-celled. Embryo spiral (Bot. Gall.)


Root woody. Stem twining, branched, rising (when supported) to the height of many feet. Leaves acute, generally smooth; the lower ones ovate, or heart-shaped; upper more or less perfectly halbert-shaped; all entire at the margin. Clusters either opposite to the leaves or terminal, drooping, spreading, smooth, alternately subdivided. Bracts minute. Flowers elegant, purple, with two round green spots at the base of each segment. Berries oval, scarlet, juicy.

\textbf{Hab.}—Indigenous. In hedges and thickets, especially in watery situations. Flowers in June and July.

\textbf{Description.}—The annual stems (\textit{caules seu stipites dulcamarae}) are collected in the autumn, after the leaves have fallen. When fresh they have an unpleasant odour, which they lose by drying. Their

\textsuperscript{1} United States Dispensatory.
\textsuperscript{2} Hist. Rei Herb; vol. i. p. 227.
\textsuperscript{3} Sprengel, op. cit. p. 319.
taste is at first bitter, afterwards slightly acid and sweet. The epidermis is greenish-gray, the wood light, and the pith very light and spongy.

Composition.—The stems have been analyzed by Pfaff\(^m\). 100 parts of air-dried stems lost 17.4 parts of water when completely dried. From 100 parts of perfectly dried stems, Pfaff obtained—bitter sweet extractive (picroglycine) 21.817, vegeto-animal matter 3.125, gummy extractive 12.029, gluten with green wax 1.4, resin containing benzoic acid 2.71, gummy extractive, starch, sulphate and vegetable salts of lime 2.0, oxalate and phosphate of lime with extractive 4.0, and woody fibre 62.0. (Excess 9.111). Desfosses\(^n\) discovered solanina in the stems.

1. Picroglycine, Pfaff (Dulcarin, Desfosse).—Crystalline, has both a bitter and a sweet taste, is fusible, soluble in water, alcohol, and acetic ether, and is not precipitated from its solution by either infusion of nutgalls or metallic salts\(^s\). Pelletier\(^t\) thinks that it is sugar combined with solanina.

2. Solanina.—Resembles sulphate of quina, but its needle-like crystals are finer and shorter. It restores the blue colour of litmus paper reddened by an acid. It dissolves in acids, and is precipitated from its solution by the caustic alkalis. Some of the salts (as the acetate and hydrochlorate) have a gummy appearance when evaporated to dryness: others (as the phosphate and sulphate) are crystallizable. According to Blanchet it consists of Carbon 62.11, Hydrogen 8.92, Nitrogen 13.84, Oxygen 27.33. If this analysis be correct, solanina differs from the other vegetable alkalis in the small quantity of nitrogen which it contains. A grain of solanina, dissolved in dilute sulphuric acid, killed a rabbit in six hours; four grains of the sulphate caused, in an hour, paralysis of the hind legs, and, in eight hours, death\(^u\). Soubeiran says it does not dilate the pupils, like the other alkalis of Solanaceae.

Physiological Effects.—Not very obvious. Its decoction operates as a diaphoretic and diuretic. It is said also to promote secretion from the mucous surfaces, and to diminish sensibility. In excessive doses dulcamara is stated to have acted as an acro-narcotic\(^v\). Chevallier\(^x\) says, a young man experienced narcotism from carrying a bundle of the plant on his head. But the accuracy of all these observations has been called in question by Jos. Frank\(^y\); by Dunal, and by Fages\(^z\). The first gave the decoction, the latter the extract and fruit, in very large doses, without any obvious effects.

Uses.—Dulcamara has been thought serviceable in chronic pulmonary catarrhs, in rheumatic and gouty complaints, in chronic skin diseases, and in various cachectic conditions of the system, in which sarsaparilla has been found beneficial. As a remedy for lepra, it was introduced to the notice of British practitioners by Dr. Crichton. For this disease it has been declared a most effectual remedy by

---

\(^{n}\) Journ. de Pharm. t. vii. p. 414.
\(^{o}\) Soubeiran. Traité de Pharm. t. ii. p. 52.
\(^{p}\) Journ. de Pharm. vii. 416.
\(^{q}\) Otto, Pharm. Central-Blatt für 1834, S. 435.
\(^{s}\) Diet. der Drop. t. ii. p. 226.
\(^{t}\) Handb. d. Toxicol. S. 61. 1803.
\(^{u}\) Orfila, Toxicol. Gen.
COMMON CAPSICUM.

Bateman

while Rayer

speaks of its good effects in eczema and psoriasis. In the few cases in which I have tried it, it proved useless.

DECOCTUM DULCAMARÆ, L. E. D.; Decoction of Bittersweet.—
(Dulcamara, sliced 

[chopped down, E.], \(\frac{3}{3}\); E.]; Water [distilled, L.], Ojss 

[f\(\frac{3}{2}\)xxiv, E.; wine measure, D.] Boil down to a pint, and strain).—Diaphoretic and diuretic. The usual dose, stated in books, is f\(\frac{3}{3}\)ss. to f\(\frac{3}{3}\). But I have given f\(\frac{3}{3}\)iv. for a dose. Rayer has given four ounces of the root in decoction in twenty-four hours.

6. CAP'SICUM AN'NUUM, Linn. L. E. D.—COMMON CAPSICUM;
CHILLY.

Sex. Syst. Pentandria/Monogynia.

(Baccae, L.—Fruit of Capsicum annuum and other species; Capsicum or Chillies, £.—Capsulse cum seminibus, D.)

History.—The Piperitis or Siliquastrum of Pliny is declared by Sprengel to be undoubtedly Capsicum annuum. But confidence in this opinion is greatly diminished by the doubt entertained as to this plant being a native of Asia. Of course, if it be exclusively a native of America, there is no reason for supposing that Pliny could have been acquainted with it. The term capsicum (κάψικον) occurs first in Actuarius.


Herbaceous annual, one to two feet high. Leaves ovate or oblong, acuminate, long-stalked, almost entire, sometimes hairy on the veins underneath. Flowers white. Berry either scarlet or yellow, variable in shape, being oblong, round, or cordate.


Description.—The dried fruit, sold by druggists as chillies, is flat, more or less shrivelled, oblong, blunt or pointed at one end, while the calyx or stalk are usually attached at the other end. The length of the berry (independent of the stalk) is two or three inches, the breadth one-half to three-quarters of an inch, the colour yellowish or reddish-brown, the taste hot and pungent, the odour none. The epidermis is tough and leathery: the seeds are flattened and whitish. The recent fruit, called capsicum or chillies, grown in this country, and sold for

\footnote{Synopsis of Cutan. Diseases.}
\footnote{Treat. on Dia. of the Skin, by Dr. Willis, p. 51.}
\footnote{Hist. Nat. lib. xix. cap. 62; and lib. xx. cap. 66, ed. Valp.}
\footnote{Hist. Rei Herb. vol. i. p. 201.}
\footnote{Roxburgh, Fl. Ind. vol. i. p. 573; Royle, Illustr. p. 27}
\footnote{Trans. Linn. Soc. vol. xvii. part i. p. 62.}
pickling, is, when ripe, yellow or red, but it is frequently gathered green: its size and shape are variable: the oblong varieties are from one to three or four inches long: the round variety (cherry chilly) is about as large as a cherry.

Composition.—The fruit was analysed, in 1816, by Maurach; in the same year by Bucholz; and in the following year by Braconnot.

<table>
<thead>
<tr>
<th>Bucholz's Analysis</th>
<th>Braconnot's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic soft resin (capsicin)</td>
<td>4-0</td>
</tr>
<tr>
<td>Wax</td>
<td>7-6</td>
</tr>
<tr>
<td>Bitter aromatic extractive with some gum</td>
<td>21-0</td>
</tr>
<tr>
<td>Gum</td>
<td>9-2</td>
</tr>
<tr>
<td>Albuminous matter</td>
<td>3-2</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>3-2</td>
</tr>
<tr>
<td>Water</td>
<td>12-0</td>
</tr>
<tr>
<td>Loss</td>
<td>6-4</td>
</tr>
</tbody>
</table>

Fruit of Capsicum annum without seeds = 100-0

**Capsicum. Bucholz (Acrid Soft Resin; Acrid Oil, Braconnot).—Obtained by digesting the alcoholic extract in ether, and evaporating the ethereal solution. It is a thick liquid, of a yellowish-red or reddish-brown colour, which becomes very fluid when heated, and, at a higher temperature, is dissipated in fumes. Half a grain of it, volatilized in a large room, causes all who respire the air of the room to cough and sneeze. By exposure to air and light it solidifies. It is decolorized by chlorine. It is slightly soluble in water and in vinegar; but very much so in alcohol, ether, oil of turpentine, and the caustic alkalis. With baryta it forms a solid acid combination.**

**Physiological Effects.**—Capsicum belongs to the spices (see p. 181), and is more closely allied, by its effects, to the peppers (see p. 1099) than to any other article of the Materia Medica. Sundein, however, considers it to be more related to pyrethrum. Its active principle is more fixed, and its operation is more constant and violent, than mustard or horse-radish.

Its hot and fiery taste is familiar to every one. Applied to the skin, capsicum proves rubefacient and vesicant. Swallowed in small doses, it creates a sensation of warmth in the stomach, and in torpid and languid habits proves a valuable stimulant, and a promoter of the digestive functions. Taken in somewhat larger quantities, it produces a glow over the body, excites thirst, and quickens the pulse: the latter effect, however, is not in proportion to its local effect. Like the peppers, it is said to exercise a stimulant influence over the urino-genital organs. In excessive doses, we can easily believe that vomiting, purging, abdominal pain, and gastric inflammation, ascribed to it by Vogt, may be induced by it, though I am not acquainted with any cases in which these effects have occurred. Richter mentions, in addition to the symptoms just mentioned, a paralyzed and altered condition of the nervous influence, an affection of the head, drunkenness, and giddiness, as being produced by large doses.

\[ ^b \text{Berl. Jahrb. Bd. xvii. S. 63.} \]
\[ ^c \text{Gmelin, Handb. d. Chem. ii. 1310.} \]
\[ ^d \text{Ann. de Chim. Phys. vi. 122.} \]
\[ ^e \text{Handb. d. sp. Heilm. Bd. ii. S. 44, 3. Aufl.} \]
\[ ^f \text{Pharmakodyn. Bd. ii. S. 581, 2. Aufl.} \]
\[ ^g \text{Ausf. Arzneim. Bd. ii. S. 179-} \]
USES.—Capsicum is more employed as a condiment than as a medicine. It is added to various articles of food, either to improve their flavour, or, if difficult of digestion, to promote their assimilation, and to prevent flatulence. The inhabitants of tropical climates employ it to stimulate the digestive organs, and thereby to counteract the relaxing and enervating influence of external heat (see pp. 8 and 10).

As a medicine it is principally valuable as a local stimulant to the mouth, throat, and stomach. Its constitutional not being in proportion to its topical effects, it is of little value as a general or diffusible stimulant. Administered internally capsicum has long been esteemed in cases of *cynanche maligna*. It was used, in 1786, with great success, by Mr. Stephens h and by Mr. Collins i. It promoted the separation of the sloughs, and soon improved the constitutional symptoms. Mr. Headby j also employed it both internally and by way of gargle. Its use has been extended to *scarlatina anginosas*. As a gargle, in relaxed conditions of the throat, its efficacy is undoubted. The powder or tincture may be applied by means of a camel's-hair pencil to a relaxed uvula. It is a very useful gastric stimulant in enfeebled, languid, and torpid conditions of the stomach. Thus, in the dyspepsia of drunkards, as well as of gouty subjects, it has been found useful. In various diseases, attended with diminished susceptibility of stomach, capsicum is an exceedingly useful adjunct to other powerful remedies, the operation of which it promotes by raising the dormant sensibility of this viscus: as in cholera, intermittents, low forms of fever, dropsies, &c. Dr. Wright k speaks in high terms of it as a remedy for obviating the black vomit—a symptom of the fever of tropical climates, at one time considered fatal. A capsicum cataplasm may be used with advantage to occasion rubefaction, in any cases in which a rubefacient counter-irritant is indicated; as in the coma and delirium of fever, in chronic rheumatism, &c.: unless kept on for a long period it does not vesicrate.

ADMINISTRATION.—The powder of capsicum is usually given in doses of from gr. v. to gr. x., made into pills with crumbs of bread. The dose of the tincture will be mentioned presently. The infusion (prepared by digesting 3ij. of capsicum in 15x. of boiling water for two hours) may be administered in doses of 15ss. But, in malignant sore throat and scarlatina, capsicum has been employed in much larger doses. *Stephen's pepper medicine* consisted of two tablespoonfuls of small red pepper [*Capsicum frutescens*], or three of the common Cayenne pepper, and two tea-spoonfuls of fine salt, digested in half a pint of boiling water. To the liquor, strained when cold, half a pint of very sharp vinegar is added. A table-spoonful of this mixture is given to an adult every half hour. The *capsicum gargle* is prepared by infusing 5ss. of capsicum in a pint of boiling water;

---


l Chappuis, Elem. of Therap. vol. ii.

m Med. Facta and Observ. vol. vii.
or by adding f3vij. of the tincture to f3vij. of the infusion of roses; or, in some cases, Stephen's pepper medicine may be used as a gargle.

**Tinctura Capsici, L. E. D.; Tincture of Capsicum.** — (Capsicum, bruised [or, if percolation be followed, in moderately fine powder, E.], 5x.; Proof Spirit, Oij. [wine measure, D.].) Digest for fourteen [seven, E.] days, and strain [strain, squeeze the residuum, and filter the liquors. This tincture is best prepared by percolation, which may be commenced so soon as the capsicum is made into a pulp with a little of the spirit, E.]).—Dose m/10. to f/5. Employed in the low stage of typhus and scarlet fevers, and in gangrenous sore-throat, and to prevent the nausea which oil of turpentine is apt to occasion (see p. 1056). Properly diluted, it may used as a gargle, as above mentioned.

**OTHER DIETETICAL, MEDICINAL, OR POISONOUS SOLANACEÆ.**

1. **Hyoscyamus Albus** is endowed with properties similar to those of H. niger; for which it has sometimes been employed in medicine.  
2. **Mandragora Officinalis**, the Mandrake, is an acro-narcotic poison: when swallowed it purges violently. The roots, from their fancied resemblance to the human form, were called anthropomorphon, and were supposed to prevent barrenness. The root of *Bryonia dioica* is sold at the herb-shops as a substitute for mandrake.

3. Several species of *Datura* are employed in the East: their effects and uses are analogous to those of *D. Stramonium*. In 1802 General Gent introduced *D. farinacea* into this country as a remedy for asthma. It was employed by smoking it. Waitz's says, that half an upright capsule acted violently on a girl. In 1811 Dr. Christie directed attention to *D. fastuosa*. Mr. Skipton administered the decoction of the root of this plant; and Dr. Adams used a tincture (prepared as tincture of digitalis, Ph. L.). *D. Metel* and *D. Tatula* appear to possess similar properties. Both species have been employed, especially in the East, to cause intoxication for criminal and licentious purposes. Schubarth gave half a pound of the bruised leaves of *D. Tatula* to a horse without effect; twenty-one ounces of the half-ripe fruit caused dejection, increased secretion, and loss of appetite. *D. arborescens* operates like stramonium.

4. **Solanum nigrem**, or Black Nightshade, possesses narcotic properties, but its activity is not very great. It contains *solanina*. It has been employed in medicine as a resolvent.

---

c* Matthiolus, Comin. Dioscor.*  
h* Ibid. p. 370.*  
j* Wibiner, op. cit. p. 300.*  
k* Ibid. p. 285.*  
l* Brandt and Ratzeburgh, *Deutschl. phan. Gifteuwichse. S. 83.*  
m* Orfila, *Toxicol. Gén.*  
5. Solanum tuberosum, or the Potato, is, next to the Cerealia, the most important vegetable for dietetical purposes. It was introduced into England, from America, in 1586, by Sir Walter Raleigh. The part employed as food is produced by the subterranean stems, and is called a tuber: the parts on it, called eyes, are buds, which, with another portion of the tuber, are used for multiplying the species, under the name of sets. The tissue of potatoes is cellular; each cell containing from ten to twelve grains of starch. Both in the cells and in the intercellular spaces is an albuminous liquid. By boiling, the cells are separated, the starch grains absorb the albuminous liquid, swell up, and completely fill the cells; while the albumen coagulates, and forms irregular fibres, which are placed between the starch grains.

Potatoes in which these changes are complete, are called mealy, while those in which the liquid is only partially absorbed, and the coagulation imperfectly effected, are denominated doughy or watery. Potatoes have been repeatedly subjected to chemical examination. The most important labours are those of Einhof, Lampadius, and Vauquelin. The principal constituents of potatoes are starch, starchy fibrin, albumen, gum, acids, salts, and water. The relative proportions vary with the season, the varieties of the potatoe, &c. Otto has discovered solanina in the potatoe, especially in the bud—a fact which explains the cause of the ill effects which have been observed to arise from the use of germinated potatoes by cattle. Payen and Persoz found diastase in the neighbourhood of the bud of the potatoe. Potatoe starch (English Arrow-Root, offic. Amylum Solani tuberosi) consists of particles of varied shapes and sizes; the normal form is probably ovate. Their size varies from one-six hundredth to one-thirtieth of a line in diameter. They are characterized by concentric rings observed on their surface, and which Fritzsche regards as indications of concentric layers, of which he asserts these grains to be composed. The hilum is circular. The cracks observed on some of the larger grains proceed usually from the hilum (see p. 935, fig. 173). The particles of the fecula of Cannu coccinea (see p. 1014, fig. 190) present similar rings, but are much larger. Sago is made of po-

---


Pharm. Central-Blatt für 1834, S 455.


tatoe starch. It has already been described (see p. 935). Potatoe starch has been analyzed by Berzelius and Guérin-Vary. According to the latter, one hundred parts consist of 212 parts of matter insoluble in water (leguminary amylum), of 38 of soluble amidin, and 59-75 of amylum: the amidin consists of C14 H10 O6; the amylum of C60 H8 O6. The quantity of starch obtained from potatoes varies with the kind used, as well as with the season: one hundred pounds of potatoes yield in August about 10 lbs., in September 14 lbs., in October 14 lbs., in November 17 lbs., in March 17 lbs., in April 13 lbs., in May 10 lbs. Sugar is sometimes manufactured from potatoes. By fermentation potatoes yield a vinous liquid (potatoe wine) of good quality. By distillation this yields potatoe spirit, from which a volatile oil (oil of potatoes) has been extracted (see p. 348). An extract, obtained from the stalks and leaves of potatoes, was declared by Dr. J. Latham to possess narcotic properties, in doses of two or three grains; but the cases adduced are not satisfactory. Furthermore, his experiments were repeated by Dr. Worsham with very different results; for 100 grains produced no sensible effects. The observations of Nauche, however, tend to confirm Latham’s statements. The tubers (potatoes), when boiled, are a valuable article of food, both for men and animals. Those of good quality are not only perfectly innocuous, but highly nutritious, and easy of digestion. In the raw state they have been found less nutritive for animals, while on man they are said to prove laxative and diuretic, and to excite, slightly, the nervous system. The process of cooking is probably useful in two ways; by rendering the starch digestible, and, secondly, by extracting some noxious matter. Nauche found the decoction of potatoes endowed with medicinal properties; and Otto, as already mentioned, detected solanina in them. Potatoes have been praised as useful antiscorbutics.

6. Capsicum frutescens, Linn, yields the capsules sold by druggists as Guinea pepper or bird pepper (baccce capsici), as I have satisfied myself by comparing the commercial article with the Esusit Indian Solanacca; belonging to the Linnean Society. These capsules do not exceed an inch in length, and are about two or three lines broad; their colour is orange red; their odour aromatic and pungent. Their properties are similar to those of chillies (see p. 1257), than which they are much hotter and more fiery. Their powder is Cayenne Pepper, so extensively employed as a condiment. Cayenne Lozenges and Essence of Cayenne (an alcoholic tincture) are kept in the shops.

ORDER XXXIX.—BORAGINACE,E, Lindley.—THE BORAGE TRIBE.

BORAGINE, Justiciu.

The plants of this Order are harmless, and, for the most part, inert. Their prevailing constituent is mucilage. Nitre is also found in some species. The colouring principle (anchniscric acid C17 H16 O3) of Anchusa tinctoria, or Alkanet, dissolves in fatty substances, and hence is employed to colour unguents and oil (as lip salce and hair oil). It becomes blue on the addition of an alkali.
SCAMMONY.

ORDER XL.—CONVOLVULACEÆ. R. Brown.—THE BIND-WEED TRIBE.

Convulvul, Jussieu.

Essential Character.—Calyx five-sepaled. Sepals persistent, equal, or unequal, in one- three rows; often becoming enlarged. Corolla monopetalous, hypogynous, regular; the limb five-plicate, or five-lobed; contorted in estivation. Stamens five, inserted into the corolla. Anthers often contorted after the ejection of the pollen. Nectary annular, often conspicuous. Ovary single, two- to four-celled; or two to four ovaries. Cells one- to two-seeded. Style one, entire or bifid. Stigma bilobed. Fruit dehiscing by the valves; rarely transversely. Seeds inserted into the base of the ovaries: testa black. Cotyledons foliaceous, corrugated. Radicle incurved, inferior.—Generally twining plants, with alternate, simple, entire, or lobed leaves. Pedicels bibracteate. Stem often filled with a milky purgative juice.

Properties.—The roots contain a milky purgative juice, which owes its essential properties to resin.

1. CONVOLVULUS SCAMMONIA, Linn., L. E. D.—THE SCAMMONY.

Sex. Syst. Pentandria, Monogynia.

(Gummi-resina, L. D.—Gummy-resinous exudation from incisions into the root, E.)

History.—A purgative substance called σκαμμώνα, was known to the Greeks long before the time of Hippocrates. The father of medicine, who frequently employed it, says that it evacuates, both upwards and downwards, bile and mucus, and expels flatus. There is, however, some reason to believe that the ancients did not procure their scammony from the same plant which yields ours. Dierbach thought they procured it from Convolvulus sagittifolius, Sibthorp. But Dr. Sibthorp refers the scammony of Dioscorides to the Convolvulus farinosus.

It deserves notice, that the term scammonia is applied by pharmacologists to purgative resinous substances obtained from Convolvulaceae and Asclepiadaceae. At present I confine myself to the scammony procured from Convolvulaceae. The other kind will be described hereafter (see Asclepiadaceae).


Root perennial, tapering, three or four feet long, with an acrid, milky juice. Stems numerous, twining, herbaceous, smooth. Leaves on long petioles, acuminate, with pointed lobes at the base. Peduncles solitary, scarcely twice so long as the leaves. Bracts awl-shaped. Sepals obovate, truncated, with a reflexed point, coloured at the edge. Corolla pale yellow, with purple stripes. Stamina shorter than the
corolla; anthers erect, sagittate. Style as long as the stamens: stigmas white.

Hab.—Hedges and bushy places in Greece and the Levant.

Preparation.—The method of procuring scammony is, according to Dr. Russel*, as follows:—Having cleared away the earth from the upper part of the root, the peasants cut off the top in an oblique direction, about two inches below where the stalks spring from it. Under the most depending part of the slope they affix a shell, or some other convenient receptacle, into which the milky juice flows. It is then left about twelve hours, which time is sufficient for the drawing off the whole juice: this, however, is in small quantity, each root affording but a few drachms. This milky juice from the several roots is put together often into the leg of an old boot, for want of some more proper vessel, when in a little time it grows hard, and is the genuine scammony. It is, however, very probable that the process now mentioned is not the only one employed, but that others, similar to those described by Dioscorides and Mesue, are also resorted to. Moreover, various substances are added to scammony while yet soft. Dr. Russel says, wheat-flour, ashes, or fine sand, are used for this purpose; and, I may add, chalk.

Description.—Scammony is usually imported from Smyrna. Occasionally it comes by way of Trieste. Still more rarely it is brought from Alexandretta. It comes over in boxes and drums, which are frequently lined with tin. The finest kind is called virgin or lachryma scammony. Other varieties are denominated seconds, thirds, &c. Formerly the term Aleppo scammony was applied to the finer, and that of Smyrna scammony to the inferior kinds. No such distinction now exists in English commerce. The scammony in shells, and the Antioch scammony, described by Martius", are unknown by those names to our principal dealers; nor is any distinct kind known as Smyrna scammony. I am informed by a Turkey merchant, who formerly resided at Smyrna, that scammony is brought into Smyrna, in the soft state, on camels. Here it is mixed with various impurities by persons (Jews), who are denominated scammony makers, and who adulterate it, and thereby lower its value to suit the market. Formerly the demand in London was principally for second and third qualities; but now virgin scammony is more in request, and is met with in much greater abundance.

The characters of good scammony are as follows:—It readily fractures between the fingers, or by the pressure of the nail; its sp. gr. is about 1.2; its fracture is dark, glistening, and resinous; its fractured surface should not effervesce on the addition of hydrochloric acid; the decoction of the powder, filtered and cooled, is not rendered blue by tincture of iodine; 100 grains, incinerated with nitrate of ammonia, yield about three grains of ashes (according to my experiments); sulphuric ether separates at least 78 per cent. of resin (principally) dried at 280° F.

SCAMMONY.

"Fracture glistening, almost resinous, if the specimen be old and dry: mutriatic acid does not cause effervescence on its surface: the decoction of its powder, filtered and cooled, is not rendered blue by tincture of iodine. Sulphuric ether separates at least eighty per cent. of resin dried at 280°." Ph. Ed.

1. Virgin Scammony (Lachryma Scammony; superior Aleppo scammony, Guib.)—It usually occurs in amorphous pieces; but a careful examination of some large lumps has led me to believe that they formed portions of a mass, which, when in the soft state, had a rounded form. The whitish-grey powder, which covers some of the pieces, effervesces with hydrochloric acid; and I have no doubt, therefore, that the masses have been rolled in chalk. Virgin scammony is friable, easily reduced to small fragments between the fingers, or by the pressure of the nail, and has, according to my experiments, a sp. gr. of 1:210. Its fractured surface is resinous, shining, greenish-black; presents small air cavities, and numerous grey semi-transparent splinters, or fragments, when examined by a magnifying glass, and does not effervesce on the addition of hydrochloric acid. When rubbed with the finger moistened with ether, water, or saliva, it readily forms a milky liquid. If we examine thin fragments, or splinters, by transmitted light, we observe them to be semi-transparent at the edges, and of a grey-brown colour. In the same piece we sometimes find some portions shining and blackish, as above described, while others are dull-greyish. This difference depends, probably, as Dr. Russel has suggested, on different methods of drying. Virgin scammony readily takes fire, and burns with a yellowish flame. Its odour is peculiar, somewhat analogous to old cheese: its taste is slight at first, afterwards acrid. The decoction of its powder, when filtered and cold, is not rendered blue by tincture of iodine. When incinerated in a crucible, it leaves a minute portion only of ash.

2. Scammony of second quality. (Seconds, Commerce.)—A few years since this kind was considered to be of the first quality. It includes two sub-varieties:

a. Second Scammony in amorphous pieces.—In its external appearance, brittleness, odour, and taste, it resembles virgin scammony, from which it is distinguished by its greater sp. gr. (according to my experiments being 1:463), its fracture being dull, or very slightly shining; and by its colour, which is greyish. Hydrochloric acid causes effervescence when applied to a fractured surface. The decoction, when filtered and cold, is not rendered blue by tincture of iodine. This kind has been adulterated with chalk, but not with flour.

b. Second Scammony, in large regular masses.—This kind is imported either in boxes or drums, into which it seems to have been introduced when soft, and to have hardened subsequently: hence its form is that of the package in which it was imported. A sample of a circular cake (about twelve inches diameter, and several inches thick) presents a dull-greyish fracture. Its sp. gr., according to my experiments, is 1:359. Hydrochloric acid, applied to the surface, causes effervescence. The decoction, filtered and cooled, is rendered blue by iodine. This sub-variety, then, has been adulterated with both flour and chalk.
I have sometimes met with this kind of scammony having a soft or cheesy consistence.

3. Scammony of third quality. (Thirds, Commerce.)—Under this name I have received scammony in the form of circular flat cakes, about five inches in diameter, and one inch thick. They are heavy, dense, and much more difficult to fracture than the preceding kinds. The fractured surface, in some samples, is resinous and shining, in others dull; it has air cavities, and numerous small white specks (chalk); its colour is greyish to greyish-black. The sp. gr. varies, in different samples, from 1.276 to 1.543. Hydrochloric acid, applied to a recently fractured surface, causes effervescence. The decoction, filtered and cooled, is rendered blue by tincture of iodine. Hence both flour and chalk have been used for adulteration. I have received portions of five cakes of this variety of scammony, on which were marked the actual quantity of chalk which had been intermixed in each sample. In 100 parts of the cakes the proportions of chalk were respectively as follows:—13.07, 23.1, 25.0, 31.05, and 37.54. These numbers were furnished by the importer to one of our most respectable wholesale druggists, from whom I received them.

The foregoing are the usual kinds of scammony found in commerce. I possess four other varieties:—

a. Factitious Scammony. (Scammonium Smyrnense factitium, Gray).—I bought this as Smyrna Scammony, under which name I formerly described it. It is in circular flat cakes, about half an inch thick. It is blackish, and has, externally, a slaty appearance; it breaks with difficulty; its fracture is dull and black. Its sp. gr. is 1.412. Moistened and rubbed it evolves the smell of guaiacum. Boiled with water it yields a turbid liquor (which is not rendered blue by iodine), and deposits a blackish powder; the latter, boiled with alcohol, yields a solution which becomes greenish-blue on the addition of nitric acid, showing the presence of guaiacum.

b. Indian Scammony.—From my friend, Dr. Royle, I have received a sample of scammony met with in the Indian bazaars. It is light, porous, of a greenish-grey colour; gritty under the teeth, as if containing a considerable quantity of sand, and having a balsamic olibanum-like odour.

c. Trebizon Scammony (?).—In 1832 a substance was imported from Trebizon, under the name of scammony, which was unsaleable here. The sample I received of it is a portion of cake apparently round, flat below, and convex above. Its colour is light-greyish or reddish-brown; when moistened the surface becomes glutinous and odorous; its taste is sweet, nauseous, and somewhat bitter. In its external appearance it has more resemblance to benzoin than scammony.

d. French or Montpellier Scammony.—This is the produce of Cynanchum monspeliacum. (See ASCLEPIADACEAE.)

Commerce.—In 1839 the quantity of scammony on which duty (2s. 6d. per lb.) was paid, amounted to 8,551 lbs.

Composition. a. Of the Root.—The dried root of Convolvulus Scammonia was analyzed, in 1837, by Marquart*, who obtained from it the following substances:—Resin 4.12, sugar, convolvulin, and extractive 13.68, resin and wax 0.55, gum 5.8, extractive 2.4, starch 7.0, extractive soluble in hot, but not in cold, water 1.4 [salts and woody fibre 65.05]. The resin, the wax, and a portion of the gum, are con-

---

tained in the milky juice of the latex vessels (vasa laticis); while the sugar, gum, extractive, and salts dissolved in water, constitute the juice of the cells; and in this juice the starch globules float.

1. RESIN.—This is analogous to that of the scammony of commerce.

2. CONVOLVULIN.—A substance supposed by Marquart to be a vegetable alkali. It reacts feebly as a vegetable alkali, and is precipitated from its watery solution by tincture of nutgalls. Marquart thinks it probably exists in jalap.

β. Of Scammony.—Bouillon, Lagrange, and Vogel, analyzed two kinds; one called Aleppo, the other Smyrna scammony. Marquart analyzed twelve kinds; of these, eight he considers to be the produce of Convolvulus Scammonia, while the remaining four, which, he says, are in commerce called Smyrna scammony, he regards, though without any sufficient proof, as the produce of Periploca Secamone, Linn.

Marquart's Analyses.

<table>
<thead>
<tr>
<th></th>
<th>In alcohol, Sp. gr. 1·2</th>
<th>Irregular juices, Sp. gr. 1·25</th>
<th>Round cakes, Sp. gr. 1·063</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>81·35</td>
<td>78·5</td>
<td>5</td>
</tr>
<tr>
<td>Wax</td>
<td>0·75</td>
<td>1·5</td>
<td>1</td>
</tr>
<tr>
<td>Extractive</td>
<td>4·50</td>
<td>3·5</td>
<td>11</td>
</tr>
<tr>
<td>Extractive with salts</td>
<td>2·0</td>
<td>2·0</td>
<td>18</td>
</tr>
<tr>
<td>Gum with salts</td>
<td>3·00</td>
<td>2·0</td>
<td>20</td>
</tr>
<tr>
<td>Starch</td>
<td>—</td>
<td>1·5</td>
<td>5</td>
</tr>
<tr>
<td>Starchy envelopes, bassorin, and gluten</td>
<td>1·75</td>
<td>1·25</td>
<td>23</td>
</tr>
<tr>
<td>Albumen and woody fibre</td>
<td>1·50</td>
<td>3·5</td>
<td>2</td>
</tr>
<tr>
<td>Ferruginous alumina, chalk, and carbonate of magnesia</td>
<td>3·75</td>
<td>2·75</td>
<td>11</td>
</tr>
<tr>
<td>Sulphate of lime</td>
<td>3·50</td>
<td>3·5</td>
<td>4</td>
</tr>
<tr>
<td>Sand</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Aleppo Scammony... 100·00 100·0

Smyrna Scammony... 100

RESIN OF SCAMMONY (see 1269).

Physiological Effects. a. On Animals generally.—The experiments of Orfila lead us to infer that scammony is not poisonous. "We have," says he, "frequently administered four drachms of it to dogs who had the oesophagus afterwards tied, and have only observed alvine evacuations." On horses and other herbivorous animals its operation is very uncertain. Gilbert states, that six drachms killed a sheep in twenty days, without having caused purging. Viborg says, half an ounce given to a dog caused several loose stools: the same dose had no effect on a badger. It is probable, however, that in all the experiments now referred to, adulterated scammony was employed.

Toxicol. Gén.
Moiroud, Pharm. Vét. p. 271.
β. On Man.—The effects of pure scammony are those of a powerful and drastic purgative. As the greater part of the commercial drug is largely adulterated, practitioners are, I suspect, scarcely acquainted with the operation of the genuine article, which appears to me to possess nearly double the activity of that usually found in commerce. As the evacuant powers of scammony depend on its local irritation, it operates more energetically when there is a deficiency of intestinal mucus, and is then very apt to gripe; and vice versa, when the intestines are well lined with secretion, it passes through with much less effect. In its operation scammony is closely allied to jalap, than which it is more active, while its odour and taste are less nauseous. It is less irritant than gamboge.

Uses.—Scammony is, of course, inadmissible in inflammatory conditions of the alimentary canal, on account of its irritant qualities. It is well adapted for torpid and inactive conditions of the abdominal organs, accompanied with much slimy mucus in the intestines. It is principally valuable as a smart purgative for children, on account of the smallness of the dose necessary to produce the effect, the slight taste, and the energy, yet safety, of its operation. When used for them, it is generally associated with calomel. Where a milder purgative is required, it may be conjoined with rhubarb, sulphate of potash, and an aromatic. It may be employed to open the bowels in constipation; to expel worms, especially of children; to act as a hydragogue purgative, on the principle of counter-irritation, as in affections of the head and dropsies; and for any other purpose for which an active cathartic may be required.

Administration.—For an adult the usual dose of commercial scammony is ten grs. to a scruple; but of virgin scammony from ten to fifteen grs. In order to diminish its irritant and griping qualities, it should be finely divided. For this purpose it may be intimately mixed with some bland powder (as gum, starch, sugar, &c.), or made into an emulsion with milk.

1. Pulvis ScAMMONII COMPOSITUS, L. D.; Compound Powder of Scammony.—(The London and Dublin Colleges direct it to be prepared with Scammony; Hard Extract of Jalap, of each 3ij.; Ginger, 5ss. Rub them separately to very fine powder; then mix them.—The Edinburgh College directs it to be made of equal parts of Scammony and Bitartrate of Potash, triturated together to a very fine powder).—The effects of scammony and of extract of jalap being very similar, little or no advantage can be obtained by the intermixture of these substances. The ginger is intended to correct the griping of the other ingredients. The bitartrate of potash, used by the Edinburgh College, can do little more than serve to divide the scammony. Compound powder of scammony is cathartic, and is used as a smart purge for children, especially where much mucous slime is contained in the bowels, and in worm cases.—The dose of the London and Dublin preparation for an adult is from grs. x. to 3ij.; for children under a twelvemonth old, from grs. iii. to grs. v. The dose of the Edinburgh preparation for an adult is from grs. xv. to 5ss.
2. **PULVIS SCAMMONII CUM CALOMELANE**; Powder of Scammony with Calomel.—(Scammony, 3j.; Calomel; Sugar, of each 5ss. Mix.)

Though this preparation is not contained in any of the British pharmacopoeias, yet the frequency of its employment in the diseases of children is a sufficient apology for its introduction here.—Dose, for an adult, grs. x. to grs. xx.; for children, from grs. iv. to grs. x. according to the age of the patient.

This preparation may be employed as a substitute for the old **Pulvis Basilicus or Royal Powder**, which consisted of equal parts of scammony, calomel, cream of tartar, and antimoniac acid.

3. **CONFECTIO SCAMMONII, L.**; Electuarium Scammonii, D.; Confection of Scammony.—(Scammony, powdered, 3jss.; Cloves, bruised; Ginger, powdered, each 5vj.; Oil of Caraway, 13ss.; Syrup of Roses, as much as may be sufficient. Rub the dry ingredients together to very fine powder, and preserve them; then, whenever the Confection is to be used, the syrup being gradually poured in, rub again; lastly, the oil of Caraway being added, mix them all, L.—The Dublin College orders the syrup to be dropped on the powders, the oil of Caraway then added, and all mixed together).—A warm or aromatic cathartic. — Dose, for an adult, 3j. to 5j.; for children, grs. iii. to grs. x. It is seldom employed.

4. **EXTRACTUM sive RESINA SCAMMONII, E.**; Extract or Resin of Scammony.—(Take any convenient quantity of Scammony in fine powder; boil it in successive portions of proof spirit till the spirit ceases to dissolve any thing; filter; distil the liquid till little but water passes over. Then pour away the watery solution from the resin at the bottom; agitate the resin with the successive portions of boiling water till it is well washed; and, lastly, dry it at a temperature not exceeding 240°.)—It is brownish, and in thin layers transparent: when heated it evolves a peculiar, not disagreeable, odour; it is fusible and combustible. It is soluble in alcohol, ether, and oil of turpentine. Its alcoholic solution is feebly acid; the addition of water causes a white precipitate (hydrate of resin). Precipitates (metallic scammoniates?) are also produced by alcoholic solutions of the acetate of lead and the acetate of copper. Caustic potash deepens the colour of the solution. Scammony resin may be decolorized by animal charcoal, without having its purgative qualities affected. Its composition, according to Mr. Johnston, is C_{40}H_{33}O_{20}. It is "remarkable for containing the largest quantity of oxygen of any resin hitherto analyzed" (Johnston). When pure or virgin scammony can be obtained, the resin is an unnecessary preparation. Scammony resin is a drastic cathartic.—Dose, grs. viij. to grs. xij. When administered it should be intimately divided, either by some bland powder, or still better by an emulsion.

---

* Marquart, *op. cit.*
* Journ. de Pharm. t. xiii. p. 589.
* Phil. Trans. for 1840, p. 341.
5. MISTURA SCAMMONII, E.; Mixture of Scammony. — (Resin of Scammony, gr. vij.; Unskimmed milk, fijij. Triturate the resin with a little of the milk, and gradually with the rest of it till a uniform emulsion is formed). — This is an imitation of Planche’s purgative potion, except that two drachms of sugar and three or four drops of cherry-laurel water are omitted. It is one of the most agreeable purgative draughts that can be taken.

2. IPOMÉA PUR'GA, Wenderoth, E.—THE JALAP IPOMÉA.

Ipomoea Jalapa, Nuttall, L.—I. Schiedeana, Zuccarini.

Sex. Syst. Pentandria, Monogynia.

(Radix, L. D.—Root, E.)

History. — De Paiva f thinks that Jalap was known to Dodoens in 1552, to Monardes in 1568, and to Clusius in 1574g. But Bauhin h (who calls it Bryonia Mechoacana nigricans) says it was brought from India, under the name of Chelapa, or Celapa, about eleven years before the time he wrote (the date of the preface to his work is 1620): that is, about 1609 or 1610. Its name seems to be derived from Xalapa, a town of Mexico.

The Convolvulus Jalapa described and figured by Woodville i and Desfontaines j, and adopted by the Dublin College as the source of the commercial jalap, is now well known to yield none of this drug. The real jalap plant was first described by Mr. Nuttall k; but the name (Ipomoea Jalapa) he gave to it had been already applied by Pursh to another plant. In the same year Dr. Schiede l and Dr. Wenderoth m noticed it; and in 1832 it was described and figured by Zuccarini n.


Root perennial, tuberose, irregularly ovate-conical, terminating inferiorly in some subcylindrical fibrous branches; covered by a very thin, dirty, blackish epidermis; internally white and fleshy. Stem herbaceous. Leaves alternate, petioloed. Tube of the corolla purplish violet (red lake).

---

f Voigtels’ Arzneimittel. Bd. i. S. 117.
g See some remarks on this subject in Pharm. Central-Blatt für 1834, S. 955-6.
h Prodromus, p. 135.
m Ibid. viii. 515.
**Hab.**—In the woods of the Mexican empire, near Chicanquiaco, at an elevation of nearly 6,000 feet above the level of the sea. Jalapa is the only market for the root, from whence it is exported to Europe by way of Vera Cruz.

**Description.**—The dried tubers (*radix jalapa*) found in commerce rarely exceed a pound each in weight. They vary in size, from that of the fist to that of a nut. When entire they are usually more or less oval, and pointed at the two opposite extremities. The larger tubers are frequently incised, apparently to facilitate desiccation. They are covered with a thin, brown, wrinkled cuticle. They should be heavy, hard, and difficult to powder. When broken, good tubers should present a deep yellowish-gray colour, interspersed with deep brown concentric circles. The slices vary in their shape, colour, and other properties. Those of inferior quality are light, whitish, and friable; they usually appear to be quarter segments of transverse slices: they are called *spurious jalap*, or, from their shape, *cocked-hat jalap*. The light or *fusiform jalap*, called in Mexico *male jalap*, described by Guibourt\(^7\), is said to be the produce of *Ipomoea Orizabensis*\(^4\). Jalap is very apt to become worm-eaten; but the insects which attack it devour the amylaceous matter, and leave the resin. Hence *worm-eaten jalap* is well adapted for the preparation of extract.

**Commerce.**—Jalap is imported, in bales, from Vera Cruz direct, or indirectly by way of New York, or other places. In 1839, duty (6d. per lb.) was paid on 37,211 lbs.

**Composition.**—Jalap was analyzed, in 1817, by Cadet de Gassicourt\(^6\), and more recently by Gerber\(^5\). Other less complete analyses have been made by Henry\(^7\), by Ledanois\(^8\), and by Nees v. Esenbeck and Marquart\(^9\). In 1835 Cannobio analyzed a variety of jalap called *gialappone*\(^10\).

<table>
<thead>
<tr>
<th>Gerber's Analysis</th>
<th>Henry's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard resin</td>
<td>Light</td>
</tr>
<tr>
<td>Soft resin</td>
<td></td>
</tr>
<tr>
<td>Slightly acrid extractive</td>
<td></td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>14.4</td>
</tr>
<tr>
<td>Colouring matter</td>
<td>8.2</td>
</tr>
<tr>
<td>Uncrystallizable sugar</td>
<td>1.9</td>
</tr>
<tr>
<td>Gum, with some salts</td>
<td>13.6</td>
</tr>
<tr>
<td>Bassorin</td>
<td>3.2</td>
</tr>
<tr>
<td>Vegetable albumen</td>
<td>3.9</td>
</tr>
<tr>
<td>Starch</td>
<td>6.0</td>
</tr>
<tr>
<td>Water</td>
<td>4.8</td>
</tr>
<tr>
<td>Malic acid and malates of potash and lime</td>
<td>2.4</td>
</tr>
<tr>
<td>Chlorides of calcium and potassium</td>
<td>1.4</td>
</tr>
<tr>
<td>Phosphates of magnesia and lime</td>
<td>1.7</td>
</tr>
<tr>
<td>Carbonate (?) of lime</td>
<td>3.0</td>
</tr>
<tr>
<td>Loss</td>
<td>4.6</td>
</tr>
<tr>
<td>Jalap</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nees v. Esenbeck and Marquart's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root of <em>Ipomoea Purga</em></td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Extractive</td>
</tr>
<tr>
<td>Resin</td>
</tr>
<tr>
<td>Matters insoluble in alcohol</td>
</tr>
<tr>
<td>Jalap</td>
</tr>
</tbody>
</table>

\(^{6}\) *Hist. des Drog.* i. 523.  
\(^{8}\) *Journ. de Pharm.* t. iii. p. 495.  
\(^{9}\) *Gmelin, Handb. d. Chemie*, Bd. ii. S. 1299.  
\(^{10}\) *Bull de Pharm.* t. ii. p. 87.  
\(^{12}\) *Pharm. Central-Blatt für 1834*, S. 695.  
\(^{13}\) *Bull für 1835*, S. 304.
Jalap Resin.—Obtained by mixing the alcoholic tincture of jalap (prepared by percolation or digestion) with water. The precipitated resin is to be washed with warm water, and then dissolved in alcohol. By evaporation the tincture yields the resin. Planche has proposed another process. By digestion with animal charcoal the alcoholic solution of the resin is rendered nearly colourless, and by evaporation yields an almost colourless resin (resina jalape alba of Martinus). Jalap resin is soluble in alcohol, but insoluble in water. Triturated with milk, it does not form an emulsion, but its particles unite into a solid mass. By this it may be distinguished from scammony resin. It is insoluble in the fixed and volatile oils. Its insolubility in oil of turpentine is a means of detecting the intermixture of some other resins, as of rosin.

Decolorized jalap resin is composed, according to Goebel, of Carbon 36'62, Hydrogen 9'47, and Oxygen 53'91; but Johnston declares this analysis to be incorrect, and gives the following as the formula for the resin, C_11 H_20 O_10.

According to Buchner and Herberger, jalap resin is composed of an electronegative basic substance, which they term jalapin, and of an electronegative, resinous acid, soluble in alkalis. The latter I shall call jalapic acid.

a. Jalapin.—Constitutes not quite nine-tenths of jalap resin. When an alcoholic solution of acetate of lead is added to an alcoholic solution of jalap resin, double decomposition occurs: acetate of jalapin remains in solution, while jalapate of lead precipitates. When the solution has been deprived of acetic acid, excess of lead, and alcohol, the jalapin remains. It is a transparent colourless resin; very soluble in alcohol, but insoluble in ether. Is this the jalapin of Mr. Hume?

b. Jalapic acid.—Constitutes thirteen one-hundredths of jalap resin. Obtained from the above-mentioned jalapate of lead by sulphureted hydrogen. It is brown, acrid, bitterish, slightly soluble in ether, and more soluble in alkalis than jalapin.

Physiological Effects. a. On Animals generally.—Jalap root in powder, as well as the resin obtained from it, is a local irritant. Its operation on the bowels is well seen in the carnivora. Cadet de Gassicourt found that the resin applied to the pleura, peritoneum, or intestinal canal of dogs, caused fatal inflammation. Two drachms introduced into the stomach, the oesophagus being afterwards tied, killed a dog in a few hours. It is remarkable, however, that the same experimenter observed no particular effect from the application of a drachm of the finely-powdered resin to the cellular tissue of the back. Moreover, 24 grains, with the yolk of an egg, injected into the jugular vein, had, he says, a very slight effect: indeed, at first none was observed, but the two following days the animal had soft, pale evacuations, and lost his appetite, though he soon recovered from this state. In the herbivora it proves a very uncertain purgative. Gilbert gave two ounces to a sheep, without observing any effect. Donne administered two or three ounces to horses, without observing any remarkable effect, except increased secretion of urine.

---

1. Soubeiran, Traité de Pharm. t. ii. p. 28.
4. Pharm. Central-Blatt für 1832, 837; and für 1838, S. 904.
10. Ibid.
β. On Man.—In the human subject jalap acts as a powerful and
drastic purgative, producing copious liquid stools, and when judi-
ciously exhibited, is both safe and efficacious. Its objectionable effects
are, that while in the stomach it causes frequently nausea, and some-
times vomiting; while, after it has passed into the intestines, it often-
times gripes.

It is tolerably certain in its operation; more so, indeed, than many
other purgatives. In the proper dose it may be given without the
least hesitation to children, in any case requiring an active purge. It
has an advantage over some other evacuants, that it does not stimulate
or heat the system, its effect being confined, principally, to the ali-
mentary canal—the peristaltic motion, secretions, and exhalations of
which, it promotes; and it is said that constipation less frequently
succeeds its use than of some other purgatives.

My own experience of jalap would lead me to regard it as a per-
fectly safe, though active cathartic. But Dr. Christison says, that
"severe and even dangerous effects have followed its incautious use
in the hands of the practical joker." I am not acquainted with any
cases, in the human subject, in which its employment has been fol-
lowed by serious consequences. It is a more drastic purgative than
senna. To scammony it is closely allied, not only by its effects, but
also by botanical affinities and chemical properties. It is much less
irritant to the intestinal mucous membrane than gamboge; and,
therefore, is a much safer purgative. Vogt regards it as exceeding
the last-mentioned substance, but as being inferior to aloes, in its
stimulant influence over the abdominal and pelvic blood-vessels:
and Sundelin observes that, while it is more irritant, it is less heat-
ing, than aloes or senna.

Uses.—Daily experience proves the value of jalap, as an active
purgative, in various diseases both of children and adults. Of course
its irritant properties unfit it for exhibition in inflammatory affections
of the alimentary canal, as well as after surgical operations about the
abdomen and pelvis. Moreover, it is not an appropriate purgative
in irritation of, or hemorrhage from, the uterus; or in piles and stric-
ture, and prolapsus of the rectum. On the other hand, its use is
indicated in torpid and overloaded conditions of the intestinal canal,
as well as in constipation, attended with retention of the catamenia.
When the object is to relieve cerebral congestion and dropsical affec-
tions, by a counter-irritant influence on the mucous membrane, jalap
is well adapted to fulfil it, both by the energy and safety of its
operation. The following are some of the cases in which it is em-
ployed:

1. In Constipation.—When this condition is not dependent on, or
connected with, irritation or inflammation of the alimentary canal or
pelvic organs, jalap is admissible. Its efficiency is much increased
by association with calomel. It may be employed in febrile and in-
flammatory diseases (those above-mentioned excepted), as well as in
chronic maladies.

2. As a Vermifuge.—The compound of jalap and calomel is a
most efficacious anthelmintic, and may be used with the most happy
effects in children, especially where there is an excessive secretion of
mucus. "Jalap," says Bremser, "is, without contradiction, in
verminous diseases, one of the best purgatives, and which, perhaps,
possesses, at the same time, greater anthelmintic virtues than any
others."

3. In Cerebral Affections.—Jalap, in combination with calomel, is
used with the best effect, on the principle of counter-irritation, to re-
lieve cerebral congestion. In inflammatory affections of the brain or
its membranes, or in hydrocephalus, it is a valuable purgative.

4. In Dropsies.—In dropsical affections it is frequently desirable
to promote watery stools. Jalap, especially in combination with
cream of tartar, may be used for this purpose with the best effects.
Marggrave calls it a panacea hydropicorum.

5. In Retention of the Catamenia, or of the Hemorrhoidal Flux,
jalap is one of the purgatives adapted, from their stimulant influence
over the pelvic vessels, to promote these discharges.

Administration.—The dose of jalap, in powder, is, for an adult,
from ten to thirty grains: a scruple usually acts smartly and safely:
for children under twelve months old, the dose is from two to five
grains. Fifteen grains of jalap and two or three grains of calomel, form
an efficient, yet safe, purgative for an adult. It very readily produces
salivation by repetition. From two to five grains of ipecacuanha are
sometimes substituted for the calomel. To children jalap is sometimes
exhibited in gingerbread cakes. Purgative cakes of this kind are
kept in the shops. The Biscuits purgatifs (Panes saccharati purgantes)
are composed of Jalap, 5xx.; Flour, 5ij.; 24 Eggs; and Sugar, lbj.
This quantity is sufficient for 60 biscuits.

1. Pulvis Jalap. Compositus, L. E. D. Compound Powder of
Jalap.—(Jalap, 5ij.; Bitartrate of Potash, 5vj.; Ginger, 5ij. Rub
them separately to powder; then mix them, L. The Edinburgh and
Dublin Colleges use the same proportions of jalap and bitartrate of
potash, but omit the ginger).—Hydragogue purgative. Used in ha-
bitual costiveness, verminous diseases, and dropsies.—Dose for an
adult, 3j. to 5j.

2. Tinctura Jalap. E, L. E. D. Tincture of Jalap.—(Jalap, bruised,
3x. [5vij. D., in moderately fine powder, 3vij. E.]; Proof Spirit, Oij.
[wine measure, D.]. Macerate for fourteen days, and strain, L. D.
"This tincture may be prepared either by digestion or percolation,
as directed for tincture of cinchona," E. — An active cathartic.
Rarely used alone: generally employed as an adjunct to purgative

---

k Traité sur les Vers Intest. p. 440.
1 Mat. Med. contr. p. 40, ed. 2nd.
2 Jourdan, Pharmacopée Universelle.
draughts, the activity of which it promotes — Dose, f3j. to f5iv. As an adjuvant to a cathartic draught, the dose rarely exceeds f3ij.

3. **Extractum Jalapæ, L. D.** *Extractum sive Resina Jalapæ, E.*

*Extract of Jalap.* — (Jalap root, powdered, lbiss. [lbj. D.]; Rectified Spirit, Cong. j. [Oiv. wine measure, D.]; Distilled water, Cong. jj. [Cong. j. wine measure, D.].) Macerate the jalap root in the spirit for four days, and pour off the tincture. Boil down the residue in the water to half a gallon [two pints, D.]; afterwards strain the tincture and the decoction separately, and let the latter be evaporated, and the former distil, until each thickens. Lastly, mix the extract with the resin, and [by a water-bath, D.] evaporate to a proper consistence, L. D. This extract should be kept soft, which may be fit to form pills, and hard, which may be rubbed to powder, L. The directions of the *Edinburgh College* are the following: —“Take any convenient quantity of jalap, in moderately fine powder; mix it thoroughly with enough of the rectified spirit to moisten it well; put it in twelve hours into a percolator, and exhaust the powder with rectified spirit; distil off the greater part of the spirit, and concentrate the residuum over the vapour-bath to a due consistence.” In this process the alcohol extracts the resin, and the water subsequently used by the London and Dublin Colleges takes up the gummy extractive: the alcoholic tincture is distilled to save the spirit, while the aqueous decoction is evaporated. The preparation of the *Edinburgh College* is the impure resin of jalap; whereas that of the *London and Dublin Colleges* is a mixture of resin with the gummy extractive. It was formerly, and indeed is now by many persons, supposed, that the combination of these ingredients was necessary for the full cathartic effect of jalap. It is, however, well known that the watery extract is inert as a purgative, though it is said to be diuretic: the only advantage, therefore, that can attend the mixture of the two extracts (the watery and the alcoholic), is, that the resin is intimately divided, and thereby prevented from causing violent irritation and griping in any one part of the intestinal tube. But it is obvious that the same advantage can be obtained by mixing the resin with some mild agent (as almonds, sugar or saline matter, as sulphate of potash). Mr. Brande says, that jalap yields about 66 per cent. of extract; that is, 16 of alcoholic, and 50 of watery extract. According to this statement, therefore, the extract of the Edinburgh College possesses four times the activity of that of the London and Dublin Colleges. — The dose of the *resin* (Ph. Ed.) is from grs. iij. to grs. vj., in a minute state of division, as above directed; of the extract, Ph. L. and D., from grs. x. to 9j.

**OTHER MEDICINAL CONVOLVULACEÆ.**

Besides the species already noticed, the roots of several others have been employed in medicine on account of their purgative properties; as the root called *Mechoacan*, and the root of *Ipomea Turpethum*. Their use is now obsolete.

Order XLI.—GENTIANACE.E, Lindley.—THE GENTIAN TRIBE.

GENTIANAE, Jussieu.

**Essential Character.** — *Calyx* monophyllous, divided, inferior, persistent. *Corolla* monopetalous, hypogynous, usually regular and persistent; the limb divided, equal, its lobes of the same number as those of the calyx, generally five, sometimes four, six, eight, or ten; with an imbricated twisted aestivation. * Stamens* inserted upon the corolla; all in the same line, equal in number to the segments, and alternate with them; some of them occasionally abortive. *Pollen* three-lobed or triple. *Ovary* single, one- or two-celled, many-seeded. *Style* one, continuous; *stigmas* one or two. *Capsule or berry*, many-seeded, with one or two cells, generally two-valved; the margins of the valves turned inwards, and in the genera with one cell, bearing the seeds; in the two-celled genera inserted into a central placenta. *Seeds* small; *testa* single; *embryo* straight in the axis of soft fleshy *albumen*; *radicle* next the hilum.—*Herbaceous plants*, seldom *shrubs*, generally smooth. *Leaves* opposite, entire, without stipules, sessile, or having their petioles confluent in a little sheath, in most cases three- to five-ribbed; very rarely brown and scale-like; sometimes alternate. *Flowers* terminal or axillary (Lindley).

**Properties.** — This order contains a bitter principle, which is especially abundant in the roots. On this substance depends the stomachic, tonic, and febrifuge properties of the different species.

1. GENTIANA LUTEA, Linn. L. E. D.—COMMON OR YELLOW GENTIAN.

**Sex. Syst.** Pentandria, Digynia.

(Radix, L. D.—Root, E.)

**History.** — Gentian is said to owe its name and introduction into medical use to Gentius, king of Illyria, who was vanquished by the Romans about 160 or 169 years before Christ. It is, therefore, not noticed by either Hippocrates or Theophrastus, but is mentioned by Dioscorides, who calls it *Febravi*; and by Pliny.

**Botany.** Gen. Char.—*Calyx* [four-] five-cleft. *Corolla* tubular, campanulate, or funnel-shaped at the base; the limb four-, five, or six-cleft; segments entire or ciliated, sometimes with interposed, distinct smaller ones. *Stamina* five, inserted on the tube of the corolla; anthers sometimes connate. *Style* two-parted; *stigmas* two. *Capsule* one-celled (*Bot. Gall.*).


**Root** perennial, cylindrical or spindle-shaped, simple or somewhat branched, ringed, wrinkled, externally brown, internally yellow and fleshy. *Stem* simple, erect, two to three feet high, roundish, hollow,

---

* Lib. iii. cap. 3.
smooth. **Leaves** pale-green, opposite, ovate, or oval, pointed, entire, smooth, five- to seven-ribbed, plaited; lower ones on short, sheathing petioles; upper ones amplexicaul; those next the flowers becoming concave, yellowish-green **bracts**. **Flowers** on smooth peduncles of four- to six-lines long. **Calyx** yellow. **Corolla** yellow; segments five to seven, lanceolate. **Stamina** as long as the corolla. **Ovarium** conical, with five greenish glands at the base. **Capsule** conical, two-valved. **Seeds** numerous, roundish, albuminous, with membranous margins.

**Hab.**—Alps of Austria and Switzerland; abundant on Mount Jura.

**Collection.**—The roots are collected and dried by the peasants of Switzerland, the Tyrol, Burgogne, and Auvergne. They are imported into this country in bales, from Havre, Marseilles, &c. In 1839, duty (4s. per cwt.) was paid on 470 cwts.

**Description.**—Gentian root (**radix gentianae**) is imported in cylindrical usually more or less branched pieces, varying in length from a few inches to a foot or more, and in thickness from half an inch to one or two inches. These pieces are marked by transverse annular wrinkles and longitudinal furrows. Externally the root is yellowish-brown, internally it is brownish-yellow; its texture is spongy; its odour, in the fresh state, peculiar and disagreeable; its taste is intensely bitter. The roots of other species of Gentiana are said to be frequently mixed with those of the officinal species; their effects, however, are analogous. Martius says, that the roots of *G. purpurea* have strong longitudinal furrows, and are of a darker brown colour internally, but want the transverse wrinkles. The roots of *G. pannonica* are similar to those of *purpurea*. Both kinds are met with in Bavaria, and serve in Switzerland for the preparation of a spirit. *Gentiana punctata* has roots which are just as bitter, but of a more yellow colour: they are dug up in great abundance in Moravia. The roots of both the last mentioned species are dug up at, and exported from, Salzburg; in the fresh state they are white when sliced.

**Chemistry.**—Gentian root was analyzed, in 1815, by Schrader; in 1817 by Bracqnot; in 1819 by Henry; in the same year by Guillemin and Fœqueaud; and in 1821 by Henry and Caventou. In 1837 it was examined by Leconte. The constituents of gentian root, according to Henry and Caventou, are—a volatile odorous matter, bitter crystalline matter (gentianin), fugaceous odorous principle (volatile oil), yellow colouring matter, green fixed oil, gum, incrustallizable sugar, matter identical with bird-lime, a free organic

---

8 *Pharmacogn.*
9 *Trommsdorff's N. Journ. Bd. iii. S. 281.*
10 *Journ. de Physiq. lxxxiv. 345.*
11 *Journ. de Pharm, t. v. p. 61.*
12 *Ibid. p. 110.*
14 *Ibid. t. xxiii. p. 465.*
acid, and woody fibre. But in 1837, H. Trommsdorff and Leconte showed, that under the name of gentianin two substances had been confounded,—the one crystalline and tasteless; the other bitter. The first has been called gentisin; the second gentianite. Furthermore, Leconte has shown, that the substance considered by Henry and Caventou as identical with bird-lime, is a compound of wax, oil, and caoutchouc.

1. Oil of Gentian.—By distillation with water gentian root yields a very small quantity of a butyraseous oil, which floats on water, has a powerful odour of gentian root, and is soluble in alcohol. A few drops of the melted oil were given to a rabbit without causing any remarkable effects. I have received from Mr. Whipple two samples of this oil, the one green, the other white like mutton fat. Three cts. of the root yielded only about 5Ss. of oil.

Planche states the distilled water of gentian caused nausea and a kind of intoxication.

2. Gentisin or Gentisic Acid.—Procured by washing the alcoholic extract of the root with water, and then treating with alcohol. The tincture obtained was evaporated, the extract treated by ether; the residue, by successive solutions and evaporations, yielded gentisin. It is pale yellow, crystallizable in needles, has a peculiar, but weak smell. When cautiously heated, it gives out some yellow vapours, which are condensed on the upper part of the tube. It is scarcely soluble in water, but dissolves in alcohol. With alkalis it unites to form salts. Its saturating power is about 438. Trommsdorff says, that a solution of gentisic acid is unaffected by acetate of lead, nitrate of silver, and most other tests. Chloride of iron and the salts of copper produced, in the alcoholic solution, the most characteristic changes.

3. Bitter Principle of Gentian (Gentianite).—This has not hitherto been isolated. By digesting the alcoholic extract of gentian in water, an acidulous intensely bitter solution is obtained. The acid may be thrown down by lead. When the excess of lead has been removed from the solution by sulphuretted hydrogen, a liquid is obtained, which, by evaporation, yields a sweet and very bitter extract, from which ether removes an aromatic fat, an odorous resin, and wax. The bitter matter has not been separated from the sugar.

4. Pectin.—The existence of pectic acid (pectin) in gentian was ascertained, in 1836, by Denis. To this substance is to be ascribed the gelatinization of infusion of gentian, which, under certain circumstances, is not unfrequently observed.

5. Sugar.—To the presence of this matter in gentian is to be ascribed the capability of the infusion of gentian to undergo the vinous fermentation, and to form an alcoholic liquor (gentian spirit), much admired by the Swiss.

Chemical Characteristics.—The infusion of gentian is deepened in colour by the caustic alkalis. Sesquichloride of iron communicates a deep olive-brown tint. The acetate and diacetate of lead, the sulphate of copper, and the nitrate of mercury, cause flocculent or gelatinous precipitates (metallic pectates?)

Physiological Effects.—Gentian is very properly regarded as a pure or simple bitter; that is, as being bitter, but without possessing either astringency or much aroma. It has, therefore, the usual tonic properties of medicines of this class, which I have before noticed (p. 186).
Given in full doses it appears more disposed to relax the bowels than the other simple bitters, and in susceptible individuals it is more apt to disorder the digestive process. In such cases both Lesecke and Voigtländer have seen it cause vomiting. Barbier says it quickens the pulse. It is somewhat less bitter, and therefore, I presume, somewhat less powerful, than quassia.

By continued use the sweat and urine acquire a bitter taste; a sufficient proof that gentian, or its bitter principle, becomes absorbed.

As some of the vegetable bitter tonics (for example, quassia and calumba) have been found to exert a specific influence over the cerebro-spinal system, and to yield preparations of a poisonous quality, we are naturally led to inquire whether any analogous facts have been made out with respect to gentian. The reply is in the affirmative. Magendie, indeed, discovered no poisonous operation in Gentianin; he threw several grains of this principle into the veins of an animal, without any obvious effect, and swallowed two grains dissolved in alcohol, but only observed extreme bitterness, and a slight feeling of heat in the stomach. Moreover, Hartt inserted two grains of the extract of gentian into the inner side of the thigh of a rabbit, without any ill effects resulting: the wound was slightly inflamed, though it soon healed. These facts prove that the bitter extractive of gentian possesses no narcotic properties. But if the narcotic principle of gentian be of a volatile nature, these experiments of Magendie and Hartt go for nothing, since, in the preparation of both the extract and the Gentianin, this principle would be dissipated by the heat employed. Now, Planche has shewn, as I have already mentioned, that the distilled water of gentian causes violent nausea, and, within three minutes, a kind of intoxication. Moreover, Buchner tells us, that some years ago a narcotic effect was produced in Prussia by the medicinal use of gentian root, although the presence of any foreign matter could not be detected. In the Philosophical Transactions for the year 1748, are mentioned some deleterious effects resulting from the use of gentian: but they were referred to a foreign root, said to have been intermixed with, and which greatly resembled, the true gentian root.

All these facts, then, support the opinion of Haller (quoted by Buchner), that gentian is not so innocuous as is generally supposed.

Uses.—Gentian is adapted to most of the cases requiring the use of the pure or simple bitters (p. 188). It agrees best with phlegmatic, torpid individuals, and is apt to disagree with irritable or susceptible persons. It is contra-indicated in febrile disorders and inflammatory conditions of the gastro-intestinal membrane. It is employed principally in the following cases:—

1. In dyspepsia, and other gastric disorders, attended with debility
or torpidity, and unaccompanied by any marks of inflammation or irritation, or great susceptibility, of the digestive organs. Sesquicarbonate of ammonia is a very valuable adjunct.

2. In intermittent diseases it may be used where cinchona is admissible; but it is much inferior to the last-mentioned substance. "Joined with galls or tormentil, in equal parts, and given in sufficient quantity, it has not failed," says Dr. Cullen, "in any intermittents in which I have tried it."

3. In many other diseases marked by weakness and debility, but unattended by fever or gastro-intestinal irritation, gentian is admissible and useful; as in some forms of gout, hysteria, uterine disorders, &c. It is a constituent of the Duke of Portland's powder for the gout (see p. 1138).

4. Against worms it has been used as if it possessed some specific influence.

5. In surgery it has been used for discutient fomentations, also in the form of fine powder, as an application to issues, to promote their running, and as a tent, to enlarge and cleanse fistulous apertures.

**Administration.**—In the form of powder, the dose is from grs. ⅞ to 3ss. But the infusion, tincture, or extract, are the usual forms of exhibition.

1. **MUSM GENTIANI COMPOSITUM, L. D. Infusum Gentianae, E. Infusion of Gentian.** — (Gentian root, sliced, 3ij. [3j. D.]; Orange Peel, dried, 5ij. [5j. D.]; Lemon Peel, fresh, 3iv. [3j. D.]; Boiling [Distilled, L.] Water, Oj. [sxij. D.].) Macerate for an hour in a vessel lightly covered, and strain. The directions of the Edinburgh College are as follow:—Gentian, sliced, 3ss.; Bitter Orange Peel, dried and bruised, 5j.; Coriander, bruised, 5j.; Proof Spirit, fsiv.; Cold Water, f§xvj. Pour the spirit upon the solids; in three hours add the water, and in twelve hours more strain through linen or calico).—The infusion of the London and Dublin Pharmacopoeias is very apt to spoil by keeping; but as it can always be speedily procured, this is not a circumstance of much importance. However, to obviate it as much as possible, the Edinburgh College orders cold water to be used (by which less of the mucilaginous matter [pectin, &c.] is dissolved), and employs spirit to promote the solution of the bitter principle, while the quantity of gentian is much increased; so that, in fact, we have a weak tincture, rather than an infusion. Besides the objections which may arise out of these deviations, a very important one is the length of time required for the maceration. Infusion of gentian is stomachic and tonic. When prepared according to the London and Dublin Pharmacopoeias, the dose is f§j. to f§ij.; when according to that of the Edinburgh, f3ss. to f3j.

2. **MISTURA GENTIANAE COMPOSITA, L. ; Compound Mixture of Gentian.**—(Compound Infusion of Gentian, f3xij.; Compound Infusion of Senna, f3vj.; Compound Tincture of Cardamoms, f3ij. Mix.)—

---

2 Quincy, Dispens.
Tonic and cathartic. Used in dyspepsia with constipation.—Dose, f 3/ij. to f 5/ij.

3. TINCTURA GENTIANÆ COMPOSITA, L. E. D.; Tinctura amara; Tincture of Gentian.—(Gentian, sliced and bruised, 3iiss.; Orange Peel, dried, 5x.; Cardamom [seeds], bruised 3v.; Proof Spirit, Oij. L. The relative proportions used by the Dublin College are the same as those of the London. The Edinburgh College employs of Gentian, sliced and bruised, 5iiss.; Dried Bitter Orange Peel, bruised, 5x.; Canella, in moderately fine powder, 5v. ; Cochineal, bruised, 5ss.; and Proof Spirit, Oij. This tincture may be more conveniently prepared by percolation, as directed for the compound tincture of cardamom, E.).—A grateful cordial tonic and stomachic. Employed as an adjunct to the infusion, effervescing draughts, bottle soda-water, &c.—Dose, f3ss. to f5ij.

4. EXTRACTUM GENTIANÆ, L. E. D.; Extract of Gentian.—(Gentian, sliced, lb. ijss.; Boiling Distilled Water, Cong. ij. Macerate for 24 hours: then boil down to a gallon, and strain the liquor while hot; lastly, evaporate to a proper consistence, L. “Take of Gentian, any convenient quantity; bruise it to a moderately fine powder; mix it thoroughly with half its weight of distilled water; in twelve hours put it into a proper percolator, and exhaust it by percolation with temperate distilled water; concentrate the liquid, filter before it becomes too thick, and evaporate in the water-bath to a due consistence,” E.) — Good gentian root yields, by the process of the London Pharmacopœia, about half its weight of extract k. Extract of Gentian is tonic. It is usually employed as a vehicle for the exhibition of the metallic substances (especially chalybeates) in the form of pill.—Dose, grs. x. to 5ss.

2. AGATHÔTES CHIRAY'TA, Don, E.—THE CHIETTA OR CHIRAYTA.

Gentiana Chirayita, Fleming.
Sex. Syst. Pentandria, Digynia.
(herb and root, E.)

History.—This plant seems to have been long in use among the natives of India. Professor Guibourt1 thinks that it is the κάλαμος ἄρωματικος of Dioscorides m. Various circumstances, however, appear to me to be opposed to this opinion: one of the most conclusive is the absence of odour in the chirayta plant n. I have before stated (p. 929) that Professor Royle refers the Calamus aromaticus of the

1 Brande, Dict. of Mat. Med. p. 261.
3 Lib. i. cap. 17.
Greeks to his *Andropogon Calamus aromaticus* (*A. nardoides, Nees ab Esenb*).

**Botany. Gen. Char.** — Corolla withering, rotate, in aestivation twisted to the right; with glandular hollows protected by a fringed scale upon the segments. Anthers not changing. Stigmas sessile. Capsule conical, one-celled, with spongy placentæ upon the sutures. Seeds indefinite, minute (Lindley).

**Sp. Char.** — Stem round. Leaves ovate-lanceolate. Hollows of the corolla nectariferous, oblong, distinct. Squamulae capillaceo-fimbriate at the margin (Don*).

**Herbaceous. Root** branching. Stem round, smooth, jointed. Leaves opposite, amplexicaul, lanceolate, very acute, entire, smooth, three-or five-nerved. Flowers numerous, peduncled. Calyx four-cleft; divisions linear, acute. Corolla yellow; limb four-parted.

**Hab.** — Mountains of Nepal and the Morungs.

**Description.** — The plant is pulled up by the root, about the time that the flowers begin to decay and the capsules are well formed*. The dried plant, with the root (*herba et radix chirayta sive chirayta*) is met with in the shops. The root is fibrous; the stem is round, smooth, not jointed, marked with the cicatrices of leaves, has a yellowish pith; the leaves are as above described. The whole plant is without odour, but has an intensely bitter taste.

**Composition.** — The stems of this plant were analysed by MM. Lassaigne and Boissel*, who obtained the following results: — resin, yellow bitter matter, brown colouring matter, gum, malic acid, malate of potash, chloride of potassium, sulphate of potash, phosphate of lime, silica, and traces of oxide of iron.

The **bitter matter** is the most important constituent. No vegetable alkali has been detected in it. The substance sold as sulphate of chirayitine is sulphate of quina*.

**Physiological Effects.** — Chirayta is an intensely bitter substance, and produces the before (p. 188) described effects of the simple or pure bitters. In its operation, as well as by its botanical affinities, it is closely allied to gentian. It appears to possess rather a relaxing than a constipating effect*.

**Uses.** — It has long been employed by the natives of India in the same class of cases in which gentian has been used in Europe. As a stomachic it is especially serviceable in the dyspepsia of gouty subjects. It strengthens the stomach, obviates flatulency, and diminishes the tendency to acidity*.

Combined with the seeds of *Guilandina Bonduc*, it is employed with success in intermittents*.

---

* Trans, of the Linn. Soc. vol. xvii. p. 32.*
+ Roxburgh, Fl. Ind. vol. ii. p. 72.
+
Administration.—It may be given in powder, in the dose of \( \frac{1}{2} \) j., or it may be employed in the form of infusion, tincture (prepared with cardamom and orange peel, like compound tincture of gentian), or extract.

**Infusion Chirette.** E.; Infusion of Chiretta.—(Chiretta, 5iv.; Boiling Water, Oj. Infuse for two hours, and strain through linen or calico).—The dose of this is \( \frac{1}{3} \) j. to \( \frac{1}{3} \) j.


**Sex. Syst.** Pentandria, Monogynia.

(Centaurium, L.—The flowering heads, E.—Folia, D.)

**History.**—This plant was known to the ancients, and received one of its names (Chironia Centaurium) from Chiron the Centaur, who is said to have lived 1270 years before Christ. But the plant which Pliny says cured Chiron of a wound received by an arrow, which he dropped on his foot when examining the arms of Hercules, is supposed to be the *Centaurea Centaurium*.

**Botany. Gen. Char.—** Calyx five-parted, equal. Corolla hypocrateriform with a cylindrical tube, withering over the capsule. Stamens five; anthers becoming spiral. Stigmas bilamellate. Capsule one-celled, or half two-celled (Lindley).

Sp. Char. — Stem nearly simple. Panicle forked, corymbose. Leaves ovate-lanceolate. Calyx half the length of the tube; its segments partly combined by a membrane (Smith).

**Root** small, tapering. Stem about a foot high, leafy. Radicle leaves obovate; the rest acute, ovate, or elliptic-lanceolate; all three-ribbed, bright green. Flowers nearly sessile. Bracts opposite, awl-shaped. Calyx slender. Tube of corolla pale-greenish; limb brilliant pink, expanded only in sunshine, closing as soon as gathered.


**Description.**—The herb or tops (herba seu summittates vel cacuminu centaurii minoris) of the common or lesser centaury are without odour, but have a very bitter taste. They are collected when in flower.

**Composition.**—According to Moretti, common centaury contains bitter extractive, free acid, mucous matter, extractive, salts [and woody fibre].

**Bitter Matter (Centaurin).**—The principal constituent of common centaury is the bitter extractive, called by Dubong d’Astafor centaurin. This, when combined with hydrochloric acid, is said to be an excellent febrifuge. Centaurin must not be confounded with centaurite, the bitter principle of *Cnicus benedictus*, De Cand.

---

\(^{1}\) *Hist. Nat.* lib. xxv. cap. 30, ed. Valp.

\(^{2}\) *Journ. de Pharm.* t. v. p. 98.

\(^{3}\) *Journ. de Pharm.* t. xvi. p. 502.
Physiological Effects.—Similar to those of gentian (p. 1278), and of other simple or pure bitters (see p. 188).

Uses.—Common or lesser centaury is rarely used by medical practitioners; yet it might be employed as an indigenous substitute for gentian.—Dose of the powder, $\frac{3}{2}$ to $\frac{5}{2}$. It may be also used in infusion.

4. **MENYAN'THES TRIFOLIA'TA, Linn., L. E. D.—COMMON BUCK-BEAN; MARSH TREFOIL.**

**Ser. Syst.** Pentandria, Monogynia.

(Menyanthes, L.—Leaves, E.—Folia, D.)

**History.**—Sprengel\(^7\) considers this to be the plant referred to by Theophrastus\(^2\) under the name of µινανθός.

**Botany.** **Gen. Char.**—Calyx five-parted. Corolla funnel-shaped; the limb spreading, five-lobed, equal, hairy on the inside. Stamina five. Style one; stigma capitate, two- to five-grooved. Capsule one-celled; the parietes seminiferous (Bot. Gall.)

**Sp. Char.**—Leaves ternate. Disk of the corolla densely shaggy (Smith).

Rhizoma black, creeping, jointed. Leaves on long stalks, with broad sheathing stipules at base: they are trifoliate; leaflets nearly oval, smooth. Scape round, ascending, smooth. Bracts ovate. Calyx obtuse. Corolla white or flesh-coloured, elegant. Anthers yellow.

**Hab.**—Indigenous; watery meadows, ditches, &c.; frequently cultivated in ornamental aquaria, on account of the beauty of the flowers. Perennial. Flowers in June and July.

**Description.**—The whole herb (herba menyanthis seu trifoli fibrini) is odourless, but has a very bitter taste. Its infusion strikes a green colour (tannate of iron) with the sesquichloride of iron. The leaves (folia menyanthis) are the parts usually employed.

**Composition.**—Menyanthes was analyzed by Trommsdorff\(^a\), who found that the fresh plant consists of 75 parts of moisture and 25 of solid matter, composed of bitter extractive, vegetable albumen, green resin (chlorophylle), peculiar matter precipitable by tannic acid, but soluble in water and in weak spirit, brown gum, fecula (inulin or menyanthin), malic acid, and acetate of potash.

The bitter extractive is the active principle. Brandes states that he procured a white bitter powder from menyanthes; but B. Trommsdorff\(^b\) repeated Brandes's experiments, and procured only a yellowish-brown bitter extract.

**Physiological Effects.**—Tonic and astringent. In large doses, cathartic, and sometimes emetic.

**Uses**—This plant is used by the brewers of some parts of Germany,

---

\(^7\) Hist. Rei Herb, t. i. p. 82.
\(^2\) Hist. Plant, lib. iv, cap. 11.
\(^a\) Ann. de Chém. t. xiiii p. 191.
\(^b\) Pharm. Cent.-Blatt. für 1832, p. 458.
particularly Silesia and the adjacent provinces, as a substitute for hops. It is rarely employed in medicine, but is applicable for the same purposes as the other bitter tonics (see p. 188). It has been esteemed efficacious as an antiscorbutic.

Administration. — It may be given in powder, infusion, or extract.
— The dose of the powder is from 3 j. to 5 ss.: if given to the extent of 3 j. it generally purges. The dose of the infusion (prepared with 3 ss. of the dried herb, and 1/3 x j. of boiling water) is 1/2 j. to 3/2 j.; of the watery extract, grs. x. to grs. xv.

OTHER MEDICINAL GENTIANACEÆ.

Frase'ra Wal'teri, or the American Calumba, is a native of the southern and western portions of the United States, and is very abundant in Arkansas and Missouri. The root is officinal in the Pharmacopæia of the United States. As met with in commerce, it is in transverse circular segments, about an inch in diameter, and an eighth of an inch, or more, in thickness. It contains no starch, and hence undergoes no change of colour when touched with iodine. Its infusion or decoction becomes blackish-green (tannate of iron) when treated with sulphate of iron, and lets fall a precipitate (tannate of gelatine) on the addition of a solution of isinglass. The effects, uses, and doses of Frasera are the same as those of gentian. The fresh root is said to operate as an emetic and cathartic. Some years ago it was introduced into France, and sold for calumba; hence it got the name of False Calumba. The chemical characters above given, as well as the physical properties of the root, readily distinguish it.

Order XLII.—SPIGELIACEÆ, Martius.—THE WORM-GRASS TRIBE.

Essential Character. — Calyx inferior, regular five-parted. Corolla regular, with five lobes, which have a valvate stivation. Stamens five, inserted into the corolla, all in the same line; pollen three-cornered, with globular angles. Ovary superior, two-celled; style articulated with it, inserted; stigma simple. Fruit capsular, two-celled, two-valved, the valves turned inwards at the margin, and separated from the central placenta. Seeds several, small; testa single; embryo very minute, lying in a copious fleshy albumen, with the radicle next the hilum.—Herbaceous plants, or under-shrubs. Leaves opposite, entire, with stipules, or a tendency to produce them. Flowers arranged in one-sided spikes. Pubescence simple or stellate (Lindley).

Properties. — See Spigelia.

SPIGE'LIA MARILAN'DICA, Linn. L. E. D.—CAROLINA PINK; PERENNIAL WORMGRASS.

Sex. Syst. Pentandria, Monogynia.

(Radix, L. D.—Root, E.)

History. — The anthelmintic virtues of this plant were first learned from the Cherokee Indians, who became acquainted with them, ac-

---

7 Murray, App. Med. t. ii. p. 34.
8 United States Dispensatory.
cording to Dr. Garden, about 1723: they were made known to the profession about 1740.


**Root** perennial. Stems composed of numerous fibres, from a short, cylindrical rhizome. Stems several, erect, four-sided and winged (from the decurrent leaves). Leaves decussate, ovate-lanceolate, acuminate, entire, smooth, but somewhat slightly pubescent on the veins and margins. Flowers in simple one-sided spikes (or racemes). Corolla much longer than the calyx, of a rich carmine colour externally, paler at the base, and orange-yellow within. Capsule obcordate, smooth. Seeds several in each cell.

**Hab.**—Southern States of North America; seldom found north of the Potomac.

**Collection.**—"It is collected by the Creek and Cherokee Indians, who dispose of it to the white traders. By these it is packed in casks, or more commonly in large bales, weighing from three hundred to three hundred and fifty pounds. That contained in casks is to be preferred, as less liable to be damp and mouldy. Owing to the imperfect manner in which the plant is dried, it seldom happens that packages of it reach the market free from dirt and mouldiness, and having the stalks of a bright colour. Some parcels have been recently brought free from the stalks, and have commanded more than double the price of the drug prepared in the usual way."

**Description.**—The dried plant (herba spigelicea), as usually met with in the shops, is of a greyish green colour, a faint odour, and a bitter taste. The root (radix spigeliae) consists of numerous, slender, branching, dark brown fibres, issuing from a short, dark brown rhizome.

**Composition.**—The herb and root have been analyzed by Wackenroder. Feneulle probably analyzed this plant under the name of Spigelia anthelmintica.

Wackenroder’s Analyses.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myricin</td>
<td>0.30</td>
</tr>
<tr>
<td>Resin, with chlorophyllie</td>
<td>2.40</td>
</tr>
<tr>
<td>Peculiar resin</td>
<td>0.50</td>
</tr>
<tr>
<td>Peculiar tannin</td>
<td>17.30</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>75.20</td>
</tr>
<tr>
<td>Malate of potash, and chloride of potash.</td>
<td>2.10</td>
</tr>
<tr>
<td>Malate of lime</td>
<td>4.20</td>
</tr>
<tr>
<td>Herb of Spigelia</td>
<td>101.90</td>
</tr>
</tbody>
</table>

1. Bitter extractive.—Feneulle ascribes the activity of Spigelia to a brown, bitter extractive, like that of the purgative Leguminosae. Taken internally, it
causes vertigo and a kind of intoxication. It is, I presume, identical with the bitter acrid extractive of Wackenroder.

2. Resin.—This is described, by Wackenroder, as having an acrid, nauseous taste. It is soluble in ammonia and in oil of vitriol. It evolves ammonia when heated.

Physiological Effects.—The physiological effects of this root have not been accurately determined; but the observations hitherto made show them to be those of a local irritant (or acrid) and narcotic substance.

In the ordinary dose (one or two drachms for adults) it has very little sensible effect on the system, though it may act efficaciously as an anthelmintic. In larger doses it appears to operate as an irritant to the gastro-intestinal canal, and gives rise to purging and sometimes to vomiting, though its effects in this way are very uncertain. In poisonous doses it operates as a cerebro-spinant or narcotic, giving rise to "vertigo, dimness of vision, dilated pupils, spasms of the facial muscles, and sometimes even to general convulsions. Spasmodic movements of the eyelids have been observed among the most common attendants of its narcotic action. The death of two children, who expired in convulsions, was attributed by Dr. Chambers to the influence of spigelia. The narcotic effects are said to be less apt to occur when the medicine purges, and to be altogether obviated by combining it with cathartics. The danger from its employment cannot be great, as it is in very general use in the United States, both in regular and domestic practice, and we never hear at present of serious consequences. Its effects upon the system have been erroneously conjectured to depend on other roots sometimes mixed with the genuine k.

Uses.—Employed only as an anthelmintic. Its vermifuge properties were first made known to the profession by Drs. Lining¹ and Garden². Though scarcely used in this country, it stands at the head of anthelmintics in the United States of America.

Administration.—The dose of the powder, for a child of three or four years old, is from grs. x. to grs. xx.; for an adult, 5j. to 5ij. This quantity is repeated, every morning and evening, for several days, and then followed by a brisk cathartic. It is frequently combined with calomel.

INFUSUM SPIGELII, Ph. United States. Infusion of Pink-root. (Spigelia root, 5ss.; Boiling water, f3xvj. Macerate for two hours in a covered vessel, and strain).—The dose, for a child of two or three years old, is f5ss. to f5j. for an adult, f5iv. to f5vij., repeated morning and evening. A quantity of senna, equal to that of the spigelia, is usually added, to ensure a cathartic effect.

A preparation kept in the shops of the United States, and much prescribed by physicians, under the name of worm tea, consists of

¹ United States Dispensatory.
² Essay and Obs. Phvs. and Lit. vol. i. p. 386.
³ Ibid. vol. iii. p. 145.

VOL. II.
spigelia root, senna, manna, and savine, mixed together in various proportions to suit the views of different individuals.

OTHER MEDICINAL SPIGELIACEÆ.

Spige'lia anthelmin'tica is a native of South America and the West India Islands. Its action is similar to that of the last-mentioned species. So poisonous has it been regarded, that in France it is called Brinvillière, after the Marchioness de Brinvilliers, a woman famous for poisoning in the reign of Louis XIV., and who was executed on the 16th of July, 1676. Its anthelmintic properties were noticed in 1751 by Dr. Browne. This plant was analyzed by Ricord Madianna. Dr. Brown says, it procures sleep almost as certainly as opium.

ORDER XLIII.—ASCLEPIADACEÆ, Lindley.—THE SWAL-LOW-WORT TRIBE.

Asclepiadeæ, R. Brown.

The plants of this order are for the most part acrids. In large doses they are emetic and cathartic: in small doses, expectorant, diaphoretic, and alterative. The roots are the parts usually employed in medicine.

Though none of the species are contained in the British pharmacopoeias, yet several have attracted the attention of practitioners in this country.

1. Calotropis gigantea, R. Brown (Asclepias gigantea, Linn.) has been introduced from India under the name of Madar or Madar. It is said to contain a peculiar principle called mudarine, which coagulates by heat, and becomes again fluid on exposure to cold. The principal value of Madar is as an alterative and sudorific. It has been employed in venereal diseases, chronic cutaneous affections, and various other maladies. Mr. Robinson found it decidedly useful in a species of elephantiasis, which Mr. Playfair calls jugara or leprosy of the joints. The powder of the bark of the root is given in doses of from grs. iij. to grs. x. Dr. Ainslie considers the dried milky juice more efficacious.

2. The root of Hemides'mus in'dicus, R. Brown, (Periploca indica, Willd. Asclepias pseudosarsa, Roxb.) is used in India under the name of country sarsaparilla. The attention of practitioners in this country was drawn to it by Dr. Ashburner in 1831; and again in 1833. It has been called Indian or scented sarsaparilla, nannari, or the root of Smilax aspera. How this last and erroneous appellation became applied to it I cannot tell; for I find from specimens of the root of Smilax aspera brought from the south of Europe, that no resemblance exists between the latter and the root of Hemidesmus indicus. The latter is brownish externally, and has a peculiar aromatic odour, and a feeble, bitter taste. It is long, tortuous, cylindrical, rugous, furrowed longitudinally, and has its cortex divided, by transverse fissures, into moniliform rings. The cortical portion has a corky consistence, and surrounds a ligneous medullium. Mr. Garden

---

* United States' Dispensatory.
* Guibourt, Hist. des Drogs. i. ii. p. 227.
* Gentleman's Magazine for 1751.
* Gmelin, Handb. d. Chem. ii. 1297.
* Wight, Contrib. to the Bot. ojf India.
obtained from it a volatile, crystallizable acid, (?) on which the taste, smell, and, probably, the medicinal properties depend. From an erroneous notion of the origin of the root, he called the acid the *smilasperic acid*, but it may with more propriety be termed *hemidesmic acid*. Hemidesmus indicus has been employed as a cheap and efficacious substitute for sarsaparilla in cachectic diseases; but both its effects and uses require a more extended examination than has yet been devoted to them. Dr. Ashburner says it increases the appetite, acts as a diuretic, and improves the general health; "plumpness, clearness, and strength, succeeding to emaciation, muddiness, and debility." It has been used with benefit in venereal diseases. In some cases it has appeared to succeed where the sarsaparilla had failed; and *vice versa* it has frequently failed where sarsaparilla succeeds. The Tamool doctors employ it in strangury and gravel. It may be administered in the form of infusion (prepared by steeping 5ij. of the root in Oij. of boiling [or lime] water for twelve hours); a pint of which may be given in twenty-four hours, in doses of a wine-glassful. The *decoction* may be substituted for the infusion. Carbonate of soda is frequently added to it. The *extract* is objectionable, as the heat used in preparing it must volatilize part at least of the hemidesmic acid. A syrup has also been employed. The powder of the bark of *the root* is used in India against the thrush.

3. The leaves, flowers, and fruit of *Cynanchum Ar'gel* are employed by the Egyptians to adulterate the senna of that country. I believe all the *Alexandrian senna* brought to England contains some portion of these leaves. (For their characters and effects see the Order *Leguminosae*).

4. The substance called French or Montpellier Scammony (*scammonium gallicum*) is made, in the southern part of France, with the expressed juice of *Cynanchum monspeli'acum*, mixed with different resins and other purgative substances. It occurs in semi-circular, blackish, hard, compact cakes, which frequently have the smell of balsam of Peru. The juice of this plant has been analyzed by Marquart.

5. A substance called Smyrna Scammony (*scammonium smyrneum*) is said to be obtained from the *Secamone Alpi'ni*, Römer and Schultes (*Periplo'ca Secamone*, Linn.); and Marquart has analyzed some substances bearing this name (see p. 1267).

**Order XLIV.—APOCYNACEÆ, Lindley.—THE NUX-VOMICA TRIBE.**

**Essential Character.**—Calyx divided into five, persistent. Corolla monopetalous, hypogynous, regular, five-lobed, with contorted *estivation*, deciduous. Stamens five, arising from the corolla, with whose segments they are alternate. Filaments distinct. Anthers two-celled, opening lengthwise. Pollen granular, globose, or three-lobed, immediately applied to the stigma. Ovaries two, or one- to two-celled, polyspermous. Styles two or one. Stigma one. Fruit a follicle, capsule, or drupe or berry, double or single. Seeds with fleshy or carilaginous albumen; testa simple; embryo foliaceous; plumule inconspicuous; radicle turned towards the hilum.—Trees or Shrubs, usually milky. Leaves opposite, sometimes whorled, seldom scattered, quite entire, often having ciliate or glands upon the petioles, but with no stipules. Inflorescence tending to corymbose. (Lindley).

**Properties.**—Extremely variable. An order which contains the Nux-vomica, Upas Tieté, the Wooraly, and the Tanghin poisons, cannot but be regarded with suspicion and dread. Yet it contains some harmless and edible species.

---

* Pharm. Centr.-Blatt für 1837, S. 693.
* Ibid. für 1837, p. 696.
* See Royle's *Illustrations*, p. 172.
STRYCH’NOS NUX-VOM’ICA, Linn., L. E. D.—THE POISON-NUT.

Sex. Syst. Pentandria, Monogynia.
(Semina, L.—Seeds, E.)

History.—We became acquainted with Nux-vomica through the Arabian authors. In the Latin translation of one of the works of Serapion we find the word nux-vomica, but it appears to have been applied to some other substance (probably to St. Ignatius's bean). "Est nux," says he, "cujuus color est inter glaucedinem et albedinem, major avellana parum et sunt in ea nodi." To which he afterwards adds, "movet vomitum;" from which I presume the name of vomic, or vomiting nut, was originally derived. Mesue also mentions nux-vomica. Avicenna says, nux-methel "est similis nuci vomicae." It is probable that the nux-mechil of Serapion is the substance which we denominate nux-vomica.

Botany. Gen. char.—Calyx four- to five-parted. Corolla tubular, with a spreading four- to five-cleft limb, and a valvate astivation. Stamens four to five, inserted into the throat of the corolla, which is either naked or bearded. Ovary two-celled, with indefinite ovules attached to a central placenta; style one; stigma capitate. Berry corticated, one-celled, many-seeded, or by abortion one-seeded. Seeds nidulant, discoidal. Albumen large, cartilaginous, almost divided into two plates. Embryo with leafy cotyledons (Lindley).

Sp. Char.—Leaves opposite, three- and five-nerved, oval, lucid. Berries many-seeded (Roxburgh).

Middling-sized tree. Trunk short, often crooked, pretty thick; the branches irregular; the wood white, hard, and bitter. Leaves opposite, oval, shining, entire, three- to five-nerved. Corymbs small, terminal. Calyx five-toothed. Corolla funnel-shaped, greenish-white. Stamina five, inserted over the divisions of the corolla. Ovarium two-celled. Style the length of the corolla. Stigma capitate. Berry round, smooth, size of a pretty large apple, covered with a smooth, somewhat hard, shell, of a rich orange-colour when ripe, filled with a white, soft, gelatinous pulp, which is greedily eaten by many sorts of birds. Seeds several, immersed in the pulp of the berry, and attached to a central placenta.

Hab.—Coromandel, and other parts of India; Ceylon.

Description.—a. Of the Seeds.—The seeds (nuces vomicae) of commerce are round, peltate, scarcely an inch in diameter, nearly flat, or very slightly convex on one side, and concave on the other, and are surrounded by a filiform annular stria. From their fancied resem-
blance to grey eyes, as well as from their being poisonous to crows, the Germans term them Krühenaugen, or crows' eyes. In the centre of the ventral surface of the seed is the orbicular hilum or umbilicus.

These seeds have two coats; the outer one, or *testa*, is simple, fibrous, and gives origin to short silky hairs, of an ash-grey, or yellowish colour, and which are directed from the centre towards the circumference: within this is the inner coat, or *endopleura*, which is simple, and very thin, and envelops the nucleus of the seed.

This nucleus is composed of two parts—namely, albumen and embryo. The *albumen* is bipartite, cartilaginous, or horny; of a dirty-white colour, of an intensely bitter taste, and, has, in its interior, a cavity (*loculamentum verum*). Unlike that of most seeds, the albumen of nux-vomica is of a poisonous nature. The *embryo*, which is milk-white, is seated in the circumference of the seed, its locality being frequently indicated by a point somewhat more projecting than the surrounding parts. It consists of two large cordiform, acuminate, tri-ribbed, very thin cotyledons, a distinct cauliculus, and a centripetal radicle (*i.e.* a radicle directed towards the centre of the fruit).

**β. Of the Bark.**—The bark of the Strychnos nux-vomica (*nux vomica bark; cortex strychnos nucis vomicae; cortex angusture spuriae seu false; cortex pseudo-angusture seu virosae*) occurs in quills or flat pieces (*angustura falsa convoluta seu plana*), or in pieces arched backwards, having the twisted appearance of dried horn. It is more compact and heavy than real angustura bark. The epidermis varies in its qualities; sometimes it consists of a dark fungoid, or spongy rust-coloured layer (hence the term *angustura ferruginea*), which is only the altered epidermis; at other times it is not thick, not fungous, but covered with numerous whitish prominences, formerly supposed to be some species of lichen (*Chiodecton*), but now known to be only an epidermoid alteration, a
kind of leprous exuberance, the more advanced stage of which constitutes the rust-coloured layer already mentioned. The powder is intensely bitter, and of a yellowish-white colour.

_Nux-vomica bark_ was formerly confounded with angustura or cusparia bark: hence its name of _false angustura bark_. The history of the mistake is as follows:—In 1804, Dr. Rambach, a physician at Hamburg, observed that some specimens of angustura bark, said to be from the East Indies, acted as a powerful poison; and as repeated cases of poisoning occurred with the same substance, an order was issued, forbidding the use of angustura bark. On the 15th of October, 1815, the Commission of Health of the Grand Duchy of Baden ordered all the angustura bark in the possession of the apothecaries to be seized, and placed under a seal; the physicians at the same time receiving an intimation that they were not, in future, to prescribe this bark. Similar ordinances were issued in Austria, Bavaria, and Württemberg.

The origin of the bark is said, by Batka, to be as follows:—A quantity of it was imported from the East into England, and not being saleable, was sent to Holland; and as no better means of getting rid of it offered, it was mixed with, and sold as, genuine angustura or cusparia bark. Great obscurity long existed as to the tree which yielded it. At first it was attributed to the _Brucea ferruginea_ or _antidyseuterica_, a native of Abyssinia, belonging to the family Xanthoxylaceae; but in 1831, Geiger had occasion to examine the bark of the _B. ferruginea_, and found that it had no resemblance to false angustura. Now, the composition and effects of this bark rendered it, in the highest degree, probable, that it was the product of some tree of the family Apocynaceae, most probably of the genus Strychnos; Batka said of the _S. nux-vomica_, or some kindred species; an opinion which was confirmed by my examination of the specimens of the _nux-vomica_ plant in Dr. Wallich's collection, in the possession of the Linnean Society. In 1837, Dr. O'Shaughnessy established the identity of false angustura bark and the bark of the _nux-vomica_ tree. Since then I have examined about 1 cwt. of the latter bark brought to this country, and find it to be identical with false angustura bark contained in my museum, and which I had purchased in Paris several years before.

**Commerce.**—In 1838 there were imported 1017 lbs. of _nux-vomica_; in 1839 only 478 lbs.; in 1840, 550 lbs. The duty is 2s. 6d. per lb.

**Composition.**—The _seeds_ of Strychnos _Nux-vomica_ have been analyzed by Rese, Desportes, Braconnot, Chevreul, and Pelletier and Caventou. The most important of these analyses is that made by the last-mentioned chemists; who also examined the _bark_ of Strychnos _Nux-vomica_, under the name of _false angustura_. The leprous coating of this bark they afterwards submitted to a separate examination, under the idea of its being a lichen.

---

8 Féé, _Essai sur les Cryptog. des Écorces exot._ p. 16. 1824.
13 _Cladres Journal_ for April, 1837.
14 _Madras Journal_ for April, 1837.
16 _Bull. de Pharm._ t. i. p. 271.
17 _Ibid._ t. iii. p. 315.
18 _Orfila, Toxicol. Gen._
20 _Ibid._ t. xii. p. 113.
21 _Journ. de Pharm._ t. v. p. 516.
Pelletier and Caventou's Analyses of the Strychnos Nux-vomica.

1. Of the Seeds.

Strychnic, or igasuric acid.
Strychnia, in combination with strychnic acid.
Brucia, 
Wax (a small quantity).
Concrete oil.
Yellow colouring matter.
Gum.
Starch (a little).
Bassorin.
Woody fibre.
Carboneate of lime and chloride of potassium in the ashes.

Nux-vomica seeds.

2. Of the Bark.

Gallate of brucia.
Fatty matter (not deleterious).
Gum (a considerable quantity).
Yellow colouring matter and alcohol.
Sugar (traces).
Woody fibre.

Nux-vomica (false Angustura) bark.

The leprous coating was composed of a greenish yellow oil, yellow colouring matter, reddish yellow colouring matter, [and woody fibre].

1. Strychnia. (See p. 1307.)

2. Brucia. Brucina; Vomicina, Guib., discovered in 1819, by Pelletier and Caventou, exists in the bark and seeds of nux-vomica, and in St. Ignatius's bean: in the two latter substances it is associated with strychnia, and is in combination with igasuric acid; while in the bark of nux-vomica it is combined with gallic acid. Brucia in the anhydrous form, as obtained by fusing it, has a waxy appearance; but when combined with water, it is capable of crystallizing, the form of the crystals being oblique four-sided prisms; or sometimes the crystals have a pearly laminated appearance, something like boracic acid. Its taste is very bitter, though less so than that of strychnia. It is soluble in 850 parts of cold, or 500 parts of boiling water; but the presence of colouring matter, of which it is difficult to deprive it, promotes its solubility. It is very soluble in alcohol, but is insoluble in ether and the fixed oils, and is very slightly soluble only in the volatile oils. Nitric acid assumes a fine red colour when added to brucia: deoxidizing agents, as sulphuretted hydrogen and sulphurous acid, decolourize this solution. Iodic and chloric acids produce the same phenomena as nitric acid. Chlorine communicates a red colour to brucia.

The following is the composition of brucia:

\[
\begin{align*}
\text{Atoms} & \quad \text{Eq. Wt.} & \quad \text{Per. cent.} \\
\text{Carbon} & \quad 48 & \quad 288 & \quad 70.76 & \quad 70.69 & \quad 70.85 & \quad 70.88 \\
\text{Hydrogen} & \quad 27 & \quad 27 & \quad 6.63 & \quad 6.67 & \quad 6.68 & \quad 6.66 \\
\text{Nitrogen} & \quad 2 & \quad 2 & \quad 8.88 & \quad 7.03 & \quad 7.09 & \quad 5.07 \\
\text{Oxygen} & \quad 8 & \quad 64 & \quad 15.72 & \quad 15.68 & \quad 15.18 & \quad 17.39 \\
\end{align*}
\]

Regnault states, that 100 parts of crystallized brucia lose, by heat, 18-41 per cent. of water. Hence 1 atom of brucia, according to the above formula, combines with 10 atoms of water to form crystallized brucia.

More recently Regnault has given the following formula for anhydrous brucia: $\text{C}_{46}\text{H}_{36}\text{N}_{2}\text{O}_{8}$.

According to Dr. Fuss, brucia is not a peculiar alkaloid, but a compound of strychnia and resin [yellow colouring matter]. He has proved this both analytically and synthetically. The property of brucia to become reddened by nitric acid and by chlorine, he ascribes to the resin present. Prof. Erdmann, who examined the products of Fuss's experiments, has confirmed his statements.

The salts of brucia are readily formed by saturating dilute acids with brucia. They possess the following properties: For the most part they are soluble and crystallizable, and have a bitter taste. They are decomposed by potash, soda, ammonia, the alkaline earths, morphia, and strychnia, which precipitate the brucia. They produce precipitates (tannate of brucia) on the addition of tannic acid. Both nitric acid and chlorine colour them as it does free brucia.

---

1. Pelletier, Journ. de Pharm. xxiv. p. 159.
3. Ibid. für 1839, p. 67; Ann. de Pharm. xxix. p. 38.
The effects of brucia on man and animals appear to be precisely similar to those of strychnia, though larger doses are required to produce them. Magendie considers it to possess only one-twelfth the activity of strychnia; while Andral regards it as having one-sixth the power of impure strychnia, and one twenty-fourth that of pure strychnia.—Dose, half a grain, which is to be gradually increased to five grains. It may be given in the same way as strychnia.

3. STRYCHNIA OR IGASURIC ACID.—Exists in the seeds of nux-vomica, St. Ignatius's bean, and snake wood. Dr. A. T. Thomson thinks that igasurate of strychnia exists in Arnica montana. Igasuric acid is crystallizable, and has an acid, rough taste. It is soluble in water and alcohol. The salts of iron, mercury, and of silver in solution, are unaffected by it; but those of copper are rendered green; and after some time a light green precipitate is deposited.

4. YELLOW COLOURING MATTER.—Found in the seeds and bark of nux-vomica, in St. Ignatius’s bean, and the Upas Teitê. Also in Strychnos pseudo-quinum, Casead’Anfa, and Pereira Bark (see p. 1312). It is soluble in water and alcohol, and is reddened by nitric acid [and by chlorine].

5. REDDISH YELLOW COLOURING MATTER.—Resides in the rust-coloured epidermoid alteration of nux-vomica bark. Also in Strychnos pseudo-quinum (see p. 1312). It is insoluble in cold water and in ether, but dissolves with facility in alcohol. Nitric acid renders it deep green by combining with it.

6. OTHER CONSTITUENTS.—The wax mentioned in the above analysis is probably derived from the hairs with which the seeds are invested; it enables them to resist moisture. Resin is probably a constituent of the seeds; for tincture of nux-vomica is rendered milky by water. An odorous, non-acid, innocuous principle is obtained by submitting nux-vomica and water to distillation. Meissner detected copper in the ashes of nux-vomica; but I have several times repeated his experiment without recognizing this metal.

Chemical Characteristics. 1. Of the Seeds. — Powdered nux-vomica has a fallow grey colour, a bitter taste, and a peculiar odour analogous to that of liquorice. Thrown on burning coals it inflames when the temperature is very high; but when lower, is decomposed, evolves a thick white smoke of a peculiar odour, and leaves a carbo-naceous residuum. Concentrated sulphuric acid blackens it. Nitric acid communicates to it a deep orange-yellow colour. If the powder be digested with boiling water acidulated with sulphuric acid, the filtered liquor is turbid and slightly yellow. Nitric acid, after some minutes, reddens it; ammonia makes it brown, and precipitates blackish flocks. If the sulphatic solution be digested with finely powdered marble (to saturate the excess of acid), then evaporated to dryness, and the residue treated with boiling alcohol, we obtain a spirituous solution of sulphates of strychnia and brucia, with colouring matter. This has a bitter taste, is reddened by nitric acid, produces convulsions when given to birds or other small animals, and forms a flocculent coloured precipitate on the addition of ammonia. Sometimes crystals are deposited from the alcoholic liquor, on standing for two or three days.

Ammoniacal-sulphate of copper added to the infusion or decoction of nux-vomica, produces an emerald-green colour, and gradually a greenish-white precipitate (igasurate of copper): ammoniacal sulphate of strychnia remains in solution. Sesquichloride of iron also

* Formul.
* Lancet, Sept. 16, 1837.
produces an emerald colour, which disappears on the addition of hydrochloric acid: this coloration does not depend, according to Pelle- tier and Caventou, on the igasuric acid; nor can it depend on tannic acid, for gelatin gives no indication of this substance: if the decoction be boiled with animal charcoal, it loses the power of becoming green on the addition of a ferruginous salt. Nitric acid communicates an orange-red colour to the decoction, owing to its action on the bru- cia and yellow colouring matter. A solution of iodine communicates a yellowish-brown tint to the decoction; but after a few minutes the colour disappears (owing, perhaps, to the formation of the hydri- dates of strychnia and brucia), and the iodine is no longer detectable by starch, without the addition of nitric acid or chlorine. Tannic acid, or infusion of nutgalls, produces in the decoction a copious pre- cipitate (tannates of strychnia, brucia, and some other vegetable mat- ter). Alcohol also causes a precipitate (gum). Acetate and diac- tartate of lead cause abundant precipitates composed of gummate and igasurate of lead, with colouring and fatty matter).

2. Of the Bark.—An infusion of this bark reddens litmus, in con- sequence of the excess of acid present. Strong nitric acid added to this solution produces a red colour; and by dropping the acid on the inner surface of the bark, a blood-red spot is produced: in both cases the effect arises from the action of the acid on the brucia and yellow colouring matter. If nitric acid be applied to the external surface of the bark, it produces a deep green colour, in consequence of the action of the acid on the yellow colouring matter (see Strzychnos pseudo- quina, p. 1312). Infusion of galls added to the infusion of this bark occasions a white precipitate (tannate of brucia). Sulphate of iron colours the infusion green, from its action on the yellow colouring matter. (For other characteristics see Angostura Bark.)

Physiological Effects. 1. Of the Bark. a. On Animals gene- rally.—The experiments of Piaff, the Vienna faculty, Emmert, Meyer, Orfila, Magendie, and Jäger, have shewn that it is a power- ful poison to dogs, rabbits, wolves, and other animals. Thus eight, twelve, or eighteen grains of it, kill dogs, the symptoms being pre- cisely the same as those of nux-vomica already detailed. Emmert (quoted by Christison) inferred, from experiments made on animals, that this bark acts on the spine directly, and not on that organ through the medium of the brain.

b. On Man it also acts as a powerful poison. Emmert mentions that a boy who had taken by mistake the decoction of this bark died therefrom. His intellectual powers were unaffected; he entreated his physician not to touch him, as violent convulsions were imme- diately brought on; he was powerfully sweated, but did not vomit. Prof. Marc was nearly poisoned by swallowing through mistake three quarters of a liqueur-glassful of a strong vinous infusion.

2. Of the Seeds. a. On Vegetables.—Marcet states, that a quarter
of an hour after immersing the root of an haricot plant (Phaseolus vulgaris) in a solution of five grains of the extract of nux-vomica in an ounce of water, the petals became curved downwards, and in twelve hours the plant died. Fifteen grains of the same extract were inserted in the stem of a lilac tree, on July the 5th, and the wound closed. In thirteen days the neighbouring leaves began to wither.

**β. On Animals generally.**—Nux-vomica appears to be poisonous, in a greater or less degree, to all classes of animals. On the vertebrata its effects are very uniform, though larger quantities are required to kill herbivorous than carnivorous animals. Thus a few grains will kill a dog, but some ounces are required to destroy a horse. It occasions in all, tetanic convulsions, increased sensibility to external impressions, asphyxia, and death.

**γ. On Man.**—Three degrees of the operation of nux-vomica on man may be admitted.

**aa. First degree: tonic and diuretic effects.**—In very small and repeated doses, nux-vomica usually promotes the appetite, assists the digestive process, increases the secretion of urine, and renders the excretion of this fluid more frequent. In some cases it acts slightly on the bowels, and occasionally produces a sudorific effect. The pulse is usually unaffected. In somewhat larger doses, the stomach not unfrequently becomes disordered, and the appetite impaired.

**ββ. Second degree: rigidity and convulsive contraction of the muscles.**—In larger doses, the effects of nux-vomica manifest themselves by a disordered state of the muscular system. A feeling of weight and weakness in the limbs, and increased sensibility to external impressions (of light, sound, touch, and variations of temperature), with depression of spirits and anxiety, are usually the precursory symptoms. The limbs tremble, and a slight rigidity or stiffness is experienced when an attempt is made to put the muscles into action. The patient experiences a difficulty in keeping the erect posture, and, in walking, frequently staggers. If, when this effect is beginning to be observed, he be tapped suddenly on the ham while standing, a slight convulsive paroxysm is frequently brought on, so that he will have some difficulty to prevent himself from falling. I have often in this way been able to recognize the effect of nux-vomica on the muscular system, before the patient had experienced any particular symptoms.

If the use of the medicine be still persevered in, these effects increase in intensity, and the voluntary muscles are thrown into a convulsed state by very slight causes. Thus, when the patient inspires more deeply than usual, or attempts to walk, or even to turn in bed, a convulsive paroxysm is brought on. The sudden contact of external bodies also acts like an electric shock on him. The further employment of nux-vomica increases the severity of the symptoms; the paroxysms now occur without the agency of any evident exciting cause, and affect him even when lying perfectly quiet and still in bed.

---

*Moiron, Pharm. Vét. p. 266.
Ortila, Toxicol. Gén.*
The muscular fibres of the pharynx, larynx, oesophagus, and bladder, also becomes affected, and Trousseau and Pidoux say those of the penis are likewise influenced, and the nocturnal and diurnal erections become inconvenient even in those who, for some time before, had lost somewhat of their virility. I am acquainted with two cases of paralysis, in which the use of nux-vomica caused almost constant nocturnal erection. Females also, say Trousseau and Pidoux, experience more energetic venereal desires; and “we have,” they add, “received confidential information on this point, which cannot be doubted.”

The pulse does not appear to be uniformly affected; for the most part it is slightly increased in frequency between the convulsive attacks, but Trousseau says he has found it calm even when the dose of the medicine was sufficient to cause general muscular rigidity. Previous to the production of the affection of the muscles, various painful sensations are oftentimes experienced in the skin, which patients have compared to the creeping of insects (formication), or to the passage of an electric shock; and occasionally an eruption makes its appearance.

It is remarkable that in paralysis the effects of nux-vomica are principally observed in the paralysed parts. Magendie states he has observed sweating confined to the paralysed parts. “I have seen,” says this physiologist, “the affected side covered with an anomalous eruption, while the opposite side was free from it. One side of the tongue is sometimes sensible of a very bitter taste, which is not perceptible to the other side.”

γγ. Third degree: tetanus, asphyxia, and death.—To illustrate this third and most violent degree of operation I think I cannot do better than relate a case of poisoning by nux-vomica reported by Mr. Ollier.

A young woman swallowed between three and four drachms of this substance in powder, and in half an hour was seen by Mr. Ollier. She was sitting by the fire, quite collected and tranquil; her pulse about 80, and regular. He left her for about ten minutes to procure an emetic, and on his return found that she had thrown herself back in her chair, and that her legs were extended, and considerably separated. She was perfectly sensible, and without pain, but seemed in alarm, laid hold of her husband’s coat, and entreated him not to leave her. A perspiration had broken out on her skin, her pulse had become faint, and much quicker, and she called frequently for drink. She then had a slight and transient convulsion. Recovering from it, she was in great trepidation, kept fast hold of her husband’s coat, and entreated him not to leave her. A perspiration had broken out on her skin, her pulse had become faint, and much quicker, and she called frequently for drink. She then had a slight and transient convulsion. Recovering from it, she was in great trepidation, kept fast hold of her husband, and refused to let him go, even for the alleged purpose of getting her drink. In a few minutes after, she had another, and a more violent attack, and shortly afterwards, a third: the duration of these was from a minute and a half to two minutes. In them she retained her grasp; her whole body was straightened and stiffened, the legs pushed out and forced apart. I could not (says Mr. Ollier) perceive either pulse or respiration; the face and hands were livid, the muscles of the former, especially of the lips, violently agitated, and she made constantly a moaning, chattering noise. She was not unlike one in an

---

\(^{2}\) Traité de Thérap. t. i. p. 515.
\(^{3}\) Formul. p. 7, 8th ed.
epileptic fit, but did not struggle, though, as she was forced out, it was difficult
to keep her from falling on the floor.

In the short interval of these attacks she was quite sensible; was tormented
with incessant thirst; perspired; had a very quick and faint pulse; complained
of being sick, and made many attempts to vomit. (I should state she had
swallowed some ipecacuanha powder to evacuate the poison.) She continued to
refuse to let her husband move, and to the question whether she was in pain,
replied, "No—no—no!"

A fourth and most vehement attack soon followed, in which the whole body
was extended to the utmost, and she was rigidly stiff from head to foot, insomuch
that, with all the force of the surgeon, he could not bend her thighs on the pelvis
to replace her in her seat. From this she never recovered; she fell into a state
of asphyxia, and never breathed again. She now relaxed her grasp; her dis-
coloured hands dropped upon her knees; her face, too, was livid; the brows
contracted; the lips wide apart, shewing the whole of the closed teeth, and a
salivary foam issued plentifully from the corners of her mouth. The expression
of the whole countenance was at this time very frightful. On removal of the
body, it was discovered that the urine had been discharged. She died in about
an hour after taking the poison. Five hours afterwards, she was still as straight
and stiff as a statue; if you lifted one of her hands, the whole body moved with
it, but the face had become pale in comparison, and its expression more placid.

**Post-mortem Appearances.**—In the case just related the body
was observed to be rigid after death, but in the lower animals the
reverse is generally noticed. As in other cases where death takes
place from obstructed respiration, venous congestion is observed.
Occasionally there is redness or inflammation of the alimentary
canal, and now and then softening of the brain or spinal cord.

**Modus Operandi.**—There are several points connected with the
modus operandi of nux-vomica which require investigation:

1st. *Is this seed a local irritant?*—In medicinal doses it does not
usually disorder the stomach, nor is it invariably irritant in its ope-
ration, even when swallowed as a poison. In some instances, how-
ever, the pain and heat in the stomach, the burning in the gullet,
and the nausea and vomiting, are evidences of its local action; and,
in several cases, marks of inflammation have been observed in the
stomach on examination of the body after death. Strychnia also is
a local irritant.

2nd. *On what part of the body does nux-vomica exercise a specific
effect?*—The symptoms clearly indicate the nervous system to be
specifically affected; and as the voluntary muscles are supplied with
nervous influence from the cerebro-spinal portion of the nervous
system, it is presumed that it is on this portion that nux-vomica
exerts its principal or sole influence. Physiologists, however, have
endeavoured to ascertain what part of the cerebro-spinal system was
principally affected. Now the tetanic symptoms, and the absence of
narcotism, have led to the conclusion that the spinal cord was the
seat of the disease—a conclusion supported by the fact, that the
division of this cord, nay, even complete decollation, will not pre-
vent the poisonous effects of nux-vomica; whereas the destruction of
the cord by the introduction of a piece of whalebone into the spinal
canal, causes the immediate cessation of the convulsions; and if only
part of the cord be destroyed, the convulsions cease in that part of
the body only which is supplied with nerves from the portion of
medulla destroyed. These facts, then, originally observed by Magendie, and which I have myself verified, lead to the conclusion, that the abnormal influence, whatever it may be, which causes the convulsions to take place, is not derived from the contents of the cranium, but from the medulla spinalis itself. Moreover, as the motor nerves seem principally affected, it has been presumed, that the disorder is seated in the anterior columns of the cord; but the white fibres of the nervous system are merely the conductors of nervous powers, the gray matter being apparently the source of it. Hence, then, the seat of operation of nux-vomica is the seat of the reflex functions. The increased susceptibility to external impressions produced by strychnia also depends, according to Dr. Stamius, on the primary action of this substance on the spinal marrow. The same physiologist concludes from his experiments on frogs, that the centripetal nerves receive, from the spinal cord, an increase of their excitability; and that, thus charged, they react upon the medulla, and occasion the peculiar convulsions.

M. Flourens asserted, that the part of the nervous system on which nux-vomica more particularly acted was the medulla oblongata. But MM. Orfila, Ollivier, and Drogartz, in their report on a case of poisoning by this substance, particularly mention that they observed no traces of alteration in the condition of the medulla oblongata, the tuber annulare, or the crura cerebri; which is in opposition to Flourens' opinion; for he asserted, that the specific or exclusive action of each substance on each organ, always left, after death, traces of its action sufficient to distinguish the affected from other organs.

But it may be asked, is the cerebrum unaffected by nux-vomica? I think we are hardly justified in replying to this in the affirmative. It is, indeed, true that the intellectual functions are not usually much disordered by this drug, but the mental anxiety commonly experienced by persons under its use, the occasional appearance of stupor, and the observations of Andral and Lallemand on the injurious effects of it in some apoplexies, leave no doubt that, occasionally at least, the cerebrum is affected. Bally has observed an appearance of stupor, vertigo, tinnitus aurium, sleeplessness, and turgescence of the capillaries of the face, result from the use of strychnia.

The cerebellum is said, by some, to be acted on by nux-vomica, but for the most part on hypothetical grounds, though it must be mentioned that MM. Orfila, Ollivier, and Drogartz, observed the cerebellum presented more evidences of lesions than the other parts of the nervous system. Another argument, which probably would be advanced by phrenologists in favour of the affection of the cere-

---

2. Dr. M. Hall, Lect. on the Nerv. Syst.
5. Arch. Gén. de Méd. viii. 22.
bellum by this drug, is the observation of Trousseau, that the sexual feelings are usually excited by it.

Ségalas found, in his experiments on animals, that in some cases life could not be prolonged by artificial respiration, and that after death the heart could not be stimulated to contract. These and other reasons seem to show, that nux-vomica exhausts the irritability of the heart. But in all probability this viscus is affected only secondarily, the essential and primary action being on the nervous system.

3rd. What kind of action does nux-vomica set up in those parts of the nervous system on which it acts?—As the muscles receive from the nervous system a preternatural stimulus to action, it is presumed that this system (or at least certain parts of it) is in a state of excitement or irritation. In one case mentioned by Mr. Watt, there was observed softening of the lumbar portion of the spinal cord; and in the case reported by M. Orfila, Ollivier, and Drogart, the whole cortical substance of the brain, especially of the cerebellum, was softened. Andral and Lallemand have both observed that this remedy, in some forms of apoplexy, produced symptoms indicating ramollissement.

4th. What is the reason that strychnia first displays its remarkable influence on paralytic limbs?—Ségalas has offered the following explanation of this well-known fact: the muscles of the unaffected limbs being simultaneously subject to the government of the brain and the action of the poison, are better enabled to resist the latter than paralysed muscles, which, not being under cerebral influence, are more affected by the poison. To this hypothesis, however, insuperable objections present themselves. Under the influence of strychnia paralysed parts sometimes suffer violent pain, while the healthy parts are free from it. How, asks Ollivier, is this specific influence on paralysed parts only to be explained? Does it not show, moreover, that these parts are not so entirely isolated from the influence of the nervous centres as the hypothesis of Ségalas would lead us to infer?

Dr. Marshall Hall has advanced a most ingenious explanation of the above-mentioned fact. Strychnia, he asserts, does not, in every case of paralysis, first display its influence on the paralytic limb. When the paralysis is cerebral, the irritability of the muscular fibre becomes augmented, from want of the application of the stimulus of volition; and in such cases, therefore, strychnia first affects the paralysed muscles, because these are more irritable than the sound ones. But in spinal paralysis, the irritability is diminished, and in such strychnia does not firstly and mostly affect the paralysed limbs. The augmented irritability of the muscles in cerebral paralysis, and the diminished irritability in spinal paralysis, he ascertained by voltaic electricity.

This explanation appeared to me so plausible and satisfactory that

---

* Quoted by Dr. Christison.
* Christison, p. 183.
in the first edition of this work (pp. 911-12) I adopted it, believing it to present a clear and physiological elucidation of the facts before related. But in the summer of 1841 I made a number of observations on paralytic patients in the London Hospital, which convinced me that it does not correctly interpret the phenomena in question. The following is a brief abstract of one case, out of many similar ones:

A middle-aged man was admitted into the hospital suffering with hemiplegia of two years' standing, and the consequence of apoplexy. He was put under the influence of the alcoholic extract of nux-vomica. In a few days the muscles of the paralysed limbs were powerfully affected by the remedy, but those of the sound side were unaffected by it. I then resolved to try the effects of voltaic electricity on the paralysed and healthy muscles. For this purpose I directed each hand to be placed in a separate basin containing a solution of salt. The two basins were then respectively connected with the electrodes of a magneto-electric machine, and a current of electricity thus simultaneously traversed the paralysed and healthy arms. To my great surprise the muscles of the paralysed arm were comparatively but slightly affected, while those of the sound one were most powerfully convulsed. This experiment was tried repeatedly, and invariably with the same result.

In this case the paralysis was undoubtedly, I think, cerebral. On Dr. Hall's hypothesis the effects of strychnia on the paralysed limbs proved it to be so. Yet the paralysed muscles were less irritable than the sound ones, as manifested by voltaic electricity. I have observed the same effects in many other cases. Furthermore I may remark that in every case of paralysis, whether cerebral or spinal, I have found the muscles of the paralysed parts to be less irritable to voltaic electricity than those of the sound part. Nor have I met with a single exception to the statement that strychnia first displays its effects on the paralysed parts; a fact of which I cannot at present offer a satisfactory explanation.

5th. Does nux-vomica or its active principles become absorbed?—Several reasons, some of which have been before alluded to (see pp. 110 and 113), may be adduced in favour of the affirmative of this question. Thus the blood of animals under the influence of this poison has been found to be poisonous (though Messrs. Morgan and Addison deny that this was the case in their before-mentioned experiment, p. 116). Moreover, the activity of this drug seems to be in the ratio of the absorbing power of the part.

6th. Is any change produced in the blood-discs by strychnia?—Müller says, strychnia produces no change in them; and Dr. Stannius was unable to detect, by means of the microscope, any alteration in the appearance of the blood of frogs poisoned by strychnia.

7th. In what manner is death produced by nux-vomica?—Frequently by the stoppage of respiration, in consequence of the spasmodic condition of the respiratory muscles (see p. 178). In other cases, death

---

1 Physiol. by Baly, vol. i. p. 107.
seems to arise from excessive exhaustion of the nervous power (see Cloquet's case, quoted by Christison, p. 801).

Uses. — The obvious indications for the use of nux-vomica, strychnia, or brucia, are torpid or paralytic conditions of the muscular fibre; while these agents are contra-indicated in spasmodic or convulsive diseases. Experience, however, has fully proved that when paralysis depends on inflammatory conditions of the nervous centres, these agents prove injurious, and accelerate organic changes.

1. In paralysis. — Of all the diseases for which nux-vomica has been employed, in none has it been so successful as in paralysis; and it is deserving of notice, that this is one of the few remedies whose discovery is not the effect of mere chance, since Fouquier was led to its use by legitimate induction from observation of its physiological effects. That a remedy which stimulates so remarkably the muscular system to action should be serviceable when that system no longer receives its accustomed natural stimulus is, a priori, not astonishing. Paralysis, however, is the common effect of various lesions of the nervous centres, in some of which nux-vomica may be injurious, in others useless, and in some beneficial. It is, therefore, necessary to point out under what circumstances this remedy is likely to be advantageous or hurtful.

A very frequent, and, indeed, the most common cause of paralysis, is hemorrhage of the nervous centres. Blood may be effused on the external surface of these centres, into their cavities, or in their substance, the latter being by far the most common case—in the proportion, according to Andral, of 386 out of 392 instances of cerebral hemorrhage. It is almost superfluous to add that the radical cure of these cases can be effected only by the removal (that is, absorption) of the effused blood. Now the process by which this is effected is almost entirely a natural one: art can offer no assistance of a positive kind, though by the removal of impeding causes she may be at times negatively useful. Nux-vomica can, in such cases, be of no avail; on the contrary, it may be injurious.

The part immediately surrounding the sanguineous clot is usually much softened, a condition formerly regarded as the effect of the effusion. But Lallemand has satisfactorily shown that it often, though not invariably, precedes the hemorrhage. This softening, or ramollissement, is, according to the same authority, a constant and necessary result of an acute or chronic irritation. But the facts at present known do not warrant this generalization, since cases occur which apparently are unconnected with irritation. For this softening art can do but little; we have, in fact, no particular or uniform treatment. If we can connect with it any increased vascular action, of course blood-letting and the other antiphlogistic means are to be resorted to; whereas, if the reverse condition of system exist, marked by great languor and debility, tonics and stimulants may be administered.

— Bayle, Bibl. Thérap. t. ii. p. 141.
**Path. Anat. by West, vol. ii. p. 722.**
Nux-vomica in these cases offers no probability of benefit; on the contrary, we might suspect, as it irritates the spinal cord, it might probably have the same effect on the brain, and hasten the production of softening. Now experience seems to confirm our theoretical anticipations. Andral relates the case of a man who was hemiplegic, in consequence of an old apoplectic attack. A pill, containing only one-twelfth of a grain of strychnia (the active principle of nux-vomica), was given him, and it produced a strong tetanic stiffness of the paralysed members. The following day he complained of pain in the head, on the side opposite to that paralysed; his intellectual functions were weaker, and his hemiplegia was increased; in fact, he had all the symptoms characterising softening of the brain. It is, therefore, probable that the strychnia set up an inflammatory condition of the nervous substance around the apoplectic deposit, and that this condition was the precursor of ramollissement. When, therefore, nux-vomica is employed in those cases of paralysis which are connected with inflammation of the brain or spinal marrow, it is very likely to increase the evils it is intended to mitigate. Lallemand reports two cases in which this drug, administered against cerebral maladies, occasioned convulsive movements, which continued until death. On opening the bodies, the cerebral substance surrounding the sanguineous clot was found disorganized and exceedingly softened. These facts suggest some useful reflections as to the use of this powerful drug in paralysis, and prevent its indiscriminate use in all cases of this disease.

But there are cases in which paralysis, arising from cerebral hemorrhage, may be advantageously treated by nux-vomica. The blood which is poured out in the apoplectic cell has at first a gelatinous consistence, some of it still remaining fluid. "Somewhat later," says Andral, "twelve or fifteen days after the attack, for instance, the coagulum is found to be firmer and more circumscribed; later still, it becomes white or yellow, and is surrounded by a brownish-red fluid. The walls of the containing cavity are smooth, and lined with a delicate membrane. The surrounding cerebral substance in some cases retains its natural appearance, and in others is altered both in colour and consistence. As the interval between the effusion and the examination increases, the coagula gradually disappear." The cyst is now found to contain a serous fluid, occasionally having a few cellular bridles running from one side to the other; and nature subsequently attempts to get rid of the cyst by producing adhesion of its sides, leaving only a linear cicatrix. Now it is well known, that, by long disuse of some of the voluntary muscles, the power over them becomes gradually diminished; and it appears that occasionally in cerebral hemorrhage, after the absorption of the effused blood, the paralysis remains, as it were by habit. In these cases the cautious employment of nux-vomica, or of its active principle, may be attended with beneficial results, by favouring the return both of motion and sensation.

1 Bayle, Bibl. Therap. t. ii. p. 227.
2 Recherches anatomico-pathologiques sur l'Encephale, p. 257. 1820.
But paralysis, like some other diseases of the nervous system, may exist without our being able to discover after death any lesion of the nervous centres; and it is then denominated a functional disorder, as if there were actually no organic lesion. To me, however, the fact of the lesion of action is a strong ground for suspecting that there must have been an organic lesion of some kind, though we see nothing. "It is highly probable," says AndraP, "that some organic lesions do exist in such cases, though they escape our notice." Be this as it may, experience has fully established the fact, that nux-vomica is more beneficial in those forms of paralysis usually unaccompanied by visible lesions of structure; such, for example, as paralysis resulting from exposure to the influence of lead and its various compounds. Thus, of ten cases of saturnine hemiplegia, treated by nux-vomica or its active principles, and which are mentioned by Bayle, three were cured, and three ameliorated.

As hemiplegia more frequently depends on cerebral hemorrhage than some other forms of paralysis, so it is, for the most part, less amenable to remedial means. Thus, while out of twenty-six cases of paraplegia, nineteen were cured by nux-vomica or its active constituents, yet in thirty instances of hemiplegia, only thirteen were cured. In six cases of general paralysis (that is, paralysis of both sides at once), four were cured by this remedy. In the paralysis which sometimes affects the muscles of certain organs, nux-vomica (or strychnia) has been employed with advantage. Thus a case of amaurosis, accompanied with paralysis of the eye-lid, is said to have been cured by it; and several case of incontinence of urine, depending on paralysis, or diminished power of the muscular fibres of the bladder, have also been benefited by the same means. In some cases of local paralysis strychnia has been employed endermically with benefit.

2. Paralysis of the Sentient Nerves.—The good effects procured from the use of nux-vomica in paralysis of the motor nerves, have led to its employment in functional lesions of sentient nerves, characterized by torpor, inactivity, and paralysis. That benefit may be obtained in these cases is physiologically probable, from the circumstance that one of the effects of this agent is an exaltation of the susceptibility to external impressions, as I have before mentioned. Hitherto, however, the trials have not been numerous, nor remarkably successful. In amaurosis benefit has been obtained in some few instances; and where no organic lesion is appreciable, this remedy deserves a trial. The endermic method of using it has been preferred. Small blisters, covered with powdered strychnia, have been applied to the temples and eyebrows. The remedy causes sparks to be perceived in both eyes, especially the affected one; and it is said, the more of these, the better should be the prognosis: moreover, the red-coloured sparks are thought more favourable than sparks of other colours. When the malady is complicated with disease of the brain, the remedy must be employed with extreme caution.

3. Other Affections of the Nervous System.—I have seen nux-

---

Ibid. p. 709.
vomica very serviceable in shaking or tremor of the muscles produced by habitual intoxication. A gentleman thus affected, who had for several weeks lost the power of writing, reacquired it under the use of this medicine. Chorea has been benefited by it. In tetanus it has been tried at the London Hospital without any augmentation of the convulsions. Several cases of epilepsy are said to have been relieved by it: but, judging from its physiological effects, it would appear to be calculated to act injuriously, rather than beneficially, in this disease; and in one case the use of strychnia apparently caused paralysis and death. It has also been employed in hypochondriasis and hysteria. It has also been used in neuralgia with good effect.

4. Affections of the Alimentary Canal.—On account of its intense bitterness, nux-vomica has been resorted to as a tonic and stomachic in dyspepsia, especially when this affection depends on, or is connected with, an atonic condition of the muscular coat of the stomach.

In pyrosis, resulting from simple functional disorders of the stomach, Mr. Mellor considers it to be almost a specific. Even when pyrosis is symptomatic of organic disease of the stomach, he says it is of essential service. In febrile states of the system, its use is contra-indicated. Dr. Belcombe has confirmed these statements, and also speaks of its good effects in gastrodinia. In dysentery, particularly when of an epidemic nature, nux-vomica has gained some reputation. Hagstrom says, he has proved its value in some hundreds of cases; and his report has been confirmed by Hufeland, Geddings, and others. In colica pictorum, a combination of strychnia and hydrochlorate of morphia has been found, by Bally, highly successful. In prolapsus of the rectum, Dr. Schwartz has recommended the use of this remedy, which he has employed for ten years, both in adults and children, with great benefit. One or two grains of the alcoholic extract are to be dissolved in two drachms of water; and of this solution he gives to sucking infants two or three drops; to older children from six to ten or fifteen drops, according to their age.

5. In impotence.—The excitement of the sexual feelings, which Trousseau has seen produced by nux-vomica, led him to employ this remedy against impotence, and he has found it successful both in males and females. In some cases, however, its good effects were observed only while the patients were taking the medicine. A young man, twenty-five years of age, of an athletic constitution, who had been married for eighteen months without having any other than almost fraternal communications with his wife, acquired his virility under the use of nux-vomica, though he again lost it soon after leaving off its employment.

The preceding are the diseases in which nux-vomica has proved

b Magendie, Fcatuml.

1 Bayle, Bibl. Therap. t. ii. p. 133 and 230.

2 Ibid. p. 335.

3 Ibid. p. 134.


5 Ibid. xix. p. 531.

6 Ibid. p. 564.

7 Bayle, op. cit. p. 135.

8 Ibid. p. 135.

9 Ibid. vol. vi. p. 235.

10 Ibid. vol. xvi. p. 735.
most successful. It has, however, been used in several others (as intermittent fevers, intestinal worms, &c.) with occasional benefit.

Administration.—Nux-vomica is used in the form of powder, tincture, or extract. Strychnia and brucia may be regarded as other preparations of it. The powder of nux-vomica is administered in doses of two or three grains gradually increased. Fouquier has sometimes increased the quantity to fifty grains.

Antidote.—Evacuate the contents of the stomach as speedily as possible. No chemical antidotes are known. Probably astringents (as infusion of galls, green tea, &c.) would be serviceable. Donné regards chlorine, iodine, and bromine, as antidotes for strychnia and brucia; but further evidence is required to establish the correctness of his inferences. Emmert says that vinegar and coffee increased the poisonous effects of nux-vomica (false angustura) bark. To relieve the spasms, narcotics may be employed. Sachs and others have recommended opium. As conia is the counterpart of strychnia, it deserves a trial. I applied it to a wound in a rabbit affected with tetanus from the use of strychnia: the convulsions ceased, but the animal died. In the absence of conia, the extract of hemlock should be employed. Either and oil of turpentine have been recommended. To relieve the excessive endemric operation of strychnia, acetate of morphia applied to the same spot has given relief.

1. Tinctura Nucis-Vomicae, D. Tincture of Nux-vomica.—(Nux-vomica, scraped, 3ij.; Rectified Spirit, 5ij. Macerate for seven days, and filter).—Dose, tv. to mx. It is sometimes used as an embrocation to paralysed parts, and its good effects in this way seem to be increased by combining it with ammonia.

2. Extractum Nucis-Vomicae, E. D. Extract of Nux-vomica.—("Take of nux-vomica any convenient quantity; expose it in a proper vessel to steam till it is properly softened; slice it, dry it thoroughly, and immediately grind it in a coffee-mill; exhaust the powder either by percolating it with rectified spirit, or by boiling it with repeated portions of rectified spirit until the spirit comes off free of bitterness. Distil off the greater part of the spirit; and evaporate what remains in the vapour-bath to a proper consistence," E.—The Dublin College order of Nux-vomica, scraped, 3vij.; Proof Spirit, Oij. [wine-measure]. Digest in a close vessel for three days, and express the residuum: consume the mixed liquors by distillation, to a fourth part, and reduce to a proper consistence. By the Dublin process the produce of extract is about 9 per cent.9)—Dose, gr. ss., gradually increased to two or three grains. The extract is given in the form of pill.

3. Strychnia, L. E.; Strychnine; Strychnina; Vauquelina; Tetanine. This alkaloid was discovered in 1818 by Pelletier and Caventou. It has been found in Strychnos Nux-vomica, S. Ignatia,
S. Colubrina, and S. Tiete. In these plants it is frequently associated with brucia, and is always combined with an acid.

The directions of the London College for preparing this alkali are as follow:

"Take of Nux-vomica, bruised, lb. ij.; Rectified Spirit. Cong. iij.; Diluted Sulphuric Acid; Magnesia; Solution of Ammonia, each as much as may be sufficient. Boil the bruised nux-vomica with a gallon of the spirit for an hour in a retort, to which a receiver is fitted. Pour off this liquor, and again a third time boil what remains with another gallon of spirit and the spirit recently distilled, and pour off the liquor. Press the nux-vomica, and let the spirit distill from the mixed and strained liquors. Evaporate what remains to the proper consistence of an extract. Dissolve this in cold water, and strain. Evaporate the liquor with a gentle heat, until it has the consistence of syrup. To this, while yet warm, gradually add the magnesia to saturation, shaking them together. Set it aside for two days, then pour off the supernatant liquor. Press what remains wrapped in cloth. Boil it in spirit, then strain, and let the spirit distill. Add to the residue a very little diluted sulphuric acid mixed with water, and macerate with a gentle heat. Set it aside for twenty-four hours, that crystals may form. Press and dissolve them. Afterwards to these, dissolved in water, add ammonia, frequently shaking them, that the strychnia may be thrown down. Lastly, dissolve this in boiling spirit, and set it aside that pure crystals may be produced."

The directions of the Edinburgh College are as follows:

"Take of Nux-vomica, lb. j.; Quicklime, 3iis.; Rectified Spirit, a sufficiency. Subject the nux-vomica for two hours to the vapour of steam, chop or slice it, dry it thoroughly in the vapour-bath or hot air-press, and immediately grind it in a coffee-mill. Macerate for twelve hours in two pints of water, and boil it; strain through linen or calico, and squeeze the residuum; repeat the maceration and decoction twice with a pint and a half of water. Concentrate the decoctions to the consistence of thin syrup; add the lime in the form of milk of lime; dry the precipitate in the vapour-bath; pulverize it, and boil it with successive portions of rectified spirit till the spirit cease to acquire a bitter taste. Distill off the spirit till the residuum be sufficiently concentrated to crystallize on cooling. Purify the crystals by repeated crystallization."

The following is the rationale of the process of the London Pharmacopoeia: the watery solution of the alcoholic extract contains the strychnate of strychnia; the magnesia decomposes this, and by abstracting the strychnic acid sets free the strychnia.

**MATERIALS.**

<table>
<thead>
<tr>
<th>Magnesia</th>
<th>Strychnate of Magnesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strychnate of Strychnia</td>
<td>Strychnic acid</td>
</tr>
<tr>
<td>Strychnia</td>
<td>Strychnia</td>
</tr>
</tbody>
</table>

The strychnia is dissolved by the alcohol, and is left after distillation. Dilute sulphuric acid dissolves it, forming a sulphate, and from the sulphatic solution ammonia throws it down.

**MATERIALS.**

<table>
<thead>
<tr>
<th>Ammonia</th>
<th>Sulphate of Ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphate of Strychnia</td>
<td>Strychnic acid</td>
</tr>
<tr>
<td>Strychnia</td>
<td>Strychnia</td>
</tr>
</tbody>
</table>

The strychnia is then dissolved in boiling spirit; and from the solution crystals are obtained, by cooling and evaporation.

In the process of the Edinburgh Pharmacopoeia, a decoction of nux-
vomica is prepared; this contains the strychnate of strychnia with gum. This salt is decomposed by the lime, and the strychnia abstracted by rectified spirit.

In the preceding account I have omitted, for the sake of perspicuity, all notice of the brucia which is associated with the strychnia.

Pure strychnia is a white, odourless, intensely bitter, crystalline substance, the form of the crystals being the octohedron or four-sided prism. When rapidly crystallized, it assumes the granular form. It is fusible, but not volatile; decomposing at a lower temperature than most vegetable bodies. Though so intensely bitter, it is almost insoluble in water, one part of strychnia requiring 6667 parts of water, at 50°, to dissolve it: that is, one grain needs nearly fourteen ounces of water to hold it in solution. It requires 2500 parts of boiling water to dissolve it. It is slightly soluble in boiling rectified spirit, but scarcely so in cold water. It acts on vegetable colours as an alkali, saturates acids forming salts, and separates most of the metallic oxides (the alkaline substances excepted) from their combinations with acids. In some cases, part only of the metallic oxide is precipitated, a double salt being formed in solution. Thus, when strychnia is boiled with a solution of sulphate of copper, a green solution of cupreous sulphate of strychnia is obtained, while a portion only of the oxide of copper is precipitated.

Commercial strychnia usually forms, with strong nitric acid, a red coloured liquid, which afterwards becomes yellow. This change does not occur with pure strychnia, but depends on the presence of one or both of the two substances—viz. brucia and yellow colouring matter. As the red colour is destroyed by decolourizing agents (sulphurous acid and sulphuretted hydrogen), it appears to depend on the oxidizement of the substance referred to. If potash be added to a very concentrated solution of a strychnian salt which has been reddened by nitric acid, an orange precipitate is formed; an excess of water dissolves this precipitate. With strychnia chlorine forms a white precipitate.

A solution of bichloride of mercury, added to a solution of strychnia in hydrochloric acid, causes a white clotty precipitate (composed of bichloride of mercury and hydrochlorate of strychnia).

According to the Edinburgh College, strychnia for medicinal use, which is declared to be “always more or less impure,” possesses the following properties:

Intensely bitter: nitric acid strongly reddens it; a solution of 10 grains in 4 fluidrachms of water by means of a fluidrachm of pyroligneous acid, when decomposed by one fluidounce of concentrated solution of carbonate of soda, yields on brisk agitation a coherent mass, weighing when dry 10 grains, and entirely soluble in solution of oxalic acid.

The London College gives the following characters for crystallized strychnia:

Readily dissolves in boiling alcohol, but not so in water. It melts by heat, and if it be more strongly urged, it is totally dissipated. This being endowed with violent powers, it is to be cautiously administered.
The following is the composition of strychnia:—

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>44</td>
<td>264</td>
<td>76·08</td>
<td>75·73</td>
<td>76·721</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>23</td>
<td>23</td>
<td>6·63</td>
<td>6·86</td>
<td>6·789</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>2</td>
<td>28</td>
<td>8·07</td>
<td>8·43</td>
<td>6·186</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4</td>
<td>32</td>
<td>9·22</td>
<td>8·98</td>
<td>10·304</td>
</tr>
</tbody>
</table>

Strychnia: 1 347 100·00 100·00 100·00 100·00

More recently Regnault has given the following as the formula for the composition of strychnia: C_{42} H_{22} N_{2} O_{4}. Crystallized strychnia is anhydrous.

The salts of strychnia, when pure, are for the most part crystalline, white, and very bitter. They possess the following chemical characteristics:—1st. They are precipitated by the alkalis and their carbonates. 2dly. As usually met with in the shops, they are reddened by nitric acid. 3dly. They are precipitated by tannic, but not by gallic acid. 4thly. They are unchanged by the action of the persalts of iron.

**a. Sulphates.**—The neutral sulphate exists in the form of small cubes, soluble in ten parts of water at 59° F., and in a less quantity of boiling water. When heated, it fuses and loses three per cent. of its weight, probably water of crystallization. But Liebig detected no water in sulphate dried at 212° F. The bisulphate has an acid and bitter taste, and crystallizes in slender needles.

**b. Nitrates.**—The neutral nitrate crystallizes in pearly needles, grouped in stars. It is much more soluble in hot than cold water; is slightly soluble in alcohol, but does not dissolve in ether. When heated to a little above 212°, it decomposes and becomes yellow, swells up, detonates slightly (but without the disengagement of light), and leaves a carbonaceous mass behind. If the strychnia contain brucia, the nitrate has a reddish tint. The binitrate crystallizes in very fine needles. When heated, it decomposes, becomes red, and detonates with the disengagement of light.

**γ. Hydrochlorate or Muriate.**—This salt crystallizes in four-sided needles, which lose their transparency in the air. It is much more soluble in water than the sulphate. When heated, it is decomposed with the evolution of hydrochloric acid.

The effects of strychnia are of the same kind as those of nux-vomica, but more violent in degree. As ordinarily met with in the shops, it may be regarded as about six times as active as the alcoholic extract of nux-vomica. The following are a few examples of its poisonous operation:—

Dr. Christison says, “I have killed a dog, in two minutes, with the sixth part of a grain, injected, in the form of alcoholic solution, into the chest: I have seen a wild boar killed, in the same manner, with the third of a grain, in ten minutes.” Pelletier says, “half a
grain, blown into the mouth of a dog, produced death in five minutes.” Half a grain, applied to a wound in the back of a dog, caused death in three minutes and a half. In all these and other instances death was preceded and accompanied by tetanus. The salts of strychnia act in the same manner.

Some individuals are more susceptible of the action of strychnia than others. Anrall has seen a single pill, containing one-twelfth of a grain, cause slight trismus, and the commencement of tetanic stiffness of the muscles; while in other cases the dose may be gradually increased beyond a grain, with comparative little effect. The largest dose I have given is a grain and a half, and this was repeated several times before the usual symptoms, indicative of the affection of the system, came on.

The following case occurred on board the Dreadnought Hospital Ship, and was communicated to me by Mr. Cooper, Surgeon, of Greenwich:—

A Swede, aged 50—60, was admitted about the year 1833 with general paralysis, one side being more affected than the other: he was also in some degree idiotic. Strychnia was given, at first in the dose of one-eighth of a grain three times a day, which was continued for several weeks, without apparent effect. The dose was then increased to one-quarter of a grain three times a day, which was also continued for some time, and not producing any perceptible effect, the quantity was increased to half a grain twice or three times a day, and this dose was taken for many days before any influence of strychnia was manifested. But one morning, about 9 A.M., the apothecary was suddenly summoned by a message that the man was in a fit. When seen he was insensible; face and chest of a deep purple colour; respiration had ceased, and the pulsation of the heart nearly so. The whole body (trunk and limbs) was in a state of tetanic spasm. Trunk extended, and shoulders thrown back: muscles of chest and abdomen hard and rigid. In a short time the rigidity became less; the ribs could be compressed; and artificial respiration was kept up imperfectly by compression of the thorax. Circulation was restored in some degree, and the deep purple colour of the surface went off. Spontaneous respiration returned. The man sighed, and became apparently sensible: all spasm had ceased, for a minute or two; but as soon as circulation and consciousness were in some degree restored, the spasm recurred with extreme violence, again locking up the respiratory muscles. Respiration ceased; the surface again became purple: circulation went on, however, some time after respiration had ceased. Artificial respiration was kept up when the relaxation of the muscles would allow of it, but was this time ineffectual. The heart soon ceased to beat; the deep purple colour was instantaneously replaced by the pallor of death; and life was extinct.

The quick passing off of the purple colour of the surface was very remarkable; the change appeared to commence in the face, and passed downwards like the passing of the shadow of a cloud.

This case gives some colour to the idea that strychnia, like digitalis and some other potent remedies, accumulates in the system.

The local action of strychnia is that of an irritant. Applied to the naked dermis, it causes burning and pungent pain, lasting from half an hour to an hour; and where blisters have been applied, the raw surface inflames under the use of the remedy, and affords a copious suppuration.”

The uses of strychnia are similar to those of nux-vomica above stated.

The dose of strychnia or its salts (acetate, sulphate, nitrate, or hydrochlorate) is, at the commencement, one-sixteenth or one-twentieth of a grain, which is to be gradually increased until its effects on the muscular system are observed. The largest dose I have ever seen attained is one grain and a half. Two scruples, taken to cause self-destruction, produced death in an hour and a half. Strychnia is usually given in the form of pill (made with common conserve of roses) or it may be dissolved in alcohol or acetic acid. The endemic dose of strychnia should not, at the commencement, exceed half a grain, and of its salts one-fourth of a grain.

OTHER MEDICINAL OR POISONOUS APOCYNACEÆ.

1. The seeds of Strychnos Ignatia, or St. Ignatius's beans, came into the Dutch shops, according to Alston, about the latter end of the seventeenth century. But there is some reason to suspect that they were known long before this, and are probably the substances which, in the Latin translation of Serapion, were denominated nucæ vomicæ. Dale gives, as one of their synonymes, "Igasur, seu Nux vomica legitima Serapionis." They are obtained from the Strychnos Ignatia (called by some Ignatia amara), a tree indigenous to the Philippine Islands, whose fruit is smooth and pyriform, and contains about twenty seeds. These seeds, the St. Ignatius's beans of the shops, are about the size of olives, rounded and convex on one side, and somewhat angular on the other. Externally they are brownish, with a blueish gray tint. Within the envelopes of the seed is a very hard, horny, or cartilaginous albumen, in whose cavity is contained the embryo. These seeds have been analysed by MM. Pelletier and Caventou, who found their constituents to be the same as those of nux-vomica, though in somewhat different proportions. Their effects, therefore, are similar.

2. Strychnos Tieutæ, the Tshettik or Tjettek, is a large climbing shrub, growing in Java. The aqueous extract of the bark of this tree is the poison called Upas tieutæ Tjettek, or Upas Radja, and which must not be confounded with the poison of the Antiaris toxicaria, before described (see p. 1094). The Upas tieutæ was analyzed by Pelletier and Caventou, who found it to consist of strychnia combined with an acid (Igasuric?), a reddish brown colouring matter, which becomes green when mixed with nitric acid, and a soluble yellow colouring matter, which is reddened by nitric acid. They could detect no brucia. The effects of this poison are precisely similar to those of nux-vomica and strychnia. Thus, when applied to wounds, injected into the serous sacs or blood-vessels, or applied to the mucous membrane, it produces tetanus, asphyxia, and death. Forty drops of upas dissolved in water, and injected into the pleura of an old horse, gave rise almost immediately to tetanus and asphyxia, and the animal died after the second attack.

3. Ligna Colubrina, or Snake-woods.—In countries infested with poisonous serpents, the natives have usually some substance which is fancied to possess the power of preserving them from the bites of these poisonous animals; and thus we have various articles, seeds, roots, and wood, which have the word snake affixed to them.

In Asia there are several kinds of lignum colubrinum, or snake-wood, supposed
to be possessed of the above-mentioned property. The specimens, however, met with in commerce, show that there are various substances to which this term is applied; some being the wood of a stem, others of a root. The most esteemed is the wood of the Strych'nos Colubrina. The S. ligustr'ina yields the ancient lignum colubrinum of Timor. Pelletier and Caventou analyzed one of these woods, and found that it had the same constituents as the bean of St. Ignatius, though in different proportions. Thus it contained more fatty and colouring matter, less strychnia, and, in the place of bassorine and stach, a larger quantity of woody fibre. Its action, therefore, is precisely similar to the before-mentioned poisons.

4. Strych'nos toxif'era, Schomb. yields the basis of the celebrated Wooraly Woorari, Ourari, or Urari poison of Guayana, which produces paralysis with convulsive movements, death from, apparently, suspended respiration: hence artificial respiration is a most important means of relief. Dr. Hancock* used the bark of this plant as an application to foul ulcers.

5. The seeds of Strych'nos potatorium, or clearing nuts, are used in India to clear muddy water.

6. The bark of the Strych'nos Pseudoqui'na, called Quina do Campo, is employed in the Brazil as a substitute for cinchona bark. It does not possess poisonous properties. It was analyzed by Vauquelin, who discovered neither strychnia nor brucia in it. Merendieu also analyzed it, under the erroneous name of copulchi (see p. 113), and could not discover any vegetable alkali in it. The internal surface of the bark (liber), touched by nitric acid, becomes red, while the external surface becomes blackish green. In these characters, then, it agrees with nux-vomica bark. Two other barks (also belonging to Apocynaceae)—viz. the Pereira Bark (obtained from a species of Val'lesia) and the Casca d'Anta (procured from a Rauwolf'ia)—likewise become red by contact with nitric acid. Pfaff* had discovered a new alkali (called Pereirin) in the pereira bark.

7. Cer'bera Tang'hin, or Tanghin'a vene'nerica, is a native of Madagascar. The kernel is a most deadly poison. Though not larger than an almond [with the shell], it is said to be capable of destroying twenty persons. It was analyzed by O. Henry and Ollivier. The active principle is a neutral crystalline principle, called tanghicin (tangin-camphor, Gmelin.) The extractive (tanginin; tanguine, Gmelin) is also said to possess narcotic properties. The tanghin seed causes convulsions and violent efforts to vomit. It is (or was) used, in Madagascar, to ascertain the guilt of suspected persons: those who are able to withstand the ordeal are considered innocent; and, vice versa, those who die are said to be guilty.

Order XLV.—OLEACE., Lindley.—THE OLIVE TRIBE.

Essential Character.—Flowers hermaphrodite, sometimes dioecious. Calyx monophyllous, divided, persistent, inferior. Corolla hypogynous, monopetalous,
four-cleft, occasionally of four petals connected in pairs by the intervention of the filaments, sometimes without petals; *estination* somewhat valvate. [*Fraxinus* is generally apetalous]. *Stamens* two, alternate with the segments of the corolla or with the petals; anthers two-celled, opening longitudinally. *Ovary* simple, without any hypogynous disk, two-celled; the *cells* two-seeded; the ovules pendulous and collateral; *style* 1 or 0; *stigma* bifid or undivided. *Fruit* drupeaceous, berried, or capsular, often by abortion one-seeded. *Seeds* with dense, fleshy, abundant albumen; *embryo* about half its length, straight; *cotyledons* folicaceous, partly asunder; *radicle* superior; *plumule* inconspicuous.

— *Trees* or *shrubs*. *Branches* usually dichotomous, and ending abruptly by a conspicuous bud. *Leaves* opposite, simple, sometimes pinnated. *Flowers* in terminal or axillary racemes or panicles; the *pedicels* opposite with single bracts (R. Brown).

**Properties.**—Not very remarkable. The barks of some species are tonic and astringent. Manna is obtained from several species.

1. **OLEA EUROPEA, Linn. L. E. D.**—THE EUROPEAN OLIVE.

**Sex. Syst.** Diandria, Monogynia.

(Oleum adrupis expressum, L.—Expressed oil of the pericarp, E.—Oleum ex fructu, D.)

**History.**—Few vegetables have been so repeatedly noticed and enthusiastically described by the ancient writers as the olive-tree. In all ages it seems to have been adopted as the emblem of benignity and peace. It is frequently mentioned in the Bible; the ancient Greeks were well acquainted with it; and several products of it were employed in medicine by Hippocrates. Pliny is most diffuse in his account of it.

**Botany.**

*General Char. — Calyx* small, four-toothed. Tube of the *corolla* short; limb four-cleft. *Stamens* two. Segments of the *stigma* emarginate. *Drupe*, with a two-celled, two-seeded—by abortion one-celled, one-seeded—nut (Bot. Gall.)

*Specific Char.—Leaves* lanceolate, quite entire; their surfaces differently coloured. *Racemes* pinnacled.

A long-lived *tree* of slow growth. *Wood* hard; used for cabinet-work. *Leaves* in pairs, shortly petioled, lanceolate, acute, green above, hoary beneath. *Flowers* small and white. *Drupe* elliptical, dark bluish green; kernel (*pyrena*) hard, with usually only one ovule. The whitish character of the foliage gives a dull and monotonous appearance to countries where the olive is extensively cultivated, as Provence and Languedoc.

**Ornus europæa, var. longifolia**, is the variety chiefly cultivated in the south of France and Italy. *O. europæa, var. latifolia*, is chiefly cultivated in Spain; its fruit is nearly twice the size of the common olive of Provence or Italy, but the oil is too rank for most English palates.

---

m As in Gen. ch. viii. v. 12.
 Homer, Od. v. 477.
 Sharp, Letters from Italy.
 Loudon, Encyel. of Plants.
Hab.—Levant, Barbary, South of Europe. Notwithstanding that the olive is now so common in the southern parts of Europe, it is supposed by many to have been derived from Asia. Pliny tells us, on the authority of Fenestella, that there were no olive-trees in Italy, Spain, and Africa, in the reign of Tarquinius Priscus, in the 173rd year from the foundation of the city of Rome. The Phenicians are said to have introduced the olive-tree into France 680 years before Christ. Near Terni, in the vale of the cascade of Marmora, is a plantation of very old trees, and supposed to be the same plants mentioned by Pliny, as growing there in the first century.

Description.—The products of the olive-tree deserving of notice are the resiniform exudation, the leaves, and the fruit.

1. Resiniform exudation of the olive-tree (Lecca gum).—The older writers speak of exudation from olive-trees, and which Dioscorides describes as the tears of the Æthiopic olive. In modern times it has been improperly termed olive gum. Pelletier has analyzed it, and found that it consists of a peculiar matter (olivile), brown resin soluble in ether, and benzoic acid. Olivile consists of C_{10}H_{16}O_{2}.

It was formerly employed in medicine.

2. Olive leaves (folia olivce).—The leaves of the olive-tree have been analyzed by Pallas, who, among other products, found tannic and gallic acids. They have been employed externally as astringents and antiseptics; internally, as tonics in intermittents.

3. Fruit of the Olive-trees; Olives (Olivæ).—The preserved or pickled olives (Olivæ conditæ), so admired as a dessert, are the green unripe fruit deprived of part of their bitterness by soaking them in water, and then preserved in an aromatised solution of salt. Several varieties are met with in commerce, but the most common is the small French (O. europæa, var. longifolia) and the large Spanish olive (O. europæa, var. latifolia). Olives à la picholine have been soaked in a solution of lime or alkali. Ripe olives are remarkable from the circumstance of their sarcocarp abounding in a bland, fixed oil.

Expression of Olive Oil.—The process of procuring olive oil is somewhat modified in different countries, though the principle is the same in all.

In Spain, the olives are pressed by conical iron rollers, elevated above the stage or floor, round which they move on two little margins to prevent the kernel being injured, the oil from which is said to have an unpleasant flavour. Spanish olive oil, however, is inferior to other kinds, from the circumstance of the time which elapses between the gathering and the grinding of the olives.
This arises from the number of mills not being in proportion to the quantity of fruit to be ground; so that the olives are placed in heaps to wait their turn, and in consequence often undergo decomposition.

In France, the finest oil is procured by bruising the fruit in the mill immediately they are gathered, and then submitting the paste to pressure. The first product has a greenish tint, and is termed virgin oil (oleum olivarum virgineum; huile vierge). The cake or marc is removed from the press, broken up with the hand, moistened with boiling water, and repressed. The products are water, and oil of a second quality: these separate by standing. The cake, which is left, is termed grignon, and is employed by some as fuel; others, however, ferment it, and, by the aid of boiling water, obtain a very inferior oil, called gorgon, which is employed either for soap-making or burning in lamps.

With the view of increasing the quantity of oil, some persons allow the olives to undergo incipient fermentation, which breaks down the parenchyma of the fruit before they are pressed; but the quality of the oil is thereby injured. Guibourt tells us that it is a yellow, but a mild and agreeable oil, and is much used for the table.

The machinery employed by the Neapolitan peasants in the preparation of the Gallipoli oil is of the rudest kind. The olives are allowed to drop in their maturity from the tree on the ground, where they are picked up chiefly by women and children, and carried to the mill. The oil when expressed is sent, in sheep or goat skins carried on mules, to Gallipoli, where it is allowed to clarify in cisterns cut in the rock on which the town is built. From these it is conveyed in uteri or skins to basins near the sea-shore, and from these basins the oil casks are filled.

According to Sieuve, 100 lbs. of olives yield about 32 lbs. of oil; 21 of which come from the pericarp, 4 from the seed, and 7 from the woody matter of the nut (pyrena). That obtained from the pericarp is of the finest quality.

Recently-drawn olive oil deposits, by standing, a white fibrous matter, which the ancients employed in medicine, under the name of amurea.

Properties of Olive Oil.—Olive oil (oleum olivae seu olivarum; sweet oil) is an unctuous fluid, of a pale yellow or greenish-yellow colour. When of good quality, it has scarcely any smell. Its taste is bland and mild. Its sp. gr. at 77° F. is 0.9109, according to Saussure. When exposed to a temperature of 32° F. it deposits white globules (margarine, Lecanu; stearine, Chevreul). It is soluble in about 4 times its weight of ether; but it is very slightly soluble only in alcohol. By exposure to the air it readily becomes

---

* Dillon, Travels through Spain p. 343, 1792; Jacob, Travels in Spain, p. 149, 1811.
* Duhamel, Traite des Arbres Fruit. t. ii. p. 71-2.
* De Candolle, Phys. Veg. p. 299.
rancid; thin layers of it become thick, but do not dry. Hyponitrous acid converts it into elaidine (see p. 769), which, by saponification, yields elaidic acid. When mixed with sulphuric acid, and kept cool, it yields sulpho-margaric, sulpho-glyceric, and sulpho-oleic acids. With the basic metallic oxides it forms glycerine and soaps (oleo-margarates): Spanish or Castile soap (see p. 566) is made with soda; lead soap, or emplastrum plumbi (see p. 813) with oxide of lead.

Varieties.—Provence oil (oleum provinciale), the produce of Aix, is the most esteemed. Florence oil is a very fine kind of olive oil, imported from Leghorn, in flasks surrounded by a kind of net-work formed by the leaves of a monocotyledonous plant, and packed in half chests; it is used at the table, under the name of salad oil. Lucca oil is imported in jars holding nineteen gallons each. Genoa oil is another fine kind. Gallipoli oil forms the largest portion of the olive oil brought to England; it is imported in casks. Apulia and Calabria are the provinces of Naples most celebrated for its production: the Apulian is the best. Sicily oil is of inferior quality; it is principally produced at Milazzo. Spanish oil is the worst. The foot deposited by olive oil is used for oiling machinery, under the name of droppings of sweet oil.

Adulteration of Olive Oil.—Olive oil is said to be occasionally mixed with other vegetable oils (as poppy oil). Four methods have been proposed to detect the fraud:

1. Beading.—If we shake pure olive oil in a phial half filled with it, the surface of the oil soon becomes smooth by repose; whereas when poppy oil is present, a number of air-bubbles (or beads as they are termed) remain.

2. Freezing.—Olive oil is completely solidified when cooled by ice; poppy oil, however, remains in part liquid. Even two parts of olive oil to one of poppy oil will not completely congeal.

3. Electrical diagometer.—Olive oil, according to Rousseau, conducts electricity 675 times worse than other vegetable oils. The addition of two drops of poppy or beech-nut oil to 154½ grains of olive oil is sufficient to quadruple the conducting power of the latter. To ascertain the conducting power of oil, Rousseau used the electrical diagometer (from ἐξάγω, to conduct; and μετρεω, to measure). It consists of one of Zamboni’s dry piles and a feebly-magnetized needle, moving freely on a pivot. The electricity developed by the pile produces a deviation in the direction of the needle; but when any substance is interposed between the needle and the pile, the deviation is less in proportion to the bad conducting power of the interposed substance.

4. Formation of elaidine.—If recently-made nitrate of mercury (prepared by dissolving 6 parts of mercury in 7·5 parts of nitric acid, sp. gr. 1·36) be mixed with twelve times its weight of pure olive oil, and the mixture strongly agitated, the whole mass becomes solid in
the course of a few hours; this, however, does not occur with adulterated oil. We judge of the presence and quantity of foreign oils by the degree and quickness of solidification of the suspected olive oil.

"When carefully mixed with a twelfth of its volume of solution of nitrate of mercury prepared as for the Unguentum Citrinum (see p. 768), it becomes in three or four hours like a firm fat, without any separation of liquid oil."—Ph. Ed.

Composition.—In 1808, Gay-Lussac and Thénard examined the ultimate composition of this oil. In 1815, Braconnot ascertained the proximate constituents of it; and subsequently Saussure examined the ultimate composition of these constituents.

**Ultimate Analyses.**

<table>
<thead>
<tr>
<th>Braconnot's Proximate Analysis</th>
<th>Gay-Lussac and Thénard's</th>
<th>Saussure's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine (Oleine)</td>
<td>72</td>
<td>76:034</td>
</tr>
<tr>
<td>Margarine</td>
<td>28</td>
<td>11:545</td>
</tr>
<tr>
<td>Olive Oil</td>
<td>100</td>
<td>12:068</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6:302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0:353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0:296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10:000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100:000</td>
</tr>
</tbody>
</table>

1. **Elaine or Oleine.**—Braconnot obtained it by exposing olive oil to a temperature of about 21° F. in order to cause the congelation of the margarine. The Elaine was a greenish yellow liquid; at 14° F. it deposited a little margarine.

2. **Margarine.**—The solid matter of olive and other vegetable oils, obtained as above, is usually denominated stearine, but Lecanu has pointed out several characters by which it is distinguished from that principle: thus, it is more fusible, and is much more soluble in cold ether. In most other respects it agrees with stearine.

Commerce.—The duty on olive oil is £4. 4s. per ton, except on that brought from Sicily, which is £8. 8s. In 1839, duty was paid on 12,374 tons.

Physiological Effects. **a. On Vegetables.**—Olive oil, as well as other fixed oils, acts injuriously on the roots of plants, by obstructing their pores and meatus, and preventing the passage of water.

**b. On Animals.**—Injected into the veins, the fixed oils prove injurious by their mechanical operation. They obstruct the circulation in the capillary vessels, and in this way cause death. Both Courten and Hertwich have destroyed dogs by injecting half an ounce of olive oil into the veins.

**γ. On Man.**—The fixed oils are extremely nutritious, but they are difficult of digestion, and hence are apt to disagree with dyspeptics (see p. 52). Some writers (as Dr. Dunglison) are of opinion that, taken as a condiment, with salad, oil promotes the digestibility of the latter. Swallowed in large doses, olive oil acts as a laxative, in general, without occasioning pain.
Uses.—In England, the dietetical uses of olive oil are very limited, being principally confined to its mixture with salads. In Spain and some other countries it is frequently employed as a substitute for butter. Dyspeptics should carefully avoid its use.

Medicinally it is not often administered by the mouth. As a mild laxative it may be used in irritation, inflammation, or spasm of the alimentary canal, or of the urino-genital organs. In irritant poisoning it is exhibited as an emollient and demulcent, to involve acrid and corrosive substances, and sheath the stomach from their action. At one time it was supposed to possess antidotal properties for arsenical poisons; and Dr. Paris tells us, that the antidote on which the men employed in the copper-smelting works and tin burning-houses in Cornwall, rely with confidence, “whenever they are infested with more than an ordinary portion of arsenical vapour, is sweet oil; and an annual sum is allowed by the proprietors, in order that it may be constantly supplied.” There is, however, no reason to believe that its agency is more than mechanical, as already mentioned (see p. 648). Oil was formerly recommended as an antidote for cantharides, but the discovery of the solubility of cantharidin in oil has led to the suspicion, that, instead of alleviating, it might increase the patient’s danger. There is no just ground for supposing that oil, applied externally, or taken internally, has any particular influence in counteracting the operation or relieving the effects of the poison of venomous serpents, notwithstanding the high encomiums that have been passed on it. In pulmonary or bronchial irritation, and spasmodic cough, olive oil is sometimes taken in the form of emulsion (made with gum, albumen, or alkali) with benefit; but in such cases, almond oil is generally preferred. As an anthelmintic, olive oil is occasionally used.

Olive oil is a frequent constituent of laxative enemata, especially in dysentery, or irritation of the bowels or of the neighbouring viscera.

Externally it is used in the form of liniment (as the linimentum ammoniac and linimentum ammoniac sesquicarbonatis; see p. 304 and 313). Smeread over the body, it has been recommended by Berchtold and others as a safeguard against the plague. It may be employed also to relax the skin and sheath irritable surfaces. Frictions of olive oil have been employed in ascites and anasarca.

In pharmacy, olive oil has been employed in the preparation of liniments, ointments, cerates, and plasters. In surgery, it is used for besmearing surgical instruments, as bougies, &c.

Administration.—The dose of olive oil as a laxative is from $\frac{f}{5}$ to $\frac{f}{3}$.
2. OR'NUS EUROPE'A, Persoon, L. — EUROPEAN FLOWERING ASH.

Fraxinus Ornus, Linn. D.

Sex. Syst. Diandria, Monogynia.

(Succus concretus, L.—Succus concretus Manna, D.—Sweet concrete exudation, probably from several species of Fraxinus and Ornus, E.)

History. — Actuarius is believed to be the earliest writer who mentions our manna. The nature of the substance called manna (Manhu? Hebr. What is it? Engl.) in our translation of the Old Testament, is quite unknown. Under the names of honey-dew, aerial honey, and honey-oil (δροσόμελι and ἄμφομελι, Galen; ελαιώμελι, Dioscor. ; eleosomeli, Pliny), the ancients have been supposed to include our manna; for it is difficult to believe they were unacquainted with it, since Theophrastus speaks of two kinds of ash (Μεξια, Fraxinus), one of which (τακευνοτέρα, humilior) is supposed to be Ornus europaea.


Hab. — South of Europe; especially Calabria and Sicily.

Or'inus rotundifo'lia, considered by some as a variety of Ornus europaea, grows in Calabria, and also yields manna. Féé says that manna is probably also procured from Fraxinus excelsior and parvifolia.

Exudation of Manna. — In Calabria, manna is obtained by making incisions in the stem of Ornus europaea. In Sicily it is also procured in a similar manner. Houel, who has described and depicted the method of extracting it, as practised at Cinesi, near Palermo, says, the collection of manna commences about the 15th of August, and terminates at the end of September, when the rainy season sets in. The incisions are made with a hooked knife, first in the lower part of the stem, and are repeated daily, extending them perpendicularly upwards. Each incision is about two inches long. A limpid water (some describe it as a thickish white juice) exudes, and gradually concretes to form manna. Beneath the lowest incision is placed a leaf of the Ornus, to convey the exuded liquor into a recep-
tacle formed of a leaf of the Indian Fig (Opuntia). In this way is obtained *manna in sorts*. The fine *cannulated manna* preferred by the English, is obtained during the height of the season, when the juice flows vigorously.

Murray (apparently on the authority of Sestini) states, that Ornus rotundifolia and Fraxinus excelsior, as well as Ornus europaea, afford manna in Sicily; and Fothergill says, that while the Omus yields it by artificial apertures, "it flows from the Fraxinus through every little cranny, and bursts through the large pores spontaneously."—Manna has been supposed to be a natural product of the ash, but there are some difficulties in the way of this supposition. It is not produced in countries more northern than Calabria. Furthermore, the exudation of manna has been said not to occur naturally, but to be owing to a foreign action; either incision or the puncture of a little hemipterous insect (*Cicada Orni*) common on this tree.

**Description.**—Several kinds of manna (manna) are described by pharmacologists. The finest of English commerce is called *flake manna* (manna cannulata). It is imported in deal boxes, having partitions, and frequently lined with tin-plate. It consists of pieces of from one to six inches long, one or two inches wide, and from half an inch to an inch thick. Their form is irregular, but more or less stalactitic; most of the pieces being flattened or slightly hollowed out on one side (where they adhered to the tree or substance on which they concreted), and on this side they are frequently soiled. Their colour is white, or yellowish-white; they are light, porous, and friable; the fractured surface presents a number of very small capillary crystals. The odour is somewhat like that of honey, and is to me rather unpleasant; the taste is sweet, but afterwards rather acrid. Under

---

1 Honel, *op. cit.*
2 *Phil. Trans.* vol. xliii. No. 472, p. 86.
the name of **Sicilian Tolfa manna** I have received an inferior kind, corresponding to the **manna in sortis (manna in sortis)** of some pharmacologists. From its name I presume it is brought from Sicily, and that it corresponds in quality to Tolfa manna, produced near Civita-Vecchia, and which Fée⁴ states is but little valued. The Sicilian Tolfa manna occurs in small pieces, which seldom exceed an inch in length: some of these present the same appearances, with respect to consistence, colour, friability, and crystalline appearance, as the flake manna; others, however, are soft, viscid, brownish, and uncrystallized, like those of the next variety. The commonest kind of English commerce is called **Sicilian manna (manna siciliana)**. It appears to me to be the **common or fatty manna (manna pinguis)** of some writers. It consists of small, soft, viscid fragments, of a dirty yellowish-brown colour, intermixed with some few dark-coloured small pieces of the flake variety. It contains many impurities intermixed.

**Commerce.**—Manna is imported into this country principally from Palermo and Messina. It is also occasionally brought from other ports of Sicily; viz. Licata, Girgenti, Catania, Terra Nova, and Marsala. Furthermore, Naples, Leghorn, Trieste, Genoa, and Marseilles, are other places of shipment of it. In 1839, duty (3d. per lb.) was paid on 13,493 lbs.

**Composition.**—Manna was analyzed in 1809 by Bucholz⁵, who found it to consist of mannite 60.0, uncrystallizable sugar (capable of fermentation) with colouring matter (purging bitter matter?) 5.5, sweetish gum 1.5, gummy extractive 0.8, fibro-glutinous matter 0.2, water and loss 32.0.

Mannite (Manna Sugar).—Is identical with Grenadin. It is extracted from manna by boiling alcohol: the mannite crystallizes by cooling the solution. Mannite is not peculiar to manna, being found in many vegetables. It is distinguished from common sugar by its incapability of undergoing the vinous fermentation (see p. 48). It is white, crystalline, odourless, has a sweet and agreeable taste, and is very soluble in water and in boiling alcohol, but is very much less so in cold alcohol. Heated strongly it is decomposed like ordinary sugar. It consists, according to the analysis of Liebig⁶, of Carbon 39.832, Hydrogen 7.7142, and Oxygen 52.548: these numbers correspond with the formula C₆H₇O₆. Mannite possesses the laxative properties of manna, without the nauseous odour. The dose of it for children is 3 j. or 5 j.; for adults 3 s. or 5 j.

**Physiological Effects.**  

α. **On Animals generally.**—In moderate doses manna is nutritive, and is greedily devoured by some animals. Thus Swinburn⁷ tells us that vipers and martens are very fond of it. In large doses it acts as a mild laxative. The dose for carnivorous animals is about two ounces dissolved in broth or milk. It is rarely given to horses, on account of the large dose required.

β. **On Man.**—It has an analogous operation on man—that is, in small doses it is nutritive, and in large ones mildly laxative. It acts

---

¹ Cours d'Hist. Nat. ii. 366.  
² Gmelin, Handb. d. Chem. ii. 1295.  
³ Pharm. Central-Blatt für 1834, S. 589.  
⁴ Travels in the Two Sicilies. 1785.  
⁵ Moiroud, Pharm. Vét.
on the bowels without exciting vascular irritation, and is, therefore, admissible in inflammatory cases. It is apt, however, to produce flatulence and griping. The fresher and less changed the manna, the feeblest are said to be its laxative powers; and hence the Calabrians are enabled to use it frequently as an article of food. When by keeping and partial decomposition it has acquired an increase of laxative powers, it is less easily digested, and is more apt to excite flatulence. Hence also, we are told, the commoner kinds of manna are more laxative and more apt to disagree with the stomach than the finer varieties. The older writers imagined that manna promoted the secretion of bile. Manna approaches tamarinds as a laxative, but it is more nutritive and less refrigerant, in consequence of possessing more mucilaginous and saccharine matter, and less free vegetable acids.

Uses.—It is employed as a laxative, partly on account of the mildness of its operation, partly for its sweet flavour, in delicate persons, as females and children. Dr. Burns recommends it for new-born infants, if the meconium do not come away freely. On account of its sweetness, it is frequently added to flavour purgative draughts, and is used as a common laxative for children, who readily eat it.

Administration.—It may be taken in substance or dissolved in warm milk or water. The dose, for an adult, is from $\frac{5}{j}$ to $\frac{3}{ij}$; for children, from $\frac{5}{j}$ to $\frac{3ij}{j}$.

Order XLVI.—Styracaceæ, Richard.—The Styrax Tribe.

Essential Character.—Calyx inferior or superior, with five divisions, persistent. Corolla monopetalous, the number of its divisions frequently different from that of the calyx; with imbricated estivation. Stamens definite or indefinite, arising from the tube of the corolla, of unequal length, cohering in various ways, but generally in a slight degree only; anthers innate, two-celled, bursting inwardly. Ovary superior, or adhering to the calyx, with from three to five cells; ovules definite, the upper ascending, the lower pendulous, or vice versâ; style simple; stigma somewhat capitate. Fruit drupaceous, surmounted by or enclosed in the calyx, with from one to five cells. Seeds ascending or suspended, solitary, with the embryo lying in the midst of the albumen; radicle long, directed towards the hilum; cotyledons flat, foliaceous. Trees or shrubs. Leaves alternate, without stipules; usually toothed, turning yellow in drying. Flowers axillary, either solitary or clustered, with scale-like bracts. The hairs often stellate (Lindley).

Properties.—Storax and Benjamin, obtained from the genus Styrax, are balsamic. Alstonia theiformis is used at Santa-Fé as tea. The properties of the other species are but little known.
1. STY'RAX OFFICINAL'LE, Linn. L. E. D.—THE OFFICINAL STORAX.

Sex. Syst. Decandria, Monogynia.

(Balsamum, L.—Balsamic exudation, E.—Resina, D.)

History. — Hippocrates, Theophrastus, Dioscorides, and Pliny, speak of a substance which they term *Styrax* (στύραξ). Dioscorides says it is the produce of a tree like the quince, and that there are several varieties of it (all solid), and he mentions how it is adulterated. The best, he says, is unctuous, yellow, resinous, mixed with whitish lumps, and forms a honey-like liquid when melted; it comes, he adds, from Gabala [a Phoenician city], Pisidia, and Cilicia [countries of Asia Minor]. This is evidently the sort which more modern pharmacologists denominate amygdaloid storax. A worse variety, he says, is black, branny, friable, and covered with white mouldiness. This sort I presume to be very analogous to, if not identical with, the common storax of the shops, the "mouldiness" being the efflorescent benzoic acid; indeed the only character in which it differs is the colour; but as Pliny, who copies the description of Dioscorides, omits the word "niger," it is probable that the colour was inaccurately described. A third kind mentioned by Dioscorides is a transparent tear-like gum, and emulating myrrh; but it was very scarce. Probably this was the variety in which modern times has been termed *storax in the tear*. The substances employed to adulterate storax were ligneous dust (produced by eroding little worms), honey, the sediment of the iris, wax, fat, &c.

In modern times various substances have been met with in commerce under the name of *storax*. Some of these are certainly produced by the *Styrax officinale*, while others have been referred to a plant belonging to *Liquidambar* (see Balsamaceæ, p. 1070).

Botany. Gen. Char.—Calyx rather campanulate, nearly entire or five-toothed. Corolla campanulate at the base, deeply three- to seven-cleft. Stamens six to sixteen, seldom ten, exserted; filaments united to the tube of the corolla, sometimes adhering at the base of the ring; anthers linear, two-celled, opening by internal longitudinal slits. Style simple. Stigma obtuse, somewhat lobed. Drupe dry, splitting imperfectly into two or three valves, with one, two, or three stones. Seed solitary, erect, with a large, leafy, thin embryo, lying in the midst of fleshy albumen with an inferior radicle (Lindley).

Sp. Char.—Leaves ovate, beneath villous. Racemes simple, shorter than the leaf.

A small tree. Stem about twenty feet high; bark smooth. Leaves alternate, petiolated, ovate, blunt-pointed, entire; smooth and shiny.

---

2 Hist. Plant. lib. ix. cap. 7.
3 Lib. i. cap. lxxix.
above, whitish and downy beneath. *Raceme* of from four to six flowers. *Calyx* almost hemispherical, with five to seven short marginal teeth. *Corolla* white, externally hoary, with five, six, or seven segments. *Fruit* (*capsule, Nees*) coriaceous, downy, usually with one seed.

**Storax Bark** is supposed to constitute the *cortex thymiamatis* of some pharmacologists. It is probably the *Nuxglandion* of Dioscorides. It is in thin, light, red, highly odorous fragments or shavings, frequently covered with an efflorescence of benzoic acid. I am indebted for a sample of it to Professor Guibourt.

**Hab.**—The Levant, Palestine, Syria, Greece. Cultivated in the southern parts of Europe.

**Exudation.**—If incisions be made into the stem of this tree, a resinous juice exudes, which, when somewhat hardened, constitutes one or more of the balsamic substances denominated in the shops *storax*. Some writers state that the exudation arises from the puncture of the stem by a little insect. Though this balsam exudes from the storax-tree in the south of France, yet that of commerce is the product of Asiatic Turkey. A liquid storax is obtained from the bark and young branches by pressure (see p. 1325).

**Description.**—The substances termed *storax* (*storax seu styrax*) are very numerous. With the exception of the first kind, the following varieties I have met with:

1. **Storax in the Tear** (*Styrax in granis*).—Yellowish-white or reddish-yellow tears, about the size of peas. *White storax* (*styrax albus*) is formed of tears agglutinated so as to form masses somewhat resembling pale galbanum. Both sorts, however, are exceedingly rare, and are unknown to our drug-dealers. I have never met with a single specimen in English commerce. White storax is also scarce in Paris; for Professor Guibourt, to whom I wrote for a sample, says that there was one fine specimen at a druggist's in Paris, but it was not for sale. "I discovered it (says he) with great pleasure, having established the distinction of that variety only from a scrap of one or two drachms."

2. **Amygdaloid Storax** (*Styrax amygdaloides*).—It occurs in compact masses, having a very agreeable odour, analogous to that of vanilla, and a yellowish or reddish-brown colour. They are interspersed with white tears (giving the mass an amygdaloid appearance). This variety is very scarce. I have a fine sample, weighing nearly two ounces and a quarter; it cost me, in Paris, 24 francs per ounce. There is (or was a few years since) a magnificent piece, in the possession of a French pharmacien, who offered to sell it for 500 francs. Amygdaloid and white storax were formerly imported enveloped in a monocotyledonous leaf, under the name of *cane* or *reed storax* (*storax calamita verus*). A fine specimen (about the size and shape of half

---

1 Lib. i. cap. 22.
an orange) is in Dr. Burgess’s collection, belonging to the Royal College of Physicians of London.

3. Reddish-brown Storax (Storax rouge-brun, Guibourt).—This differs from the preceding in the absence of the white tears, and in the presence of saw-dust. It is reddish-brown, and has a similar, but less powerful, odor to that of the amygdaloid kind. It is not found in the London drug-houses.

4. Black Storax.—Under the name of Storax noir, I have received from Professor Guibourt a very dark reddish-brown mass, which easily softens, and has the odor of vanilla. “It appears to be formed of a balsam, which has been melted and inspissated by heat with saw-dust. Its very characteristic odor leads me to consider it,” says M. Guibourt, “as different from storax calamita, storax liquida, and liquidambar.” It is not found in the London drug-houses.

5. Liquid Storax; Styrax liquidus.—This has been already described (p. 1070). On the authority of Petiver it is usually regarded as the produce of a species of Liquidambar. But Landerer, one of the editors of the Pharmacopoea Graeca, has recently stated that storax liquidus (called buchuri-jag or storax oil) is obtained at Cos and Rhodes from the styrax officinalis, which is there termed *lovxovpi*. By means of longitudinal incisions the bark of the stems is removed in the form of small narrow strips, which being pressed together easily adhere by means of their glutinous juice, and in this way they are made up into bundles, of about 2lbs. each. These are subjected to pressure in warm presses (called styraki), by which liquid storax is obtained, having a butyraceous consistence, a grey colour, and a vanilla-like odor. Is this the liquid storax of English commerce?

6. Scobs styracina.—Under this name I include several substances sold as storax, but which are evidently fine saw-dust impregnated with a sufficiency of some resinous liquid (in some cases, perhaps, styrax liquidus) to give them cohesiveness.

a. Common Storax (Styrax vulgaris seu Styrax calamita, offic.)—This is imported in large round cakes, of a brown or reddish-brown colour and fragrant odor. It is brittle and friable, being very easily rubbed into a coarse kind of powder; yet it is soft and unctuous. When exposed to the air it becomes covered with an efflorescence of benzoic acid (which, to the superficial observer, looks like a whitish kind of mouldiness), and falls to powder. It appears to consist of some liquid resin mixed with fine saw-dust or bran. Boiled with rectified spirit, it yields a reddish solution, which becomes milky on the addition of water. The insoluble residue is a reddish saw-dust (of storax wood?). It seems probable, says Lewis, “that the common storax is the juice received immediately in vessels, and mixed with saw-dust enough to thicken it; the shops requiring, under the name of storax, a solid or consistent mass, and evaporation being found to

\[ \text{(Letter to the author.)} \]
\[ \text{Pharmaceutisches Central-Blatt für 1840, p. 11.} \]
\[ \text{Chem. Works of C. Neumann, by W. Lewis, p. 290. 1759.} \]
dissipate its fragrance. At least I cannot conceive for what other purpose the woody matter could be added; for it is too easily distinguishable to have been intended as an imposition.

3. Solid or Cake Storax (Storax solide ou Storax en pain, Guibourt).—Under this name I have received from Professor Guibourt a substance very analogous to the preceding; but the saw-dust obtained by digesting it in spirit is not so intensely red.

γ. Drop or gum Storax.—Under this name I have once met, in English commerce, a storax which was highly valued. It was a circular cake, about a foot in diameter, and four or five inches thick. It was blackish, with a greenish tint; had a pilular consistence, considerable tenacity, and a very agreeable odour. By keeping it became covered with an efflorescence of benzoic acid. Boiled in rectified spirit it gave an inky appearance to the liquid, and left a blackish saw-dust.

δ. Hard, blackish Storax.—Under the name of brown Storax, I purchased in Paris a solid, heavy, compact, hard, blackish substance, having the odour of liquid storax. Boiled in rectified spirit it yielded an almost colourless liquid and a brownish saw-dust. Is this the Storax brun noirâtre which Guibourt says is made at Marseilles?

COMMERCE.—I find, on the examination of the books of a wholesale druggist, that all the storax (solid and liquid) imported into this country during seven years, came from Trieste.

COMPOSITION.—Neumann submitted common storax [styrax calamita, offic.] to a chemical examination. More recently Reinsch analyzed three kinds of styrax calamita. In 1830, Bonastre analyzed a storax from Bogota. The same chemist examined a fluid, which he termed liquid storax, but which was liquidambar (see p. 1071).

Reinsch's Analyses.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>41.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Resin</td>
<td>7</td>
<td>53.7</td>
</tr>
<tr>
<td>Subresin</td>
<td>3.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>14.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Gum and extractive</td>
<td>13.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Matter extracted by potash</td>
<td>22.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>5.0</td>
<td>20.2</td>
</tr>
<tr>
<td>Ammonia</td>
<td>trace</td>
<td>stronger traces</td>
</tr>
<tr>
<td>Water</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Storax calamita.

100.0       100.0       100.0

1. Volatile Oil of Storax.—Obtained by digesting the distilled water of storax with ether. The solid oil was white, crystalline, and fusible; its odour was agreeable; its taste aromatic and warm. The fluid oil had not so penetrating an odour.

2. Resin of Storax.—Is soluble in alcohol, but insoluble in water.

---

Hist. de Droog. ii. p. 599.
Pharm. Central.-Blatt für 1838, S. 357 and 810.
Journ. de Pharm. t. xvi. p. 88.
Ibid. t. xvii. p. 338.
OFFICINAL STORAX. 1327

3. Benzoic Acid.—See p. 413.

Guibourt says that both white and amygdaloid storax, when treated by boiling alcohol, leave (independently of impurities) a small quantity of an insoluble white substance; and the filtered liquid becomes turbid on cooling.

Physiological Effects.—Storax produces the before-described (p. 183) effects of the balsamic substances. Its stimulant properties are more particularly directed to the mucous surfaces, especially to the bronchial membrane. Hence it is called a stimulating expectorant. In its operation it is closely allied to balsam of Peru and benzoin, but is less powerful than the latter.

Uses.—Internally storax has been principally employed in affections of the organs of respiration. In chronic bronchial affections, admitting of the use of stimulants, it may be used as an expectorant. It has also been employed in chronic catarrhal affections of the urino-genital membrane. Applied to foul ulcers in the form of ointment, it sometimes operates as a detergent, and improves the quality of the secreted matter.

Administration.—Purified storax may be exhibited, in the form of pills, in doses of from grs. x. to 3j.

1. STYRAX COLATUS, L.; Extractum Styracis, E.; Strained Storax. (Dissolve storax in rectified spirit, and strain; then let the spirit distil with a gentle heat, until it becomes of a proper consistence, L.—The directions of the Edinburgh College are essentially the same, except that the evaporation is ordered to be carried on by the vapour-bath, until the product have the consistence of a thin extract).—This process is intended for the purification of styraoo vulgaris (styrax calamita, offic.); but Mr. Brande says it is inefficient. The strained storax of the shops is usually produced from liquid storax (see p. 1071). It is used in perfumery and in the preparation of tintuctura benzo ’ini composita, and the pilula styracis composite.

2. PILULÆ STYRACIS COMPOSITÆ, L.; Pilulæ Styracis, E.; Pills of Storax. (Strained Storax [Extract of Storax, E.; Storax Resin, D.] 5ij. [two parts, E.]; [Hard, L.] Opium [powdered, L.], 5j. [one part, E.]; Saffron, 3j. [one part, E.] Beat them together until incorporated [and divide the mass into 60 pills, E.].)—These pills are useful in chronic coughs, and some other pulmonary affections. They are valuable also in another point of view: they sometimes enable us to exhibit opium to persons prejudiced against its use; the saffron and storax concealing the smell and flavour of this narcotic, while the name of the pill cannot discover the harmless deception. —The dose is from grs. v. to grs. x.

"Hist. des Droog. ii. 595."
2. STY’RAX BEN’ZOIN, Dryander, L. E. D.—THE BENJAMIN TREE.

Benzoin officinale, Hayne.

Sex. Syst. Decandria, Monogynia.

(Balsamum, L.—Concrete balsamic exudation, E.—Resina, D.)

History.—As the ancients were acquainted with so many oriental vegetable products, we should have expected, à priori, that benzoin would have been known to them. But this does not appear to have been the case; at least we are unable to identify it with any of the substances described by the old writers.


Sp. Char.—Leaves oblong, acuminate, tomentose beneath. Racemes axillary, compound, nearly the length of the leaves.

Tree. Stem thickness of a man’s body. Leaves oval-oblong, entire. Calyx campanulate, very obscurely five-toothed. Corolla grey, of five petals, perhaps connate at the base. Stamens ten. Ovary superior, ovate; style filiform; stigma simple. (Condensed from Dryander.)

Hab.—Sumatra, Borneo, Siam, Java.

Extraction of the Balsam.—Benzoin is obtained in Sumatra as follows:—When the tree is six years old, longitudinal or somewhat oblique incisions are made in the bark of the stem, at the origin of the principal lower branches. A liquid exudes, which, by exposure to the sun and air, soon concretes, and the solid mass is then separated by means of a knife or chisel. Each tree yields about three pounds of benzoin annually, for the space of ten or twelve years. That which exudes during the first three years is white, and is denominated head benzoin. The benzoin which subsequently flows is of a brownish colour, and is termed belly benzoin. After the tree is cut down the stem is split, and some benzoin scraped from the wood; but its colour is dark, and its quality bad, owing to the intermixture of parings of wood and other impurities: this sort is called foot benzoin. The relative values of head, belly, and foot benzoin, are as 105, 45, 18. Benzoin is brought down from the country in large cakes (called by the natives tamps) covered with mats. In order to pack it in chests, these cakes are softened by heat; the finer by exposure to the sun, the coarser by means of boiling water.

Description.—Benzoin (benzoinum; asa-dulcis) is met with in commerce of various qualities: these are sometimes distinguished by the terms firsts, seconds, and thirds. Frequently the finer kinds are called Siam benzoin, while the commoner kind is termed Calcutta benzoin.

1. Siam Benzoin, offic. Benzoin of first quality.—There are two

---

* Phil. Trans. vol. lxxvii. p. 308.
kinds of Siam benzoin of commerce; the one in tears, the other in masses.

a. Benzoin in tears (Benzoinum in lachrymis).—This kind seems to be identical with the true benzoin in tears, which Savary says was brought in considerable quantity to Paris, by the attendants of the Siamese ambassadors. It consists of irregular flattened pieces, some of which are angular, and the largest of them barely exceeding an inch in length. Externally these pieces are shiny, or dusty from their mutual friction, and are of amber or reddish-yellow colour; they are brittle, and may be easily rubbed to powder. Internally they are translucent or milky, and frequently striped: they have a pleasant odour, but little or no taste.

β. Lump Benzoin (Benzoinum in masses).—The finest kind consists of agglutinated tears (white lump benzoin). More commonly we find the tears are connected together by a brown, resiniform mass, which, when broken, presents an amygdaloid appearance, from the white tears imbedded in the mass (amygdaloid benzoin; benzoinum amygdaloïdes).

g. Translucent Benzoin.—From my friend, Dr. Royle, I have received a sample of Siam benzoin, whose properties are somewhat different to the preceding. The small masses consist of agglomerated tears, which, instead of being white, are translucent, or, in a few instances, almost transparent.

Crawford says that the benzoin of Siam is procured from Lao. He also says that a substance resembling, and hitherto confounded with, benzoin, produced in Lao, Raheng, Chang-mai, and La-Kon, is abundantly found in Siam. The tree producing it cannot be, he thinks, the Styrox Benzoin, as it grows as far north as the twentieth degree of latitude.

2. Calcutta Benzoin, offic. Benzoin of second and third quality.—This is imported in chests from Calcutta. It occurs in large rectangular blocks, marked with the impression of a mat, and covered with white cotton cloth. When broken, we observe but few large white tears in it. The mass is principally made up of a brown resiniform matter, with numerous, white, small pieces or chips intermixed, which thereby give the broken surface a speckled appearance, somewhat like that of a fine-grained granite. This kind corresponds to the common or brown benzoin (benzoinum commune seu in sortis) of some writers.

Commerce.—Benzoin is usually imported into England from Singapore or Calcutta. Not unfrequently it is brought direct from Siam; occasionally from Sumatra, Penang, Bombay, Madras, Batavia, &c. The greater part of it is exported. In 1839, duty (4s. per cwt.) was paid on 108 cwts. only.

Composition.—In 1811, Bucholz published an analysis of benzoin. In 1816, John made known a second; and in 1823, a third

---

c Quoted by Schwartze, Pharm. Tabell. S. 269.
d Ibid.
was published by Stoltze. Moreover, Mr. Brande and Unverdorben have examined this substance.

1. Volatile Oil of Benzoin.—Distilled with water, benzoin does not yield any essential oil; but when exposed to heat without water, benzoic acid and an empyreumatic oil are volatilized. This oil may be deprived of its empyreuma by redistillation with water, and then smells agreeably of benzoin. It may be regarded as a product of the decomposition of the resin. An oil of benzoin obtained by distillation, without any liquid, is used at Sumatra as a perfume.

2. Resin of Benzoin.—It is soluble in all proportions in alcohol. On the addition of water to the tincture, a milky liquid (absurdly called virgin's milk) is formed, owing to the precipitation of the resin in the form of a white powder, which may be obtained quite free from benzoic acid, and then constitutes the magisterium benzoes of some old writers. The acids (acetate, hydrochloric, and sulphuric) also precipitate the alcoholic solution. Sulphuric acid strikes a fine red colour with resin of benzoin. Benzoin resin colours the chloride of iron green, but does not cause any precipitate. This property would lead to the suspicion of the presence of either gallic or tannic acid, but neither has been detected. Stoltze makes two kinds of resin in benzoin: one of a yellow colour, and soluble in ether; the other brown, and insoluble in this liquid. Unverdorben, however, makes three varieties: one (resina alpha) is insoluble in carbonate of potash, but soluble in ether; a second (resina beta) is insoluble in both carbonate of potash and ether; and the third (resina gamma) is feebly electro-negative, soluble in carbonate of potash (forming a resinate of potash), and very slightly soluble in ether.

According to Johnston, the colourless resin of benzoin is rendered very approximately by the formula C₄₀ H₇₀ O₁₀. Heat, boiling water, caustic potash, carbonated alkalis, quicklime, and oxide of lead, effect a partial decomposition of this resin.

3. Benzoic Acid.—The preparation, properties, and uses of this acid have been already described (see p. 413). Several circumstances lead to the conclusion that very little benzoic acid exists, at least in the free state, in the natural resin of benzoin. One of these deserves mention: dilute solutions of carbonate of soda in the cold readily dissolve crystallized benzoic acid; but trituration, or even boiling with such solutions, does not deprive benzoin of the power of yielding this acid when subjected to heat.

Physiological Effects.—Benzoin produces the general effects of the balsams before mentioned (p. 183). Its power of producing local irritation renders it apt to disorder the stomach, especially in

---

*Berl. Jahrb., xxv. i. 55.
Nicholson's Journal, x. 82.
Poggendorff's Annual. xvii. 179.
Marsden, Sumatra, p. 184.
Phil. Trans. 1840, p. 383.
Ibid. p. 380.
very susceptible individuals. Its constitutional effects are those of a heating and stimulating substance, whose influence is principally directed to the mucous surfaces, especially of the air-tube. It is more acrid and stimulant, and less tonic, than myrrh, to which some pharmacologists have compared it. It has appeared in some instances to act as a stimulant to the sexual organs.

Uses.—As an internal remedy the employment of benzoin is almost wholly confined to chronic pulmonary affections, especially those of the bronchial membrane. Its stimulant properties render it improper in all acute inflammatory complaints, and its acridity prevents its employment where there is much gastric irritation. Its use, therefore, is better adapted for torpid constitutions. Trousseau and Pidoux speak most favourably of the effects of the balsams in chronic laryngitis, as I have before noticed (p. 183). The mode of employing benzoin in balsamic fumigations in this disease, has been before noticed (see p. 183).

Administration.—Benzoin is scarcely ever administered alone. The dose of it in powder is from grs. x. to 3ss.—On account of the agreeable odour evolved when benzoin is heated, this balsam is frequently employed for fumigations, as in the ceremonies of the Roman Catholic church.

1. TINCTURA BENZOINI COMPOSITA, L. E. D.; Balsamum Traumaticum; Compound Tincture of Benjamin; Wound Balsam; Balsam for Cuts; Friar’s Balsam; Balsam for Incisions; Friar’s Drops; The Commander’s Balsam. — (Benzoin, ₤ss. [in coarse powder, ₤iv. E.]; [Storax, strained, ₤ijss. L.; Balsam of Tolu, 5x. [Peru-balsam, ₤ijss. E.]; Aloes, 5v. [East Indian Aloes, 5ss. E.]; Rectified Spirit, Oij. Macerate for fourteen [seven, E. D.] days, [pour off the clear liquor, E.] and strain. The ingredients used by the Dublin College are the same as, and the proportions nearly identical with, those of the London College.) — A stimulating expectorant: administered in chronic catarrhs.—Dose, ½ss. to 5ss. It is decomposed by water. A very pleasant mode of exhibiting it is in the form of emulsion, prepared with mucilage and sugar, or yolk of egg. Tinctura Benzöini composita is occasionally applied to foul and indolent ulcers, to excite the vascular action, and to improve the quality of the secreted matter. It is a frequent application to recent incised wounds. If applied to the cut surfaces it causes temporary pain, and cannot promote adhesion (or union by the first intention), though by exciting too much inflammation it may sometimes prevent it. But when the edges of the wound have been brought together, the tincture may be carefully applied to the lint or adhesive plaster as a varnish and cement. Here it acts mechanically, excluding air, and keeping the parts in their proper position. In the same way, it may sometimes prove serviceable in contused wounds. Court or Black Sticking Plaster (Emplastra adhesivum Anglicum, Ph. Bor.) is prepared by brushing first a solution of isinglass, and afterwards a spirituous solution of benzoin, over black sarcenet.

* Traité de Thérap. ii. 477.
2. FUMIGATING PASTILES. — (Benzoin, in powder, sixteen parts; balsam of tolu; sandal-wood, in powder, of each four parts; true labdanum, one part; a light [linden] charcoal, forty-eight parts; nitrate of potash, two parts; tragacanth, one part; gum Arabic, two parts; cinnamon water, twelve parts. F. S. A. a soft and ductile mass, which is to be formed into cones, with a flat, tripod base. Dry at first in the air, afterwards by a stove). — By burning, these pastiles diffuse a very agreeable odour. They are employed to disguise or overpower unpleasant smells.

The Species ad suffiendum, Ph. Bor., consists of benzoin and amber, of each lb. ss., and lavender flowers, 3ij.

ORDER XLVII.—PYROLACE.E, Lindley.—THE WINTER GREEN TRIBE.

Essential Character. — Calyx free four- more frequently five-partite, persistent. Petals five, free or cohering, perigynous? with an imbricated activation. Stamens twice the number of the petals, to which they are not adherent; anthers bilocular, dehiscing by two pores. Ovarium three- to five-celled, seated on a hypogynous disk. Style one. Stigma roundish or lobed, sometimes slightly indusiatus. Capsule three- to five-celled, three- to five-valved, loculicidally-dehiscent. Placentae adherent at the centre. Seeds indefinite, minute, with a pellicle indusiatus or winged. Embryo minute, at the base of fleshy albumen, with moderately distinct cotyledons. — Herbs, natives of the northern hemisphere, perennial or scarcely under-shrubs, smooth. Stems round, naked, or leafy. Leaves simple, entire or dentate. Flowers racemose, somewhat umbellated, rarely solitary, white or rose-coloured.

Properties.—See Chimaphila umbellata.

CHIMAPHILA UMBELLA'TA, Nuttall, E.—PIPSISSEWA; UMBEL-LATED WINTER GREEN.

History.—The Pipsissewa was first employed medicinally by the aborigines of America. It was introduced to the notice of the profession, in 1803, by Dr. Mitchell.

Botany. Gen. Char. — Calyx five-cleft. Petals five, spreading, deciduous. Stamens ten; two in front of each petal; filaments dilated in the middle. Ovarium rounded-obconical, obtusely angular, umbilicated at the apex. Style very short, concealed in the umbilicus of the ovary. Stigma orbicular, tuberculated, five-crenate. Cells of the capsule dehiscent at the apex; the valves not connected by tomentum.

1 Henry and Guibourt, Pharm. Rais. t. i. p. 402.
2 See p. 217.
3 De Candolle, Prodr. vii. 772.
5 De Candolle, Prod. vii. 775.
**UMBELLATED WINTER GREEN.**

**Sp. Char.**—*Filaments* smooth. *Bracts* linear-awl-shaped. *Leaves* cuneate-lanceolate, of the same colour (De Cand.)


**Hab.**—Woods of Europe, Asia, and more frequently North America.

**Description.**—The officinal parts are the leaves (*folia chimaphilae seu pyrolae*), or the leaves and the stems (*herba chimaphilce seu pyrolce*). The fresh leaves exhale a peculiar odour when bruised: their taste is bitter and astringent. The infusion of the dried herb is rendered green (*tannate of iron*) by sesquichloride of iron.

**Composition.**—The dried plant was analyzed, in 1817, by Elias Wolf*. It consisted of *bitter extractive* 18.0, *resin* 2.4, *tannin* 1.38, *woody fibre*, with a small portion of *gum* and *vegetable calcareous salts*, 78.22.

The active principle has not been isolated. It probably resides in the substance called *bitter extractive*. The *resin* and *tannin*, however, must contribute to the medicinal effect.

**Physiological Effects.**—The fresh leaves appear to possess considerable acridity, depending, probably, on some volatile constituent; for Dr. Barton says, that, when bruised, they produce rubefaction, vesication, and desquamation, if applied to the skin.

The infusion of the dried leaves, when swallowed, acts as a tonic, producing an agreeable sensation in the stomach, and assisting the appetite and digestive process. It promotes the action of the secreting organs, more especially the kidneys, over which, indeed, it has appeared to exercise a specific influence, increasing the quantity of urine, diminishing, as some have imagined, the quantity of lithic acid or lithates secreted, and beneficially influencing several forms of chronic nephritic disease. Indeed, this plant possesses, in its medicinal as well as in its natural-historical and chemical relations, qualities analogous to those belonging to *Uva-ursi*.

**Uses.**—The following are the principal diseases in which it has been employed:

1. *In Dropsies*, accompanied with great debility and loss of appetite, it is useful as a diuretic, as well as on account of its stomachic and tonic qualities. It was introduced to the notice of practitioners in this country, as a remedy for this class of diseases, by Dr. W. Somerville*. Dr. Beatty* has also found it useful in this disease.

2. *In chronic Affections of the Urinary Organs.*—Pyrola has been found serviceable in the various disorders of the urinary organs in

---

* Trans. of the King and Queen's Coll. of Phys., Ireland, vol. iv. p. 23.
which the Uva-ursi frequently proves beneficial; such as cystirrhœa and calculous complaints. It has also occasionally alleviated some cases of hæmaturia, ischuria, dysury, and gonorrhœa.

3. In Scrofula.—We can readily believe that, as a tonic, this remedy may be useful in various forms of scrofula. But it has been supposed by some to possess almost specific powers; and in America its reputation is so high, that in the provinces it acquired the title of "King’s Cure." Dr. Paris¹ says, that "an irregular practitioner, who has persuaded a number of persons in this metropolis that he possesses remedies, obtained from the American Indians, by which he is enabled to cure scrofula in its worst forms," relies for success on chimaphila. In some ill-conditioned scrofulous ulcers, pyrola is used in the form of a wash.

Administration.—Chimaphila is given in the form of decoction or extract: the latter has been employed in doses of ten or fifteen grains.

DECOC'TUM CHIMAPHILÆ, L.; Decoctum Pyroloæ, D.; Decoction of Umbellated Winter Green.—(Chimaphila, ⅜j.; [Distilled, L.] Water, Oij. [Oij. wine-measure, D]. Boil down to a pint, and strain, L.—The Dublin College macerates it for six hours in water, then bruises, and afterwards returns it to the water: the liquor is to be evaporated to a pint).—Dose, ½j. to ½ij.

Order XLVIII.—ERICACEÆ, Lindley.—The Heath Tribe.

ERICÆ, Juss.—ERICÆ, R. Brown.

Essential Character.—Calyx four- or five-partite, almost equal, entirely unadherent to the ovary, persistent. Corolla perigynous or somewhat hypogynous, gamopetalous, four- or five-partite, or with four or five distinct petals, regular or more rarely irregular petals imbricated by aestivation. Stamens definite, equal or double in number to the petals, entirely or almost free from the corolla. Anthers two-celled; cells hard, dry, separate either at the apex or base, often furnished with some appendage, dehiscent by a terminal pore. Ovary free, surrounded at the base by a disk, which is sometimes nectariferous. Style single, rigid. Stigma undivided, toothed, or three-lobed. Fruit capsular, many-seeded, many-celled; dehiscence varies. Seeds inserted in a central placenta, small, indefinite; the testa firmly adhering to the nucleus. Embryo round, in the axis of fleshy albumen; the radicle opposite to the hilum.—Shrubs or under-shrubs, rarely small trees. Leaves alternate, rarely somewhat opposite or verticillate, without stipules, usually rigid, entire, evergreen, articulated on the stem.¹

Properties.—The plants of this order are astringent and diuretic. One or both of these properties they owe to the presence of tannic acid.

¹ Pharmacologia.
² De Candolle, Prodr. vii. 580.
BEARBERRY.

ARCTOSTAPH’YLOS UVA-UR’SI, Sprengel, L. E.—THE BEARBERRY.

Arbutus Uva-ursi, Linn. L.

Sex. Syst. Decandria, Monogynia.

(Folia, L. E.—Leaves, E.)

History.—Some doubt exists whether this plant was known to the ancient Greeks and Romans. Bauhin, and some others, think it is the ἱδαία ἱπως of Dioscorides; but the leaves are very unlike those of Ruscus aculeatus (οξυμορείνη), to which he, as well as Pliny, compares them. The ἀρκτον σταφυλὴ of Galen agrees better with the uva-ursi, though the short description of it applies also to Ribes rubrum.

Botany.—Gen. Char.—Calyx five-partite. Corolla ovate-urceolate; the mouth five-toothed, revolute, short. Stamens ten, inclosed; filaments somewhat dilated at the base, hairy-ciliate; anthers compressed, with two pores at the point, laterally two-awned, awns reflexed. Ovarium globose-depressed, surrounded with three scales; style short; stigma obtuse. Berry (or berried drupe) globose, five-, rarely six-, seven-, or ten-celled; cells one-seeded (De Cand.)

Sp. Char.—Procumbent. Leaves coriaceous, persistent, obovate, quite entire, shining. Flowers disposed in terminal small racemes. Bractlets beneath the pedicles, obtuse, small (De Cand.)

Stems woody, round, and trailing. Leaves alternate, stalked, evergreen: convex and wrinkled above; concave and paler beneath. Bractlets coloured. Sepals pale-reddish, permanent. Corolla rose-coloured, smooth. Berry globose, scarlet, mealy within, very austere and astringent. Seeds seldom more than four or five, though there are the rudiments of eight or ten.

Hab.—Indigenous. Northern parts of Europe, Asia, and America. On dry, stony, and alpine heaths.

Description.—The dried leaves (folia uvae ursi) are of a dark, shining, green colour, and have a bitter astringent taste, but no odour. Their under surface is reticulated. The leaves of Vaccinium Vitis Idaea (Red Whortleberry) are said to be occasionally substituted for those of Uva-ursi; the fraud (which is unlikely to occur in this country) may be detected by the edges of the leaves being minutely toothed, and the under surface dotted; whereas the edges are entire, and the under surface reticulated, in the genuine leaves. Furthermore, the false leaves are deficient in astringency; and their watery infusion is coloured green by sesquichloride of iron, but does not form any precipitate with gelatine; whereas the true ones are highly astringent, and their watery infusion forms a blackish-blue precipitate with the sesquichloride of iron.
Composition.—Uva-ursi leaves were analyzed, in 1809, by MM. Melandri and Moretti, and in 1827 by Meissner. The constituents in 103 parts are, according to the last-named chemist, gallic acid 1.2, tannic with some gallic acid 36'4, resin 4'4, oxidized extractive, with some citrate (?) of lime 0'8, gum with supermalates of lime and soda, and traces of tannin and common salt, 3'3, chrophylle 1.3, gum, (pectic acid?) extracted by potash 17.0, extractive obtained by potash 17'6, lignin 9'6, and water 6'0 (excess 1'3).

Tannic Acid is the active principle of the leaves. An aqueous infusion produces a bluish-black precipitate (tannate of iron) with the ferruginous salts, and a yellowish-white one (tannate of gelatine) with a solution of isinglass. Gallic acid also contributes to the astringency of the leaves.

Physiological Effects. a. On Animals generally.—Most animals refuse to eat this plant; there are, however, some few exceptions to this statement. Birds, it is said, will eat the berries; and Murray tells us that two kinds of insects feed on the plant, one of which (a species of Coccus) yields a crimson dye. Girardi found that an infusion of the leaves might be injected into the urinary bladder of animals with impunity; but when taken internally it excited vomiting, and contraction, and inflammation of the stomach.

b. On Man.—The most obvious effects of Uva-ursi are those of the vegetable astringents before described (see p. 188). But the remarkable benefit frequently obtained by the use of it in affections of the urinary organs—a benefit not equally procurable by the use of other vegetable astringents—leads to the belief that it has some particular influence over these organs; though the only effect observable in healthy persons is an alteration of the colour of the urine (shewing that the colouring matter of the plant is absorbed), and a slight increase in the quantity of this secretion. Alexander found that 3ss. of the powder acted as a mild diuretic (see p. 200). In large doses, the powder readily nauseates. As the astringent principle of Uva-ursi has been detected in the urine, it is not improbable that part of the beneficial effects which this plant produces in affections of the kidneys and of the mucous membrane lining the urinary organs, may be owing to the local action of the tannin, in its passage through and from the kidneys.

Uses.—As an astringent it is applicable to all the purposes for which the vegetable astringents generally are used (see p. 188). It has been employed as an antidote in poisoning by ipecacuanha (see Ipecacuanha). But the principal use of this remedy is in chronic affections of the bladder, attended with increased secretion of mucus, and unaccompanied with any marks of active inflammation. Thus, in the latter stages of catarrhus vesicae, the continued use of Uva-
**Bearberry.** 1337

Ursi is frequently most beneficial. Combined with hyoscyamus, says Dr. Prout, and persevered in steadily *for a considerable time*, it seldom fails to diminish the irritation and quantity of mucus, and thus to mitigate the sufferings of the patients. "It undoubtedly possesses," he adds, "considerable powers in chronic affections of the bladder, for which only it is adapted, its operation being slow, and requiring perseverance." Sir Benjamin Brodie, on the other hand, observes, that "Uva-ursi has the reputation of being useful in some cases of chronic diseases of the bladder, and in this [inflammation] among the rest. I must say, however, that I have been disappointed in the use of Uva-ursi, and that I have not seen those advantages produced by it which the general reputation of the medicine had led me to expect. I have seen much more good done by a very old medicine"—the root of the Cissampelos Pareira. Such are the opposite statements of the effects of this remedy, made by two of the most eminent writers on diseases of the urinary organs. My own experience of it amounts to this: that in some cases the relief obtained by the use of it was most marked; whereas, in other instances, it was of no avail. It is to be remembered, that its astringent operation unfit it for acute cases, and that the alteration which it produces in the condition of the urinary organs is effected very slowly; so that to be beneficial, it requires to be exhibited for a considerable period. *In calculous affections* it has occasionally given relief. De Haen and Van Swieten speak of the good effects of it in these cases. It alleviated the pain, checked the purulent and mucous secretion, and restored the urine to its natural condition. These effects seem to have arisen from its influence over the kidneys and bladder, for it did not appear to affect the calculus. *In chronic bronchial affections*, with profuse mucous or purulent secretion, it may occasionally prove serviceable. Dr. Bourne gave it in powder (in doses of from 8 to 20 grs.) three times daily, in milk, with success.

**Administration.**—The dose of the *powder* is from 2 to 5 j. But the "powdered leaves of this plant are so bulky and disagreeable, that few stomachs will bear to persevere long enough in the use of the requisite quantity; and the same is pretty much the same with the *infusion* and *decoction*." On this account the *extract* is frequently preferred.

1. **Decoction of Bearberry.** (Uva-ursi, bruised, $\frac{3}{8}$; Distilled Water, Oxss. Boil down to a pint, and strain). —Dose, 3 to 5 j., three times a day.

2. **Extract of Bearberry.** (Uva-ursi, bruised, lb. Oxss.; Boiling Distilled Water, Cong. jij. Macerate for twenty-four hours; then boil down to a gallon, and strain the liquor.

---

1 On Affect. of the Urinary Organs, pp. 185 and 268, 2nd ed. 1825.
3 Rat. Med. t. ii. p. 63.
4 Commentaries, t. xvi. p. 300.
5 Cases of Pulmonary Consumption, &c. treated with Uva-ursi. 18
6 Prout, op. cit. p 185.
while hot; lastly, evaporate to a proper consistence).—Dose, grs. v. to grs. xv., twice or thrice daily.

OTHER MEDICINAL ERICAEE.

Gaultheria procumbens, or the Partridge Berry, is a native of the United States of America. It combines the properties of an aromatic and astringent. Its aromatic qualities reside in a volatile oil, its astringency in tannin. It is used in America as a flavouring ingredient, and also as an emmenagogue. The volatile oil of partridge berry (oleum gaultheriae) has been sold in England under the name of oil of winter green. It has a pinkish yellow colour. Its sp. gr. is 1.17. It is used to cover the unpleasant flavour of other medicines (see Syrupus Sarsaparilla, p. 1002). In the dose of a fluidounce it has caused fatal gastritis.

ORDER XLIX.—LOBELIACEE. Jussieu.—THE LOBELIA TRIBE.

Essential Character.—Calyx five-lobed, more or less adherent to the ovary. Corolla persistent, more or less gamopetalous; tubes or petals five, usually irregular, sometimes almost regular; tubes entire or cleft longitudinally. Estivation somewhat valvular. Stamens five, alternate with the lobes of the corolla, usually free, but sometimes adherent to the tube of the corolla; filaments free, or more or less connate; anthers cohering, bilocular, dehiscing longitudinally; pollen ovoid. Ovary inferior or semi-superior, two- or rarely one-celled, then with parietal placenta; style one; stigma surrounded with a ring of hairs. Fruit usually dehiscing at the apex by two valves, rarely from above by an operculum or laterally by three valves, or indehiscent. Seeds indefinite; albumen fleshy; embryo straight.—Lactescent herbes or under-shrubs, rarely small trees. Leaves alternate, without stipules. Flowers usually axillary, solitary, racemose. (Condensed from De Cand.)

Properties.—Dangerous or suspicious plants; mostly acrids or acro-narcotics.

LOBE'LIA INFLA'TA. Linn. L. E.—BLADDER-PODDED LOBELIA; INDIAN TOBACCO.

Sex. Syst. Pentandria, Monogynia.

(Herb, E.)

History.—This plant was employed by the aborigines in America; and after having been for some time used by quacks, was introduced to the notice of the profession by the Rev. Dr. Cutler, of Massachusetts. It was introduced into England in 1829, by Dr. Reece.

Botany. Gen. Char.—Calyx five-lobed; the tube obconical, ovoid or hemispherical. Corolla cleft longitudinally from above, bilabiate; the tube cylindrical or funnel-shaped, straight; the upper lip usually smaller, and erect; the lower generally spreading, broader, three-cleft, or more rarely three-toothed. The two inferior, or occasionally

1 United States' Dispensatory.
2 Thacker's Amer. New Dispensatory, p. 238, 2nd ed.
3 Pract. Treat. on the Anti-asthmatic Properties of Bladder-podded Lobelia. 1829.
all, of the anthers barbed at the point. Ovary inferior or semi-
superior, and (in species very much alike) somewhat free (DeCand.)

Sp. Char.—Stem erect, the lower part simple and shaggy; the up-
per part ramose and smooth. Leaves irregularly serrate-dentate,
hair; the lower ones oblong, obtuse, shortly petioled; the middle
ones ovate-acute, sessile. Flowers small, racemose. Pedicels short,
with an acuminate bract. Calyx smooth, the tube ovoid; the lobes
linear-acuminate, equal to the corolla. Capsule ovoid, inflated (De
Cand.)

Annual; height, a foot or more. Root fibrous. Stem angular.
Leaves scattered; segments of the calyx linear, pointed. Corolla
delicate blue. Anthers collected into an oblong, curved body,
purple; filaments white. Style filiform; stigma curved, and inclosed
by the anthers. Capsule two-celled, ten-angled, crowned with the
calyx. Seeds numerous, small, brown.

Hab.—North America, from Canada to Carolina, and the Mississippi.
Begins to flower in July. The plant should be collected in August
or September.

Description.—The herb (herba lobelia inflata) is usually imported
into this country, prepared by the Shaking Quakers of New Lebanon,
North America. It has been compressed into oblong cakes, weigh-
ing either half a pound or a pound each, and enveloped in blue pa-
per. The dried herb is pale greenish-yellow; its smell is somewhat
nauseous and irritating; its taste burning and acrid, very similar to
that of tobacco. Its powder is greenish.

Composition.—No accurate analysis of lobelia has hitherto been
made. Dr. Colhoun has announced the existence of a peculiar
principle of this plant. From a few experiments which I have re-
cently made on lobelia, I find that it contains a volatile acrid prin-
ciple (oil?); an acid (peculiar?); resin, chlorophyll, gum, extractive,
woody fibre, and perhaps caoutchouc.

1. Volatile Acrid principle (Volatile Oil of Lobelia? Lobelianin?—Water
distilled from lobelia has the peculiar smell and the nauseous acrid taste of
the plant. In one experiment I obtained a thin film of what appeared to be a solid
volatile oil. The distilled water of lobelia is unaffected by acids, sesquichloride
of iron, and tincture of nutgalls.

2. Lobelina (?).—The substance described by Colhoun is said to resemble the
nicotin of Berzelius. It is soft, brown, and deliquescent; and has the acrid taste
of lobelia. It is soluble in alcohol, scarcely so in ether: with acids it forms
salts (Colhoun). By evaporating the tincture of lobelia, and digesting the resi-
due in dilute hydrochloric acid, I have obtained a yellowish-brown extract (im-
pure hydrochlorate of lobelina?), soluble in alcohol, insoluble or nearly so in
ether, and having an acrid taste, like that of lobelia, but stronger. Tincture of
nutgalls added to the aqueous decoction of lobelia causes slight cloudiness (tan-
nate of lobelina?)

3. An Acid (Lobelic? acid).—A decoction of lobelia reddens litmus, and be-
comes, on the addition of sesquichloride of iron, dark olive-brown; and in a
short time a precipitate is formed (lobeliate? of iron). A solution of isinglass
produced no obvious change in the decoction, showing the absence of tannic
acid. Sulphate of copper gave rise to a green precipitate (lobeliate of copper). Nitrate of silver caused a slight precipitate (lobeliate of silver) soluble in nitric acid. The effect produced by the salts of iron on decoction of lobelia is analogous to that caused by the same agents on aloes (see p. 972), and cebadilla (see p. 953).

4. Resin.—By gently evaporating the tincture of lobelia (prepared with proof spirit) a resinous substance separates and floats on the surface of the liquid. It has an exceedingly acrid taste.

**Chemical Characteristics.** — A strong decoction of lobelia dropped into rectified spirit deposits a precipitate (gum). Acetate, and especially diacetate of lead, form yellow precipitates with the decoction. Protonitrate of mercury also forms a copious precipitate. (For other chemical characteristics, see above.)

**Physiological Effects.** — An accurate account of the effects of this plant on man and animals is yet wanting. But from the observations hitherto made its operation appears to be very similar to that of tobacco (see p. 1248); and from this circumstance, indeed, it has been called the Indian Tobacco. I have before remarked, that both in its taste and in the sensation of acridity which it excites in the throat, it resembles common tobacco. This analogy between nicotiana and lobelia, originally noticed by the American practitioners, is confirmed by Dr. Elliotson.

a. On Animals generally.—Horses and cattle have been supposed to be killed by eating it accidentally. An extraordinary flow of saliva is said to be produced by it on cattle.

b. On Man.—aa. In small doses it operates as a diaphoretic and expectorant. Mr. Andrews, who speaks from its effects on himself, says, it has "the peculiar soothing quality of exciting expectoration without the pain of coughing."

bb. In full medicinal doses (as fij. of the powder) it acts as a powerful, nauseating emetic. Hence it has been called the emetic weed. It causes severe and speedy vomiting, attended with continued and distressing nausea, sometimes purging, copious sweating, and great general relaxation. These symptoms are usually preceded by giddiness, headache, and general tremors. The Rev. Dr. M. Cutler, in his account of the effects on himself, says, that taken during a severe paroxysm of asthma, it caused sickness and vomiting, and a kind of prickly sensation through the whole system, even to the extremities of the fingers and toes. The urinary passage was perceptibly affected, by producing a smarting sensation in passing urine, which was probably provoked by stimulus on the bladder. It sometimes, as in the Rev. Dr. Cutler's case, gives almost instantaneous relief in an attack of spasmodic asthma. Intermittent pulse was caused by it in a case mentioned by Dr. Elliotson. Administered by the rectum, it produces the same distressing sickness of stomach, profuse

---

1 Thacher, *American New Dispensatory*, p. 2
2 Thacher, *op. cit.*
perspiration, and universal relaxation, which result from a similar use of tobacco.

γγ. In excessive doses, or in full doses too frequently repeated, its effects are those of a powerful acro-narcotic poison. "The melancholy consequences resulting from the use of Lobelia inflata," says Dr. Thacher," as lately administered by the adventurous hands of a noted empiric, have justly excited considerable interest, and furnished alarming examples of its deleterious properties and fatal effects. The dose in which he is said usually to prescribe it, and frequently with impunity, is a common tea-spoonful of the powdered seeds or leaves, and often repeated. If the medicine does not puke or evacuate powerfully, it frequently destroys the patient, and sometimes in five or six hours.” Its effects, according to Dr. Wood⁶, are, "extreme prostration, great anxiety and distress, and ultimately death, preceded by convulsions." He also tells us that fatal results (in America) have been experienced from its empirical use. These are the more apt to occur when the poison, as is sometimes the case, is not rejected by vomiting.

Uses.—Lobelia is probably applicable to all the purposes for which tobacco has been used (see p. 1251). From my own observation of its effects, its principal value is as an antispasmodic.

1. In asthma (especially the spasmodic kind) and other disorders of the organs of respiration.—Given in full doses, so as to excite nausea and vomiting, at the commencement of, or shortly before, an attack of spasmodic asthma, it sometimes succeeds in cutting short the paroxysm, or in greatly mitigating its violence; at other times, however, it completely fails. Occasionally it has proved serviceable in a few attacks, and, by repetition, has lost its influence over the disease.

To obtain the beneficial influence in asthma, it is not necessary, however, to give it in doses sufficient to excite vomiting. Dr. Elliotson⁷ recommends the use of small doses at the commencement, and says that these should be gradually increased, if neither headache nor vomiting occur; but immediately these symptoms come on, the use of the remedy is to be omitted. Given in this way, I can testify to its good effects in spasmodic asthma. It has also been used in croup, hooping-cough, and catarrhal asthma, but with no very encouraging effects.

2. In strangulated hernia, Dr. Eberle⁸ employed it effectually, instead of tobacco, in the form of enema.

3. As an emetic, it has been employed by Dr. Eberle⁹ in croup; but its operation is too distressing and dangerous for ordinary use.

Administration.—It may be given in powder, infusion, or tincture (alcoholic or ethereal). Dr. Reece employed an oxymel. The dose of the powder, as an emetic, is from grs. x. to 9j.; as an expectorant, from gr. j. to grs. v. It deserves especial notice that the effects of

---

⁷ United States' Dispensatory.
⁸ Lancet, April 15, 1837, p. 144.
⁹ Treat. of the Mat. Med. vol. i. p. 48, 2d ed.
lobelia are very unequal on different persons, and that some are exceedingly susceptible of its influence.

1. TINCTURA LOBELIE, E.; Tincture of Lobelia.—(Lobelia, dried and in moderately fine powder, 3v.; Proof Spirit, Oij. This tincture is best prepared by the process of percolation, as directed for the tincture of capsicum; but it may also be made in the usual way by digestion).—Dose, as an emetic and antispasmodic, from f3j. to f3ij. repeated every two or three hours until vomiting occur; as an expectorant, m. to mxx. For children of one or two years old, the dose is m. to mxx.

2. TINCTURA LOBELIE ETHEREA, E.; Ethereal Tincture of Lobelia.—(Lobelia, dried, and in moderately fine powder, 3v.; Spirit of Sulphuric Ether, Oij. This tincture is best prepared by percolation, as directed for tincture of capsicum; but it may be also obtained by digestion in a well-closed vessel for seven days).—This may be used in the same doses as the alcoholic tincture.

With some persons the ether is apt to disagree, and for such the alcoholic tincture is preferred. Whitlaw's ethereal tincture, used by Dr. Elliotson, consisted of Lobelia, Ibj.; rectified spirit, Oiv.; spirit of nitric ether, Oiv.; spirit of sulphuric ether, 3iv. Macerate for fourteen days, in a dark place.

OTHER MEDICINAL LOBELIACEÆ.

LOBELIA SYPHILITICA, a native of the United States, possesses emetic, cathartic, and diuretic properties. It derived its name siphilitica from its supposed efficacy in syphilis, as experienced by the North American Indians, who considered it a specific in that disease, and from whom the secret of its use was purchased by Sir W. Johnson. Its antisyphilitic powers appear to have no foundation in fact. The root was the part used: it was given in the form of decoction.

ORDER L.—COMPOSITÆ, De Candolle.

SYNANTHEREÆ, Richard; MUTISIACEÆ, CICHERACEÆ, ASTERACEÆ, and CYSAHCEÆ, Lindley.

Essential Character.—Calyx gamosepalous; the tube adherent to the ovary; the limb generally degenerated into a pappus, or sometimes into a scaly corona, or entirely abortive. Pappus simple, pilose, ramose, or plumose; stipitate by the prolongation of the tube beyond the ovary or sessile. Corolla inserted into the upper part of the tube of the calyx, gamopetalous; the nerves in the tube being directed towards the sinuses; in appearance five, but really ten; which then proceed from the sinuses, along the margins of the lobes, to the apex, where they inosculate [neuramphipetalous.] Tube various in length; in the regular corolla, often funnel-shaped. Lobes generally five, valvate in restitution. Corolla regular or irregular; the regular, of five equal lobes (tubular corolla); the irregular two-lipped (bilabiate corolla) or strap-shaped, five-dentate (ligulate corolla). Stamens generally five; in the female florets

---

* Elliotson, Lancet, June 1832; and April 15, 1837.
* Lancet, June 3, 1837.
* Pearson, Observ. on Various Art. of the Mat. Med. p. 70.
wanting, or rudimentary. Filaments adnate to the tube of the corolla; distinct or monadelphous; articulated near the apex, the upper portion acting as a connective. Anthers erect; connected in the tube, which is perforated by the style (syngenesious or synantherous). Pollen rough or smooth, globose or elliptical. Ovary adherent to the calyx, one-seeded. Style generally terete and bifid at the apex; the branches (commonly called stigmas) more or less free; flat above, convex beneath. Stigmatic glands (true stigmas) ranged in a double row along the upper margin of the branches of the style, more or less prominent; the upper portion of the style, in hermaphrodite flowers, provided with hairs, which collect the pollen. Fruit consisting of an achene and calyx closely connected, and enclosing the embryo; the achene one-celled, articulated on the receptacle, generally sessile; rostrate or not rostrate at the apex. Seed attached to the base of the fruit by a very short funiculus. Inner portion of the spermoderm (endopleura of De Cand., albumen of Lessing) diaphanous, pierced by the bifid funiculus. Embryo erect, with a short, straight, inferior radicle, and an inconspicuous plumule. Florets collected into dense heads (capitules); either all hermaphrodite (homogamous) or the outer ones female or neuter, the inner being hermaphrodite or male (heterogamous); or the capitules are entirely composed of florets of distinct sexes (monoeious, dioecious, heterocephalous). Capitules with the florets sometimes all tubular (discoid or flos-culiferous); sometimes all ligulate (ligulate or semi-flos-culiferous); sometimes the central florets are tubular, while those of the ray are ligulate (radiate). Involucre of one or many rows of more or less united scales, surrounding the receptacle which is formed by the concretion of the extremities of the peduncles; either covered with chaffy scales (paleaceous) or naked (epaleaceous): sometimes the receptacle is indented with pentagonal hollows (areolated), or the margins of these are slightly raised (alveolated) or fringed (fimbriated).—Herbs or shrubs (rarely trees), forming almost a tenth part of the vegetable kingdom.

Leaves simple, alternate, or opposite (Macreight, condensed from De Candolle.)

Properties.—Variable. A bitter principle pervades most species; this communicates tonic properties. The laxative and anthelmintic qualities possessed by some of the species may, perhaps, depend on the same principle. Volatile oil is frequently present: it communicates aromatic, carminative, diaphoretic, and, in some cases, acrid properties. Bitter matter and volatile oil are often associated in the same plant. A few of the Compositeae are narcotic.

Tribe I.—EUPATORIACEÆ.

1. TUSSILA'GO FAR'FARA, Linn. L. D.—COLTSFOOT.

Sex. Syst. Syngenesia, Polygamy supertfua.

(Folia et Flores, D.)

History.—This is the βυχων of Hippocrates and Dioscorides. By the Greeks and Romans it was smoked, to relieve obstinate cough (see p. 1241).

Botany. Gen. Char.—Head many-flowered, heterogamous; florets of the ray females, in many rows, very narrowly ligulate; of the disc males, few in number, tubular, with a campanulate five-toothed limb. Receptacle naked. Involucral scales in about one row, oblong, obtuse. Anthers scarcely tailed. Styles of the disc inclosed, abortive; of the ray bifid, with taper arms. Achene of the ray oblong-cylindrical, smooth; of the disc abortive. Pappus of the ray in many rows; of the disc in one row, consisting of very fine setæ (De Cand.)

**Hab.**—Indigenous. Various parts of Europe and Asia. Flowers in March and April.

**Description.**—The herb and flowers (*herba et flores farfarae seu tussilaginis*) have a bitterish mucilaginous taste. The dried leaves are odourless, but the flowers retain a slight odour. The watery infusion becomes green (*tannate of iron*) on the addition of sesqui-chloride of iron.

**Composition.**—No analysis of the plant has yet been made. Mucilage, bitter extractive, tannic acid, colouring matter, salts, and woody fibre, are the principal constituents.

**Physiological Effects.**—The effects are not very obvious: they may be regarded as emollient, demulcent, and very slightly tonic.

**Uses.**—Employed as a popular remedy in pulmonary complaints (chronic coughs especially.)

**Administration.**—The *decoction* (prepared by boiling $\frac{1}{2}j$, or $\frac{3}{4}j$ of the plant in $\frac{1}{2}j$ of water to $\frac{1}{2}j$.) may be taken in doses of $\frac{3}{2}ij$ or $\frac{3}{4}ij$, or ad libitum.

** Tribe II.—ASTEROIDEÆ.**

2. **IN'ULA HELEN’IUM, Linn. L. D.**—ELECAMPANE.

**Ser. Syst.** Syngenesia, Polygamia superflua.

(Radix, L. D.)

**History.**—This is the *ἐλέναον* of Hippocrates and of Dioscorides.

**Botany.** *Gen. Char.*—*Head* many-flowered, heterogamous; *florets* of the ray females, in one row, sometimes by abortion sterile, usually ligulate, rarely somewhat tubular and trifid; those of the disc hermaphrodite, tubular, five-toothed. *Involucre* imbricated in several rows. *Receptacle* flat or somewhat convex, naked. *Anthers* with two setæ at the base. *Achene* without a beak, tapering, or in *I. Helenium*, four-cornered. *Pappus* uniform, in one row, composed of capillary, roughish setæ (De Cand.)

**Sp. Char.**—*Stem* erect. *Leaves* dentate, velvety-tomentose beneath, acute; the radical ones ovate, greatly attenuated into petioles; those of the stem semi-amplexicaul. *Peduncles* few, one-headed, corymbose at the apex (De Cand.)


**Hab.**—Indigenous. Various parts of Europe. Flowers in July and August.

---

2 Lib. i. cap. 27.
Description.—The dried root (radix helenii seu enula) of the shops consists of longitudinal or transverse slices, which are yellowish-grey, and have an aromatic or camphoraceous smell, and a warm bitter taste. Iodine colours the root brown. Sesquichloride of iron produces, in the infusion, a green colour (tannate of iron).

Composition.—The root has been analysed by John, by Funcke, and by Schulz. The constituents, according to John, are—volatile oil a trace, elecampane-camphor 0.3 to 0.4, wax 0.6, acrid soft resin 1.7, bitter extractive 36.7, gum 4.5, inulin 36.7, woody fibre 5.5, oxidized extractive with coagulated albumen 13.9; besides salts of potash, lime, and magnesia.

1. Helenin.—Elecampane-camphor. — Colourless, prismatic crystals, heavier than water, fusible, volatile, very soluble in ether, oil of turpentine, and boiling alcohol, but insoluble in water. Nitric acid converts it into resin (nitrohelenin). Its formula, according to Dumas, is C_{14}H_{10}O_{2}; according to Gerhardt, C_{15}H_{10}O_{2}. Its composition, therefore, is closely allied to that of creasote.

2. Resin.—Brown, fusible in boiling water, and soluble both in alcohol and ether. When warm it has an aromatic odour. Its taste is bitter, nauseous, and acrid.

3. Inulin (Alantin and Menyanthin, Trommsdorff; Elecampa, Henry; Dahlin and Datiscin, Payen). — An amylaceous substance, organized, according to Raspail, like common starch. It is very slightly soluble in cold water, but very soluble in boiling water, from which it is deposited as the solution cools. It is slightly soluble in boiling alcohol. Iodine gives it a yellow tint: this distinguishes it from ordinary starch. Its formula is C_{12}H_{22}O_{11}. In combination with lead it loses an atom of water, and becomes C_{12}H_{21}O_{10}.

4. Bitter Extractive. — In this resides the tonic property of elecampane.

Physiological Effects.—An aromatic tonic. It acts as a gentle stimulant to the organs of secretion, and is termed diaphoretic, diuretic, and expectorant. Large doses cause nausea and vomiting. It was formerly supposed to possess emmenagogue properties. In its operation it is allied to sweet-flag (see p. 930) and senega.

Uses.—It is rarely employed now by the medical practitioner. It has been used in pulmonary affections (as catarrh), attended with profuse secretion and accumulation of mucus, but without febrile disorder or heat of skin. In dyspepsia, attended with relaxation and debility, it has been administered with benefit. It has also been employed in the exanthemata to promote the eruption.

Administration.—Dose of the powder, 5ϕ to 5ϕ; of the decoction (prepared by boiling 5ss. of the root in Oj. of water), fϕ to f3ϕ.

Tribe III.—SenecionideÆ


Sex. Syst. Syngenesis, Polygamia superflua, (Flores simplices, L.—Flowers, E.—Flores, D.)

History.—The θεραπεις of Dioscorides is Anthemis Chia.
Botany. Gen. Char.—Head many-flowered, heterogamous; florets of the ray female, in one row, ligulate (rarely none, or somewhat tubular); of the disc hermaphrodite, tubular, five-toothed. Receptacle convex, oblong, or conical; covered with membranous paleæ between the flowers. Involucre imbricated, in a few rows. Arms of the style without appendages at the apex. Achene tapering or obtusely four-cornered, striated or smooth. Pappus either wanting or a very short, entire, or halved membrane; sometimes auriculate at the inside (De Cand.)

Sp. Char.—Stem erect, simple, ramose, downy-villose. Leaves downy, sessile, pinnatisect; segments split into many linear-setaceous lobes. Branches flowery, naked, one-headed at the apex. Scales of the involucre obtuse, hyaline at the margin. Paleæ of the receptacle lanceolate, pointless, somewhat shorter than the floret, slightly eroded at the margin (De Cand.)

Roots shiny, with long fibres. Stems in a wild state prostrate, in gardens more upright, a span long, hollow, round. Flowers of the disc yellow; of the ray white. Receptacle convex.

Anthemis nobilis flore pleno, De Cand. Double Chamomile.—In this variety, the yellow tubular florets of the disc are entirely or partially converted into white ligulate florets.

Sir J. Smith speaks of the discoid variety, destitute of rays, as being more rare. It ought perhaps, he adds, to be preferred for medicinal use.

Hab.—Indigenous; on open gravelly pastures or commons. Perennial. Flowers from June to September. Cultivated at Mitcham and other places, for the London market.

Description.—The floral heads (flores chamaemeli romani seu anthemidis nobilis) have a strong and peculiar odour, and a bitter aromatic taste. When fresh, they exhibit a strong and peculiar fragrancy when rubbed. They should be dried in the shade. The single flowers (flores simplices, Ph. L.) are to be preferred, as they have the largest yellow discs, in which the volatile oil resides. The large double flowers (chamemelum flore pleno, Lewis; chamemelum nobili flore multiplii, C. Bauhin), however, are usually the most esteemed: but as their yellow discs containing the oil are small, or scarcely any, they contain less volatile oil.

Composition.—These flowers have not yet been analyzed. The most important constituents are volatile oil, bitter extractive, and tannic acid.

1. Volatile Oil (see p. 1347).
2. Bitter Extractive.—The bitter principle of chamomiles is soluble in both water and alcohol.
3. Tannic Acid.—The cold watery infusion of the flowers is darkened by sesquichloride of iron, and forms a precipitate with gelatine.

"Eng. Fl. vol. iii. p. 457."
Freudenthal analyzed the dried flowers of the Common Wild Chamomile (Matricaria Chamomilla), and found them to consist of volatile oil 0·28, resin 7·89, bitter extractive 8·57, gum 7·39, bitartrate of potash 5·31, phosphate of lime 0·97, woody fibre, soluble albumen, water, and loss 69·6.

Physiological Effects.—Chamomiles produce the effects of the aromatic bitter tonics before alluded to (see p. 189): their aromatic qualities depend on the volatile oil, their stomachic and tonic qualities on bitter extractive and tannic acid. In large doses they act as an emetic.

Uses.—Chamomiles are an exceedingly useful stomachic and tonic in dyspepsia, with a languid and enfeebled state of stomach and general debility. As a remedy for intermittents, though they have gained considerable celebrity, they are inferior to many other medicines. The oil is sometimes used to relieve flatulency, griping, and eructation; and the warm infusion is employed as an emetic.

Administration.—The powder is rarely employed, on account of the inconvenient bulk of the requisite quantity, and its tendency to excite nausea.—Dose grs. x. to 5ss. or more. The infusion is the more elegant preparation; this, as well as the extract and oil, are official. Fomentations of Chamomile flowers consist of the infusion or decoction, and are used quite hot; but they present no advantage over water of the same temperature. Flannel bags filled with chamomiles and soaked in hot water are useful topical agents for the application of moist warmth, on account of their retention of heat.

1. INFUSUM ANTHEMIDIS, L. E. Infusum Chamaemeli, D.; Infusion of Chamomile; Chamomile Tea.—(Chamomile, 5v.; Boiling [distilled] Water, Oj. Macerate for ten [twenty, E.] minutes [twenty hours, D.] in a lightly-covered vessel, and strain [through linen, D.].)—It is taken warm, to excite gentle vomiting, or to promote the operation of an emetic. The cold infusion is usefully employed as a domestic stomachic bitter and tonic in dyspepsia.—Dose of the cold infusion, f3j. to fsj.; of the warm infusion, ad libitum.

2. EXTRACTUM ANTHEMIDIS, E.; Extractum Chamaemeli, D.; Extract of Chamomile.—(Chamomile, lb. j.; boil it with a gallon of water down to four pints; filter the liquid hot; evaporate in the vapour-bath to a due consistence, E.)—One hundred weight of the flowers yields about forty-eight pounds of extract. The volatile oil is dissipated during the preparation. The extract is a bitter stomachic and tonic. It is generally used as a vehicle for the exhibition of other tonics in the form of pills. Conjoined with the oil of chamomile, we can obtain from it all the effects of the recent flowers.—Dose, grs. x. to 9j.

3. OLEUM ANTHEMIDIS, L. E.; Oleum Chamaemeli Romani; Oleum Chamaemeli; Oil of Chamomile; Oil of the Roman Chamomile. (Obtained by submitting the flowers to distillation with water).—One-
hundred weight of flowers yields from $\frac{5}{5}$ to $\frac{5}{5}$ of oil. The oil of the shops is frequently brought from abroad, and is probably the produce of another plant (Matricaria Chamomilla). Oil of chamomile when first drawn is pale blue, but by exposure to light and air it becomes yellow or brownish. Lewis says it is yellow, with a cast of greenish or brown. Its sp. gr. is $0.9083$. When fresh, its odour is strong and peculiar, and its taste pungent and nauseous. It is stimulant and antispasmodic. It is a frequent addition to tonic and cathartic pills; it communicates stimulant qualities to the former, and is believed to check the griping caused by the latter. It is occasionally exhibited in the form of elæosaccharum.—Dose, $\frac{1}{4}$ to $\frac{1}{4}$.

4. ANACY'CLUS PYRETHR'UM, De Cand. E.—PELLITORY OF SPAIN.

Anthemis Pyrethrum, L. D.

(Radix, L. D.—Root, E.)

History. — Dioscorides was acquainted with πυρέθρου, and speaks of its use in toothache. The word pyrethrum is mentioned once only by Pliny.

Botany. Gen. Char. — Head many-flowered, heterogamous. Florets of the ray female, sterile, ligulate or somewhat so, very rarely tubular; of the disc hermaphrodite, with five callous teeth. Receptacle conical or convex, paleaceous. Involute in few rows, somewhat campanulate, shorter than the disc. All the corollas with an obcompressed, two-winged, exappendiculate tube. Style of the disc, with exappendiculate branches. Achene flat, obcompressed, bordered with broad, entire wings. Pappus short, irregular, tooth-letted, somewhat continuous with the wings on the inner side (De Cand.)

Sp. Char. — Stems several, procumbent, somewhat branched, pubescent. Radical leaves, expanded, petiolated, smoothish, pinnatisect; the segments pinnatifid, with linear subulate lobes; the cauline leaves sessile. Branches one-headed. Involute scales lanceolate, acuminate, brown at the margin. Receptacle convex, with oblong-obovate, obtuse paleæ (De Cand.)

Root fusiform, fleshy, very pungent, and when fresh, producing a sensation of extreme cold, followed by heat when handled. Florets of the ray white on the upper side; purplish beneath; of the disc yellow.

Hab. — Barbary, Arabia, Syria, and perhaps Candia.

Description. — The root (radix pyrethri) is imported from the Levant packed in bales. It consists of inodorous pieces, about the
length and thickness of the little finger, covered with a thick brown bark, studded with black shining points, breaking with a resinous fracture, and presenting internally a radiated structure. When chewed it excites a prickling sensation in the lips and tongue, and a glowing heat. None has been imported since 1836, when duty (6d. per lb.) was paid on 420 lbs.

**COMPOSITION.** — It was analyzed by John, by Gautier, by Parisel, and lastly by Koene. Parisel obtained *acrid matter* (*pyrethrin*) 3, *inulin* 25, *gum* 11, *tannin* 0.55, *colouring matter* 12, *lignin* 45, *chloride of potassium* 0.79, *silica* 0.85, and *iron* a trace.

*Pyrethrin* ; *Acrid Principle* ; *Resin.* — In this resides the activity of the root. It exists in greater abundance in the bark than in the wood. It is brown, soft, has a burning acrid taste, is insoluble in water, but soluble in ether and alcohol; still more so in acetic acid, and the oils (volatile and fixed). Koene says, pyrethrin consists of three substances:

1. A brown acrid resin, soluble in alcohol, insoluble in water or caustic potash.
2. An acrid brown fixed oil, soluble in potash.
3. A yellow acrid oil, soluble in potash.

**Physiological Effects.** — Pellitory is an energetic local irritant. Applied to the skin, it acts as a rubefacient.

**Uses.** — Scarcely ever employed internally. Its principal use is to yield a tincture for the relief of toothache. As a masticatory and sialogogue it is chewed in some rheumatic and neuralgic affections of the head and face, and in palsy of the tongue. In relaxation of the uvula it is occasionally employed in the form of gargle. It was formerly employed internally as a gastric stimulant.

**ADMINISTRATION.** — Dose, as a *masticatory*, 5ss. to 5j.; *Tinctura pyrethri* (composed of pyrethrum, water, of each, one part; rectified spirit, five parts) is used to relieve toothache.

5. **ARTEMISIA ABSINTHIUM, L. E. D.** — **COMMON WORMWOOD.**

**Sex. Syst.** Syngenesia, Polygamia superflua.

**History.** — In all probability this plant is the άψωνθον of Hippocrates and Dioscorides. The term *wormwood* occurs several times in our translation of the Old Testament; but the plant meant would appear to be both bitter and poisonous.

**Botany.** **Gen. Char.** — Heads discoidal, homogamous or heterogamous. Florets of the ray in one row, usually female and three-toothed, with a long bifid protruding style; of the disc five-toothed, hermaphrodite, or by the absorption of the ovary, sterile or male. Involucral scales imbricated, dry, scarios at the edge. *Receptacle*
without palea, flattish or convex, naked or fringed with hairs. Achene obovate, bald, with a minute epigynous disc (De Cand.)

**Sp. Char.**—An erect undershrub. Leaves silky, hoary, tripinnate-sect; the segments lanceolate, somewhat dentate, obtuse. The heads small, racemose-paniculate, globose, nodding. Exterior scales of the involucre somewhat silky, linear, lax; interior ones rounded, scarious, somewhat naked (De Cand.)

_Herb_ covered with silky hoariness, intensely bitter, with a strong peculiar odour. _Stems_ numerous, about a foot high. _Leaves_ rather greener on the upper side; lower ones on long footstalks; upper on shorter, broader, somewhat winged ones. _Florets_ pale yellow, or buff.

**Hab.**—Indigenous; in waste grounds. Perennial. Flowers in August.

**Description.**—The dried herb with the flowers, or the tops (_herba seu summitales absinthii_), have a whitish-grey appearance, a soft feel, a strong aromatic and somewhat unpleasant odour, and an extremely bitter aromatic taste. The cold watery infusion becomes greyish, olive-green, and turbid (_tannate of iron_) on the addition of sesquisilic chloride of iron.

**Composition.**—This plant has been analyzed by Kunsemuller, by Bracconnot, and by Haynes. The extract was examined by Leonardi. Bracconnot found volatile oil 0.15, green resin 0.50, bitter resin 0.233, albumen 1.250, starch 0.133, azotized matter, having little taste, 1.333, bitter azotized matter 3.0, woody fibre 10.833, absinthe of potash 0.917, nitrate of potash 0.333, sulphate of potash and chloride of potassium traces, water 61.2.

1. **Volatile Oil (Oleum Absinthii).**—Green, sometimes yellow or brownish oil, having a strong odour of wormwood, and an acrid, bitter, peculiar taste. Its sp. gr. is 0.972. Nitric acid colours it green, then blue, afterwards brown.

2. **Bitter Principle (Absinthin).**—Caventou obtained what he calls the pure bitter principle by precipitating an infusion of wormwood by acetate of lead, and separating the excess of lead by sulphuretted hydrogen. The liquor was then evaporated to dryness, and the extract digested in alcohol mixed with ether; and the solution abandoned to spontaneous evaporation. The product was a very bitter matter, in brown ramifications. By heat no crystalline sublimate could be obtained.

3. **Absinthic Acid.**—May be precipitated, according to Bracconnot, from the watery infusion of wormwood by acetate of lead. It is very acid, uncrystallizable, and deliquescent. It does not precipitate the solutions of the nitrates of lead, mercury, and silver; but causes flocculent precipitates when dropped into barites or lime-water. Absinthe of ammonia crystallizes in quadrilateral prisms, insoluble in alcohol.

4. **Salt of Wormwood (Sal Absinthii).**—This is impure carbonate of potash, obtained by incinerating wormwood.

**Physiological Effects.**—In moderate doses it produces the ordinary effects of the aromatic bitter tonics (see p. 189). Its bitter prin-
ciple becomes absorbed: hence the flesh and milk of animals fed with it are rendered bitter. Borrich says that the milk rendered bitter by it proves noxious to the infant.

Large doses irritate the stomach and excite the vascular system. A specific influence over the nervous system, characterized by headache, giddiness, &c. has been ascribed to it. This has usually been supposed to depend on the volatile oil; but a similar power has been assigned to the bitter principle.

Uses.—Wormwood is but little employed in medicine. It is adapted for dyspepsia occurring in debilitated and torpid constitutions. It was at one time celebrated for the cure of intermittents; but it has been superseded by other and more powerful febrifuges. It is said to be efficacious as an anthelmintic, but is very rarely employed as such.

Administration.—Dose of the powder, 3j. to 5j.; of the infusion (prepared by macerating 3j. of the dried herb in 0j. of boiling water), 5j. to 5;j.

EXTRACTUM ARTEMISIÆ ABSINTHII, D. Extract of Common Wormwood.—(Prepared in the usual way from the tops of wormwood, by water).—It possesses the bitterness of the plant, but is devoid of the odour, flavour, and aromatic qualities dependent on the volatile oil. It is stomachic and tonic.—Dose, gr. x. to 3j.

6. ARTEMISIA MOX'A, De Cand.—MOXA-WEED.

Sex. Syst. Syngenesia, Polygamia superflua.

(Folia; Moxa).

History.—The moxa is a small mass (usually cylindrical or pyramidal) of combustible vegetable matter, employed for effecting cauterization (moxybustion of Percy). It has long been known that the Chinese and Japanese prepared it from a species of Artemisia. The Dublin College has adopted _A. chinensis_ and _A. indica_ as yielding it. But Dr. Lindley says it is from the _A. Moxa_, De Cand., and not from _A. chinensis_, that it is prepared; and Dr. Roxburgh observes, that the _A. indica_ has none of the soft white down on the under side of its leaves, of which moxa is made in Japan and China.

Botany. Gen. Char.—See _Artemisia Absinthium_.


Hab.—China.
Preparation.—The Chinese and Japanese moxa is said by some to be prepared from the cottony or woolly covering of the leaves of the Artemisia. Thunberg, however, states, that in Japan the dried tops and leaves are beat till they become like tow; this substance is then rubbed between the hands till the harder fibres and membranes are separated, and there remains nothing but a fine cotton.

European moxas are usually made either with cotton-wool (which has been soaked in a solution of nitrate or chlorate of potash) or the pith of the sun-flower (Helianthus annuus), which contains naturally nitrate of potash. Their shape is either cylindrical or conical: their size is variable. Percy’s moxas, prepared by Robinet, are usually found in the London shops. They consist of pith, rolled in cotton, and enveloped in muslin.

Physiological Effects. — These are two-fold, primary and secondary.

1. Primary Effects.—The moxa first excites an agreeable sensation of heat. This is speedily followed by pain, which progressively increases until it becomes most severe, and the vitality of the part is destroyed. The parts immediately around the eschar are intensely red. The eschar may be deep or superficial, according to the time the moxa is kept in contact with the skin. The action of the moxa differs from that of the metallic actual cautery in this important particular, that the heat acts slowly, increases gradually, and penetrates to a greater depth.

2. Secondary Effects.—These consist in the production of inflammation, by which the eschar is separated, and establishment of suppuration more or less profound, according to circumstances.

Uses.—Moxa is employed in the treatment of diseases, on the principle of counter-irritation, before explained (p. 145). This, indeed, has been denied by those who consider the production of a discharge as the only mode of effecting counter-irritation.

Moxa is adapted for chronic diseases and maladies characterized by lesions of sensation or motion. It is, on the other hand, injurious in all acute inflammatory diseases.

The following is a list of the principal diseases against which moxa has been employed; and for further information respecting them, I must refer the reader to the writings of Larrey, Boyle, and Wallace, as the limits and objects of this work do not admit of further details.

1. Paralysis of the sentient or motor nerves.—Great benefit has been obtained by the use of moxa in this class of diseases. Amaurosis, deafness, loss of voice and speech, hemiplegia, and especially paraplegia, have been relieved by it.

2. Painful affections of nerves, muscles, or the fibrous tissues; as neuralgia, sciatica, lumbago, and chronic rheumatism.
3. Spasmodic diseases, either of particular parts, or of the general system; as spasmodic asthma, epilepsy, &c.
4. Diseased joints and spinal maladies; as chronic articular inflammation, white swelling, stiff joints, hip-joint disease, curvature of the spine, &c.
5. Visceral diseases; as organic diseases of the brain, phthisis pulmonalis, chronic hepatitis and splenitis, &c.

Application.—In the employment of moxa, two points deserve especial attention: first, the parts proper or otherwise for its use; and secondly, the mode of applying it.

1. Parts proper or improper for its application.—The moxa has been applied to nearly every part of the body. Larrey, however, considers the following parts improper for its application:

1. All that part of the skull covered by skin and pericranium only.
2. The eyelids, nose, ears, larynx, trachea, sternum, glandular parts of the breast, linea alba, and parts of generation.
3. Over the course of superficial tendons, articular prominences, where there is danger of injuring the articular capsules, and projecting points of bone.

2. Mode of application.—The moxa is to be set on fire at the summit, and its base is then applied (by a porte-moxa, pair of forceps, wire, or other convenient instrument) to the skin. To prevent the surrounding parts being burnt by sparks, Larrey recommends them to be previously covered with a wet rag, perforated in the centre, to admit the base of the moxa. If the combustion flag, it may be kept up by the breath, blow-pipe, or bellows. After the combustion is over, Larrey recommends the immediate application of liquor ammoniae, to repress excessive inflammation and suppuration.


 Sex. Syst. Syngenesia, Polygamia superflua.

(Folia, Z.)

History.—Tansy was ordered to be cultivated in gardens by Charlemagne.

Botany. Gen. Char.—Heads either homogamous or heterogamous; namely, florets of the ray female, in one row, usually three- to four-toothed. Receptacle naked, convex. Involucre campanulate, imbricated. Corollas of the disc four- to five-toothed. Achene sessile, angular, smooth, with a large epigynous disc. Pappus either none, or membranous, coronet-shaped, minute; either entire or equally toothed, or somewhat unequal, being more evident on the external side (De Cand.)

Sp. Char.—Stem herbaceous, erect, smooth. Leaves smoothish, bipinnatifid, the rachis and lobes inciso-serrate. Corymbus many-headed. Internal scales of the involucre obtuse, scariose at the apex. Pappus short, equal, five-lobed (De Cand.)
Root moderately creeping. Stems 1½ to 2 feet high. Leaves dark green. Florets golden yellow; the marginal ones often wanting.—There are three varieties of it,—the common, the curled (generally preferred), and the variegated (chiefly for ornament).

Hab.—Indigenous; hilly pastures, hedges, road-sides. Cultivated in gardens as a medicinal or pot-herb, or for ornament.

Description.—The herb and flowers (herba et flores tanaceti) have a disagreeable, aromatic odour, and a nauseous, strong, aromatic, bitter taste. The infusion is rendered dark green and turbid (tannate of iron) by sesquichloride of iron.

Composition.—Both leaves and flowers have been analyzed by Fromherz and by Peschieri. The constituents of the leaves, according to Peschier, are volatile oil, fatty oil, wax or stearins, chlorophyll, bitter resin, yellow colouring matter, tannin with gallic acid, bitter extractive, gum, woody fibre, tanacetic acid.

1. Volatile Oil (Oleum Tanaceti).—Yellow, sometimes green. Has the peculiar odour of the plant; and a warm, bitter taste. Its sp. gr. is 0.952.
2. Bitter Matter.—This is the substance usually denominated extractive; but, according to Peschier, it is in part resin.
3. Tanacetic Acid.—Crystallizable. Precipitates lime, baryta, and oxide of lead. With a solution of acetate of copper it causes a precipitate.

Physiological Effects.—Tansy produces the usual effects of the aromatic bitter tonics (see p. 181). “A fatal case of poisoning with half an ounce of oil of tansy is recorded in the Medical Magazine for Nov. 1834. Frequent and violent clonic spasms were experienced, with much disturbance of respiration; and the action of the heart gradually became weaker till death took place from its entire suspension. No inflammation of the stomach or bowels was discovered upon dissection.”

Uses.—The young leaves are occasionally employed by the cook to give colour and flavour to puddings, and in omelets and other cakes. In medicine the plant is rarely employed by the regular practitioner; but it it has been recommended in dyspepsia, intermittents, and gout. Its principal use, however, is as a vermifuge.

Administration.—Tansy tea (prepared by infusing 5ij. of the herb in Oj. of boiling water) may be taken in doses of from ½ij. to ½ijj. A drop or two of the oil may be added to vermifuge powders and pills. The seeds have been used instead of semina santonici.

8. AR'NICA MONTA'NA, Linn. D.—MOUNTAIN ARNICA.

Sex. Syst. Syngenesia, Polygamy superflua.

(Flores, Folia, et Radix, D.)

History.—This plant does not appear to have been known to the ancients; at least no undoubted mention of it occurs in their writings.
**Botany.**  Gen. Char.—Head many-flowered, heterogamous.  *Florets* of the ray in one row, female, ligulate; of the disc, hermaphrodite, tubular, five-toothed.  *Involucre* campanulate, in two rows, with linear-lanceolate equal scales.  *Receptacle* fringed, hairy.  Tube of the corolla shaggy.  Rudiments of sterile *stamens* sometimes remaining in the ligule.  *Style* of the disc with long arms, covered by down running a long way down, and truncated or terminated by a short cone.  *Achene* somewhat cylindrical, tapering to each end, somewhat ribbed and hairy.  *Pappus* in one row, composed of close, rigid, rough hairs (De Cand.)

**Sp. Char.**—Radical leaves obovate, entire, five-rowed; the cauline vases in one or two pairs.  *Stem* one- to three-headed.  *Involucres* rough, with glands (De Cand.)

Perennial.  *Stem* hairy, about one foot high.  *Florets* yellow, tinged with brown.

**Hab.**—Meadows of the cooler parts of Europe, from the sea-shore to the limits of eternal snow.

**Description.**—The root (*radix arnicæ*) consists of a cylindrical caudex, from two to three inches long, and two or three lines thick, from which many fibres arise.  It is brown externally, has a disagreeable yet aromatic odour, and an acrid nauseous taste.  The dried flowers (*flores arnicæ*) are yellowish, and have a similar taste and smell to the root.  The leaves (*folia arnicæ*) have a like smell.

**Composition.**—Pfaff² found in the root volatile oil 1-5, acrid resin 5-0, extractive 32-0, gum 9-0, and woody fibre 5-5.  The root has also been examined by Weissenburger⁴.  Chevallier and Lassaigne⁵ analysed the flowers, and found in them resin, bitter acrid matter (*cytisin*), yellow colouring matter, gum, albumen, and gallic acid.  In the ashes were salts of potash, and lime, and silica.  Dr. A. T. Thomson⁶ is of opinion that the igasurate of strychnia (or brucia) exists in the plant.

1.  **Volatile Oil.**—The oil obtained from the root, by Pfaff, was yellowish, lighter than water, and had a burning aromatic taste.  The volatile oil of the flowers is blue.

2.  **Resin (Arnicin).**—The acridity of the root and flowers resides, according to Pfaff, in the resin, which is soluble in alcohol.

3.  **Extractive Matter.**—According to Chevallier and Lassaigne, this is nauseous, acrid, bitter, and soluble in both water and spirit.  They consider it to be analogous to cytisin.

**Physiological Effects.**  a.  **On Animals.**—The effects of the flowers of Arnica on horses have been examined by Viborg⁸.  An infusion of six drachms of the flowers quickened the pulse, and acted as a diuretic.  An infusion, thrown into the veins, caused insensibility.

b.  **On Man.**—Jörg and his pupils have submitted themselves to the influence of this plant⁹.  From their observations, as well as from the

---

³ Journ. de Pharm. t. v. p. 248.
⁵ Würk. d. Arzneim. ü. Gifte, i. 231.
⁶ Ibid. S. 225.
testimony of others, arnica appears to possess acrid properties. When swallowed it causes burning in the throat, nausea, vomiting, gastric pains, and loss of appetite. The active principle becomes absorbed, quickens the pulse and respiration, and promotes diaphoresis and diuresis. Furthermore, it appears to exert a specific influence over the nervous system, causing headache, giddiness, and disturbed sleep. Sundelin considers it to be closely allied in operation to senega, from which, he says, it differs in its stimulating influence over the nervous system, and in its causing constipation.

Use.—Arnica is indicated in diseases characterized by debility, torpor, and inactivity. It is administered as a stimulant to the general system in various debilitated conditions, and in typhoid fevers; to the nervous system in deficient sensibility, as amaurosis; to the musculor system, in paralysis; to the vascular system and secreting organs when the action of those is languid, and requires to have its energy increased, as in some forms of dropsy, chlorosis, amenorrhcea, asthenic inflammation, &c. Furthermore, it has been also employed empirically, as in diarrhœa, dysentery, &c. It is rarely employed in this country.

Administration.—Dose of the powder grs. v. to grs. x.; of the infusion (prepared by macerating 3ss. in 0j. of water), from f3ss. to f3j.

OTHER OFFICINAL SENECIONIDEÆ.

1. Wormseed.—The substance kept in the shops under the name of Wormseed (semen santonicum, semen cine, semen contra, semen sementina, &c.), is erroneously declared by the Dublin College to be the seeds (semina) of Artemis'ia Santon'ica. A very superficial examination shows that the substance sold under this name consists, not of seeds, but of broken peduncles, mixed with the calyx and flower-buds. Furthermore, the plant which Dr. Woodville has denominated A. Santoni'ca, is said by De Candolle to be A. maritima, var. β. suavolens. Martius describes three kinds of wormseed; but I am acquainted with one kind only, which is imported from the Levant (semen cine levanticum). It has been analysed by both Trommsdorff and Wackenroder, and found to contain volatile and bitter matter. A crystalline substance called santonine (C10 H6 O2) has been obtained from it. It is used as a vermifuge, in doses of from gr. x, to 5ss., repeated night and morning, and succeeded by a brisk purge.

2. Artemisia vulgaris or Mugwort has been used in epilepsy, infantile convolution, chorea, hysteria, and amenorrhcea. Judging, however, from its sensible qualities, it can possess but little virtue. Its powder, infusion, and expressed juice, have been administered.

3. Guizotia oleifera, De Cand.; Verbesina sativa, Roxburgh; Ramtilla oleifera, Royle. The fruit of this plant is "called by the Canareese Nuts Yelloo, and in Dukhanie, Ram Tilla." They are smooth, nearly four-sided, with the angles

---

1 Hand. d. sp. Heilm. ii. 170, 3te Aufl.
3 Prodr. vi. 104.
4 Pharmacogn.
5 Gmelin, Handb. d. Chem. ii. 1291.
rounded and tapering to the base. By expression they yield an oil which is much used for dressing food in Mysore, and as a common lamp oil.\

Virey says that the grains of this plant are extensively imported into France from Calcutta, under the name teel or till, on account of the oil which they yield. But the seeds imported into England under the name of teel seeds are the produce of Sesamum orientale (Nat. Ord. Pedaliaceae, Sex. Syst. Didynamia Angiospernia), a native of India, whose seeds, used in Eastern countries for dietetical purposes, yield a bland fixed oil (Gingilie oil), which has been sometimes substituted in England for almond oil. Two kinds of sesame seeds are known,—one brown or black, the other pale (whitish or yellowish). The first is produced by a variety of Sesamum called kala til, the second by another variety termed suffed til.\

4. *Senecio Jacobea* or Common Ragwort is a bitter aromatic indigenous plant, formerly in repute for various diseases. It has recently been recommended, on insufficient evidence as I believe, as a remedy for gonorrhoea.\

**Tribe IV.—CYNAREÆ.**\

9. *Lap’pa Mi’nor, De Cand.—COMMON BURDOCK OR CLOT-BUR.*\

Arc’tium Lap’pa, D.\

*Sex. Syst. Syngenesia, Polygamia squalis.* (Semina et Radix, D.)\

**History.**—This, according to Sprengel, is the *ἀπαφρὰς* of Theophrastus, the *δροκείον* of Dioscorides.

**Botany. Gen. Char.**—Head homogamous, many-flowered and equal-flowered. *Involucre* globose; the scales coriaceous, imbricated, close pressed at the base, then subulate, with a horny, hooked, inflected point. *Receptacle* rather fleshy, flat, with stiff subulate fringes. *Corollas* five-cleft, regular, with a ten-nerved tube. *Stamens* with papillose *filaments*; the *anthers* terminated by filiform appendages, and with subulate tails at the base. *Stigmas* free at the apex, diverging, curved outwards. *Fruit* oblong, laterally compressed, smooth, transversely wrinkled; the *areola* at their base scarcely oblique. *Pappus* short, in many rows; the hairs deciduous, filiform, not collected into a ring (De Cand.)

**Sp. Char.**—*Involucre* smooth; the scales serrulate beyond the middle; smooth at the base only; the inner ones few, not radiating. *Heads* somewhat racemose (De Cand.)

*Root* tapering, fleshy. *Stem* erect, three feet or more high. *Leaves* stalked, cordate; the radical ones very large, and often slightly toothed. *Florets* purple.\

**Hab.**—Indigenous; waste places and way-sides; common. Flowers in July and August.

**Physiological Effects.**—The *root* and *leaves* have been considered to possess mild resolvent, diaphoretic, and diuretic properties. Lieutaud says, the root promotes the lochial discharge. The *seeds* are diuretic, and, according to Linnaeus, purgative.
Uses.—The root, leaves, and seeds, have been employed as alteratives and resolvents in gouty, rheumatic, calculous, and venereal complaints.

Administration.—The decoction of the root (prepared by boiling 3j. of the recent root in 0ij. of water down to 0ij.) may be taken to the extent of a pint daily. The dose of the seeds is 3j.

10. Cnicus benedictus, Linn. D.—BLESSED THISTLE.

Centaurea benedicta, Linn. (Folia, D.)

History.—Sprengel⁶ thinks that this plant is, perhaps, the ἀκόρνα of Theophrastus.

Botany. Gen. Char.—Involucre ovate; the scales close-pressed, coriaceous, extended into a long, hard, spinous, pinnate appendix; the lateral spines conical and distant. Corollas of the ray sterile, slender, almost as long as the disc. Fruit longitudinally and regularly striated, smooth; with a broad, lateral areola. Pappus triple, as it were, the outer being the horny, very short, crenated margin of the fruit; the intermediate consisting of ten long stiff setae; the inner of ten short setae; all the setae alternating with each other (De Cand.)

Sp. Char.—The only species.

An annual, branched, woolly herb. Leaves amplexicaul, somewhat decurrent, nearly entire or deeply pinnatifid. Heads terminal, bracteate. Florets yellow.

Hab.—South of Europe, the Levant, Persia; introduced into China.

Composition.—The herb was analyzed by Soltmann⁴, and the leaves by Morin⁵. The latter found volatile oil, bitter principle, resin, chlorophylle, fixed oil, uncrystallizable sugar, gum, albumen, supermaltate of lime, several mineral salts, some metallic oxides, and traces of sulphur.

1. Bitter principle (Cnicin).—A brown, bitter substance, soluble in alcohol, ether, and boiling water; insoluble in fixed oils. Its aqueous solution forms a precipitate on the addition of diacetate of lead. It gives no trace of nitrogen when decomposed by heat.

2. Resin.—Brownish, insipid, inodorous; very soluble in alcohol and alkaline solution, but is insoluble in ether.

Physiological Effects.—The herb is tonic and mildly diaphoretic: its decoction causes vomiting. The seeds are diaphoretic⁶.

Uses.—The cold infusion is employed as a tonic in debilitated conditions of the stomach. Taken warm in bed, the infusion has been given as a sudorific in various chronic diseases. The decoction has been employed to promote the operation of emetics⁷.

---

⁶ Hist. Rei Herb. i. 102.
⁷ Hist. Plant. vi. 4.
⁰ Murray, App. Med. i. 151-3.
¹ Lewis, Med. Med.
ADMINISTRATION.—The infusion (prepared by digesting 3ss. of the leaves in Oj. of water) is given in doses of from $\frac{1}{3}$ to $\frac{2}{3}$, as a tonic. The decoction (made with double or treble the quantity of leaves) is used in the same dose.

OTHER OFFICINAL CYNAREÆ.

The flowers of the Carthamus tinctorius are imported, for the use of dyers, in flaky masses, from the East Indies and other places, under the name of Safflower, or Bastard Saffron. They contain two colouring matters—one yellow, soluble in water, the other red (carthamin or carthamic acid), soluble in alkaline solutions. Safflower is used to adulterate hay-saffron, and in the manufacture of cake-saffron (see p. 1006). The mode of detecting the fraud has been already pointed out.

Carthamus tinctorius.

TRIBE V.—CICHORACEÆ.

11. TARAXACUM DENS LEONIS, Desf. E.—COMMON DANDELION.

Leontodon Taraxacum, Linn. L.D.
Ser. Syst. Syngenesia, Polygamia aequalis.
(Radix, L.—Root, E.—Herba et Radix, D.)

History.—As this plant is a native of Greece, it must have been known to the ancients. Sprengel thinks that it is ἁπάκη of Theophrastus.

Botany. Gen. Char.—Head many-flowered. Involucre double; external scales small, closely pressed, spreading, or reflexed; internal ones in one row, erect; all frequently callous-horned at the apex. Receptacle naked. Achene oblong, striated, muricate near the small ribs or spinellose at the apex, terminating in a long beak. Pappose hairy, in many rows, very white (De Cand.).

Sp. Char.—Quite smooth. Leaves unequally and acutely runcinate; the lobes triangular, toothed inwardly. Scales of the involucre hornless, the external ones reflexed. Achenes muricate at the apex (De Cand.).

Root perennial. Leaves numerous, bright shining green. Scapes one or more, erect, brittle. Heads expanded in the morning and in fine weather only. Florets golden yellow.

Hab.—Indigenous; meadows and pastures every where. Flowers all the summer.

* See Prodr. Fl. Greece, ii. 129.
* Hist. Rei Herb. i. 100.
* Hist. Plant. vii. 81.
Description.—The fresh root (radix taraxaci) is tap-shaped, branched, fleshy, abounding in milky juice. Externally it is dull-yellow or brownish, internally white. It is without odour: its taste is bitter (especially in the summer). If dug up in the winter the root loses on drying 75 per cent. of water. The cold watery infusion of the dried root deposits a dirty-gray flocculent precipitate on the addition of sesquichloride of iron.

Composition.—The milky juice of the root has been analyzed by John, who found in it caoutchouc, bitter matter, traces of resin, sugar, and gum, free acid, phosphates, sulphates, and hydrochlorates of potash and lime, and water. The root also contains 12 per cent. of inulin. Mr. Squire says, the expressed juice contains gum, albumen, gluten, an odorous principle, extractive, and a peculiar crystallizable bitter principle, soluble in alcohol and water.

The root washed, crushed, and pressed, yields about half its weight of juice. Except in the months of April and May, when it is very aqueous, this juice spontaneously coagulates, and becomes of a fawn-colour. The quantity of extract obtained from the juice varies at different seasons:

<table>
<thead>
<tr>
<th>Month</th>
<th>Extract (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In January and February</td>
<td>4 to 5 lbs.</td>
</tr>
<tr>
<td>In March</td>
<td>6 to 7 lbs.</td>
</tr>
<tr>
<td>In April and May</td>
<td>8 to 9 lbs.</td>
</tr>
<tr>
<td>In June, July, and August</td>
<td>6 to 7 lbs.</td>
</tr>
<tr>
<td>In September and October</td>
<td>4 to 5 lbs.</td>
</tr>
<tr>
<td>In November and December</td>
<td>4 lbs.</td>
</tr>
</tbody>
</table>

It is obvious, then, that the expressed juice is richest in solid constituents in the months of November and December. It is remarkable, however, that the juice possesses the greatest bitterness in the summer months; while in the spring, and late in the autumn, it has a remarkably sweet taste. Squire considers this change to be effected by the frost.

Physiological Effects.—Its obvious effects are those of a stomachic and tonic. In large doses it acts as a mild aperient. Its diuretic operation is less obvious and constant. In various chronic diseases its continued use is attended with alternative and resolvent effects. But where the digestive organs are weak, and readily disordered, taraxacum is very apt to occasion dyspepsia, flatulency, pain, and diarrhoea.

Uses.—It is employed as a resolvent, aperient, and tonic, in chronic diseases of the digestive organs, especially hepatic affections; as jaundice, chronic inflammation, or enlargement of the liver, dropsy dependent on hepatic obstruction, and dyspepsia, attended with deficient biliary secretion. In some very susceptible conditions of the stomach, it proves injurious. It has been employed in affections of the spleen, chronic cutaneous diseases, uterine obstructions, &c.

Administration.—It is employed in the form of either decoction or extract.
1. DECOTUM TARAXACI, E. D.; Decoction of Dandelion.—Taraxacum, herb and root, fresh, 3 iv, [3iv. D.]; Water, Oij. [wine measure, D.]
Boil together down to a pint, and strain). —Aperient and tonic.
—Dose, f3ij. to f3ij. To increase its aperient property, a saline purgative may be conjoined.

2. EXTRACTUM TARAXACI, L. E. D.; Extract of Dandelion.—
(Fresh root of Taraxacum, bruised, lb. ijs. [lb. j. E.]; Boiling Distilled Water, Cong. ij. [Cong. j. E.]
Macerate for twenty-four hours, then boil down to a gallon, and strain the liquor while hot; lastly, evaporate to a proper consistence, L.—"Proceed as for the preparation of extract of poppyheads," E.—The Dublin College employed both herb and root).—Extract of taraxacum should be brown, not blackish: its taste is bitter and aromatic: that of the shops is usually more or less sweet. It should be completely soluble in water.—Dose, grs. x. to 3ss.

12. LACTU'CA SATI'VA, Linn. L.E.D.—THE GARDEN LETTUCE.

Sex. Syst. Syngenesia, Polygama aequalis.

(Succus spissatus, L.—Inspissated juice of L. virosa and L. sativa, E.—Herba, D.)

History.—The ἑπίθαζ, or Lettuce, was well known to the ancient Greeks and Romans. It is mentioned by Hippocrates both as an aliment and medicine. "The sedative powers of Lactuca sativa, or Lettuce, were known," observes Dr. Paris, in "the earliest times; among the fables of antiquity, we read that, after the death of Adonis, Venus threw herself on a bed of lettuces, to lull her grief, and repress her desires."

Botany. Gen. Char.—Heads many- or few-flowered. Involucre cylindrical, calyculate-imbricate, in two or four rows; outer rows short. Receptacle naked. Achene plane, obcompressed, wingless, abruptly terminating in a filiform beak (De Cand.)

Sp. Char.—Leaves not concave, erect, oblong, narrowed at the base, smooth at the keel. Stem elongated, leafy (De Cand.)

Annual. Stem erect, simple below, branched above, one or two feet high, smooth. Leaves rounded or ovate, semi-amplexicaul, frequently wrinkled, usually pale-green; varying much in the different varieties. Flowers yellow.

Mr. Loudon enumerates no less than fourteen varieties cultivated by gardeners for the table. Seven of these are Cabbage Lettuces (Lactuca capitata), and the others are Cos Lettuces (Lactuca romana).

Hab.—Native country unknown: perhaps the East Indies. Extensively cultivated in Europe.

De dicta, ii. p. 339; and De Morb. Mul. i. 629 and 63.
Pharmacol. vol. i. p. 13, 6th ed.
Encycl. of Gardening, p. 856.
Preparation of Lactucarium. — Before the flower-stem shoots up, the plant abounds with a cooling, bland, pellucid juice; afterwards it contains an intensely bitter, milky juice, which resides in the root, cortical portion of the stem and of the branches, and in the involucrum. When incisions are made in the flowering-stem, this milky juice exudes. When collected and dried it constitutes lactucarium or lettuce opium. It is (or was) prepared on a large scale by Mr. Young, of Edinburgh.

Properties. — Lettuce opium (Thridace seu Lactucarium), as found in commerce, occurs in roundish hard masses, of a brown colour, with an opiate smell and a bitter taste. That made in Edinburgh from L. sativa occurs in large oval lumps as big as the fist.

The term lactucarium has been applied indiscriminately to various and different preparations of L. sativa and virosa; viz. to the substance above described, to the inspissated expressed juice, and to extracts (watery and alcoholic) obtained from the lettuce. But the only preparation that I am practically acquainted with, and which I have found in commerce, is the one described in the text.

Composition. — Lactucarium has been analyzed by Klink, by Schrader, by Peschner, by Peretti, and by Buchner.

Klink's Analysis.

| Bitter extractive | 55.0 |
| Wax | 10.0 |
| Resin | 6.9 |
| Caoutchouc | 17.5 |
| Water | 15.6 |
| **Lactucarium** | **105.0** |

Buchner's Analysis.

| Odorous matter | undetermined |
| Lactucin, with colouring matter | 18.6 |
| Gummy extractive | 14.856 |
| Soft Resin, with waxy matter | 12.467 |
| Waxy matter (myricin) | 35.100 |
| Gluten or albumen | 19.100 |

1. Odorous matter. — The nature of this substance has not been determined; it is probably similar to that of the odorous principle of opium. When lactucarium is submitted to distillation with water, the odorous principle passes over with the latter.

2. Bitter principle: Lactucin. — A saffron-yellow, almost odourless, very bitter, combustible substance. It is very slightly soluble in cold water, readily soluble in alcohol, less so in ether. Infusion of nutgalls renders a solution of it, in very dilute spirit, turbid.

3. Empyreumatic Oil of Lettuce. — Dr. Morries says, the empyreumatic oil of lettuce differs from that of opium only in being more fusible.

A strong though unfounded suspicion appears to have been entertained, that morphia was contained in lactucarium. But in none of the before-quoted analyses was it to be found; neither was Caventou able to detect an atom of either morphia or narcotin in lactucarium.

Characteristics. — The cold aqueous decoction of lactucarium becomes, on the addition of sesquichloride of iron, olive-brown (tan-
GARDEN LETTUCE.

Tincture of nutgalls renders the decoction slightly turbid. Heated with lactucarium, colourless nitric acid acquires an orange-yellow tint, and evolves binoxide of nitrogen. The alcoholic tincture of lactucarium becomes slightly turbid on the addition of water.

**Physiological Effects.**—Lettuce leaves, eaten as a salad, are easily digested, but they yield only a small portion of nutritive matter. They probably possess, in a very mild degree, soporific properties. The ancients considered them anti-aphrodisiac.

Lactucarium possesses anodyne and sedative qualities: but its powers have, I suspect, been over-rated. Ganzel states, that ten grains introduced into the cellular tissue of a dog's leg, caused deep sopor, with occasional convulsions, but no dilatation of the pupil. Francois, who made a considerable number of trials of it, observes that it contains neither a narcotic nor an intoxicating principle; but that it allays pain, diminishes the rapidity of the circulation, and, in consequence, reduces the animal heat, and places the patient in a condition more favourable to sleep. Its *modus operandi* is different from that of opium; for the latter substance accelerates the pulse, and produces either delirium or stupor. It is more allied to hyoscyamus, from which, according to Fisher, it is distinguished by its power of directly diminishing sensibility, being preceded by irritation of the nervous system. A more extended experience of the use of lactucarium, however, is requisite to enable us to form accurate conclusions as to the precise nature and degree of its powers.

**Uses.**—Lettuce leaves are employed at the table as a salad. As they appear to possess slight hypnotic properties, they may be taken with advantage at supper, to promote sleep. Galen, who in his old age was troubled with watchfulness, was relieved by the use of lettuce at night. On the other hand, prudence points out the propriety of abstaining from the use of this plant, if there be any tendency to apoplexy.

Lactucarium is employed as an anodyne, hypnotic, antispasmodic, and sedative, where opium is considered objectionable, either from peculiarities on the part of the patient or from the nature of the disease. Thus it may be used where there is morbid excitement of the vascular system, in which condition opium is usually contra-indicated. But though it is free from several of the inconveniences which attend the use of opium, yet it is much less certain in its operation. It may be given with advantage to allay cough in phthisis and other pulmonary affections; to relieve nervous irritation and watchfulness in febrile disorders in which opium is not admissible. Dr. Rothamel has employed it with success in different kinds of fevers, inflammations, exanthemata, profluvia, cachexies, and painful and peculiar...
nervous disorders. Vering found it especially useful in spasm of the uterus; and Angelot gave it to repress seminal discharges.

ADMINISTRATION.—The usual dose is from grs. iij. to grs. v.; but it has been given in very much larger quantities. According to Trousseau and Pidoux, four drachms have been taken during the day.

1. Tinctura Lactucarum, E.; Tincture of Lactucarium.—(Lactucarium, in fine powder, 3iv.; Proof Spirit, Oij. This tincture is best prepared by percolation, as directed for tincture of myrrh; but may also be prepared by digestion with coarse powder of lactucarium).—Each f5j. of this tincture contains grs. vi. of lactucarium.—Dose from nixx. to f5j.

2. TROCHISCI LACTUCARII, E.; Lozenges of Lactucarium.—(To be prepared with lactucarium in the same proportion and in the same manner as the Opium Lozenge).—Each lozenge weighs ten grains, and contains nearly one-sixth of a grain of lactucarium.

13. LACTUCA VIROSA, Linn. E. D.—STRONG-SCENTED LETTUCE.

Sex. Syst. Syngenesia, Polygama aequalis

(The Insipissated Juice, E.—Folia, D.)

History.—According to Sprengel, this is the Σπικνάνια of Dioscorides; but Dr. Sibthorp suggests that Lactuca Scariola was the plant referred to by Dioscorides.


Sp. Char.—Stem erect, round; the base smooth or prickly-bristle-pointed; the apex panicked. Leaves horizontal, prickly-bristle-pointed at the keel, acutely denticulate, obtuse, at the base arrow-shaped; the lower ones sinuate. Achenes striated, nearly shorter than the beak (De Cand.)

Herb abounding in fetid milky juice. Root tap-shaped. Stem two to four feet high. Leaves distant. Florets yellow.

Hab.—Indigenous; about hedges, old walls, and borders of fields; not uncommon. Biennial. Flowers in August and September.

Preparation of Lactucarium.—The lactucarium prepared by Mr. Duncan, of Edinburgh, is obtained from this plant, which yields about three times as much as L. sativa. This kind of lactucarium occurs in distinct tears or lumps, which are seldom larger than a pea.

Composition.—The milky juice of this plant was analyzed by Klink, who found in it resin $\text{7.5}$, wax $\text{8.75}$, caoutchouc $\text{22.5}$, matters
soluble in water (bitter principle, gum, albumen, lactucic acid, lactuates of lime and magnesia, and nitrate of potash) 51.25, water 10. Buchner examined the lactucarium obtained from this plant.

The lactucic acid has considerable resemblance to oxalic acid, from which it is distinguished by its producing, with ammonia and a solution of chloride of iron, a green precipitate; with sulphate of copper, a brown one; and with magnesia a difficulty soluble salt.

The odorous and bitter principles are similar to those of Lactuca sativa (see p. 1362).

Physiological Effects.—The experiments of Orfila on dogs, shew that this plant possesses narcotic qualities; but its powers are not very great. A solution of the extract thrown into the veins, caused heaviness of head, slight drowsiness, feebleness of the hind extremities, difficult and frequent respiration, slight convulsive movements, and death. Glaser considers it to possess acrid properties. On Wibmer, two grains of the extract caused sleepiness and headache.

Uses and Administration.—See Lactucarium (p. 1363).

OTHER USEFUL CICHORACEÆ.

Cichorium Intybus: Wild Succory, Chicory, or Wild Endive.—An indigenous plant, known to Theophrastus, Dioscorides, and Pliny. It is extensively cultivated in Belgium, Holland, and Germany. The blanched leaves are sometimes employed at the table as a substitute for endive. (Cichorium Endiv'ia). The constituents of the leaves are extractive, chlorophylle, sugar, albumen, woody fibre, and salts (as nitre). The root (radix cichorii) is fleshy and spindle-shaped, like the carrot. It has an analogous composition to the leaves. Waltl says it contains inulin. An infusion of the root, mixed with syrup, becomes thick; forming the gomme saccho-chicorine of Lacarterie. The root, when cut, dried, roasted (roasted chicory; radix cichorii torrefacta), and ground (chicory-coffee), is used as a substitute for, or to adulterate, coffee. The dried root is extensively imported. It is roasted in heated iron cylinders which are kept revolving. Chicory-coffee yields a perfectly wholesome beverage, but which wants the fine flavour for which genuine coffee is so renowned. It is extensively adulterated with roasted peas, beans, damaged grain, coffee husks, &c. Venetian red or Armenian bole is used for colouring. The medicinal properties of Cichorium Intybus are analogous to those of Taraxacum Dens-leonis. The fresh root is tonic, and, in large doses, aperient. It has been used in chronic, visceral, and cutaneous diseases, usually in the form of decoction.

---

* Toxicol. Gén.
* For the mode of preparation, see Ann. de Chim. lix. 397.
Order LI.—Valerianaceæ, Lindley.—The Valerian Tribe.

Valerianææ, De Candolle.

Essential Character.—Tube of the calyx adnate to the ovary; the limb various, either dentate or partite, or changed into a pappus, which is at first involute, afterwards expanded. Corolla tubular, funnel-shaped; usually five-lobed, rarely three- or four-lobed; lobes obtuse; tube equal or gibbous, or calcarate at the base. Stamens adnate by their filaments to the tube of the corolla; free at the apex; alternate with the lobes of the corolla; five (the type), four, three, two, or solitary; anthers ovate, bilocular. Style filiform; stigmas two or three, free or cohering. Fruit membranous or somewhat mucumentaceous, indehiscent, crowned, at least when young, with the limb of the calyx, either three-celled (two cells being empty) or one-celled. Seeds, in the fertile cell or fruit, solitary, pendulous, exalbuminous; embryo erect, with a superior radicle and two flat cotyledons (De Cand.)—Annual or perennial herbs, rarely at the base somewhat shrubby. Roots of the perennial species odorous. Leaves opposite, without stipules. Flowers cymose-corymbose.

Properties.—The roots of the perennial species are highly odorous. They possess nervine and antispasmodic properties, and have been used in epilepsy (see Valeriana officinalis). Their odour is for the most part disagreeable.

Valeriana officinalis, Linn., E. D.—Great Wild Valerian.

Valeriana officinalis (sylvestris), L.

(Sex. Syst. Triandria, Monogynia.

(Radix, L. D.—Root, E.)

History.—The earliest writer who notices this plant is Fuchsius. The φῶς of Dioscorides is not the Valeriana sylvestris, as Hoffinan supposed, but the V. Dioscoridis.

Botany. Gen. Char.—Limb of the calyx involute during flowering, then unrolled into a deciduous pappus, consisting of many plumose setæ. Tube of the corolla obconical or cylindrical, equal at the base or gibbous, without a spur; limb obtusely five-cleft, rarely three-cleft. Stamens three. Fruit indehiscent; when ripe one-celled, one-seeded (De Cand.)

Sp. Char. — Smoothish, erect. Stem furrowed. Leaves, all, or nearly so, pinnatised; the segments, seven or eight pairs, lanceolate, serrate. Corymbus at length, somewhat panicled. Fruit smooth (De Cand.)

Root tuberous. Stem from two to four feet high. Leaflets coarsely serrated, those of the radical leaves broadest, approaching to ovate; but there is no remarkably large terminal leaflet. Corolla roseate or white.

* Lib. i. cap. x.
* Smith, Fl. Græce. Sibth. t. 33.
Several varieties of this species are described. Dufresne mentions four:—

a. **V. excelsa.**—The largest kind; above six feet high.

b. **V. latifolia seu media.**—The commonest kind; usually from two to four feet high. Both grow in marshy places.

g. **V. tenuifolia.**—Of this there appears to be two sub-varieties:—

aa. **V. officinalis (sylvestris), Ph. L. V. officinalis a foliis angustioribus** Woodville. **V. sylvestris maior montana**, Bauhin.—In this sub-variety the root is more odorous, and is, therefore, preferred for medicinal use. The stem does not exceed two feet in height. The caulinar leaves are very narrow, and often entire.

bb. **V. pratensis.**—Grows in marshy places at Heidelberg, near the Rhine.

5. **V. lucida.**—Cultivated in botanical gardens, at Paris.

**Hab.**—Wet places in most parts of Europe.

**Description.**—The root (**radix valeriane minoris seu sylvestris**) consists of a short, tuberculated rhizome, from which issue numerous round, tapering, root-fibres, which are from two to six inches long, white internally, and, when fresh, grayish or yellowish-white externally, but when dried yellowish-brown. They give origin to other smaller fibres: their odour, both fresh and dry, is strong, very characteristic, and highly attractive to cats; their taste is warm, camphoraceous, slightly bitter, somewhat acid, and nauseous. Hill states that the heaths of Kent and Essex furnish a great deal of it. Loudon says that it is cultivated for medicinal use at Ashover, in Derbyshire. The roots are dug up in the autumn, when the leaves are decayed.

**Composition.**—According to Trommsdorff, 100 parts of dry valerian root consist of volatile oil 1:2, peculiar resinous extractive 12:5, gummy extractive 9:4, soft resin 6:2, woody fibre 70:7.

1. **Volatile Oil of Valerian.**—When valerian root is submitted to distillation with water, the distilled products are water and oil, both of which contain valerianic acid. If the acid oil be mixed with carbonate of magnesia, and distilled, the pure oil passes over, and valerianate of magnesia is left in the retort. The pure oil is pale green, or yellowish and limpid; it has a penetrating camphoraceous odour, and an aromatic, bitter, camphoraceous, but not acrid taste. Its sp. gr. is 0:934. According to Bonastre, nitric acid makes it blue, and converts it ultimately into oxalic acid.

2. **Valerianic Acid.**—A volatile fatty acid, obtained by adding sulphuric acid to valerianate of magnesia, and distilling. As thus obtained, the acid is in the state of hydrate; but by careful distillation it may be deprived of water. When pure, it is a colourless, limpid, oleaginous liquid. Its odour has considerable analogy with that of the oil; from which, as well as from other circumstances, it is suspected to be formed by the oxidation of the oil. It is liquid at —6° F., boils at 270°, is soluble in 30 parts of water, and in all proportions in alcohol and ether. The anhydrous acid consists, according to Ettling, of C10, H1, O10: its atomic weight, therefore, is 193. Valerianic acid is a product of the action of caustic potash on corn spirit oil (see p. 348). All the neutral valerianates are soluble.

3. **Resin.**—Is black, has an acrid taste, and an odour of leather. It is soluble in alcohol, ether, and oils, but not in a solution of soda.

4. **Resinous Extractive.**—Is soluble in water, but is insoluble in ether and absolute alcohol. It is precipitated from its solution by almost all the metallic solutions.
Physiological Effects.—Valerian excites the cerebro-spinal system (see p. 184). Large doses cause headache, mental excitement, visual illusions (scintillation, flashes of light, &c.), giddiness, restlessness, agitation, and even spasmodic movements. Barbier\textsuperscript{1} says that a patient in the Hôtel-Dieu d'Amiens, who took six drachms of the root daily, in the form of decoction, awoke up suddenly out of his sleep, and fancied he saw one side of the room on fire. Its operation on the nervous system is also evinced by its occasional therapeutic influence over certain morbid states of this system; whence it has been denominated \textit{nervine} (nervino-alterative), tonic and antispasmodic. Furthermore, it intoxicates cats (who are very fond of it). Under its influence these animals roll themselves on the ground in "outrageous playfulness," and are violently agitated. However, the before-mentioned effects of valerian on the nervous system of man are by no means constant; whence practitioners have lost confidence in it as a remedial agent. "Yet I have met with some," observes Dr. Heberden\textsuperscript{2}, "whom it threw into such agitations and hurries of spirits, as plainly showed that it is by no means inert." More inconstant still are its effects on the functions of organic life. For while in some cases it has accelerated the pulse, augmented the heat of the body, and promoted the secretions\textsuperscript{3}, in others it has failed to produce these effects\textsuperscript{4}. Large doses often create nausea.

Uses.—Valerian may be employed as a nervous excitant, and, where stimulants are admissible, as an antispasmodic. Though formerly in repute, it is now but little used. It has been principally celebrated in \textit{epilepsy}. It came into use in modern times through the recommendation of Fabius Columna, who reported himself cured by it, though it appears he suffered a relapse\textsuperscript{5}. Its employment has found numerous advocates and opponents\textsuperscript{6}; but at the present time most practitioners regard it as a medicine of very little power. In the few cases in which I have employed it, it has failed to give the least relief. In some of the milder and more recent forms of the disease, neither dependent on any lesion within the cranium, nor accompanied with plethora, it may occasionally prove serviceable. In \textit{chorea}, and other spasmodic affections, it has been used with variable success. I have found temporary benefit from its use in females affected with \textit{hypochondriasis} and \textit{hysteria}. Of its use as a nervous stimulant in the low forms of \textit{fever}, we have but little experience in this country. In Germany, where it is more esteemed, its employment in these cases is spoken highly of\textsuperscript{7}.

Administration.—The dose of the \textit{powder} is from 3\textsuperscript{j} to 5\textsuperscript{j}, or even 5\textsuperscript{j}. Though objected to by some, on account of the quantity

\textsuperscript{1} Mat. Méd. ii. 83, 2\textsuperscript{e} éd.
\textsuperscript{2} Comment. ch. 63.
\textsuperscript{4} Trousseau and Pidoux, \textit{Traite de Thérap.} i. 1 and 2.
\textsuperscript{5} Murray, \textit{App. Med.} i. 275.
\textsuperscript{6} See Copland's \textit{Dict. Med.} i. 808.
\textsuperscript{7} Richter, \textit{Ausf. Arzneimitteil.} iii. 23; Sundelin, \textit{Heilmittel.} ii. 126.
of inert woody fibre which it contains, it is, when well and recently prepared, an efficacious form for administration.

1. **INFUSUM VALERIANÆ**, Infusion of Valerian, D.—(Valerian in coarse powder, 5ij.; Boiling Water, f 3vij. Digest for an hour, and strain the liquor when cold).—Dose, f 5j. or 5ij. This preparation is somewhat less apt to disturb the stomach than the powder.

2. **TINCTURA VALERIANÆ**, Tincture of Valerian, L. E. D.—(Valerian, bruised, [in powder, D.], 3v.; Proof Spirit, Oij. Macerate for fourteen [seven, D.] days, and strain, L. “Proceed by percolation or digestion, as for tincture of cinchona,” E. The relative proportions of root and spirit used by the Dublin College are the same as those of the other Colleges).—Dose, f 5j. to f 5iv.—Though this preparation possesses the virtues of valerian, it is scarcely sufficiently strong to produce the full effects of the root, without giving it in doses so large as to be objectionable, on account of the spirit contained therein.

3. **TINCTURA VALERIANÆ COMPOSITA, L. ; Tinctura Valeriana ammoniata, E. D. ; Ammoniated Tincture of Valerian.**—(Valerian, bruised, ov.; Aromatic Spirit of Ammonia [Spirit of Ammonia, E.], Oij. Macerate for fourteen [seven, D.] days, and strain, L.—“Proceed by percolation or by digestion in a well-closed vessel, as directed for tincture of cinchona,” E.—The relative proportions of valerian and spirit of ammonia used by the Dublin College are the same as those of the other Colleges).—Dose, f 5j. to f 5ij. The stimulant influence of the valerian is greatly increased, and its therapeutic efficacy oftentimes augmented, by the ammonia in this preparation.

---

**OTHER MEDICINAL VALERIANACEÆ.**

1. The root of **Nardostachys Jatamansi**, De Cand. (Valeriana Jatamansi, Roxburgh) appears from the proofs adduced by Sir W. Jones* and Dr. Royle† to be the Spikenard (Nápos 'Ibdiký, Dioscorides*) of the ancients. It is highly esteemed at the present day throughout the East, both as a perfume and as a stimulant medicine. The root is long, hairy, and tap-shaped. Stems perennial, very short. Branches erect, a few inches high. Leaves obovate-lanceolate. Flowers pale pink, clustered in the axils of the upper leaves. The plant is a native of the mountains of the North of India.

2. **Valeriana Dioscoridis**, Fl. Graec. is the φῶ of Dioscorides, and is the strongest of the Valerians. It is a native of Lycia.

---

* Asiat. Research. ii. 405; and iv. 109.
† Illustr. 242.
* Lib. i. cap. 6.
Order LIII.—Rubiaceœ, Jussieu.—THE CINCHONA TRIBE.

Cinchonaceœ, Lygodysodeaceœ, and Stellate of Galliæce, Lindley.

Essential Character.—Tube of the calyx adherent to the ovary; limb various, truncated or many-lobed, frequently regular; the lobes as many as those of the corolla, rarely three to eight; contorted or valvate in aestivation. Stamens as many as, and alternate with, the lobes of the corolla; more or less adnate to the tube of the corolla; anthers oval, bilocular, turned inwards. Ovarium within the calyx to which it coheres, usually two- or many-celled, rarely by abortion one-celled, crowned with a fleshy urceolus, from which a single style arises. Stigmas usually two, distinct, or more or less coherent, rarely many, distinct, or coherent. Fruit baccate, capsular, or drupaceous, two- or many-celled; the cells one-, two- or many-seeded. Seeds in the one-seeded cells attached to the apex, or usually at the base; in the many-seeded ones, connected with a central placenta, usually horizontal: albumen horny or fleshy, large; embryo straight or somewhat curved, in the midst of albumen; the radicle terete, turned to the hilum; the cotyledons foliate (De Cand.).—Trees, shrubs, or herbs. Leaves simple, quite entire, opposite, or rarely verticillate, with stipules. Flowers arranged variously, rarely unisexual by abortion.

Properties.—The roots often abound in colouring matter, and hence are used in dyeing; as some of those belonging to the genera Rubiœ, Gardœnia, Hedystis, Genipa, Galium, Asperula, Palicourea, Oldenlandia, &c. Many roots possess emetic properties, as those of Cephalis, Psycho'tria, Richardsoni, Spermacoce, Monet'ia, Chicoceœa, &c. The barks are often bitter, astringent, and somewhat aromatic; and are eminently distinguished for their tonic, febrifuge, and antiperiodic qualities, as those of Cincho'na, Ezo'stæma, Couta'rea, Cosmi'buena, Remi'ja, Hymenodic'lyon, Pinkné'ya, &c.

The important use of the torrefied albumen of Coffe'a arab'ica is well known. It is probable that the albumen of other species possesses analogous properties: that of Psycho'tria herba'cea has been used for similar purposes.

1. CINCHO'NA De Candolle.—SEVERAL SPECIES YIELDING PERUVIAN BARK.

C. cordifo'lia, lancifo'lia, and oblongifo'lia, L. D.—C. condamin'ea, micran'tha, and other undeter-
mined species, E.

Sex. Syst. Pentandria, Monogynia.

(Cortex, L. D.—Cinchona coronæ; Cinchona cinerea; Cinchona flava; and Cinchona rubra, E.)

History.—The precise period and manner of the discovery of the therapeutic power of cinchona is enveloped in mystery. It is even doubtful whether the Indians knew it previous to the Spaniards. Geoffroy says, that the Indians were acquainted with this medicine long prior to the arrival of Columbus; but from the implacable hatred which they conceived against the Spaniards, they kept it secret for many years, until, in fact, an Indian, grateful for some favours received from the Governor of Loxa, imparted to him the secret of this valuable specific. Humboldt, however, disbelieves

1 Mat. Med. ii. 181.
2 Lambert's Illustr. p. 22.
these statements; for in Loxa, and other parts far around, he found the natives ranked Cinchona among poisons, and were totally unacquainted with its uses. "In Malacatis only," says he, "where many bark-peelers live, they begin to put confidence in the Cinchona bark." Ulloa also asserted, that the Peruvians were ignorant of the medical uses of cinchona. The traditions, therefore, of the supposed discovery of the remedy by an Indian being cured of an ague by drinking at a pool into which some Cinchona trees had fallen, as well as the more improbable story told by Condamine, of the Indians observing lions ill with ague eating Cinchona bark, must be fabulous. The assertion, says Humboldt, that the great American lion (Felis concolor) was subject to fever, is as bold as that made by the inhabitants of the pestilential valley, Gualla Bamba, near Quito, that even the vultures (Vultur aura) in their neighbourhood were subject to that disorder. Moreover, in the Cinchona forests, lions are not found, though the puma (Felis andicola of Humboldt, the petit lion du Volcane de Pichincha of Condamine) has been met 2,500 toises (15,000 feet) above the level of the sea.

Humboldt tells us of an old tradition, current in Loxa, that the Jesuits having accidentally discovered the bitterness of the bark, tried an infusion in tertian ague, and in this way became acquainted with its valuable properties. This he thinks a much less improbable tradition than that which ascribes the discovery to the Indians. The period when bark was first introduced into Europe is usually stated to be 1640; but Sebastian Badus gives an extract from a letter of a Spanish physician, D. Joseph Villeroel, from which it appears that it was imported into Spain in 1632, though no trial was made of it until 1639.

The statement of Condamine, that the Countess of Chinchon, wife of the Viceroy of Peru, brought some bark to Europe on her return from South America, in 1639, is not improbable: and from this circumstance it acquired the names of the Cinchona Bark and the Countess's Powder (Pulvis Comitissa). About ten years afterwards it was brought by the Jesuits to Rome, and by them distributed among the members of the order, who carried it to their respective stations, and used it with great success in agues. Among those most active in promoting its employment was Cardinal de Lugo. In this way it acquired the names Jesuit's Bark, Pulvis Patrum, Jesuit's Powder (Pulvis Jesuiticus), Pulvis Cardinalis de Lugo, &c. It fell, however, into disuse, but was again brought into vogue, in France, by Sir Robert Talbor, who acquired great reputation for the cure of intermittents by a secret remedy. Louis XIV. purchased his secret

---

*Voy. de l'Amér.-mérid. 1. 271.*
*Geoffrey, Introd. ad Mat. Med. p. 48.*
*Quoted by Bergen, Monogr. 84.*
*Geoffrey, Mat. Med.*
(which proved to be Cinchona), and made it public. Hence it became known in France as Talbor's powder, or the English Remedy.

**Botany.** Gen. Char. — Calyx five-toothed. Corolla hypocrateriform, with a five-parted limb, valvate in aestivation. Anthers linear, inserted within the tube, and not projecting, unless in a very slight degree. Capsule splitting through the dissepiment into two cocci open at the commissure, and crowned by the calyx. Seeds girted by a membranous lacerated wing (Lindley). — Trees or shrubs, with an aromatic, bitter, astringent, eminently febrifuge bark. Leaves shortly petioled with plane margins. Stipules ovate or oblong, foliaceous, free, deciduous. Flowers paniculate-corymbose, terminal, white or rose-purplish.

**Species.** — Dr. Lindley mentions twenty-six species; of which twenty-one are well known.

§ 1. Limb of the corolla stupose. Leaves scrobiculate.

1. C. Micran'tha, Fl. Peruv. ii. 52, t. 194; Ruiz and Pav. Quinol. Suppl. p. 1, De Cand. Prodr. iv. 354. C. scrobiculata, Humb. and Bomp. Pl. aquin. i. p. 165. t. 47; De Cand. Prodr. iv. 352.—High, cool, and wooded mountains of Peru, near Chicoplya, Monzon, the Pueblo de San Antonio de Playa grande, R. and P.; forests in the province of St. Jaen de Bracamorros, H. and B. The last mentioned travellers were told that it also occurs at Chirinas Tabaconas, St. Ignacio, and Tambovapa, Cuchero, Pöppig.

This species yields Silver or Gray Cinchona. From the young branches is obtained the Pata de Gallinaezo (Pöppig). Humboldt and Bonpland, as well as Ruiz and Pavon, declare that from C. scrobiculata (which Dr. Lindley says is identical with C. Micrantha) is obtained Cascarilla fina.


According to Ruiz, this species, like the last, yields Cascarillo or Quino fino.

3. C. Condamin'ea, Humb. and Bomp. Pl. aquin. i. 33, t. 10. Quinquina, Condom. in Act. Par. 1738.—Near Loxa, in the mountains of Cajanuma-Uritusinga, and in those of Boqueron, Villonaco, and Monje: it is also found near Guancabamba and Ayavaca, in Peru. It always grows on micaceous schist, and rises as high as 7,500 feet above the level of the sea, first appearing at the elevation of 5,700 feet; so that it occupies a zone of 1,800 feet, Humboldt.

This species yields Cascarilla fina de Uritusinga, our Crown or Loxa Bark.

§ 2. Limb of the corolla not stupose. Leaves not scrobiculate.


Some years since a very inferior yellow bark, with a whitish epidermis, was imported into London, and was known to our dealers under the name of New Spurious Yellow Bark. I sent a specimen of it to Professor Guibourt, who recognised it as the bark described by him as Quinquina de Carthagme spongieux. He has subsequently found it to be identical with the Orange Cinchona (Quina naranjada) of Mutis, lodged in the Museum d'Hist. Naturelle de Paris, by Humboldt. It is, therefore, the produce of C. lancifolia.

Bergen found, in Ruiz's collection, a bark said to be the produce of C. lancifolia Mutis, and which agreed with the False Loxa Bark, Bergen.

The bark, perhaps, forms part of the *Quina fina de Loxa*.


The bark of this species is called *Quina Anteada*, *Cascarilla Amarilla*, and *Cascoba de Muña*. Ruiz suspects it to be *Calisaya* bark, i.e. *Yellow Bark* of English commerce.


The bark of this species is not much esteemed. It is known as the *White Cinchona of Mutis*.


*Ash Cinchona* was found by Bergen to be identical with the bark of *C. ovata* contained in Ruiz’s collection.


Bark unknown.


The bark of this species is the *Quina amarilla* or *Yellow Cinchona* of Mutis, which must not be confounded with the *Yellow Bark* of English commerce, from which sulphate of quina is prepared.


This species yields the *Cascarilla boba colorada*, which Reichel ascertained to be the *Huamalies Bark* of European commerce.


It yields a kind of *Cascarilla fina*, formerly employed in medicine, under the name of *Quina delgadilla*, or *delgada*. Dr. Lindley thinks it perhaps forms part of the pure *Yellow Bark* of the shops.


Its bark, called *Cascarilla negrilla*, is said by Reichel to be equal to the finest kind of *Loxa* Bark. It formerly came among the Lima barks.


Nothing is known of the bark.


The bark is quite unknown. The London College, therefore, has no ground for referring Red Cinchona to it.
§ 3. Limb of the corolla smooth, or only downy at the edge.


The bark is of a very bad quality for medicinal purposes.


The bark is, according to Ruiz, the Quina roxa of Santa Fé, the Red Cinchona of Mutis, which both Bergen and Guibourt have shown to be the Cinchona nova of European pharmacologists.

18. C. caduciflora, Bonpl. in. Pl. aquinoct. i. 167. — C. magnifolia, l. c. 133, t. 39.—Near the town of Jean de Bracamoros, Humb. and Bonpl.

No use is made of the bark.


Bark unknown.


Bark unknown.


Bark unknown.

** Species imperfectly known.

Dr. Lindley mentions,—22, C. dichotoma (which is said to yield one of the Quinas finas); 23, C. macrocalyx; 24, C. crassifolia; 25, C. Pelalba; and 26, C. Muzonensis, as species which are imperfectly known.

Von Martius (Pharm. Central-Blatt für 1831, S. 181) has described three other species, viz. C. Bereniana, C. Lambertiana, and C. macrocnemia.

Hab.—The Cinchona species inhabit the Andes from 11° N. lat. to 20° S. lat. at varying elevations. It is difficult to assign limits to these elevations, since the statements of Humboldt on this subject are not uniform. Thus the lowest true Cinchonas are variously stated, by himself and Kunth, to grow at an elevation of from 200 toises (1200 feet) to 359 toises (2154 feet); while the highest are said to grow from 1487 toises (8922 feet) to 1680 toises (10,080 feet). The temperature of the Cinchona districts necessarily varies with their altitude; perhaps the average is about 68° F.

Bark-Peeling.—"The mode adopted by the Cascarilloes, or bark-peelers, of obtaining cinchona, varies somewhat in different districts. —"The Indians," says Mr. Stevenson, "discover from the eminences where a cluster of the trees grow in the woods, for they are easily discernible by the rose-coloured tinge of their leaves, which appear at a distance like bunches of flowers amid the deep-green foliage of other trees. They then hunt for the spot, and, having found it out, cut down all the trees, and take the bark from the

* Narrat. of Twenty Years' Residence in South America, vol. ii. p. 66, 1825.
branches:” and he adds, “after the Indians have stripped off the bark, they carry it in bundles out of the wood, for the purpose of drying it.” Pöppig\(^e\) says that the stems are not peeled for three or four days after they are cut down; and that the bark when removed must be speedily dried, or its value is quickly deteriorated. This account of the method of collecting the barks is somewhat different to that given by Mr. Gray from the papers of the late Mr. Arrot\(^f\), who says that the bark is cut from the trees as they stand. According to both Ruiz and Pöppig, the peelers commence their operation about May, when the dry season sets in.

**Commerce.**—Cinchona is imported in chests (which are sometimes covered with hides) or serons (packages formed of an ox-hide, sometimes lined by a coarse cloth). The duty is 1d. per lb. The quantities imported, and those retained for home consumption, in the years 1827, 1830, and 1831, were as follow\(^g\):

<table>
<thead>
<tr>
<th>Year</th>
<th>Total imported</th>
<th>Quantity retained for Home Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827</td>
<td>385,690 lbs.</td>
<td>179,315 lbs.</td>
</tr>
<tr>
<td>1830</td>
<td>556,290 lbs.</td>
<td>56,879 lbs.</td>
</tr>
<tr>
<td>1831</td>
<td>225,678 lbs.</td>
<td>112,773 lbs.</td>
</tr>
</tbody>
</table>

The quantities on which duty was paid during the last five years are as follows\(^h\):

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1835</td>
<td>143,187 lbs.</td>
</tr>
<tr>
<td>1836</td>
<td>116,184 lbs.</td>
</tr>
<tr>
<td>1837</td>
<td>141,071 lbs.</td>
</tr>
<tr>
<td>1838</td>
<td>105,902 lbs.</td>
</tr>
<tr>
<td>1839</td>
<td>50,548 lbs.</td>
</tr>
<tr>
<td>1840</td>
<td>41,458 lbs.</td>
</tr>
<tr>
<td>1841</td>
<td>81,736 lbs.</td>
</tr>
</tbody>
</table>

Cinchona is imported from various ports of the Pacific coast of South America. Arica, Valparaiso, Lima, Callao, and Payta, are the common places of shipment. In consequence of an apprehended danger that the trees yielding bark would be exterminated, the government of Bolivia has prohibited the cutting of bark in its territory for five years, commencing January 1st, 1838\(^i\). This event had

---

\(^e\) Compon, to the Bot. Mag. No. viii. p. 244.  
\(^g\) Parl. Returns.  
\(^h\) Trade List.  
\(^i\) I am indebted to Messrs. Gibbs and Co. of Lime Street, for a copy of this decree. The following is a translation of it:—

> Andrew Santa-Cruz, Grand Citizen, Restorer, and President of Bolivia, General of her Armies, General of Brigade of Colombia, Grand Marshal Pacificador of Peru, Superior Protector of the North and South Peruvian States; decorated with the medals of the Liberating of the Liberator of Quito, of Pichuncha of Quito, and of the Liberator Simon Bolivar, Grand Officer of the Legion of Honor of France, Founder and Chief of the Bolivian Legion of Honor, and the National Legion of Honor of Peru, &c. &c. &c.

Considering,—1st. That the unlimited cutting and exportation of the Cascarilla [Cinchona] has occasioned remarkable injury to this country, by its excessive abundance in the European markets; 2dly. That the woods beginning already to be drained, great difficulty is experienced in obtaining it from those which are more distant, causing well-founded fears of the approaching extinction of this specific, for whose preservation and reproduction we ought so carefully to provide; 3dly. That the Congress of 1834, which passed a law for the prevention of the exportation of Cascarilla [Cinchona], said it could have no effect without the Government moderated or suspended its exportation, for which there is a provision in the 13th article of the said law; 4thly. That the opinion publicly manifested by the meeting of the neighbouring proprietors and merchants, as well as by the provisional directive committee of the Cascarilla [Cinchona] Society, calls for the suspension of the cutting in the mountains, as the only means of saving this exclusive article of our commerce from approaching ruin;—

**Decree.**—1st. It is forbidden to cut Cascarilla [Cinchona] in the mountains of the Republic, from the date of this decree, it being solely permitted to export that which has been already cut prior to the 1st of August.

2dly. That the extreme time which shall be allowed for the exportation from this Republic, of
long been expected. In 1836 I observed that, "when we take into consideration the immense consumption of Cinchona bark (Pelletier alone in one year consumed 2000 quintals, equal to 200,000 lbs. of yellow or Calisaya bark, in the manufacture of the sulphate of quina); that the trees yielding it are confined to one part of the world, and that no care is taken of their preservation; it is not at all improbable that in a few years this valuable drug may totally disappear from commerce. Indeed, a report has been prevalent among the drug-dealers, that the Cascarillos, or bark-collectors, had arrived at the limits of the forests containing the yellow or Calisaya bark, but whether this be true or false, I know not. I am acquainted with one dealer who has laid in a large stock, on the speculation of the truth of this report."

"If," says Mr. Stevenson, "the government of America do not attend to the preservation of the quina, either by prohibiting the felling of the trees, or obliging the territorial magistrates to enforce cutters to guard them from destruction, before a sufficient population will allow of those tracts of woodland becoming personal property, this highly-esteemed production of the new world will be swept from the country."

Description.  

a. General Description.—Before describing the various kinds of cinchona met with in commerce, it will be necessary to offer a few remarks on the general characters of barks (more especially of Cinchona bark). These may be noticed under the following heads:—cryptogamia found on, structure, quilling, colour, taste, odour, and fracture of, cinchona barks.

Cryptogamia found on Cinchona Barks.—These, especially the Lichens, have been elaborately examined by Fée and by Zenker:

a. Musci, or Mosses.—We frequently find mosses on Cinchona barks; but as they are never met with in fructification, it is almost impossible to determine the genus to which they belong. They are probably species of Hypnum.

...
b. Lichenes.—These are found in great abundance, especially on Loxa or Crown bark. We may conveniently arrange them, according to Zenker, in four sections:

Sect. 1. Coniolichenes, or the pulverent lichenes (Lichenes pulveracei).—In this section we have the Hypochonius rubrocinctus (classed among the Fungi by Fée). I have frequently found it on the finest specimens of quilled yellow bark. Sect. 2. Cryolichenes, or the crustaceous lichenes (Lichenes crustacei).—These frequently put on very beautiful forms, and so colour the surface of the epidermis, that they appear to constitute a part of this coat. In that kind of pale bark usually called gray, or silver, the surface of the epidermis has a whitish cretaceous appearance, from the presence of various species of Arthonia and Pyrenula. Sect. 3. Phyllicolichenes, or the foliaceous lichenes (Lichenes foliacei).—These are found most abundantly on the Crown or Loxa bark. The most common species belong to the genera Parmelia, Sticta, and Collema. The P. coronata is a beautiful species, and one frequently met with. So also the Sticta aurata, remarkable for its yellow colour. Sect. 4. Dendrolichenes, or the filamentous lichenes (Lichenes fruticosi).—The Usneas are good examples of this section: they are found in abundance on the Crown bark. Two species are met with—U. florida, and U. barbata; a variety of the latter is curiously articulated.

γ. Hepaticae.—Jungermannias are found on Cinchona barks, but in too broken a condition to determine their species. Fée, however, examined Humboldt's Herbarium, and found four.

8. Fungi.—As Fungi usually grow on weakly or dead trees, their presence on Cinchona bark is a bad characteristic. Very few, however, are met with.

Structure.—Those barks known to druggists by the name of coated barks consist of the following parts:—an epidermis, the rete mucosum, and cortical layers, (the innermost of which is termed the liber.) The epidermis and rete mucosum together form what is technically called the coat.

a. Epidermis.—This is the most external portion of the bark, and is variable in its thickness. The barks of commerce are said to be coated (cinchona cum cortice exteriore of Bergen) when the epidermis is present, but when this is absent, and when also part or the whole of the next layer (rete mucosum) has been removed, such barks are called uncoated (cinchona nuda of Bergen). As the epidermis is useless, or nearly so, in a medicinal point of view, uncoated barks are to be preferred, since the epidermis increases the weight of the bark, without adding anything to its real value. In reference to this layer, there are several characters deserving of attention in judging of the quality of bark: thus, Cinchona barks, with a whitish epidermis, are, I believe, for the most part, inferior to those in which this layer is brown. But a whitish coating given to a brown epidermis by some crustaceous lichens must not be mistaken for a genuine white epidermis. The term warty or knotty (cinchona nodosa of Bergen) applied to those barks in which we observe prominences on the epidermis, corresponding to elevations on the subjacent parts. These are frequently observed in some specimens of red bark, as well as in the kind called Huamalies. Bark is termed cracky or furrowed (cinchona rimosa of Bergen) when we observe cracks or furrows (the latter may be regarded merely as larger kinds of cracks) on it. When we observe longitudinal or transverse elevations, we say the bark is wrinkled (cinchona rugosa).

β. Rete mucosum; cellular envelope; medulla externa.—This is a cellular layer, placed immediately beneath the epidermis. It is tasteless, and is of no medicinal value. In old bark (particularly old red bark), it is often much developed: in uncoated bark it is sometimes, though not always, absent.

γ. Cortical layers, or cortex.—These are beneath the rete mucosum, and, in fact, form the essential part of the bark. One layer is formed annually, and hence their number, and consequently the thickness of the bark, depends on the age of the tree from whence it is taken. The last formed layer, that which is the innermost, is termed liber. Every one of the cortical layers has medicinal virtue, but the liber the most. The reason for this will be readily comprehended by reference to the physiology of exogenous plants. The succus communis of these plants ascends by the alburnum, or sap-wood, to the leaves, where it undergoes certain changes by the agency of the atmosphere, in consequence of which it is converted into what is called succus proprinis, the proper juice of the plant, and in which any medicinal activity which the latter possesses usually resides. Now
this succus proprius descends in the liber: hence this part may always be expected to possess the proper medicinal activity of the tree from whence it is taken.

Quilling of the Bark.—Bark, little or not at all curled, is called in commerce flat bark (cinchona plana). The absence of the curl arises from one of two circumstances—the age of the stem from which the bark is taken, or the want of flexibility of the bark even in the fresh state. When bark is rolled cylindrically in a quilled form, it is termed quilled bark (cinchona tubulata). Bergen speaks of several kinds of quilling; namely, the partially quilled (cinchona subconvoluta), when the two edges of the quill approximate; the closely quilled (cinchona convoluta), when the edges of the quill over-lap each other, forming a more or less closely rolled up tube; and the doubly quilled (cinchona involutu), when both edges of the quill are rolled together, so as to form two cylinders, but which, seen from the back, appear as one.

Fracture.—The transverse fracture of bark furnishes an important character. Bergen admits three kinds of it:—1st, smooth, even, or short fracture (fractura plana); 2dly, resinous fracture (fractura resinosa); and, 3dly, fibrous fracture (fractura fibrosa). Bark with a resinous fracture is usually to be preferred.

Colour, Taste, and Smell.—Little need be said of these characters. The same kind of bark often varies in its colour, while several kinds may have the same tint. Moisture usually deepens the colour.

β. Classification.—A botanical classification of the Cinchona barks I hold to be at present impracticable; and moreover, if it were practicable, it would be, in a commercial and pharmaceutical point of view, useless, since the barks are never accompanied by the other parts of the tree from which the botanical characters are drawn.

A chemical classification, I think, cannot be at present attempted with any great chance of success. The arrangements founded on chemical composition, adopted by Goebel and Geiger will be noticed hereafter. Even if a perfect chemical classification of the barks could be effected, it would not be available to ordinary experimentalists.

An arrangement founded on the physical characters of the barks will be for the present, perhaps, the most useful, and is the one generally followed.

Von Bergen admits nine species; viz.—

1. China rubra, or Red Bark.
2. China Loxa, or Crown Bark.
3. China Huuauco, or Gray or Silver Bark.
4. China regia, or Yellow Bark of English Commerce.
5. China flava dura, or Hard Carthagena Bark.
6. China flava fibrosa, or Woody Carthagena Bark.
7. China Huamalies, or Rusty Bark.
8. China Jaen, or Ash Bark.

Professor Guibourt has described no less than thirty-seven va-
Proposed Arrangement.—A considerable number of barks have been denominated *cinchona barks*. Of these some are obtained from the genus *Cinchona* De Cand.; others from neighbouring and allied genera. The first are *cinchona barks, properly so called*; the second are *barks falsely called cinchonas*. According to De Candolle\(^*\) no less than eight genera, including forty-six species, have been confounded under the name of Cinchona; and the barks of all these species are endowed, more or less, with febrifuge qualities. The genera referred to are *Cinchona*, *Buena* Pohl (*Cosmibuena Ruiz and Pav.*), *Remijia* De Cand., *Luculia* Sweet, *Hymenodyction Wallich*, *Exostemma* De Cand., *Danais* Comm., and *Pinkneya* Michaux.

Div. I. *Cinchona Barks properly so called.*

These are barks obtained from the genus *Cinchona* De Cand. Some of them have a brown epidermis, others a whitish one. This character forms the basis of a subdivision of them into two sections.

Sect. 1. *Epidermis normally brown.*

The epidermis of the barks of this section is naturally reddish, brownish, or blackish, cracked and rugous. It frequently has a whitish appearance, owing to the adherent crustaceous lichens. By scraping, however, we readily detect the subjacent brown epidermis, and thereby easily distinguish this lichenoid coat from a white epidermis.

The barks of this section have been divided into *pale* or *gray*, *yellow*, and *red*. As these terms are well understood, it is advisable to retain them.

Class 1st. Pale Barks; *Cinchonae pallide*; *Quinquinas gris*, Guibourt.

—in English commerce three kinds of cinchona bark are comprehended in this class; viz. *crown*, *silver*, and *ash*. To these Guibourt adds a fourth, namely *huamalies*.

Pale barks (Huamalies cinchona excepted) possess the following properties:—They always occur in quills, never in flat pieces. Their powder is more or less pale, grayish, or fawn-coloured, and their taste is astringent and bitter. They contain *cinchonia* and *quina*. An in-

---

fusion of pale bark does not deposit any sulphate of lime on the addition of a solution of the sulphate of soda.

Class 2nd. Yellow Bark of English Commerce; *Cinchona flavia* Anglic. offic.—In English commerce the term *yellow cinchona* is confined to the quilled and flat varieties of *Calisaya* or *regia bark*. The French and German pharmacologists, however, include under this denomination several of the yellow barks, with a white epidermis, which in England are termed false or spurious yellow barks. The yellow bark of English commerce occurs in quills or flat pieces, the quills being, on the average, larger and much rougher than the largest quills of pale barks. The texture is more fibrous; and the taste is more bitter, and less astringent, than of pale bark: the powder is orange or fawn yellow. The Calisaya or royal yellow contains both quina and cinchonia, but the first in by far the larger quantity. A strong infusion of this kind of bark produces a precipitate (sulphate of lime) on the addition of a solution of the sulphate of soda.

Class 3. Red Cinchona of English Commerce; *Cinchona rubra* Anglic. offic.—Only one kind of red bark is usually found in English commerce. It is met with in both quills and flat pieces: it has a fibrous texture, and a redder colour than either of the foregoing kinds. It contains both quina and cinchonia. It is very bitter and astringent. Its powder is more or less red.

Sect. 2. Epidermis whitish (yellowish) and micaceous.

This section includes cinchona barks sometimes called, on the continent, *White Cinchonas* (*Cinchone albae*); but which in English commerce are always regarded as spurious or bastard cinchona barks. They are distinguished by an epidermis which is naturally whitish or pale yellowish, micaceous, smooth, or not cracked, and adherent to the cortical layers. They yield little or no cinchonia and quina. One of them contains a peculiar vegetable alkali (aricina).

We may arrange them in three classes corresponding to those of the preceding section.

Class 1. Pale Barks with a whitish epidermis.—This includes a bark found among Loxa or Crown bark, and which has been termed by Guibourt *Loxa White Cinchona*. Some of the young Huamalies barks approach closely to this class (See Gray Corky Huamalies Bark).

Class 2. Yellow Barks with a whitish epidermis.—This class includes barks which correspond, and have been confounded, with Calisaya or Royal Yellow Bark. It includes the following barks:—*Hard Carthagenia Bark; Fibrous Carthagenia Bark; Cusco Bark;* and *Orange Cinchona of Santa Fé*. To these also must be perhaps added the *White Cinchona* of Mutis.
Class 3. Red Barks with a whitish epidermis.—These are barks which correspond and have been confounded with Genuine Red Bark of English commerce. This class includes the following barks: Red Cinchona of Santa Fé; and Red Cinchona with a white and micaeous epidermis.

Div. II. Barks falsely called Cinchonas.

Under this division have been placed those barks which have been introduced into commerce as Cinchonas, but which are not obtained from any species of Cinchona De Candolle. Their physical characters are for the most part very different from those of the genuine; moreover, they are not known to contain quina, cinchonia, or aricina. With the exception of Pitaya Cinchona, I have never met with any of them in English commerce. The following are those best known, and which I have in my collection:

1. Cinchona de Santa Lucia; St. Lucia Bark; Quinquina Piton, or Q. de Sainte Lucie, Guibourt; Bark of Exostema floribundum, a native of the West India islands.—Its bitter principle is called Montanin.

2. Cinchona Caribea; Caribean or Jamaica Bark; Quinquina caraibe, Guibourt; Bark of Exostema caribaenum, a native of most of the West India islands and Mexico.

3. Cinchona [falsa] peruviana; Peruvian [false] Cinchona: Ecorce de Exostema du Pérou, Guibourt; Bark of Exostema peruvianum, a native of the colder parts of Peru, between the river Chota and the village of Querocotillo.

4. Cinchona brasiliana; Brazilian Cinchona; Ecorce d’Exostema du Brésil, Guibourt; Quinquina de Piauhi; Bark of Exostema Souzanum, a native of Brazil.—It yields an organic alkali, called Esenbeckina.

5. Cinchona Pitaya; Pitaya Cinchona; Quinquina bicolor, Guibourt; bark of an unascertained tree [Exostema ? Malanea racemosa ?].—It has been analyzed by MM. Folchi and Peretti, who discovered a new alkaline principle in it, which they have termed Pitaina.

6. Cinchona de Rio Janeiro; Rio Janeiro Bark; Bark of Buena hexandra?

1. CINCHONA CORONÆ, E.—CROWN OR LOXA BARK.

Cinchona officinalis, D.

(Cinchona lancifolia; Cortex, L. D.—Bark of Cinchona Condaminea, E.)

Synonymes.—Quinquina de Loxa, Guibourt. China Loxa; Kron-China, Bergen. Cortex Chinae fuscæ, seu corona, s. de Loxa, s. peruvianus, Goebel.

History.—Loxa bark, if not the first, was one of the earliest kinds of Cinchona bark introduced into Europe. It was, probably, the bark which Horbius¹, in 1693, denominated Cascarilla della Oja, but which Condamine more correctly termed Corteza, or Cascara de Loxa. Some doubt, however, has existed in the minds of pharmacologists, whether the bark known in commerce by the name of Loxa bark, is identical with that formerly called by that name. Hayne² has

¹ Bergen, Monogr. S. 313.
pointed out some differences between the Loxa bark of commerce and a bark found in Humboldt's collection, marked Quina de Loxa, and which has been collected from the C. Condaminea: the peculiar characteristics of the latter are the warty prominences, the transverse cracks, which do not form rings, the browner tint of the outer surface, and a more astringent taste. In a chest of 120 lbs. of commercial Loxa bark, Goebel found only three ounces of bark corresponding to the description here given of the true Loxa bark.

Loxa bark received the name of crown bark in consequence of its use by the royal family of Spain. In October 1804, a Spanish galley, returning from Peru, was taken by our countrymen off Cadiz. Among the treasures found therein were many parcels of Cinchona bark, two sorts of which were distinguished from the others by their external appearance and mode of packing. Two of these chests were marked “Para la real familia,” i.e. “For the royal family,” and were lined with sheet iron: they contained fine quills, of thirteen inches long, tied up by means of bass into bundles of about three inches in diameter. Von Bergen states, he received from England, in 1824, similar bundles, under the name of second crown. The other sort was marked “Para la real corte,” i.e. “For the royal court”.

Botany. — Loxa bark is undoubtedly the produce of C. Condaminea. Guibourt examined the young barks of this species, brought by Humboldt, and found them undistinguishable from Loxa cinchona. Furthermore, he found that a specimen of cinchona, sent over by M. Joseph de Jussieu, the colleague of Condamine, as being the bark of the tree described by that celebrated academician, is similar to the crown bark of commerce.

Commerce. — Crown or Loxa bark is imported in serons (holding from sixty to ninety lbs.) and in chests (containing about one hundred lbs.)

Essential Character. — Coat thin, firm; cracks numerous, annular, transverse; under surface smooth; colour cinnamon-brown (Bergen).

Description. — Loxa or Crown bark is met with in the form of coated quills only, neither flat nor uncoated pieces being known. These quills vary in length from six to fifteen inches; in diameter from two lines to an inch; in thickness from one-third of a line to two lines; they are both singly and doubly quilled. The outer surface or epidermis of this bark is characterised by numerous transverse cracks, which, in the fine and middling quills, are often distant from each other only from one to one and a half lines, and frequently extend completely around the bark in the form of rings, the edges of which, as well as of the shorter cracks, are a little elevated. In some of the fine quills, however, these transverse cracks are hardly visible; but we then observe longitudinal furrows. On the larger quills the transverse cracks are interrupted, and do not form rings, and are not set so closely together. Some of the thicker quills have occasionally almost the roughness of a grater, and occasionally pieces are met with having knots or warts. The colour of the external surface of Crown bark depends principally on that of the crustaceous lichens. Gray, or grayish-brown, may be taken as the predominating tint: the thin quills are mostly slate, ash, or roe-gray. The larger quills vary still more, and, in addition to the colours now mentioned, they are sometimes blackish-gray, even passing, in places, into liver-brown. The inner surface of Loxa bark is smooth, with small irregular longitudinal fibres observed thereon: its general colour is cinnamon-brown. The transverse fracture of small quills is even, but of the larger and coarser ones fibrous. The powder of Loxa bark is of deep cinnamon-brown colour. The odour of this bark is like that of tan; its taste astringent, bitter, and somewhat aromatic.

Commercial and other varieties. — The slender, finest, thinnest, and longest quills, with a short transverse fracture, form the finest or picked crown bark of the

* Goebel and Kunze, Pharm. Waarenk. i. 36.
* Bergen, Monogr. S. 310.
* Hist. des Drop. ii. 55.
CINCHONA.  1383

Cinchora.  A somewhat larger quill, with a silvery appearance of the epidermis, derived from the adherent crustaceous lichens, constitutes the silvery crown bark. A similar kind, but in which the external coat has a speckled appearance from the whitish lichens, with the intermediate dark-brown colour of the epidermis, constitutes the leopard crown bark.

Huamalies and white Loxa Cinchora, found in the serons of pale bark, are the produce of different species of Cinchora. The young Huamalies Cinchora, sometimes called Havannah Bark, constitutes the rusty crown bark of some of our dealers. It has scarcely any transverse cracks; and some subvarieties of it are devoid of lichens. Its epidermis is spongy or corky, longitudinally furrowed in an undulatory manner, and of a grayish or brownish gray tint. The ferruginous Huamalies of Guibourt is the same bark at a more advanced period of growth. Huamalies bark is the produce of C. micrantha, and will be described more fully hereafter. White Loxa Cinchora has a considerable resemblance to the young Huamalies bark, with a whitish epidermis, and will be noticed among the so-called White Cinchoras.

Composition.—Crown bark was analyzed by Pelletier and Caventou, and by Bucholz.

<table>
<thead>
<tr>
<th>Pelletier and Caventou's Analysis</th>
<th>Bucholz's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinate of cinchoria</td>
<td>Cinchoria</td>
</tr>
<tr>
<td>Kinate of lime</td>
<td>Kinic acid</td>
</tr>
<tr>
<td>Green fatty matter</td>
<td>Kinate of lime</td>
</tr>
<tr>
<td>Red cinchonic</td>
<td>Hard resin (red cinchonic)</td>
</tr>
<tr>
<td>Soluble red colouring matter</td>
<td>Bitter soft resin</td>
</tr>
<tr>
<td>Yellow colouring matter</td>
<td>Fatny matter, with chlorophylle</td>
</tr>
<tr>
<td>Gum</td>
<td>Tannin, with some chloride of calcium</td>
</tr>
<tr>
<td>Starch</td>
<td>Gum</td>
</tr>
<tr>
<td>Lignin</td>
<td>Starch</td>
</tr>
<tr>
<td></td>
<td>Lignin</td>
</tr>
</tbody>
</table>

Gray Cinchora.

Commercial Loxa Bark...... 99'80

Soubeiran states, that one lb. of Loxa bark yields from one and a half to two drachms of sulphate of cinchoria. It is somewhat remarkable, that Von Santen obtained quina, and but little cinchoria, from Loxa bark, as the following table shows:

<table>
<thead>
<tr>
<th>One lb. of Loxa Bark.</th>
<th>Sulphate of Quina</th>
<th>Pure Cinchoria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine selected quills</td>
<td>5 grs.</td>
<td></td>
</tr>
<tr>
<td>Moderately thick quills and pieces</td>
<td>12 grs.</td>
<td>4 2/3 grs.</td>
</tr>
<tr>
<td>Fine and middling quills</td>
<td>2 grs.</td>
<td>2 2/3 grs.</td>
</tr>
<tr>
<td>Moderately thick pieces</td>
<td>21 1/4 grs.</td>
<td></td>
</tr>
<tr>
<td>Selected thick, heavy pieces, with grater-like bark</td>
<td>53 1/4 grs.</td>
<td></td>
</tr>
</tbody>
</table>

Cryptogamia.—The following is Fée's list of the Cryptogamia found on Loxa bark:

Lichenes.—Opegrapha globosa; O. Condaminea; Graphis fulgurata; Arthonia sinensisgraphia; A. marginata; Glyphis favulosa (rare); Chiodecton effusum; Pyrenula verrucarioides; Ascidiun Cinchoranum; Lepra flavia; Lecidea peruviana; Lecanora russula; L. subfuscìa; id. var. ß pulverulenta; Parmelia cremulata; P. glandulifera; Sticta aurata; Collema azureum; and C. diaphanum.

1 Joun. de Pharm. vii. 70.
3 Traite de Pharm. i. 603.
4 Bergen, Monogr. Tab. zur 5te Platte.
2. CINCHONA HUANUCO.—GRAY OR SILVER CINCHONA, E.

Cinchona cinerea, E. (Bark of Cinchona micrantha, E.)


HISTORY.—This bark was first known in Spain in 1799. One hundred and eighty chests of it were brought to Santander, in that year, by the frigate La Veloz; and Ruiz was appointed to examine the cargo. He found in the chests a thick bark, till then unknown to the botanists of Peru, mingled with the barks of C. nitida and C. lauceolata, and with those of the species which Tafalla has designated by the term similar to Calisaya. Pöppig says, the trade in the barks of Huanuco commenced in 1785; but that in 1815 it almost entirely ceased. The scarcity of yellow bark will be likely again, I should think, to give a fresh impulse to it, as the quality of Huanuco bark is excellent.

BOTANY.—It is unnecessary to detail the speculations of botanists as to the origin of this bark previous to Pöppig’s discovery. This celebrated traveller brought to Europe a bark called casearilla provinciana, and which was the produce of Cinchona micrantha. Reichel, an apothecary at Hohenstein, examined and carefully compared it with his own collection of cinchona barks, as well as with that of Von Bergen at Hamburg, and declared it to be identical with the Huanuco or Silver Bark of commerce.

COMMERCE.—It is imported usually in chests containing about 150 pounds, and also, though less frequently, in serous of from 80 to 100 pounds.

ESSENTIAL CHARACTER.—Coat moderately thin, hard; wrinkles longitudinal, predominating; under surface splintery; colour rusty brown (Bergen).

DESCRIPTION.—It always occurs in the form of quills, no flat pieces being known. These quills are larger and coarser than those of Crown bark; the largest even approximating to those of yellow bark, from which they are distinguished by the greater smoothness of their external surface. The length of the quills is from three to fifteen inches; their diameter from two lines to one and a quarter, or even two inches; their thickness one-third of a line to five lines. At the edge of most of the perfect quills we distinctly observe a sharp oblique cut, made probably to loosen the bark. These oblique cuts are rarely found on other barks. The quills are frequently somewhat spirally rolled. We observe on the epidermis transverse cracks, but they do not form rings, as in the Loxa or crown Bark, and their edges are flat. On the thicker quills longitudinal furrows are observed; and in these cases the transverse cracks are frequently wanting. The colour of the epidermis is whitish; in the smaller quills it is a uniform whitish gray, while in the large quills we observe a kind of crustaceous covering. This whitish appearance, from which, indeed, the terms silver and gray given to this bark are derived, depends on some crustaceous lichens. The structure of the innersurface of this kind of bark is, in the small quills, smooth; in the larger ones fibrous: the colour is rather reddish, or rusty brown, than cinnamon brown. The fracture is even, and resinous; the odour clayish or sweet, and which Bergen says is peculiar to this kind. The taste is astringent, aromatic, and bitter; the powder of a deep cinnamon brown.

COMMERCIAL AND OTHER VARIETIES.—In this country no varieties of Huanuco bark are usually made. Guibourt distinguishes the gray fine Lima, the large or white Lima, and the gray Huanuco; to which he also adds, the gray cinchona resembling the royal yellow bark.

COMPOSITION.—I am unacquainted with any analysis of this bark. Soubeiran states, that one lb. of Gray Lima Cinchona yields a drachm and a half of sulphate of cinchonia.
The following are the quantities of pure cinchonia and quina in this bark, according to the undermentioned authorities:

<table>
<thead>
<tr>
<th>Source</th>
<th>Quantity of Cinchonia</th>
<th>Quantity of Quina</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Santen</td>
<td>from 74 to 210 grs.</td>
<td>0</td>
</tr>
<tr>
<td>Finest sample</td>
<td>59 grs.</td>
<td>22 grs.</td>
</tr>
<tr>
<td>Second sample</td>
<td>74 grs.</td>
<td>28 grs.</td>
</tr>
<tr>
<td>Goebel and Kirst</td>
<td>168 grs.</td>
<td>0</td>
</tr>
</tbody>
</table>

Cryptogamia.—Mosses and Jungermannias are never found on this bark. Folioaceous lichens are much more scarce than on Loxa bark. The following is Fée's list of the Cryptogamia:


3. CINCHONA JAEN.—ASH CINCHONA.

(Bark of Cinchona ovata, Fl. Peruv.)


History.—Little is known respecting the history of Ash Cinchona, in consequence, probably, of its being confounded with other kinds of pale bark. It is uncertain, therefore, at what period it was introduced into commerce. Bergen states he found it in an old collection of drugs made in 1770. Virey refers to it under the name of pale gray or female Loxa cinchona: but it does not appear to have been known to the other French pharmacologists until I sent samples of it to Professor Guibourt, who has described it, erroneously I think, as a variety of Loxa bark.

Botany.—This kind of cinchona bark agrees with the one described in the Quinologia as cascarillo pallido (C. ovata, Fl. Peruv.): a specimen of which, in Ruiz's collection of barks, was examined by Bergen, and found to be identical with Ash Cinchona.

Commerce.—It is usually imported in chests of from 110 to 140 lbs.: but we meet with it also in serous of from 70 to 100 lbs.

Essential Character.—Coat thin, light, readily pulverized; cracks few; quills mostly crooked; colour dark cinnamon brown (Bergen).

Description.—This bark is met with in a quilled form only: the quills being of middling size, or somewhat thick; being from 4 to 16 inches long, from 3 to 1 inch in diameter, and from ½ to 2 lines thick. A very remarkable character of this bark is the crookedness of the quills, which are more or less arched and twisted; from which circumstance we may infer the probability of its being obtained from a tree which grows in a damp situation. On the outer or epidermoid surface we observe a few transverse cracks, and some faint longitudinal cracks; but in these respects there is a manifest difference between this and Loxa bark. The colour of the outer surface varies between ash grey, whitish grey, and pale yellow, with blackish or brownish spots. The inner surface is either even or splintery, and of a cinnamon brown colour. The fracture is even or splintery; the odour is tan-like; the taste feebly astringent and bitter; the colour of the powder is cinnamon brown.

\* See his Hist. des Drogs. ii. 53-3.
\* Monogr. 319.
Commercial Varieties.—No division of ash cinchona is made by English dealers. Bergen makes two varieties of it, the pale and the dark: the latter is also called False Loxa Bark, or Dark Ten Cinchona (China Pseudo-Loxa; Dunkele Ten China), a bark which has many of the properties of ash cinchona, and which is found mixed with the Loxa bark of commerce. It is principally distinguished from the pale ash cinchona by the irregular longitudinal wrinkles and transverse cracks, and by its darker colour. Guibourt regards it as an inferior kind of Loxa bark. Bergen says it agrees with a bark in the collection of Ruiz, said to be obtained from the C. lanceifolia of Mutis.3

Composition.—Ash Cinchona has not been analysed. It appears to be remarkably deficient in cinchona alkaloids. Von Santen failed to procure either quina or cinchonia from it. Michaelis, and Goebel and Kirst, obtained the following quantities of quina and cinchonia from it:

<table>
<thead>
<tr>
<th>Source</th>
<th>Quina (grs)</th>
<th>Cinchonia (grs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michaelis</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2nd sort</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Goebel and Kirst</td>
<td>12</td>
<td>none</td>
</tr>
</tbody>
</table>

Cryptogamia.—Few cryptogamic plants are found on this bark. The following is a list of them, according to Bergen:

Lichenes.—Graphis sculpturata; Porina granulata; Pyrenula verrucarioides; Lecanora pruina; Parmelia melanoleuca, and Usnea florideae Cinchona.

The Dark Ash Cinchona (Bergen), of all others, abounds most in lichens. Besides some of the foregoing, the following lichens have also been found on it:—Opogona scopella; Theobroma terebratum; and Sticta aurata.

4. CINCHONA HUAMALIES.—HUAMALIES OR RUSTY BARK.

Bark of Cinchona purpurea.

Synonyms.—Quinquina de Huamalies, and Q. huamalies f. ferrugineus, Guibourt. China Huamalies; Braune China, Bergen. China Huamalies, Guamalies, seu Abomalies, Goebel. Braune China; China Huamalies; China fusca, Geiger.

History.—It is not known precisely when this kind of bark first came into Europe. Von Bergen thinks that it probably was introduced simultaneously with silver bark at the end of the last or commencement of the present century. In 1803 it was frequently carried direct from Lima to Hamburg. This bark is not used as a distinct kind in this country, and hence most druggists are unacquainted with it; but it is bought by some of our merchants for the foreign markets, especially for Germany.

Botany.—The bark of Cinchona purpurea, R. and P. (Cascarilla bobo colorada), brought from South America by Poppig, was found by Reichel to be identical with the Huamalies bark.

Commerce.—It is imported in chests, never in serons.

Essential Character.—Coat thin and spongy; longitudinal wrinkles and warts which penetrate to the cortical layers [alburnum, Bergen]; under-surface even; colour rust-brown (Bergen).

Description and Varieties.—This kind of bark presents very different appearances at different ages, so as almost to defy arrangement. Some of the fine quills might readily be mistaken by inexperienced persons for Crown Bark, while others greatly resemble white Loxa bark. The large flat pieces, on the other hand, I have known mistaken by an experienced dealer for what he termed "flimsy" red bark.

Some of the finer quills (Huamalies simulating Crown Bark) greatly resemble those of Loxa or Crown Bark, but are paler externally, have fewer transverse cracks, are smoother, or finely wrinkled longitudinally, and, when broken, appear nearly white in the interior. Another kind (Gray-corky Huamalies Bark) I have frequently found in the Loxa Bark of commerce. It occurs in larger
quills, which have a whitish or grayish corky or spongy epidermis, which is striated or furrowed longitudinally, and may be removed by the nail. On some of the pieces we observe rusty-coloured warts, which, when numerous, are disposed in irregular longitudinal lines. A flat variety (White verrucous Huamalies Bark) has a whitish epidermis, with large red warts, from which the epidermis has been removed. Another kind (Rusty Huamalies; Quinquina ferrugineus, Guibourt) is in quills or flat pieces, distinguished by the ochre-red or rusty colour of its outer surface, the presence of warts, arranged for the most part longitudinally, and the almost total absence of transverse cracks.

Composition.—I am unacquainted with any analysis of this bark. The following are the quantities of Cinchona alkalis, according to Von Santen, Michaelis, and Goebel and Kirst.

<table>
<thead>
<tr>
<th>Description</th>
<th>Cinchonia</th>
<th>Quina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fine and Middling-fine quills, and flat pieces (from Cadiz)</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>2. Thick warty quills, and flat pieces (from ditto)</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>3. Sorts (from Lima in 1803).</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>4. As No. 3 (another chest) rather heavy</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>5. As No. 3 (a third chest) rather light</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>1st sort</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>2nd sort</td>
<td>48</td>
<td>28</td>
</tr>
<tr>
<td>3rd sort</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>Goebel and Kirst (fine and thick quills of commerce)</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Cryptogamia.—The following cryptogamic plants are mentioned by Von Bergen as existing on this bark.

Lichenes.—Opegrapha enterolenta; Graphis duplicata; Verrucaria phaea; Porina papillata; Pyrenula discolor; P. mastoidea; and P. verrucoviolacea; Lecanora purpurea; Parmelia melanolitha; and Usnea florida. Cinchona.

5. CINCHONA CALISAYA SEU REGIA.—ROYAL YELLOW BARK.

Cinchona flava, E. D. (Cinchona cordifolia; Cortex, L. D.—Yellow-Bark; from an unascertained species of Cinchona, E.)

Synonyms.—Quinquina Calisaya on Jaune royal, Guibourt. China regia; Königs-China, Bergen. China regia; Cortex China regius, s. flavus, s. luteus; China Calisaya, Goebel.

History.—Dr. Relph says, that in a letter from a Spanish merchant at Cadiz, dated September 1789, it is observed that the yellow bark had only been lately been known there. "The first parcel which arrived here was tried at Madrid, and was immediately bought by the King's order for his own use." In 1790 Murray first saw it at Frankfort on the Main. He afterwards received it under the name of cortex chince flavus; and to prevent confusion he proposed to term it royal yellow bark (cortex chince regius flavus). Dr. Relph says it was unknown in England till 1793; but this must be an error; for Murray, who died in 1791, had received it from London. It is not improbable that it may be the amarilla (yellow) cinchona mentioned by Arrot; by Condamine; and by J. D. Jussieu; but this cannot be ascertained now. The term Calisaya, applied to this bark in Spain and Portugal, is the name of a province producing the bark.

Botany.—The species yielding this bark is at present unascertained. Humboldt and Bonpland ascribe the Quina jaune (yellow cinchona) to Cinchona cordifolia, Mutis. Mr. Lambert also states that Quina amarilla Bogotena...
sium (Bogota yellow cinchona) is produced by C. cordifolia Mutis. These statements, I presume, led Hayne\textsuperscript{1}, the compilers of the Pharmacopoeia Londinensis, 1836, and others, into the error of supposing that the yellow bark of English commerce is identical with the Quina jaune of Humboldt and the Quina amarilla of Lambert, and that consequently it is the produce of C. cordifolia. But Bergen\textsuperscript{2} states that the Quina amarilla (C. cordifolia, Mutis) contained in Ruiz's collection of barks, which he examined, was China flavo dura (the bark known in England as hard Carthagenan bark). And Guibourt\textsuperscript{3} observes, that "many persons have referred the true Calisaya to C. Cordifolia, in consequence of Mutis having given the name of yellow bark to the bark of this tree; but the authentic specimens of the yellow bark of Mutis, brought by Humboldt, shew that this bark is that known in France under the name of Carthagenan cinchona."

Ruiz\textsuperscript{4} thought it was the bark of C. lanceolata; and Dr. Lindley\textsuperscript{5} adopts this notion. But Bergen\textsuperscript{6} says he found in Ruiz's collection some specimens of Quina naranjada (C. lanceifolia, Mutis), of Quina antea (C. lanceolata, Fl. Peruv), and of Quina peruiana (C. nitida, Fl. Peruv.), all of which are very different to our yellow cinchona (royal or Calisaya yellow bark). Guibourt\textsuperscript{7} observes that great differences exist between our yellow cinchona and the orange cinchona (C. lanceifolia, Mutis).

**Commerce.**—It is imported in serons and chests. The whole serons weigh 125 to 135 lbs.; the thirds, 45 to 50 lbs. The chests contain 150 lbs. I am informed by Messrs. Gibbs and Sons, Contractors for the Cinchonas, that the Yellow Bark is produced in the province of La Paz in Bolivia, in a plain bounded east and west by mountain ridges, and elevated 14 or 15,000 feet above the level of the sea. It is exported from Arica. This information agrees with that received by Dr. Wood\textsuperscript{8}, and with the statements of Delondre\textsuperscript{9}.

**Essential Character.**—Coat very thick, brittle; furrows longitudinal; cracks predominating, transverse; under-surface uneven; colour deep cinnamon-brown (Bergen).

**Description.**—In commerce, two varieties are distinguished; the quilled and the flat.

- **a. Quilled yellow bark (cinchona regia tubulata seu convoluta).**—The quills vary in length from three to eighteen inches; in diameter, from two lines to one and a half or even two inches; in thickness, from half to six or seven lines. Very small quills, however, are rare; those usually met with having a diameter of from one to one and a half inches, and a thickness of from three to six lines. Sometimes they are doubly, though in general they are singly, quilled. The quills are in general coated. On their external surface they are marked by longitudinal wrinkles and furrows, and predominating transverse cracks, which often form complete circles around the quills, and whose edges are usually raised. These furrows and cracks give a very rough character to this kind of bark, by which, indeed, it may be readily distinguished from the large quills of the gray or Huanuco bark. The colour of the epidermis is more or less light gray; in those spots where the epidermis is wanting, the outer surface of the bark is of a brown colour. In other characters the quilled and flat characters agree.

The finest quills are selected for druggists' show-bottles.

- **b. Flat yellow bark (cinchona regia plana).**—The pieces of this variety are from eight to fifteen or eighteen inches long; from one to three inches broad, and from one to five lines thick. They are but little curved or arched. In general the pieces are uncoated (cinchona regia nuda). Sometimes the uncoated

---

\textsuperscript{1} Quoted by Bergen, S. 295.
\textsuperscript{2} Monogr. S. 293.
\textsuperscript{3} Hist. des Drogs. ii. 79.
\textsuperscript{4} Laurent's Memoir in Lambert's Illustr. p. 70.
\textsuperscript{5} Fl. Med. 417.
\textsuperscript{6} Monogr. S. 285.
\textsuperscript{7} Hist. des Drogs. p. 80.
\textsuperscript{8} United States Dispensatory.
\textsuperscript{9} Journ. de Pharm. xxi. 305.
pieces are found, by drying, to have become convex on the inner, and concave on the outer side. When the coating is present, it agrees in character with the coated quilled, yellow bark already described, in having wrinkles, furrows, and transverse cracks, and in the colour of the epidermis.

The inner surface of both quilled and flat pieces is even, and often almost smooth. On examination, it is seen to consist of fine, closely-set, longitudinal fibres. Its colour is cinnamon-brown; the same colour is also perceived on the outer side of the bark in the places where the coating is removed.

**Commercial and other varieties.**—The only distinctions made in commerce are into **quilled** and **flat yellow cinchona**; the flat being subdivided into the **coated** and the **uncoated**.

The bark, called by Guibourt Quinquina jaune du roi d'Espagne, is unknown in English commerce. Guibourt says, that it has an odour like that of tobacco, and that it consists principally of young barks, resembling Calisaya or **Royal Yellow Cinchona** (the Yellow Cinchona of English commerce). It is the Cascarilla hoja de Oliva (Cinchona nitida, R. P. ?) of Poppig?

Mutis's Orange Cinchona of Santa Fe I once met with in the docks under the name of *New Spurious Yellow Bark*. This, as well as the Cusco and Carthagena Barks, sometimes mistaken for the Royal Yellow bark, will be noticed among the **White Cinchonas**.

**Composition.**—Pelletier and Caventou found in this bark superkinate of quina, kinate of lime, red cinchonic, soluble red colouring matter (tannin), fatty matter, yellow colouring matter, lignin, and starch. In 1827, Pelletier consumed 2,000 quintals of this bark in the manufacture of 90,000 ounces (French) of disulphate of quina: this is about three drachms of disulphate for one lb. of bark; Soubeiran states that one lb. (French) of uncoated yellow bark yields three drachms and from 30 to 50 grains (French) of disulphate of quina; while the same quantity of coated yellow bark yields three drachms (French) of the disulphate. I have been informed, by some manufacturers, that an ounce of the disulphate has been obtained from two lbs. of yellow bark; but this is beyond the average produce.

**Cryptogamia.**—The following is Fée's list of the cryptogamic plants found on this bark.

1. **Fungi.**—Hypochus rubro-cinctus; Triclinium Cinchonarum.
2. **Lichenes.**—Opegrapha peruviana; O. Scaphella; O. ovata; O. rhizocola; G. cineraria; G. cinnabarina; Arthonia obtitra; Fissurina Dumastii; Chiodecton sphærale; Trypethelium verrucosum; T. chiodectonoides; Pyrenula annularis; Porina americana; Ascidium Cinchonarum; Lepra flava; Variolaria amara; Lecidea aurigera; L. tuberculosa; L. soredifera; L. punicea; Parmelia perlata; Sticia macrophysila; Collema azureum; Solorina vitellina; Usnea florida: et barbata.
3. **Hepaticæ.**—Jungermannia atrata.
4. **Musci.**—Hyphnum Langsdorffii.

**6. CINCHONA RUBRA, E. D.**—**RED CINCHONA.**

(Cinchona oblongifolia; Cortex, L. D.—Red Bark, from an undetermined species, E.)

**Synonymes.**—Quinquina rouge verruqueux, and non-verruqueux, Guibourt. China rubra; Rothe China, Bergen. China rubra; Cortex Chine ruber, Goebel.

**History.**—It is probable, as Bergen suggests, that this red bark was known to the earliest travellers in South America, who have noticed the cinchona bark. Arrot, as well as Condamine, speak of a red bark (colorada) of the best quality.

* Journ. de Pharm. vii. 89.
* Diet. Nat. Méd. v. 693.
* Traité de Pharm. i. 693.
* Cours d'Hist. Nat. ii. 262.
Dr. Saunders states, that in the year 1702 a parcel of bark (which he says was the red kind) was taken on board a Spanish vessel, and a portion of it fell into the hands of a celebrated London apothecary, Mr. D. Pearson. In 1779, another Spanish ship, bound from Lima to Cadiz, was taken by an English frigate, and carried into Lisbon. Her cargo consisted principally of red bark, and was, for the most part, sent to Ostend, where it was purchased at a very low price by some London druggists, who, after some difficulty, contrived to get it introduced into practice.

Botany.—The species which yields the red bark is at present unascertained. It has been usually, though erroneously, supposed to be the Cinchona oblongifolia, Mutis, which yields a bark called Quina roxa, or Quina Azucar o roja de Santa Fé; and which was supposed to be our red bark. But Bergen has examined the bark bearing this name in the collection of Ruiz, and finds that it is not our commercial red bark, but the Quinquina nova of the French pharmacologists. Moreover, Schrader (who received a piece of the bark of the Cinchona oblongifolia from Humboldt) declared it to be a new kind; and Guibourt states, that the red bark of Mutis, which was deposited by Humboldt in the Museum of Natural History of Paris, is not commercial red bark, but Quinquina nova. To these statements may be added the testimony of Ruiz and Pavon, and of Humboldt; the two first of which writers state, that the Quina roxa is obtained from the Cinchona oblongifolia, but they do not know the origin of Quina colorada (the red bark of commerce); and Schrader states, that Humboldt declared he did not know the tree that yielded red bark.

Commerce.—Imported in chests; never in serons. Good samples are scarce. I am informed by an experienced dealer, that this bark was formerly imported in much larger sized pieces than are now met with.

Essential Character.—Coat thick, with wrinkles (longitudinal); furrows and warts, but without any important impression on the cortical layers [alburnum, Bergen]. Inner surface uneven; colour brownish-red (Bergen).

Description.—Red bark occurs in quills and flat pieces. The quills vary in diameter from two lines to an inch and a quarter; in thickness from one-third to two lines; in length from two to twelve or more inches. The so-called flat pieces are frequently slightly curled: their breadth is from one to five inches; their thickness from one-third to three-quarters of an inch; their length from two inches to two feet. Red bark is usually coated; its outer surface is usually rough, wrinkled, furrowed, and frequently warty. The colour of the epidermis varies: in the thinner quills it is grayish-brown, or faint red-brown; in thick quills and flat pieces it varies from a reddish-brown to a chestnut-brown, frequently with a purplish tinge. As a general rule, it may be said that the larger and coarser the quills and pieces, the deeper the colour. Cryptogamic plants are not so frequent on this as on some other kinds of bark. The rete mucosum is frequently thick and spong'y, especially in large flat pieces; much more so than in yellow bark. The inner surface of the bark is, in fine quills, finely fibrous; in large quills and flat pieces, coarsely fibrous, or even splintery. Its colour increases with the thickness and size of the pieces: thus, in fine quills it is light rusty brown; in thick quills and flat pieces it is a deep reddish or purplish brown. Some of the specimens of red bark, which I have received from Von Bergen, approach yellow bark in their colour. The transverse fracture of fine quills is smooth; of middling quills, somewhat fibrous; of thick quills and flat pieces, fibrous and splintery. The taste is strongly bitter, somewhat aromatic, but not so intense and persistent as that of yellow bark; the odour is feeble, tan-like; the colour of the powder is faint reddish-brown.

Commercial and other Varieties.—The obvious and common distinction is into quilled red bark and flat red bark. The warty pieces constitute the quinquina verruqueux of Guibourt; the pieces without warts are the quinquina non-verruqueux of the same pharmacologist. In the red bark of commerce, we frequently find
pieces with a white micaceous epidermis: these, which are probably the produce of a distinct species of Cinchona, constitute the *quinquina rouge à épiderme blanc et micace* (*quinquina Carthagene*, 2nd ed.) of Guibourt, and will be described among the *white cinchonas*.

The quilled red bark, called by Guibourt *red Lima cinchona*; the *flat orange-red cinchona*, and the *pale red cinchona* of the same pharmacologist, are not distinguished in English commerce.

The consumption of red cinchona being very small, but little attention has been paid to it, and no distinctions are made of it, except in the *quilled* and the *flat*; the latter being sub-divided into *coated* and *uncolated*.

**Composition.**—According to Pelletier and Caventou, red bark contains superkinate of cinchonia, superkinate of quina, kinate of lime, red cinchonic, soluble red colouring matter (tannin), fatty matter, yellow colouring matter, lignin, and starch. Soubeiran states, that one lb. of deep-red cinchona yields two drachms of sulphate of quina and one drachm of sulphate of cinchonia; while one lb. of pale red cinchona yields a drachm and a half of the sulphate of quina and one drachm of sulphate of cinchonia.

The following are the quantities of cinchona alkalis obtained from this bark by Von Santen, Michaelis, and by Goebel and Kirst:

<table>
<thead>
<tr>
<th>Von Santen</th>
<th>Cinchonia.</th>
<th>Sulphate Quina.</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fine quills of fresh appearance</td>
<td>70 grs.</td>
<td>77 grs.</td>
<td></td>
</tr>
<tr>
<td>2. Large, broad, flat pieces, of</td>
<td>90</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>fresh brownish-red appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(same chest)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Middling quills, from their</td>
<td>97</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>pale appearance probably</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 years older than the previous</td>
<td>80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(from Cadiz in 1819)</td>
<td>150</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4. Broad flat pieces, not so thick</td>
<td>184</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>as No. 2 (same chest as No. 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Middling quills, heavy, old</td>
<td>20</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(from London to Hamburg in 1815;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not met with now)</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>6. Thicker, heavier quills (same</td>
<td>63</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>chest)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Thick flat pieces, quills, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments (above 80 years in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburg: a pale kind)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Michaelis</th>
<th>Cinchonia.</th>
<th>Sulphate Quina.</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(flat pieces)</td>
<td>70 grs.</td>
<td>77 grs.</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>90</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>97</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>150</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>184</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>20</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>(flat pieces)</td>
<td>63</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

**Cryptogamia.**—The following are the cryptogamic plants on red cinchona, according to Fée:

**Lichenes.**—*Opegrapha Bonplandi*; *O. farinacea*; *Graphis Acharii*; *G. exilis*; *G. frumentaria*; *Pyremda verrucarioides*; *Verrucaria sinapisperma*; *Thelotrema urceolare*; *T. terembre*; *T. myriocarpum*; and *Lecidea conspersa*.

7. **CINCHONA LOXA ALBA.**—WHITE LOXA BARK.

Quinquina blance de Loxa, Guibourt.

This is found in the Crown or Loxa *Cinchona* of commerce; with which it agrees in its general appearance, being essentially distinguished by its whitish epidermis. It has considerable resemblance to the quilled Huamalies with a whitish epidermis, as also to Carthagena bark.

Mutis's *White cinchona* is a flat yellowish bark very dissimilar to the preceding. It is said to be the produce of *Cinchona ovalifolia*, and to contain a peculiar alkalii called *blauquine* (see p. 1400).

8. **CINCHONA DE CARTHAGENA DURA.**—CARTHAGENA HARD CINCHONA.

(Bark of *Cinchona cordifolia*.)


**History.**—See *Cinchona de Ctagahena fibrosa*.
Botany.—This bark is satisfactorily proved (see the evidence at pp. 1387-8) to be the produce of Cinchona cordifolia, Mutis.

Commerce.—It is imported in drum-like serons of about 80 lbs. net, or in half chests of about 70 lbs.

Essential Character.—Coat thin and soft, or wanting; longitudinal furrows irregular; under-surface uneven or splinterly; colour dull ochre-yellow (Bergen).

Description.—It occurs in fine, middling, and thick quills, and in flat pieces. The quills vary in diameter from three to eight lines, in thickness from half to one and a half lines, in length from five to nine, rarely to fifteen inches. The flat pieces are more or less twisted, arched, or warped (sometimes like pieces of dried horn) in drying, and are from a half to two inches broad, two to seven lines thick, and four to eight, rarely to twelve inches long. The coat, which is usually more or less rubbed off, is thin, soft, somewhat corky, laminated, with irregular longitudinal furrows; transverse cracks and warts are very rare. The epidermis is whitish, yellowish white, or ash gray. In the unwaried we observe, in the outer surface of the cortical layers, irregular longitudinal, but not very deep, furrows. The inner surface is smooth or splinterly, frequently hollowed out. The prevailing tint of the cortical layers is usually dull ochre-yellow. The longitudinal fracture (which is with difficulty effected) is uneven, short, and coarse-splinterly; the transverse fracture is short-splinterly. The taste is moderately bitter, and slightly astringent. The powder is cinnamon-coloured.

Commercial Varieties.—No commercial varieties of this are known. The Carthagena brown bark (Quinquina Carthagena brun, Guibourt) is probably only a variety. The pieces are twisted, very hard, of a chocolate-brown tint, with a yellowish-white epidermis.

Composition.—Guibourt says, that the Carthagena yellow hard cinchona contains but little cinchonia, and scarcely any quina. The following are the quantities of the cinchona alkalis, according to Von Santen, and Goebel and Kirst:

<table>
<thead>
<tr>
<th>One lb. of Bark</th>
<th>Cinchonia</th>
<th>Sulphate of Quina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quills and flat pieces (from Cadiz in 1814)</td>
<td>30 grs.</td>
<td>32 grs.</td>
</tr>
<tr>
<td>Flat pieces (from Curacao in 1806)</td>
<td>36 grs.</td>
<td>5 grs.</td>
</tr>
</tbody>
</table>

Goebel and Kirst found 56 grs. of Quina, and 43 grs. of pure Cinchonia. The bark analyzed under the name of Carthagena cinchona, by Pelletier and Caventou, was Carthagena brown cinchona. The constituents were similar to those of red cinchona. The resinoid matter was very abundant.

Cryptogamia.—Very few cryptogamia are found on this bark. The following are those mentioned by Bergen:

LICHENES.—Trypethelium variolosum; Thelotrema bahianum; Pyrenula poronoides; P. discolor; Parmelia melanoleuca; Usnea floridia; Cinchona.

9. CINCHONA DE CARTHAGENA FIBROSA.—CARTHAGENA FIBROUS CINCHONA.

Synonyms.—Quinquina de Colombie ligneux, Guibourt. China flava fibrosa; Holzige gelbe China, Bergen.

History.—This bark is not distinguished in commerce from the preceding, and its history, therefore, cannot be traced separately.

It is uncertain at what period Carthagena Cinchona was introduced into commerce. It may have been contemporaneous with the Calisaya bark. Von Bergen says it was first met with at public sales in the year 1805.

Botany.—The origin of Carthagena fibrous bark is not accurately ascertained. As it is imported in the same parcel with the Carthagena hard Cinchona—as both barks appear in commerce together, and closely resemble each other—I suspect they are obtained from the same species, either at different seasons or in different localities.
CINCHONA.

COMMERCIAL.—As the preceding kind.

ESSENTIAL CHARACTER.—Coat thin, soft, of moderate thickness,—or rubbed off: under-surface even, but rough to the touch; colour pure ochre-yellow (Bergen).

DESCRIPTION.—The dimensions of the quills and flat pieces, as well as their form, and the appearance of their epidermis, agree with those of the last-mentioned cinchona. The coat is wholly or partially absent, especially in the flat pieces. The rete mucosum is corky, and somewhat soft. Though apparently smooth, the under-surface is to the touch finely splintery. The prevailing tint of the cortical layers is ochre-yellow. The very fibrous and splintery fracture (both longitudinal and transverse) especially distinguishes this kind. The taste is at first woody and insipid, then somewhat bitter and astringent. The powder is between cinnamon and ochre-yellow.

COMMERCIAL VARIETIES.—In commerce this and the last-mentioned Cinchona are confounded.

The Quinquina Pitaya, Quinquina de la Colombie or d'Antioquia of Guibourt, is closely allied to, if indeed it be not identical with, this bark.

COMPOSITION.—No complete analysis of this bark has yet been made. The following are the quantities of the cinchona alkalis obtained by Von Santen, and by Goebel and Kirst:

<table>
<thead>
<tr>
<th>One lb. of Bark.</th>
<th>Cinchonia.</th>
<th>Sulphate of Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Middling fine quills (from Cadiz in 1819)</td>
<td>20 grs.</td>
<td>11 grs.</td>
</tr>
<tr>
<td>2. Flat pieces (from ditto)</td>
<td>32 grs.</td>
<td>15 grs.</td>
</tr>
<tr>
<td>Von Santen</td>
<td>3. Ditto (from Curacao in 1806)</td>
<td>30 grs.</td>
</tr>
<tr>
<td>4. Ditto, thicker (from ditto)</td>
<td>34 grs.</td>
<td>30 grs.</td>
</tr>
<tr>
<td>5. Ditto, uncoated (from ditto)</td>
<td>—</td>
<td>30 grs.</td>
</tr>
</tbody>
</table>

Goebel and Kirst obtained 54 grs. of pure Quina, but could detect no cinchonia.

CRYPTOGAMIA.—Very few cryptogamic plants are found on this bark. The following are mentioned by Von Bergen:

| LICHENES. | Thelotrema bahianum; Pyrenula porinoides; P. discolor; Parmelia melanoleuca; and Usnea floridu 3 Cinchona. |

10. CINCHONA DE CUSCO.—CUSCO CINCHONA.

This bark was described in 1830 by Guibourt. The flat uncoated pieces may, by inexperienced persons, be mistaken for yellow (Calisaya) bark: but they may be distinguished by sulphate of soda not producing any precipitate in their infusion, whereas it causes a precipitate with the infusion of the yellow (Calisaya) bark. The middling and smaller pieces and quills are in general partially or wholly covered with a whitish, smooth, uncracked epidermis. The rete mucosum is orange-red, and corky. The colour of the inner surface is yellowish cinnamon-brown. Touched by nitric acid, both rete mucosum and cortical layers become of a deeper colour. The only vegetable alkali which Guibourt obtained from Cusco cinchona was cinchonia (about 5). From a pound of bark. The red cinchonic was present in abundance.

Guibourt considers this bark to be identical with the Arika Bark (Écorce d'Arica) of Pelletier and Coriol. But Arika bark is said to be made green on the application of nitric acid, and to yield a peculiar alkali termed aricina. In 1830, I procured from M. Pelletier a cinchona which he called Arika bark: it is paler than the Cusco cinchona of Guibourt; but, like the latter, is not rendered green by nitric acid.

The China rubiginosa of Bergen somewhat resembles Carthagena fibrous bark. Guibourt, indeed, says that it is identical with his Cusco cinchona. But my samples do not confirm his statement.

1 Monogr. S. 297.
3 Journ. de Pharma. xv. 565.
4 Pharm Central-Blatt für 1830, 121.
11. CINCHONA AURANTIACEA DE SANTA FE.—ORANGE CINCHONA OF SANTA FÉ.

(Bark of Cinchona lancifolia.)

This bark was formerly described by Guibourt as Carthagena spongy bark (Quinquina de Cathagène spongieux). I have once met with it in England under the name of new spurious yellow bark. It was unsaleable, and in a warehouse at the London Docks. Its origin was unknown, until Guibourt found a specimen of it at the Muséum d'Histoire Naturelle of Paris, where it had been deposited by Humboldt as the orange cimchona of Mutis (Cinchona lancifolia). The cortical layers are excessively fibrous, very slightly bitter, in some pieces almost insipid, and of an orange colour. The largest pieces are semi-cylindrical, 4 or 5 inches broad, 3 of an inch thick, above 12 inches long, covered in places with a yellowish-white, smooth, micaceous epidermis, presenting on the outer surface longitudinal cracks. The smaller pieces are an inch and a half broad, and are rough externally from the numerous short cracks (longitudinal and transverse) of the epidermis. Guibourt says, that the epidermis is not cracked, but this statement does not accord with my specimens. Some small quills which I received from this celebrated pharmacologist are tolerably smooth. The orange cimchona of Santa Fé is of little medicinal virtue, though Mutis declared it to be of great value; and his opinions and errors on this and some other topics have unfortunately been adopted by Humboldt. The following observation of this celebrated traveller shows the just estimate formed by, not the ignorance of, the Spanish authorities respecting the value of this bark. "The effect of mercantile cunning went so far, that, at the royal command, a quantity of the best orange-coloured cinchona bark, from New Granada, which M. Mutis had caused to be peeled at the expense of the king, was burned, as a decidedly inefficacious remedy, at a time when all the Spanish field-hospitals were in the greatest want of this valuable product of South America."

Soubeiran says, 1 lb. of spongy Carthagena cimchona (Quinquina de Carthagène spongieux) yields from 24 to 36 grains of sulphate of cimchonia; but I suspect he does not allude to this bark.

12. CINCHONA NOVA.—MUTIS' RED CINCHONA OF SANTA FÉ.

(Bark of Cinchona magnifolia.)

This bark is the Kina nova or Quinquina nova of the French pharmacologists. The evidence on which it is referred to C. magnifolia has been already stated (see p. 1390). I have only once met with this bark in London. It had been sent, mixed with several other barks, to a drug-mill to be ground to powder. It scarcely resembles any other cinchona barks with which I am acquainted. Guibourt thus describes it:—"Bark about a foot long, quilled when small, open or almost flat when larger, having, in general, a perfectly cylindrical form, whence its name of candelie cinchona (quinquina chandelle). Its epidermis is whitish, thin, smooth, and has scarcely any cryptogamia (one has the form of yellow, waxy, mamellated plates), without any other fissures than some transverse rents, which extend to the liber, and appear to be the effect of desiccation; whereas the circular impression of quilled yellow cinchona, for example, depends on the organization of the bark. Sometimes the epidermis is wanting. The cortex, properly so called, is from one to three lines thick, of a pale carnation-red, which becomes deeper in the air, especially at the outer surface, which, when it is deprived of epidermis, is always brownish-red; its fracture is foliated externally, shortly fibrous internally; and when examined by a lens, we observe, between the fibres, and especially between the laminae, a great abundance of two granular matters, one red, the other whitish, and which give the roseate colour above stated. Some pieces present in their fracture, and nearer the external than

* Humboldt in Lambert's Illustr. p. 33.
* Traité de Pharm. i. 603.
* Hist. des Drog. ii. 99.
* The bark of the trunk is five or six lines thick, covered with a white, friable, unequal, cracked epidermis: in other respects it resembles that of the branches.
the internal edge, a yellow transparent exudation, like resin or gum. The bark
has an unpleasant astringent taste, analogous to that of tan; its odour is feeble,
and intermediate between that of tan and gray cinchona. The powder is fibrous,
and very decidedly red.” Pelletier and Caventou analyzed it, and found a
fatty matter, a peculiar acid (kinovic acid), a red resinoid matter, gum, starch,
yellow colouring matter, alkalescent matter in small quantity, and lignin.

13. RED CINCHONA, WITH A WHITE MICACEOUS EPIDERMIS.

Under this name Guibourt designates a red bark having a white micaceous
epidermis, and which I have found intermixed with the red bark of commerce.

COMPOSITION.—In February 1791, Fourcroy published an
analysis of St. Lucia Bark (formerly called St. Domingo Bark), which
was long regarded as a model of vegetable analysis. In 1802,
Seguin concluded, that as the active principle of cinchona was pre-
cipitated by an infusion of nutgalls, it must be gelatine, and there-
fore proposed and employed the use of clarified glue as a febrifuge in inter-
Goebel's Classification.

<table>
<thead>
<tr>
<th>I. Cinchona barks containing cinchonia:—</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a.) Huancuo, or gray bark</td>
<td>168 grs.</td>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Cinchona barks containing quina:—</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Yellow, or regia bark</td>
<td>..</td>
<td>95 grs.</td>
</tr>
<tr>
<td>(a.) Flat uncoated pieces</td>
<td>..</td>
<td>84</td>
</tr>
<tr>
<td>(b.) Coated thick quills</td>
<td>..</td>
<td>60</td>
</tr>
<tr>
<td>(c.) Thin quills</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>2. Fibrous Carthagenabark</td>
<td>..</td>
<td>54</td>
</tr>
<tr>
<td>(China flava fibrosa)</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>3. Ash bark (China Jaen)</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Cinchona barks containing both quina and cinchonia:—</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Red bark</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>2. Hard Carthagenabark (China flava dura)</td>
<td>43</td>
<td>56</td>
</tr>
<tr>
<td>3. Brown, or Huamalies bark</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>4. True Loxa or Crown bark</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>5. False Loxa bark</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

| IV. False Cinchona barks                                   | 0         | 0     |

Geiger's Classification.

<table>
<thead>
<tr>
<th>Div. 1.—Cinchona barks, in which Cinchonia predominates.</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
</table>
| This includes the Huancuo, Huamalies, Ash, Loxa, and false Loxa barks.

<table>
<thead>
<tr>
<th>Div. 2.—Cinchona barks, in which Quina prevails.</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>This includes the Regia or Yellow bark only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Div. 3.—Cinchona barks, in which Quina and Cinchonia are contained in nearly the same stoichiometrical proportions.</th>
<th>Cinchonia</th>
<th>Quina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Here are placed the Red and Carthagenabarks.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pfaff's Classification of the Cinchona Barks according to their chemical affinities.

<table>
<thead>
<tr>
<th>Cinchona Huancuo</th>
<th>Cinchona regia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfaff's classification</td>
<td></td>
</tr>
<tr>
<td>Cinchona de Carthagenae</td>
<td>Cinchona de Loxa</td>
</tr>
<tr>
<td>Cinchona Rubra</td>
<td>Cinchona falsa</td>
</tr>
</tbody>
</table>

1. VOLATILE OIL OF CINCHONA (Odorous, Aromatic, or Balsamic Principle).—This was procured first by Fabbroni, afterwards by Trommsdorff. It was obtained by submitting bark with water to distillation. The distilled water had the peculiar odour of the bark, and a bitterish acrid taste. The oil which floated on the water was thick and butyraceous, and had the peculiar odour of the bark, and an acrid taste. Zenneck says the cinchona odour is imitated by a solution of turmeric in potash, as well as by chloride of iron.

2. TANNIC ACID (Astringent Principle; Soluble Red Colouring Matter).—This is a constituent of the most valuable kinds of cinchona. Its presence in an infusion of bark is detected by the ferruginous salts, by a solution of emetic tartar, and by a solution of gelatine: the first produces a green colour or precipitate (tannate of iron), the second causes a whitish precipitate (tannate of antimony), the third also a whitish precipitate (tannate of gelatine). According to Pfaff there is another principle in cinchona barks (resin, Bucholz) which forms a precipitate with emetic tartar; for the quantity of precipitate produced by this salt bears no ratio to that occasioned by the solution of gelatine; in some barks being more, in others less. Cinchona tannin is remarkable for the extreme facility with which its solution absorbs oxygen, and becomes coloured when exposed to the air, especially under the influence of alkalis. The red insoluble matter which is formed is, according to Berzelius, red cinchonic. The combinations of cinchona tannin with acids are more soluble than those of nutgall tannin.

3. RED CINCHONIC (Insoluble Red Colouring Matter).—This substance is considered by Berzelius to be a product of tannin altered by the air, and to consist of tannin and apotheme. It appears to me to agree in most of its properties with catechine, a substance which is found in great abundance in another genus of cinchonaceous plants (see Uncaria Gambir). It is inodorous, insipid, and of a reddish brown colour. It is insoluble, or nearly so, in cold water, but is somewhat more soluble in boiling water. Acids favour its solution in water. It is soluble in alcohol (especially when hot) but scarcely so in ether. Its aqueous solution has no, either with or without an acid, the power of forming a precipitate with a solution of gelatine, but it has with emetic tartar. If, however, red cinchonic be dissolved in an alkaline solution, and then precipitated by an acid, it acquires

1 Berl. Jahrh. 1807.  
2 Pharm. Central-Blatt, für 1832, S. 235.  
3 Syst. de Mat. Med. ii. 247, and vii. 128; Bergen, Monogr. S. 338.  
4 Traité de Chim. v. 585.  
6 Journ. de Pharm. xiii. 269 and 369.
the power of precipitating gelatine. But if it be heated with a solution of potash or soda, it loses the power of precipitating gelatine.

4. **Kinic, Cinchonic, or Quinic Acid.**—This acid is not peculiar to the cinchona barks, being also found, according to Berzelius, in the alburnum of *Abies communis*. As met with in commerce, kinic acid is in the form of a thick syrupy liquid, which may be crystallized, though with difficulty. It is soluble both in water and alcohol, and has an acid taste. When heated in closed vessels, it is decomposed.—**Pyrokinic acid** is formed,—and an odour of caramel evolved (like that of sugar or tartaric acid, when heated). Sulphuric acid dissolves it, acquires a green tint, and, by the aid of heat, carbonizes it. It does not precipitate the calcareous salts, nitrate of silver, or the neutral acetate of lead; but it precipitates the diacetate of lead. In the solubility of its combinations it is analogous to acetic acid, from which it is distinguished by its crystallizability, and its not volatilizing unchanged. The *Kinates* are analogous to the acetates in their solubility in water: they are insoluble in pure alcohol. When dried, they have a gummy appearance; and when decomposed by heat, evolve an odour of caramel. **Pyrokinic acid** does not precipitate the alkalies, lime, or barytes; it precipitates the salts of lead and silver; and lastly, it gives a beautiful green colour to the salts of iron. Crystallized kinic acid consists of $C_7H_6O_6$: its atomic weight, therefore, is 96.

5. **Kinovic Acid.**—This acid was discovered by Pelletier and Caventou in Cinchona nova (see p. 1395). It has considerable analogy to stearic acid. It is a brilliant white, light substance, very little soluble in water, but readily dissolved by alcohol and ether. A solution of *kinovates* of magnesia forms precipitates (*kinovates*) with solutions of acetate of lead, bichloride of mercury, and the salts of cinchonia.

6. **Cinchona Alkalies (Cinchonia, Quina, and Aricina).**—It appears from the observations of Henry and Plisson that cinchonia and quina exist in cinchona bark in combination with kinic acid, and also with red cinchonic. The quantities of cinchonia and quina yielded by some cinchona barks is thus stated by Soubeiran and by Von Santen.—Goebel's table has been already (p. 1396) given:—

**According to Soubeiran.**

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uncoated Yellow (Calisaya) Bark</td>
<td>202 to 218 grs. of sulphate of Quina.</td>
</tr>
<tr>
<td>2. Coated Yellow (Calisaya) Bark</td>
<td>177 grs. of ditto.</td>
</tr>
<tr>
<td>3. Loxa Bark</td>
<td>884 to 118 grs. of Sulphate of Cinchonia.</td>
</tr>
<tr>
<td>4. Gray (Lima) Bark</td>
<td>88 grs. of ditto.</td>
</tr>
<tr>
<td>5. Deep Red Bark</td>
<td>118 grs. of Sulphate of Quina, and 59 grs. of Sulphate of Cinchonia.</td>
</tr>
<tr>
<td>Pale Red Bark</td>
<td>88 grs. of Sulphate of Quina, and 59 grs. of Sulphate of Cinchonia.</td>
</tr>
<tr>
<td>Spongy Carthagena Bark</td>
<td>193 to 294 grs. of Sulphate of Cinchonia.</td>
</tr>
</tbody>
</table>

**According to Von Santen.**

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coated Yellow (Calisaya) Bark</td>
<td>160 grs. of Sulphate of Quina, and 2 grs. of pure Cinchonia.</td>
</tr>
<tr>
<td>2. Loxa Bark</td>
<td>53 grs. of Sulphate of Quina.</td>
</tr>
<tr>
<td>3. Gray (Huanuco) Bark</td>
<td>210 grs. of pure Cinchonia.</td>
</tr>
<tr>
<td>4. Red Bark</td>
<td>184 grs. of pure Cinchonia, &amp; 9 grs. of Sulphate of Quina.</td>
</tr>
<tr>
<td>5. Hard Carthagena Bark</td>
<td>30 grs. of pure Cinchonia, &amp; 32 grs. of Sulphate of Quina.</td>
</tr>
<tr>
<td>6. Fibrous Carthagena Bark</td>
<td>34 grs. of pure Cinchonia, &amp; 30 grs. of Sulphate of Quina.</td>
</tr>
<tr>
<td>7. Huamalies Bark</td>
<td>35 grs. of pure Cinchonia.</td>
</tr>
<tr>
<td>8. Ash-Cinchona Bark</td>
<td>1 gr. of Gallate of Quina.</td>
</tr>
<tr>
<td>9. False Loxa Bark</td>
<td>0</td>
</tr>
</tbody>
</table>

Cinchona and quina possess the following properties: when burned with nitrate of ammonia they leave no mineral, earthy, or alkaline residuum. Their alkaline nature is shown by their restoring the blue colour of reddened litmus.
An iodate and hydriodate are formed when iodine and water is mixed with cinchonia or quina. Nitric acid does not colour either of these alkalis; hence they are distinguished from morphia, brucia, and commercial strychnia. When a solution of the nitrate of either cinchonia or quina is concentrated, the anhydrous nitrate separates under the form of oleaginous drops, which solidify on cooling, and, if immersed in water, absorb this fluid, and become covered in a few days with groups of crystals. Solutions of the salts of cinchonia and quina form precipitates on the addition of ammonia, ferrocyanide of potassium, carbazotic acid, tincture of nutgalls, oxalate of ammonia, or of tartrate of potash. Cinchonia, quina, and aricina, may be regarded as oxides of a common base (composed of CO₂, H₂O), which has been termed quinogen.

1 atom Quinogen = 146
1 atom Oxygen = 8
2 atoms Oxygen = 16
3 atoms Oxygen = 24

According to this hypothetical view cinchonia is a monoxide, quina a binoxide, and aricina a teroxide.

a. Quina (Quinine; Quinina; Quininum).—The simplest, readiest, and cheapest mode of procuring it, is by precipitating a solution of the disulphate of quinia by ammonia, and collecting and drying the precipitate. Pelletier crystallized it by dissolving it in alcohol of sp. gr. 0.813, and setting the solution aside to evaporate spontaneously in a dry place.

Pure quina is white, indorous, very bitter, and fusible at about 300° F. The fused quina when cold is yellow, translucent, friable, and somewhat like resin. Boiling water dissolves 1-200th of its weight of quina: cold water dissolves a much less quantity. It is readily soluble in alcohol (especially when hot), and in ether. Crystallized quina is a hydrate of quina, and contains one equivalent of water. The salts of quina are readily crystallizable, very bitter, and have a pearly aspect. They are, for the most part, soluble in water, alcohol, and ether. The oxalate, tartrate, tannate, and ferrocyanate, are the less soluble salts. Tincture of nutgalls causes a precipitate (tannate of quina) in a solution of a quina sub- or neutral salt. Ammonia also produces a precipitate (quina).

The following is the composition of quina:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>20</td>
<td>120</td>
<td>74.08</td>
<td>74.40</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>12</td>
<td>12</td>
<td>7.40</td>
<td>7.61</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>8.64</td>
<td>8.11</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2</td>
<td>15</td>
<td>9.88</td>
<td>9.88</td>
</tr>
<tr>
<td>Anhydrous Quina</td>
<td>1</td>
<td>162</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. Disulphate of Quina (see p. 1417).

2. Monosulphate of Quina; Neutral Sulphate of Quina.—This salt is readily formed by adding sulphuric acid to the disulphate. It is sometimes produced in the manufacture of the latter salt, and remains, on account of its greater solubility, in the mother liquor, with the sulphate of cinchonia. It is also produced when we dissolve the disulphate in an aqueous liquid acidulated with sulphuric acid. This salt crystallizes in square prisms. It reddens litmus, but is not acid to the taste. It is soluble in 22 parts of water at 55° F. or 11 parts at 73° F. It is also soluble in alcohol. It is composed of—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Quina</td>
<td>1</td>
<td>162</td>
</tr>
<tr>
<td>Water</td>
<td>8</td>
<td>72</td>
</tr>
</tbody>
</table>

Crystallized Sulphate of Quina | 1 | 274 | 100.0 |

3. The Native Kinate of Quina is crystalline, very bitter, slightly soluble in alcohol, but very soluble in water. It is decomposed by ammonia, potash, or of lime. The salts of lead and of silver slightly aciddulated, do not produce with it any apparent precipitate.

4. The Native Compound of Red Cinchonic and Quina is bitter, scarcely soluble in cold water, but more so in boiling water; the liquor becomes turbid as it cools. Acids promote its solution in water. It is readily soluble in alcohol. Alkalis decompose it, and precipitate the quina.
6. **CINCHONA** (Cinchonine; Cinchonina; Cinchonium).—Obtained by precipitation from a salt of Cinchonia by ammonia. It crystallizes with facility from its alcoholic solution. **Crystallized Cinchonia** is anhydrous, colourless, inodorous, and bitter. The form of the crystals is a four-sided prism, with oblique, terminal facets. When heated this salt does not fuse until it begins to decompose; it then fuses, furnishes a crystalline sublimate (cinchonia?), gives out ammonia, and leaves a carbonaceous residuum. It is soluble in 2,500 parts of cold water, and in a somewhat less quantity of boiling water: the hot solution becomes opaque as it cools. It is soluble in alcohol, especially when hot; from the solution, on cooling, crystals are obtained. Its solubility in alcohol is, however, less than that of quina in this fluid. It is soluble in ether, but much less so than in alcohol. It dissolves, though slightly, in fixed oils, somewhat more so in oil of turpentine, and readily in dilute acids.

1. **Disulphate of Cinchonia; Cinchonie Disulphas; Subsulphate of Cinchonia.**—Its crystals are short, oblique prisms, terminated by bihedral summits. Its taste is bitter. When heated it becomes phosphorescent: at 212° F. it fuses; at 248° F. it loses its water of crystallization. It is soluble in 6 parts of alcohol of sp. gr. 0.85, and in 11 parts of absolute alcohol. It requires 54 parts of cold water to dissolve it. The following is its composition:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Cinchonia</td>
<td>2</td>
<td>308</td>
</tr>
<tr>
<td>Water</td>
<td>4</td>
<td>36</td>
</tr>
</tbody>
</table>

Crystallized Disulphate of Cinchonia... 1 384 100.00

This salt has been frequently employed in medicine under the name of sulphate of cinchonia.

2. **Neutral Sulphate of Cinchonia** is not employed in medicine. It is prepared by adding sulphuric acid to a solution of the disulphate. The crystals contain eight atoms of water of crystallization. They are much more soluble than those of the disulphate.

3. The **Native Kinate of Cinchonia** possesses similar properties to the native kinate of quina; but ammonia produces with it a less flocculent precipitate, and which dissolves in alcohol, and is susceptible of crystallization.

**Comparative Table of some distinguishing properties of Cinchonia and Quina.**

<table>
<thead>
<tr>
<th></th>
<th>Cinchonia</th>
<th>Quina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalline.</td>
<td>Bitter.</td>
<td>Amorphous (in the anhydrous state). The hydrate is crystallizable, but with difficulty.</td>
</tr>
<tr>
<td>Fusibility.</td>
<td>Fusible.</td>
<td>Fusible.</td>
</tr>
<tr>
<td>Composition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combining proportion, or atomic weight in water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solubility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disulphate, form and aspect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral Sulphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochlorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arseneate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The solution of disulphate treated by chlorine, then by ammonia, yields</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The solution treated by chlorine then by water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A reddish solution.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VOL. II.**
7. ARICINA: Cusco-cinchonia; Cusconin.—Discovered in Arica or Cusco-Cinchona by Pelletier and Coriol in 1829. It was procured from this bark by the same process that quina is extracted from yellow bark. It is a white crystallizable substance, analogous to cinchonia in many of its properties, but is distinguished by its acquiring a green tint by the action of nitric acid, and by a boiling saturated solution of the sulphate forming, as it cools, a tremulous jelly, which by desiccation becomes horny. It consists of—

<table>
<thead>
<tr>
<th>Atoms.</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

Aricina 1 170 100-00

Several other alkaloids have been said to exist in the Cinchona barks; but further evidence is required to establish their existence. Dr. Mills has given the name of Blanquinine to a supposed new alkaloid in white Cinchona (C. ovalifolia, see p. 1391). The Chinoidine of Sertuerner is, according to Henry fils and Delondre, merely a mixture of quina and cinchonia with yellow colouring matter. The alkaliescent matter of Cinchona nova (see p. 1394) requires further examination. The alkaloids of the false Cinchona barks have been already (p. 1381) referred to.

**Chemical Characteristics.**—The most important chemical characteristics of the cinchona barks are those derived from the action of the following reagents on infusions of bark: tincture of nutgalls, emetic tartar, gelatine, sulphate of iron, and neutral oxalate of ammonia. The first is a test for the alkaloids, the three following for tannic acid, and the last for lime. Tables of the changes produced by these and other tests have been published by Vauquelin, Von Santen, Guibourt, and Martius. The following table is from the last mentioned pharmacologist:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HARD CARthagena Bark</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Turbidness</td>
<td>Slight yellowish-white turbidness.</td>
<td>Slight yellowish-white turbidness.</td>
</tr>
<tr>
<td>2. FIBROUS CARthagena Bark</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Slight turbidness</td>
<td>Ditto</td>
<td>Colour yellowish.</td>
</tr>
<tr>
<td>3. HUAMALIES Bark</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Slight turbidness</td>
<td>Ditto</td>
<td>Colour greenish-yellow.</td>
</tr>
<tr>
<td>4. HUANUCO Bark</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Scarcely changed</td>
<td>Very slight turbidness</td>
<td>Very strong yellowish-white turbidness.</td>
</tr>
<tr>
<td>5. ASH CINchona</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Very strong yellowish-white turbidness.</td>
<td>Turbidness</td>
<td>Dirty blueish-green turbidness.</td>
</tr>
<tr>
<td>6. LOXA Bark</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Strong flocculent white turbidness.</td>
<td>Turbidness</td>
<td>Not changed.</td>
</tr>
<tr>
<td>7. FALSE LOXA Bark</td>
<td>Turbidness</td>
<td>Unchanged</td>
<td>Slight turbidness</td>
<td>Ditto</td>
<td>Slight dirty-violet turbidness.</td>
</tr>
<tr>
<td>8. YELLOW (CALISAYA) BARK</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Slight turbidness</td>
<td>Ditto</td>
<td>Coarsely flocculent, slightly dirty-vio turbidness.</td>
</tr>
<tr>
<td>9. RED BARK</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Turbid</td>
<td>Ditto</td>
<td>Very slight turbidness.</td>
</tr>
<tr>
<td>10. CINchona RUBIGINOSA</td>
<td>Cloudy</td>
<td>Unchanged</td>
<td>Flocculent turbidness</td>
<td>Ditto</td>
<td>Dirty greenish-brown turbidness.</td>
</tr>
<tr>
<td>11. CINchona NOVA</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Extremely slight turbidness</td>
<td>Unchanged</td>
<td></td>
</tr>
</tbody>
</table>

1 Quart. Journ. of Science for April 1828, p. 379.
2 Jour. de Pharm. XVI. 44.
3 Ibid. 144.
5 Bergen, Monogr.
6 Hist. des Drog. ii.
7 Pharmakogn. 126.
The barks may be arranged, after Vauquelin, in three sets:—

1st. Those whose infusions precipitate infusion of nutgalls, but not a solution of gelatine: ex. Carthagena barks. These contain the alkalis, but no tannic acid.

2. Those whose infusions precipitate a solution of gelatine, but not an infusion of nutgalls: ex. Cinchona nova. These contain tannic acid, but no appreciable quantity of cinchonia or quina.

3. Those whose infusions precipitate both a solution of gelatine and an infusion of nutgalls: ex. Loxa Bark. These contain both alkalis and tannic acid.

Chemical Characteristics of the Goodness of Cinchona Barks.—The best cinchona barks are those which contain, in the greatest abundance, the vegetable alkalis and tannic acid. For, although the essential tonic operation of cinchona depends on the cinchonia and quina, yet the astringency and part of the tonic effect arises from the tannic acid. "There exists a law in Sweden," says Berzelius, "in virtue of which every cinchona bark imported into the country is tested by the infusion of galls, the persulphate of iron, a solution of gelatine, and emetic tartar; and it is proved by an experience of more than sixteen years, that the most efficacious bark is that which precipitates the most strongly a solution of gelatine and emetic tartar; in other words, that which contains the most tannin." Hence the chemical tests for good cinchona bark are twofold,—1st, those which detect the tannic acid, and 2ndly, those which detect the vegetable alkalis.

1. Tests for Tannic Acid.—These are three in number:

1. A solution of gelatine, which occasions in infusion of cinchona a whitish precipitate (tannate of gelatine).

2. A solution of a sesquiferruginous salt (as persulphate of iron or sesquichloride of iron) which produces a green colour or precipitate (tannate of iron).

3. A solution of emetic tartar, which causes a dirty white precipitate (the nature of which has been before discussed, p. 1396).

2. Quinometry.—Various alcaloimetical processes, applicable to the cinchona barks, have been recommended. They are essentially or two kinds: some consist in the use of certain reagents or tests which precipitate the alkaloids from an infusion of the bark, others are processes for the extraction of the alkaloids, which are obtained either in the free state or as salts (disulphates).

1. Processes by Tests.—a. Tannic acid is a very delicate test of the Cinchona alkalis, which it precipitates from their solutions, in the form of tannates. On this depends the value of infusion or tincture of nutgalls, employed as a test of the goodness of bark by Vauquelin, by Berzelius, and by O. Henry.

b. Chloride of Platinum.—Duflos's quinometrical method is founded...
on the property of the cinchona alkalises to form with [neutral] chloride of platinum double salts (platinum-chlorides of the alkaloids) which are insoluble in alcohol, and very difficulty soluble in cold water. One grain of these salts dried in the air contains about half a grain of the alkaloids.

γ. Bichloride of Mercury.—As bichloride of mercury forms with hydrochlorates of quina and cinchonia, double salts (mercury-bichlorides of the alkaloids) which are only slightly soluble in water and in alcohol, it may perhaps be applicable, in some cases, as an alcaloimetical test.

2. Extraction of the Cinchona Alkalises.—The methods of extracting cinchonia and quina from bark for alcaloimetical purposes are various. They may be referred to under four divisions:

a. By Alcohol.—Some chemists begin by preparing an alcoholic tincture of bark, without using in the first instance either acid or mineral alkali. This is the method adopted by Pelletier and Caventou, by Tilloy, and by Bonnet. From this tincture the alkaloids may be extracted by various processes.

b. By Acidulated Liquids, without the previous use of alkaline solutions.—In some alcaloimetical processes the bark is digested in spirit, acidulated with sulphuric or hydrochloric acid; as in those of Henry fils, and Stoltze. In others acidulated water is used, as in the methods of Von Santen, Henry and Plisson, and Winkler.

c. By acidulated Liquors, after the use of alkaline solutions.—Scharlau’s method is founded on the property of red cinchonic and cinchona-tannin (with both of which the cinchona-alkaloids are combined) to dissolve in caustic alkalis, and thereby to be extracted from the bark: the cinchonia and quina which are left behind may be subsequently removed by an acidulated liquor. Badollier also employed caustic potash: Stoltze a mixture of lime and water. In the process of the Edinburgh Pharmacopoeia for the manufacture of disulphate of quina, an alkaline carbonate (carbonate of soda) is used.

d. By Water.—The Edinburgh Pharmacopoeia gives the following directions for ascertaining the good quality of yellow bark. “A filtered decoction of 100 grains in two fluid ounces of distilled water gives, with a fluid ounce of concentrated solution of carbonate of soda, a precipitate, which, when heated in the fluid, becomes a fused mass, weighing when cold 2 grains or more, and easily soluble in solution of oxalic acid.” In this process the native salts of quina extracted by the boiling water are decomposed by carbonate of soda. By heat the quina fuses.

Of the above quinometrical processes I give the preference to that employed by the Edinburgh College in the manufacture of disulphate of quina.

The separation of quina and cinchonia, in order to estimate the quantity of each, is a matter of some importance. It is effected by the different degrees of solubility of these alkaloids or their salts, and by the easy crystallizability of cinchonia.

1. Boiling Alcohol may be employed to separate these alkaloids: when this liquid, charged with the two alkaloids, cools, the cinchonia crystallizes,
but the quina remains in the mother liquor. This mode of separation was adopted by Pelletter and Caventou.

2. Ether was used by Scharlau and others, to separate the two alkaloids: quina is more soluble than cinchonia in this liquid.

3. Disulphate of quina is less soluble in water than disulphate of cinchonia: hence, when these two salts have been dissolved in boiling water, the first crystallizes as the solution cools, while the disulphate of cinchonia remains in the mother liquor.

To manufacturers of disulphate of quina it is of importance to have a ready means of estimating the quantity of quina, as distinguished from cinchonia, which a bark yields. Sulphate of Soda is frequently used for this purpose. It has been found that the yellow (Calisaya) bark contains so much lime that an infusion (prepared by digesting for twenty-four hours one part of coarsely-powdered bark in sixteen parts of cold water) yields, on the addition of sulphate of soda, a white precipitate of sulphate of lime; whereas those barks (as the pale kinds) which are deficient in quina give no precipitate with this salt. Guibourt directs this test to be used thus: mix the powder of the bark with water, so as to form a thin paste; which is to be placed on a filter, and the filtered liquor tested with sulphate of soda (crystals).

Physiological Effects.—I. Of the Cinchona Barks.—The experiments of Dr. Adair Crawford on the effects of tonics in promoting the cohesion of the animal tissues, have been already (p. 188) referred to. He found that a kitten’s intestines, which had been immersed in a thick mixture of cinchona bark and water, required a greater weight to break them than those immersed in water merely, in the ratio of 25:6 to 20:7. He found, moreover, that the same effect was produced on the blood-vessels and nerves; but an opposite effect on the skin, the cohesion of which it diminished in the ratio of 24:5 to 7:9. Hence he inferred that cinchona bark strengthened the alimentary canal, blood-vessels and nerves, but had a debilitating or relaxing effect on the skin. The error pervading these inferences has been already pointed out. Admitting that the dead animal tissues are invariably affected by cinchona in the way Dr. Crawford states, the conclusion that living tissues would be influenced in the same way is not supported by facts. Cold water relaxes dead, but corrugates living, animal tissues.

a. On Vegetables.—Leaves of plants, immersed in an infusion of pale bark, were dried, but not contracted, in twenty-four hours.

b. On Animals generally.—Dr. Freind states that an ounce and a half of a strong decoction of bark injected into the jugular vein of a dog, caused, in fifteen minutes, strong palpitations of the heart, and frequent spasms. Half an ounce more being injected, brought on tetanus and death. The blood was found after death liquid, the lungs red and turgid; the right ventricle was distended with blood.
the left contained scarcely any. Rauschenbusch has also made experiments with cinchona bark. In animals to whom he had given it for some days, he found the stomach and alimentary canal contracted, and the coats thickened, but no traces of inflammation. The heart was firmer, the lungs covered with red spots, the liver yellowish, the bile watery and greenish. When the blood was exposed to the air, it remained dark coloured for a longer time than usual, was less coagulable, and the serum separated more slowly: it appeared like that drawn in inflammatory cases. The pulse was stronger and fuller, the animal heat increased, and when the bark had been used for a long period, the muscles were pale, and their energy enfeebled. Some experiments on the effect of cinchona on the blood discs of frogs were made by Leeuwenhoek, who found that the infusion of bark divided some of the discs, and coagulated others.

γ. On Man.—The topical effects are astringent and slightly irritable. The astringency depends on tannic acid [and red cinchonic]: hence those barks whose infusions are most powerfully affected by gelatine and the sesquiferruginous salts, enjoy the greatest astringent power. Both Loxa and yellow (Calisaya) bark possess this property in a pre-eminent degree: whereas Carthagena bark is deficient in it. The constitutional effects are principally manifested by the disordered conditions of the vascular and cerebro-spinal systems. In some conditions of system, cinchona operates as an irritant or stimulant; in others as a stomachic, tonic, and corroborant.

If a man in a state of perfect health take a small or moderate dose of bark, no obvious effects are produced,—or perhaps a little thirst, with some slight disorder of stomach, or a temporary excitement of appetite may be brought on. If the dose be increased, the alimentary canal becomes disordered (indicated by the nausea, vomiting, loss of appetite, thirst, and constipation, or even purging); a febrile state of the system is set up (manifested by the excitement of the vascular system and dry tongue), and the cerebro-spinal system becomes disordered, as is shewn by the throbbing headache, and giddiness. The disturbance of the functions of the stomach is produced not only when the bark is given in the more nauseating form of powder, but also in the form of infusion or decoction or tincture. These symptoms indicate a stimulant operation, which is still more manifest when the bark is given to a person suffering with gastro-enteritic irritation, accompanied with fever. All the morbid phenomena are exasperated, the febrile disorder is increased, and symptoms of gastritis come on. None of the effects now enumerated include those to which the term tonic is properly applicable. These are to be sought for in patients suffering from debility, without symptoms of local irritation. In such we find cinchona improves the appetite, promotes the digestive functions, and increases the strength of the pulse. The muscular system acquires more power, and the individual is capable of making

v Contin, ad Epist. p. 119.
greater exertion, both mental and bodily, than before; the tissues acquire more firmness to the touch, and lose their previous flabbiness: moreover, it has been asserted, and with great probability of truth, that the quality of the blood improves.

The real "stomachic, tonic, and corroborative" effects of cinchona, as indeed of other agents of the same class, are then only observed in certain morbid conditions.

"The general operation of cinchona bark," observes Sundelin, "consists in the increase and exaltation of the tone of the irritable fibres and of the fibres of the vessels (hence by its use the pulse becomes fuller, stronger, and regular, and the muscular power increased); also in the general augmentation of the cohesion of the organic mass (hence it counteracts a tendency to liquefaction [Verflüssigung] and disintegration [Entmischung], diminishes profuse secretions which proceed from atony of the extremities of the vessels, and of the secreting surfaces and organs, and improves generally the crisis) and lastly, in the augmentation of the vital energy of the sensible system. (By the last-mentioned property it restores sensibility, when defective or abnormally increased, and the property of reaction of the nervous system, to their normal state, and augments the influence of this system on the muscular fibre and on the reproductive system)." As these effects are not produced until the active constituents of the bark have been absorbed, they take place gradually, and by the long continued use of this agent.

The power possessed by cinchona of suspending or completely stopping periodical diseases, deserves to be noticed here, though it will have to be again referred to hereafter. It is doubtless in some way related to the before mentioned effects; but the connection is, as yet, mysterious and incomprehensible.

Active principles of the cinchona barks.—The cinchona alkaloids are the essential tonic principles of bark. In them also resides the antiperiodic (specific, as it is frequently termed) power of this remedy (see p. 1410). The tannic acid confers astringent powers, and promotes the tonic operation of the alkaloids. The red cinchonic must also slightly contribute to the general effects of the bark. The kinate of lime (supposed by Deschamps to be the active principle of cinchona) is probably inert: it has neither bitterness nor stypticity, and is insoluble in alcohol. The aromatic flavour depends on volatile oil.

Comparison of cinchona with other tonics.—Cinchona scarcely admits of comparison with any other vegetable substance. It is preeminently distinguished by its great tonic and almost specific febrifuge properties. It is farther distinguished from the simple bitters (as gentian, quassia, simaruba, calumba, &c.) by its astringency; from the pure astringents (as oak bark, nutgalls, catechu, kino, &c.) by its extreme bitterness; from the aromatic bitters (as cascarilla, chamomile, wormwood, elecampane, &c.) by its astringency and comparative deficiency in volatile oil, and, consequently, in stimulant properties. Willow and angustura barks, perhaps, more closely approximate to cinchona than
other vegetable substances in ordinary use. In regard to antiperiodic or febrifuge powers, arsenic acid is the only remedy that can be compared with bark.

Comparison of the cinchona barks with each other.—I need not insist on the superiority of genuine over false cinchona barks. The inferiority of those barks which have a whitish epidermis (as the Carthagena barks, see p. 1391 et seq.) is shown by the small quantity of cinchona alkaloids which they yield. The anecdote before-mentioned (p. 1394) proves that the Spaniards had long since ascertained the inferiority of one of these. Pale, Red, and Yellow (Calisaya) Cinchonas are the kinds which have been principally examined in this country: their pre-eminence over all others is now universally admitted. The experiments and observations of Saunders, Rigby, Kentish, Irving, and Skeete seem to have established the superiority of red bark to the pale or quilled kind. But in adopting this statement we ought, if possible, to ascertain what kind of pale bark was used in making the above observations? And also to determine whether the red bark referred to be identical with that now in commerce? Dr. Relph afterwards asserted the superiority of yellow bark to both the pale and red kinds. His statements are borne out by the almost exclusive consumption of this bark during the last twenty years.

2. Of the Cinchona Alkaloids. a. On Vegetables. — According to Goeppert, the leaves of plants plunged in a solution of sulphate of quina (gr. ss. of the salt to 5ss. of water) presented evidences of contraction in six or eight hours.

β. On Animals generally.—As soon as Pelletier had discovered the alkalis in bark, he sent some of them to Magendie for trial, who ascertained that neither in the pure nor saline state were they poisonous; and he found that ten grains of the sulphate or acetate of these bases might be injected into the veins of a dog without any ill effect. Hart found that three grains of quina, applied to a wound in a rabbit, occasioned no ill effects.

γ. On Man.—The constitutional effects of the cinchona alkalis are similar to those of the barks, but more energetic. It will be superfluous, therefore, to enumerate the symptoms caused by small doses of these substances. Far more interesting are the effects of large doses, as they lead to a more intimate acquaintance with the kind of influence exercised by the barks.

In doses of from ten to twenty or more grains, disulphate of quina has produced three classes of effects:—

---

1 Obs. on the sup. Effic. of Red Peruv. Bark, 1782.
3 Exp. and Obs. on a new Spec. of Bark, 1784.
4 Exp. and Obs. on Quill and Peruv. Bark, 1785.
5 Exp. and Obs. on Quill and Peruv. Bark, 1786.
6 Inq. into the Med. Effic. of Yellow Bark, 1784.
7 De Candolle, Phys. Veg. 1349.
8 Jour. de Pharm. vii. 136.
1. Gastro-enteritic irritation, marked by pain and heat in the gastric region, nausea, gripings, and purging. Occasionally ptyalism has been observed. Constipation sometimes follows its use.

2. Excitement of the vascular system, manifested by increased frequency and fulness of pulse and augmented respiration. Furred tongue, and other symptoms of a febrile state, are also observed.

3. Disorder of the cerebro-spinal functions, indicated by headache, giddiness, contracted, in some cases dilated, pupils, disorder of the external senses, agitation, difficulty of performing various voluntary acts (as writing), somnolency, in some cases delirium, in others stupor.

A remarkable case is mentioned by Trousseau and Pidoux. A soldier took 48 grains of the disulphate of quina for the cure of an asthma [spasmodic], which returned daily at a certain hour. Four hours after taking it he experienced buzzing in the ears, diminished sensibility, giddiness, and violent vomitings. Seven hours after taking the quina he was blind and deaf, delirious, incapable of walking on account of the giddiness, and vomited bile copiously. In fact, he was in a state of intoxication. These effects subsided in the course of the night.

Difference in the operation of quina and cinchonia.—When we take into consideration the analogy of composition and of chemical properties of these two alkaloids, we are led to suspect analogy of physiological effects. When they were in the first instance submitted to examination, cinchonia and its salts were thought, principally on the evidence of Chomel, to be much inferior in activity to quina and its salts. But the subsequent observations of Dufour, Petroz, Potier, Bally, Nieuwenhuiss, Mariani, Bleynie, and others, have proved that the disulphates of these alkalis may be substituted for each other. Nay, Bally gives the preference to the disulphate of cinchonia, on the ground that it is less irritating than the disulphate of quina. That cinchonia is as active as quina might have been anticipated, à priori, when we recollect that those barks in which cinchonia is the predominant principle have been celebrated as therapeutic agents. This fact of the equal value of cinchonia and its salts with quina and its salts, acquires some importance from the apprehended failure of the yellow bark, in which the quina abounds. Practitioners, however, have been so long accustomed to the use of the disulphate of quina, that as long as this can be procured, some difficulty will be experienced in the introduction into practice of the disulphate of cinchonia.

Comparison of the Cinchona Alkaloids with their salts.—Some of the salts of the cinchona alkaloids being more soluble than their bases, it has been inferred that they are, consequently, more active. But it has been asserted by Nieuwenhuiss, Mariani, Bleynie, and others, that the bases are equally active, and may be substituted for the salts with advantage. Acid drinks should be given to favour their solution in the stomach. Quina, in the crude or impure state, has been employed with success by Trousseau. Its advantages over the di-

---

1. Traité de Thérap. ii. 217.
4. Soubeiran, Traité de Pharm. i. 604.
sulphate, are, that it is less apt to purge; it may be exhibited in a smaller dose, and it loses but little bitterness. This last property facilitates the use of it, especially in children.

Comparison of the salts of the cinchona alkaloids with each other.—I have already described the effects of the disulphate of quina. The sulphate of quina is formed when we dissolve the disulphate in water, acidulated with sulphuric acid: it is somewhat more irritant than the last-mentioned salt. The phosphate of quina is said to be neither so apt to disturb the stomach, nor to excite the vascular system, as the disulphate. Hence it is better adapted for cases accompanied with gastric irritation and febrile disorder. The ferrocyanate of quina has been recommended, in preference to the disulphate, in intermittent fevers, accompanied with inflammatory symptoms. The tannate of quina is declared, by Dr. Rolander, of Stockholm, to be the most powerful of the quina salts. The tannic acid, though not the peculiar febrifuge constituent of cinchona bark, yet contributes to its tonic powers, and thereby promotes the activity of the alkaloids. This statement is supported by the already referred-to remark of Berzelius (see p. 1401), that the most active cinchonas are those which contain the largest quantity of tannin. The nitrate, hydrochlorate, acetate, and citrate of quina, have been employed in medicine; but I am not acquainted with any remarkable advantages they possess over the sulphate. The kamate of quina, as being one of the native salts of alkaloid, deserves further examination. The arsenite of quina might, perhaps, be found available in some obstinate intermittents, and well deserves examination. The salts of cinchonia, except the disulphate, have been imperfectly examined.

Comparison of the cinchona barks with their alkaloids.—It has been asserted, that the cinchona alkaloids possess all the medicinal properties of the barks, and may be substituted for them on every occasion; but I cannot subscribe to either of these statements; for, in the first place, the alkalis are deficient in the aromatic quality possessed by the barks, and which assists them to sit easily on the stomach; and it is to this circumstance that I am disposed to refer a fact which I have often observed, that disulphate of quina will sometimes irritate the stomach, occasion nausea and pain, and give rise to febrile symptoms, while the infusion of bark is retained without the least uneasiness. Moreover, we must not overlook the tannic acid, which confers on bark an astringent property. So that while we admit that the essential tonic operation of the barks depends on the alkalis which they contain, yet the latter are not always equally efficacious. In some cases, however, they are of great advantage, since they enable us to obtain, in a small volume, the tonic operation of a large quantity of bark.

Uses.—From the preceding account of the physiological effects of cinchona, some of the indications and contra-indications for its use

\[\text{For further details respecting the effects of the salts of quina, consult Merat and De Lens, \textit{Dict. de Mat. Med.} t. v. 397; and Dierbach, \textit{Neuest. Entde. d. Mat. Med.} Bd. i. S. 238.}\]

\[\text{Magendie, \textit{Formul.} p. 131, 8th éd.}\]
CINCHONA.  1409

may be readily inferred. Thus its topical employment is obviously indicated in cases of local relaxation, with or without excessive secretion; also in poisoning by those agents whose compounds with tannic acid are difficultly soluble, and, therefore, not readily absorbed. But as a topical remedy, or astringent, cinchona is greatly inferior to many other agents which contain a much larger quantity of tannic acid. The contra-indications for the local use of cinchona, are, states of irritation (nervous or vascular), and of inflammation. In these conditions it augments the morbid symptoms.

The indications for its use, as a general or constitutional remedy, are, debility with atony and laxity of the solids, and profuse discharges from the secreting organs. I have observed that it proves less successful, and often quite fails, when the complexion is chlorotic or anaemic (see pp. 5 and 830): in such, chalybeates often succeed where cinchona is useless or injurious. As contra-indications for its employment, may be enumerated acute inflammation, inflammatory fever, plethora, active hemorrhages, inflammatory dropsies, &c. To these may be added, an extremely debilitated condition of the digestive and assimilative organs. Thus, patients recovering from protracted fever are at first unable to support the use of bark, which acts as an irritant to the stomach, and causes an increase of the febrile symptoms. In such I have found infusion of calumba a good preparative for cinchona.

Hitherto I have referred to those indications only which have an obvious relation to the known physiological effects of cinchona. But the diseases in which this remedy manifests the greatest therapeutic power, are those which assume an intermittent or periodical type. Now in such the methodus medendi is quite inexplicable; and, therefore, the remedy has been called a specific, an antiperiodic, and a febrifuge. But the more intimately we become acquainted with the pathology of disease, and the operation of medicines, the less evidence have we of the specific influence of particular medicines over particular maladies. Some diseases, however, are exceedingly obscure; their seat or nature, and the condition of system under which they occur, or the cause of their occurrence, being little known. There are also many medicines, the precise action of which is imperfectly understood, but which evidently exercise a most important, though to us quite inexplicable, influence over the system. Now it sometimes happens that imperfectly-known diseases are most remarkably influenced by remedies the agency of which we cannot comprehend; in other words, we can trace no known relation between the physiological effects of the remedy and its therapeutical influence. This incomprehensible relationship exists between arsenic and lepra; between the cinchona bark and ague. But though this connexion is to us mysterious (for I do not admit the various hypotheses which have been formed to account for it), we are not to conclude that it is necessarily more intimate than that which exists in ordinary cases.

1. In Periodical or Intermittent Diseases.—The system is subject to several diseases, which assume a periodical form; that is, they disappear and return at regular intervals. When the patient appears to
be quite well during the interval (i.e. when the intermission is perfect and regular) the disease is called an intermittent; whereas it is called remittent when the second paroxysm makes its appearance before the first has wholly subsided (i.e. when the disease presents exacerbations and remissions, but not intermissions). The pathology of these affections is involved in great obscurity, and the cause or causes of their periodicity are completely unknown. Various circumstances, however, induce us to regard intermittent maladies as morbid affections of the nervous system; for the phenomena, both healthy and morbid, of periodicity, seem to be essentially nervous.

One of the most curious circumstances connected with the history of these diseases is the facility with which they are sometimes cured. It is well known that sudden and powerful impressions, both mental and corporeal (as those caused by terror, alcohol, opium, cinchona, arsenious acid, &c.), made during the intermission, will sometimes prevent the return of the succeeding paroxysm; and occasionally from that time all morbid phenomena disappear. In remittent diseases, on the other hand, the same impressions are much less frequently successful, and sometimes, instead of palliating, exasperate the symptoms. The agents which are capable, under certain circumstances, of making these curative impressions, are apparently so dissimilar in their nature and physiological action, that we can trace in their methodus medendi scarcely anything in common, save that of making a powerful impression on the nervous system. Of these antiperiodic agents cinchona and arsenious acid stand pre-eminent for their greater frequency of success, and, therefore, are those usually resorted to. I have already (see p. 644) made some remarks on their relative therapeutical value. They differ in two particulars; first, cinchona may be given, as an antiperiodic, in any quantity which the stomach can bear; whereas arsenious acid must be exhibited in cautiously-regulated doses; secondly, there are two modes of attempting the cure of an intermittent by cinchona;—one is, to put an immediate stop to the disease by the use of very large doses of the remedy given a few hours prior to the recurrence of the paroxysm,—the other is to gradually extinguish the disease by exhibition of moderate doses at short intervals during the whole period of the intermission, so that the violence of every succeeding paroxysm is somewhat less than that of the preceding one;—but in the case of arsenious acid the latter method is alone safe, and, therefore, to be adopted.

It has been asserted that cinchona is admissible in the interval only of an intermittent fever; and that if it be exhibited during the paroxysm it has a tendency to prevent the subsidence of the latter. But this statement is much overcharged. Morton and others have given it in almost every stage without injury. Dr. Heberden observes, "the only harm which I believe would follow from taking the

---

* See some remarks on periodic movements in Müller's *Elem. of Phys.* by Baly, vol. i. p. 924.
* Pyretologia.
* Comment, art. *Feb. Intern.*
bark even in the middle of the fit is, that it might occasion a sickness, and might harass the patient by being vomited up, and might set him against it." It is, however, more efficacious during the interval, though it may not be absolutely hurtful in the paroxysm. Dr. Cullen was strongly of opinion that the nearer the exhibition of the cinchona is to the time of accession, the more certainly effectual will it be. I have already stated (p. 644) that arsenious acid may be given with good effect during the whole period (paroxysm and intermission) of the disease.

A very necessary condition to its perfect success is that it sit well on the stomach; for if it occasion vomiting or purging it is much less likely to act beneficially. Hence an emetic and a purgative are recommended to precede its employment. The use of these is more especially necessary if the disease be recent. For an adult, about 15 grains of ipecacuanha, with a grain of tartarized antimony, may be exhibited as an emetic, unless there be symptoms of determination to the brain, or of inflammation of the digestive organs. A senna draught, with a calomel pill, forms a good purgative. To enable it to sit well on the stomach, cinchona (or the sulphate of quina) is frequently given in conjunction with aromatics. The infusion or decoction of cinchona, though much less effective, are, however, less liable to disturb the stomach than the powder of cinchona or the sulphate of quina. Opium is sometimes a necessary adjunct to cinchona to prevent its running off by the bowels. In some cases where the stomach was too irritable to admit of the administration of cinchona or sulphate of quina by the mouth, these agents have been otherwise introduced into the system. Thus clysters of cinchona were used by Helvetius, Torti, and Baglivi. Van Swieten says he has often seen this method successful in young children; but that it takes three times as much bark as would suffice if the remedy were swallowed. Cataplasms of cinchona have also been employed. Rosenstein applied them to the abdomen; Torti to the wrist. Alexander cured an ague by a pediluvium of decoction of cinchona; but Heberden tried it without success. Bark jackets were employed with success in the agues of children by Dr. Pye. They consisted of waistcoats between whose layers powdered cinchona was quilted. The dry powder of cinchona has been applied to the skin: thus Dr. Darwin strewed it in the patient's bed. Chrestien successfully used the tincture and alcoholic extract by the iatraleptic method (see p. 148-9). More recently sulphate of quina has been employed in the same way. The last mentioned operation has also been applied by the endermic method: but this mode of using it is sometimes at-
tended with intense pain and an eschar. To infants at the breast, Rosenstein advises its indirect exhibition by the nurse, in whose milk its active principle is administered to the child. More recently sulphate of quina mixed with tobacco (in the proportion of 15 grs. of the former to an ounce of the latter) has been employed as a snuff in intermittent headache.

Cinchona and its preparations prove most successful in the simple or uncomplicated form of intermittents; that is, where the disease appears to be purely nervous. But when agues are accompanied with inflammatory excitement or with visceral diseases, cinchona generally proves either useless or injurious. In remittents it proves much less successful than in regularly-formed intermittents. In all these cases we endeavour to promote the efficiency of the cinchona by reducing the disease to the form of a pure or simple intermittent. The means to effect this must of course depend on a variety of circumstances; but blood-letting, both general and local, purgatives, and diaphoretics, are those which for the most part will be found available. Under some circumstances mercury given in alterative doses, or even as a very slight sialogogue, proves beneficial.

Intermittent fevers are not the only periodical diseases in which cinchona has been found beneficial. It is a remedy which has proved serviceable in several other cases in which a paroxysm (of pain, spasm, inflammation, hemorrhage, or fever) returns at stated periods. Thus intermittent neuralgia, rheumatism, headache, amaurosis, catarrh, ophthalmia, stricture, &c., have been greatly benefitted by its use. Some of these affections have been regarded as masked agues. When periodical diseases recur at uncertain periods, as in the case of epilepsy, no particular advantage can be expected from the use of cinchona.

2. In Continued Fever.—In the latter stage of continued fever, when the vital powers are beginning to sink, and when there is no marked and decided symptom of inflammatory disease of the brain or digestive organs, cinchona or sulphate of quina sometimes proves highly beneficial. If the tongue be dry, as well as furred, and the skin hot and dry, no advantage, but the reverse, can be anticipated from its employment. It is most applicable to the low forms of fever occurring in debilitated constitutions. When exacerbations or remissions, however indistinct, occur at regular periods, the administration of cinchona is the more likely to be followed by good effects. Under the preceding circumstances there can scarcely be two opinions as to the admissibility of bark. But on the general propriety of administering this remedy in continued fever, considerable difference of opinion has prevailed. Dr. Heberden cautiously observes, "I am not so sure of its being useful as I am of its being innocent." In order to avoid offending the stomach, it is frequently

---

a Trousseau and Pidoux, Traité de Thérap. ii. 219.
b Ibid. 231.
c Clutterbuck, On the Seat and Nature of Fever, 399, 2nd. edit. 1825.
d Comment.
advisable to begin with the infusion, for which, afterwards, first the
decotion, then the sulphate of quina, may be substituted. In the
stage of convalescence, the use of cinchona or sulphate of quina may
often be advantageously preceded by infusion of calumba: without
this precaution, irritation of stomach or febrile symptoms are readily
set up.

3. In inflammatory diseases.—As a general rule, stimulants and
tonics, as cinchona, are improper in inflammatory diseases. Yet to
this statement, which applies principally to the first stage, to acute
and active cases, and to the disease when it occurs in strong and
vigorous habits, many exceptions exist. Thus when it takes place
in old and debilitated constitutions; when it is of a mild or atonic
character, and has existed for some time without giving rise to any
obvious organic changes; when it assumes an intermittent or even
remittent form; or when it is of a certain quality, which experience
has shown to be less benefited by ordinary antiphlogistic measures,
cinchona is sometimes admissible and advantageous after evacuations
have been made proportioned to the activity of the disease and the
vigour of the system. In scrofulous inflammation (as of the eye) its
value is fully appreciated. In rheumatism, in which disease Morton,
Fothergill, Saunders, and Haygarth, have so strongly recommended
it, its use is now obsolete, except under circumstances similar to
those which regulate its employment in ordinary inflammation. The
same remarks apply to its employment in erysipelatous inflammation,
in which it was at one time much esteemed.

4. In maladies characterised by atony and debility.—Cinchona is
useful in a great variety of diseases dependent on, or attended by, a
deficiency of tone or strength, as indicated by a soft and lax con-
dition of the solids, weak pulse, incapability of great exertion, im-
paired appetite, and dyspeptic symptoms. Thus, in chronic atonic
affections of the alimentary canal, it proves very serviceable, especially
in some forms of dyspepsia and anorexia. In these it should be
given half an hour, or an hour, before meal-times. In some chronic
maladies of the nervous system, as chorea, when it occurs in delicate
girls; also in the neuralgia of weakly subjects. Disulphate of quina
has been used by Dr. Bright* in tetanus. In mortification, it is
useful in those cases in which tonics and astringents are obviously
indicated; but it has no specific power of checking the disease, as was
formerly supposed. In passive hemorrhages, from relaxation of
vessels, as in some cases of profuse menstruation, or uterine hemor-
rhage consequent on miscarriage. In profuse mucous discharges with
great debility, as in leucorrhœa, excessive bronchial secretion, old diarr-
rheas, &c. In cachectic diseases, as enlargements and indurations of
the absorbent glands, of a scrofulous nature, strumous ophthalmia,
obstinate ulcers, &c.— Also in venereal diseases, when the secondary
symptoms occur in shattered and broken-down constitutions, and

* Guy’s Hospital Reports, vol. i.
† See Dr. J. Fordyce, Med. Obs. and Inq. i. 184.
after the full use of mercury. Likewise in some of the chronic skin diseases, which are seen in cachectic habits.

5. In the convalescence of either acute or chronic lingering diseases, as fever, inflammation, hemorrhage, profuse suppuration, &c.; also after important surgical operations, when the strength is greatly reduced. In no class of cases is the efficacy of cinchona or its alkaloids more manifest than in these.

6. As a topical astringent and antiseptic.—The efficacy of cinchona as an astringent and antiseptic depends on tannic acid. But as many vegetable substances exceed cinchona in the quantity of this acid which they contain, so they surpass it in astringency. Hence the topical uses of bark are comparatively unimportant; and, for the most part, are nearly obsolete. Powdered cinchona is frequently employed as a tooth powder. Formerly it was used as an application to mortified parts, foul ulcers, carbuncles, &c. The decoction, with or without hydrochloric acid, is applied as a gargle in putrid sore throat.

7. As a chemical antidote.—The value of cinchona bark, as a chemical antidote, depends on its tannic acid. I have already offered some observations on its employment in poisoning by emetic tartar (see p. 679). I believe, in all cases it might be advantageously replaced by other and more powerful astringents; as nutgalls, or, on an emergency, green tea.

Administration.—In the form of powder, cinchona is now rarely administered. The bulk of a full dose, its disagreeable taste, its tendency to cause nausea and vomiting, and the quantity of inert woody fibre which it contains, form great objections to its employment. Yet of its great efficacy, as a febrifuge or antiperiodic, in intermittent, and of its superiority in these cases, to the decoction or infusion, no doubt can exist; but sulphate of quina has almost entirely superseded it. Its dose is from a scruple to a drachm, or even more than this, when the stomach can bear it.

4. INFUSUM CINCHONÆ, L. E. D.; Infusion of Pale [Loxa] Bark.—(Lance-leaved Cinchona [any species of Cinchona, according to prescription, E.], bruised [in powder, E., in fine powder, D.], ℥j.; Boiling [Distilled, L. Cold, D.] Water, Oj. [fijij. D.]:—Macerate for six (four, E.) hours in a vessel lightly covered, and strain [through linen or calico, E.].—The directions of the Dublin College are as follows: Triturate the bark with a little of the water, and during the trituration pour on the rest; macerate for 24 hours, shaking it from time to time, then pour off the clear liquor.—Water extracts from cinchona bark the kinates of quina, cinchonia, and lime, gum, soluble red cinchonic (tannin) and yellow colouring matter. The greater part of the cinchona alkaloids remains in the marc, as a very small quantity only of the compound of red cinchonic and the cinchona alkaloids is extracted.—The infusion of cinchona is stomachic and tonic, but is scarcely energetic enough to be febrifuge. It is a light preparation, applicable as a tonic where the stomach is very delicate, and cannot support the more active preparations of this medicine.—The dose is ℥j. to ℥ij. thrice a day.
2. DECOCTUM CINCHONÆ, E.; Decoction of Bark.—(Crown, Gray, Yellow, or Red Cinchona, ¼j. bruised; Water, f³xxiv. Mix them, boil for ten minutes, let the decoction cool, then filter it, and evaporate to sixteen fluidounces.)

a. DECOCTUM CINCHONÆ CORDIFOLÆ, L.; Decoction of Yellow [Calisaya] Bark.—(Heart-leaved Cinchona, bruised, 5x. ; Distilled Water, Oj. Boil for ten minutes in a lightly-covered vessel, and strain the liquor while hot.)

β. DECOCTUM CINCHONÆ LANCIFOLÆ, L.; Decoction of Pale [Lozoa] Bark.—Lance-leaved Cinchona, bruised 5x; Distilled Water Oj. [a sufficient quantity to afford a pint wine measure after straining, D.]

γ. DECOCTUM CINCHONÆ OBLONGIFOLÆ, L.; Decoction of Red Bark.—(As the Decoction Cinchona cordifolia, but using Oblong-leaved Cinchona).

By boiling, water extracts from cinchona the kinates of quina, cinchonia, and lime, gum, soluble red cinchonic (tannin), yellow colouring matter, starch, and a portion of the compound of the red cinchonic with the cinchona alkaloids. While hot, the liquor is transparent; but, as it cools, it becomes turbid, owing partly to the deposition of the tannate of starch when the temperature falls below 88° F.; and partly because the red cinchonic compound being more soluble in hot than in cold water, is deposited on cooling. Of 146 parts of the deposit from decoction of yellow (Calisaya) bark, Soubeiran found 60 parts (principally tannate of starch) were insoluble in alcohol, and the remaining 86 parts were readily soluble in alcohol, and yielded the cinchona alkaloids. The same author also found that by decoction, yellow (Calisaya) bark lost two-thirds of its weight; whereas, by infusion, it merely lost one-third of its weight. If the water employed in preparing the decoction or infusion be acidulated (with sulphuric or hydrochloric acid) the medicinal value of the preparation is greatly increased; for the acid decomposes the insoluble red cinchonic salt, and forms, with the cinchona alkaloids, a soluble combination. Alkaline solutions, on the other hand, yield less powerful, though highly coloured, preparations: they readily dissolve the red cinchonic and the acids, but they render the alkaloids insoluble. Decoction of cinchona is stomachic, tonic, and febrifuge.—The dose is f³j. to f³jj.

3. TINCTURA CINCHONÆ, L. E. D.; Tincture of Bark.—(Heart-leaved [Yellow, or any other species, according to prescription, E., Lance-leaved, D.] Cinchona, bruised [in fine powder, E., coarsely powdered, D.], ¾vij. [¾v. E. D.]; Proof Spirit, Oj. [wine measure D ; Oj. E.] Macerate for fourteen [seven, D.] days, and strain. The directions of the Edinburgh College are as follows:—"Percolate the bark with the spirit, the bark being previously moistened with a very little spirit, left thus for ten or twelve hours, and then firmly packed in the cylinder. This tincture may also be prepared, though much less expedi-
tiously, and with much greater loss, by the usual process of digestion, the bark being in that case reduced to coarse powder only."—Spirit extracts all the bitter and astringent principles of cinchona; both the kinales of the cinchona alkaloids, as well as the combination of these substances with the red cinchonic. If the spirit be too concentrated, the kinales are less readily dissolved by it. Tincture of cinchona is stomachic, tonic, and stimulant.—The dose of it is f5j. to f3ij. It is usually employed as an adjuvant to the infusion or decoction of cinchona, or to the solution of the disulphate of quina.

4. TINCTURA CINCHONÆ COMPOSITA. L. E. D. : Compound Tincture of Bark.—(Lance-leaved Cinchona [Yellow Bark, E.], bruised [coarsely powdered, D. E.; fine, if percolation be followed, E.], viv. [fij. E. D.]; Orange Peel [Bitter, E.], dried [bruised, E.], 3ij. [fiss. E., fss. D.]; Serpentine, bruised, 3vi. [f5ij. E. D.]; Saffron [chopped, E.], 3ij. [f5. E. D.]; Cochineal, powdered, 3j. [f9ij. E. D.]; Proof Spirit, Oij. [Oi. and fOij. E., fxxx. D.]) Digest for fourteen days, and strain. "Digest for seven days; strain and express strongly; filter the liquors. This tincture may also be conveniently prepared by the method of percolation, in the same way as the compound tincture of cardamom." E. !—This is usually sold as Huxham's Tincture of Bark. It is a more agreeable and more stimulant, though less powerful, tonic than the simple tincture, and is less apt to disturb the stomach. Made according to the London Pharmacopoeia, it contains one-half less cinchona than the simple tincture. It is employed as a tonic and stomachic.—The dose of it is f5j. to f3ij.

5. EXTRACTUM CINCHONÆ. E.; Extract of Bark.—(Take any of the varieties of Cinchona, but especially the Yellow or Red Cinchona, in fine powder, viv.; Proof Spirit, fxxxiv. Percolate the cinchona with the spirit; distil off the greater part of the spirit; and evaporate what remains in an open vessel over the vapour-bath to a due consistence.)

a. EXTRACTUM CINCHONÆ CORNFOLII, E.; Extract of Yellow [Calisaya] Bark.—(Heart-leaved Cinchona, bruised, 3xv.; Distilled Water, Cong. iv. Boil down in a gallon of the water to six pints, and strain the liquor while hot. In the same manner boil down the bark in an equal measure of water four times, and strain. Lastly, all the liquors being mixed, evaporate to a proper consistence.)

b. EXTRACTUM CINCHONÆ LANCEFOLII, E.; Extract of Pale [Loxa] Bark.—(Prepared as the preceding, using Lance-leaved Cinchona, L. — Pale Bark, coarsely powdered, lb. j.; Water, Ovj. Boil for a quarter of an hour, in a vessel almost covered; then having filtered the liquor while yet hot, and laid it aside, boil the bark again in an equal quantity of water, and filter again in the same manner: proceed in the same way a third time, and then mixing all the liquors, reduce them by evaporation to a proper consistence. D.)

c. EXTRACTUM CINCHONÆ OBLONGIFOLII, E.; Extract of Red Bark.—(Prepared as the preceding, using Oblong-leaved Cinchona.)
The watery extract of cinchona (extractum cinchone, L. D.) contains the same constituents already mentioned (p. 1415) as being found in decoction of bark. Mr. Brande\textsuperscript{h} says, lance-leaved [i. e. pale] bark yields 30 per cent. of watery extract. The active principles of this preparation are the kinates of the cinchona alkaloids. The spirituous extract (extractum cinchone, E.) is a more efficacious preparation, as it contains, besides the alkaline kinates, the compound of the red cinchonic with the cinchona alkaloids. When prepared with rectified spirit, 24 per cent. of extract is obtained from lance-leaved [i. e. pale] bark. But as the Edinburgh College direct proof spirit to be employed, the produce is larger.—Well-prepared (i. e. not decomposed by evaporation) extract is a very useful preparation, which, however, has been nearly superseded by sulphate of quina. It is given in the form of pill, in doses of from gr. v. to gr. xx. Or the watery extract may be dissolved in water, or in infusion of roses, or, for administration to children, in syrup of mulberries or of orange-peel.

6. \textit{Quine Disulphas, L. E.; Sulphate of Quinine, offic.; Subsulphate of Quina}.—The directions of the London College for the preparation of this salt are as follows:—

Take of Heart-leaved Cinchona, bruised, lb. vij.; Sulphuric Acid, 3ix.; Purified Animal Charcoal, 3\textsuperscript{i}ij.; Hydrated Oxide of Lead; Solution of Ammonia; Distilled Water, each as much as may be sufficient. Mix four ounces and two drachms of the Sulphuric Acid with six gallons of distilled Water, and add the Cinchona to them; boil for an hour, and strain. In the same manner again boil what remains in Acid and Water, mixed in the same proportions, for an hour, and again strain. Finally, boil the Cinchona in eight gallons of distilled water and strain. Wash what remains frequently with boiling distilled water. To the mixed liquors add Oxide of Lead, while moist, nearly to saturation. Pour off the supernatant liquor, and wash what is thrown down with distilled water. Boil down the liquors for a quarter of an hour, and strain; then gradually add Solution of Ammonia to precipitate the Quina. Wash this until nothing alkaline is perceptible. Let what remains be saturated with the rest of the Sulphuric Acid, diluted. Afterwards digest with two ounces of Animal Charcoal, and strain. Lastly, the Charcoal being thoroughly washed, evaporate the liquor cautiously, that crystals may be produced.

Mr. Phillips\textsuperscript{i} gives the following explanation of this process. "The quina exists in combination with a peculiar acid, called Kinic Acid, forming with it Kinate of Quina, which is soluble to a certain extent in water, and is rendered more so by the sulphuric acid employed in the process, and perhaps by decomposing it. Whatever may be the state of combination, the solution contains sulphuric acid, kinic acid, and quina, mixed with extractive and colouring matter, the latter being got rid of by the animal charcoal. On adding oxide of lead the sulphuric acid combines with it, and the resulting sulphate being insoluble is precipitated, while the kinic acid and quina remain in solution; when ammonia is added, after the separation of the sulphate of lead, the kinic acid unites with it, and the kinate of ammo-

\textsuperscript{h} Diet. de Pharm. 179.
\textsuperscript{i} Transl. of the Pharm.
nia formed is soluble, while the quina is precipitated, and this, when afterwards combined with sulphuric acid, forms disulphate of quina, which crystallizes."

The directions of the Edinburgh College for the preparation of disulphate of quina are as follows:—

Take of Yellow Bark, in coarse powder, one pound; Carbonate of Soda, eight ounces; sulphuric acid, half a fluidounce; Purified Animal Charcoal, two drachms. Boil the bark for an hour in four pints of water, in which half the carbonate of soda has been dissolved; strain and express strongly through linen or calico; moisten the residuum with water, and express again, and repeat this twice. Boil the residuum for half an hour with four pints of water and half the sulphuric acid; strain, express strongly, moisten with water, and express again. Boil the residuum with three pints of water and a fourth part of the acid; strain and squeeze as before. Boil again the residuum with the same quantity of water and acid; strain and squeeze as formerly. Concentrate the whole acid liquors to about a pint; let the product cool; filter it, and dissolve in it the remainder of the carbonate of soda. Collect the impure quina on a cloth, wash it slightly, and squeeze out the liquor with the hand. Break down the moist precipitate in a pint of distilled water; add nearly one fluidscruple of sulphuric acid, heat it to 212°, and stir occasionally. Should any precipitate retain its gray colour, and the liquid be neutral, add sulphuric acid, drop by drop, stirring constantly, till the gray colour disappears. Should the liquid redden litmus, neutralize it with a little carbonate of soda. Should crystals form on the surface, add boiling distilled water to dissolve them. Filter through paper, preserving the funnel hot; set the liquid aside to crystallize; collect and squeeze the crystals; dissolve them in a pint of distilled water heated to 212°; digest the solution for fifteen minutes with the animal charcoal; filter, and crystallize as before. Dry the crystals with a heat not exceeding 140°.

The mother-liquors of each crystallization will yield a little more salt by concentration and cooling.

The object of this process is to extract, by means of the solution of carbonate of soda, the acids, the colouring and extractive matters, the gum, &c. from the bark, but leaving the cinchona alkaloids. Stoltze used for this purpose lime; Badollier and Scharlau caustic potash (see p. 1402). The alkaline decoction has a very deep colour. By boiling the residuum in water acidulated with sulphuric acid, the alkaloids are dissolved. On the addition of carbonate of soda, double decomposition takes place, and the impure quina is precipitated. This is afterwards dissolved in water acidulated with sulphuric acid, and the filtered liquid is set aside to crystallize. The impure disulphate of quina thus obtained is re-dissolved in boiling water, and the solution, after being decolorized by digestion with animal charcoal, is filtered, and put aside to crystallize.

I have repeated this process, which has the great merit of obviating the use of alcohol, and I believe it to be an excellent one, combining both simplicity and economy. In one experiment I employed one lb. of picked uncoated yellow (Calisaya) bark, and found that the precipitated impure quina required two fluidscrapes and five minims of sulphuric acid to saturate it, instead of one fluidscruple, directed by the Edinburgh College. In another experiment I could not get the impure sulphate of quina to crystallize until it had been digested with animal charcoal.

The method of manufacturing disulphate of quina, which has been usually followed by manufacturers in this country, is as follows:—
Coarsely pulverized yellow (Calisaya) bark is boiled with water acidulated with sulphuric or hydrochloric acid. The residuum boiled a second or a third time with acidulated water. Some repeat the process a fourth time. Finely-powdered slaked lime is added to the filtered decoction (when cold), until the liquor is sensibly alkaline, and acquires a dark colour. The precipitate is collected, drained on a cloth, and then submitted to graduated pressure (usually in a hydraulic press). The cake thus obtained is, when dry, reduced to powder, and digested in rectified spirit. The filtered tincture is distilled until the residuum (impure quina) in the retort has a brown viscid appearance. This residuum is then to be carefully saturated with very diluted sulphuric acid, the solution filtered, and set aside to crystallize. The disulphate of quina thus obtained is yellowish-brown. It is drained in a cloth, compressed, dissolved in water, decolorized by animal charcoal, re-crystallized, and dried. This last part of the process must be very carefully conducted, to avoid efflorescence.

Some persons think it preferable to convert the quina of this alcoholic solution into a sulphate before distillation, in order to separate the fatty matter. I am informed, by a maker of this salt, that the use of spirit in the process does not, on the large scale, add much more than a penny an ounce to the cost of the disulphate, as the greater part is recovered.

On the large scale the decoction of the bark is usually prepared in a large vat, the boiling being effected by steam. The acidulated decoction contains the quina, the cinchonia, the yellow colouring matter, the red cinchonic, the kinic, and the sulphuric (or hydrochloric) acids. The lime saturates all the acids, and forms soluble salts (if sulphuric acid have been employed, sulphate of lime is formed, the greater part of which precipitates), which remain in the liquid with a portion of red colouring matter. The precipitate is composed of quina, cinchonia, a combination of lime and red cinchonic, fatty matter, excess of lime, and, when sulphuric acid has been employed, sulphate of lime: the whole is contaminated with colouring matter. Alcohol extracts from this precipitate the quina and cinchonia, the fatty matter, and the colouring matter; leaving undissolved the excess of lime, the compound of lime with the red cinchonic, and, when sulphuric acid has been used, sulphate of lime. The sulphuric acid being then added to the impure quina, converts it into a disulphate.

On account of the expense of spirit of wine, various substitutes have been proposed. Pyroxilic spirit has been tried, but I believe has not answered. Pelletier has taken out a patent for the employment of a volatile oil (oil of turpentine). The dried cake of quina and lime, obtained in the usual manner, is to be digested in oil of turpentine, which dissolves the quina. The oleaginous solution is then to be agitated with water acidulated with sulphuric acid, by which a sulphate of quina is obtained. By repose, the oil rises to the top, and after removal may be employed again, while the solution of the sulphate is to be evaporated as usual. Hitherto, however, this process has not succeeded, partly because the turpentine does not extract more than nineteen-twentieths of the quina present. If any attempts, however, should be made to procure the disulphate in America, it is possible that some modification of this process would be the best.

Disulphate of quina occurs in small, fibrous, odourless, very bitter crystals, which have a pearly aspect, and a flexibility like amianthus.
Exposed to the air, they effloresce slightly. When heated they become luminous; friction promotes this phosphorescence. At 210° F. they melt like wax; at a more elevated temperature the salt assumes a fine red colour; and when ignited in the air burns, leaving at first a carbonaceous residuum, but which is subsequently dissipated. One part of this salt requires 80 parts of cold alcohol (sp. gr. 0.850) or 740 parts of cold, or 30 parts of boiling, water to dissolve it: as the saturated solution cools, part of the salt separates. A remarkable property of this salt is to give a blue tinge to water. The following is the composition of this salt:

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric Acid</td>
<td>1</td>
<td>40</td>
<td>9.17</td>
</tr>
<tr>
<td>Quina</td>
<td>2</td>
<td>324</td>
<td>74.31</td>
</tr>
<tr>
<td>Water</td>
<td>8</td>
<td>72</td>
<td>16.52</td>
</tr>
<tr>
<td>Crystallized Disulphate of Quina</td>
<td>1</td>
<td>436</td>
<td>100.00</td>
</tr>
</tbody>
</table>

By exposure to the air the crystals lose four (Soubeiran says six) equivalents of water, equal to about eight per cent. When fused they evolve two more equivalents. One hundred grains of the crystals dissolved in water, acidulated with hydrochloric acid, yield by the addition of chloride of barium a quantity of sulphate of baryta, which when ignited weighs 26.6 grs. If chlorine gas or a solution of chlorine be added to an aqueous solution of the salt, and afterwards ammonia, an emerald-green colour is produced.

Adulteration.—Various foreign bodies (as earthy and alkaline salts, gum, sugar, starch, fatty matters, sulphate of cinchonia, and salicin) are, it is said, occasionally intermixed with disulphate of quina. The following are the tests by which the presence of these bodies is ascertained:—By digesting disulphate of quina in alcohol this salt is dissolved, leaving any alkaline or earthy sulphates, gum, or starch, that may be present. Gum is soluble in cold water; starch is coloured blue by a solution of iodine. When heated in the open air the disulphate of quina is burned and dissipated: the earthy salts, on the other hand, are left. The disulphate is soluble in water acidulated with sulphuric acid, whereas fatty matters are insoluble. To detect sugar, add to a solution of the disulphate carbonate of potash: quina precipitates, while sulphate of potash and sugar are left in solution: the latter may be detected by its sweet taste, or by evaporating the liquid to dryness, and digesting the residue with spirit, which dissolves the sugar, but leaves the sulphate. Ammoniacal salts are detected by the ammoniacal odour emitted on the addition of caustic potash. Salicin may be recognized by oil of vitriol, which turns it red (see p. 1074). Sulphate of cinchonia may be made to crystallize, in a pulverulent form, by stirring the solution, and in this state it may be readily intermixed with disulphate of quina. This fraud, I suspect, has been recently carried on to no very slight extent. To detect it, precipitate a solution of the suspected salt in water by potash; collect the pre-

cipitate, and boil it in alcohol. The cinchona crystallizes as the liquor cools, while the quina remains in the mother-liquor.

The characteristic marks of the purity of disulphate of quina are, according to the London College, as follows:—

"Totally dissolved in water, especially when mixed with an acid. Quina is thrown down by ammonia, the liquor being evaporated; what remains ought not to taste of sugar. One hundred parts of disulphate of quina lose eight or ten parts of water with a gentle heat. It is totally consumed by fire. Chlorine first added to it, and afterwards ammonia, it becomes green."

The characters given by the Edinburgh College are as follows:—

"A solution of ten grains in a fluidounce of distilled water, and two or three drops of sulphuric acid, if decomposed by a solution of half an ounce of carbonate of soda, in two waters, and heated till the precipitate shrinks and fuses, yields, on cooling, a solid mass, which, when dry, weighs 7·4 grains, and in powder dissolves entirely in solution of oxalic acid."

The quantity of carbonate of soda required to decompose 10 grs. of disulphate of quina, to which a few drops (say six grains) of sulphuric acid have been added, is less than twenty-five grains⁸.

Disulphate of quina is given in doses of from gr. j. to grs. v. Occasionally it is exhibited in much larger doses as a febrifuge; but it is very apt to disagree, causing disturbance of stomach, febrile disorders, and headache. I have known fourteen grains taken, and have heard of a scruple or half a drachm being exhibited at a dose. It may be given either in the form of pill, made with conserve of roses, or dissolved in some aqueous liquid by the aid of an acid. Infusion of roses is a favourite vehicle for it. An ointment (composed of 5j. of disulphate of quina and 5ij. of lard) rubbed into the axilla has been used with success to cureague in children¹.

2. CEPHAELIS IPECACUANHA, Richard, L. E. D.—THE IPECACUANHA CEPHAELIS.

Callicocca Ipecacuanha, Brotero.

Sex. Syst. Pentandria, Monogynia.

(Radix, L. D.—Root, E.)

History.—Ipecacuanha is first mentioned by Michael Tristram⁵, who calls it Igpecaya or Pigaya. In 1684 it was described and figured by Piso⁶. In 1686 it was celebrated in Paris as a remedy for dysentery. It appears that Jean-Adrian Helvetius (then a young

---

⁵ Purchas, Pilgrimes, vol. iv. fol. 1311.
man) attended with Afforty, a member of the faculty, a merchant, named Grenier, or Garnier, who, when he recovered from his illness, gave to his physician, as a testimony of his gratitude, some of this root, as a valuable remedy for dysentery. Afforty attached very little importance to it, but gave it to his pupil, Helvetius, who tried it, and thought he had found in it a specific against dysentery. Numerous placards were placed about the streets of Paris, announcing to the public the virtues of the new medicine, which Helvetius sold without discovering its nature. Luckily for him, some of the gentlemen of the court, and even the Dauphin, the son of the king (Louis XIV.) were at this time afflicted with dysentery. Being informed by his minister Colbert of the secret possessed by Helvetius, the king deputed his physician Aquin and his confessor Le P. de Chaise to arrange with Helvetius for the publication of the remedy. 1000 Louis-d'or was the price which was paid, after some trials had been made with it at the Hôtel-Dieu, and which were crowned with the most brilliant success. Garnier now put in his claim for a part of the reward, saying that he, properly speaking, was the discoverer of the medicine; but the claim was not allowed. Subsequently Helvetius obtained the first medical honours of France. He wrote a treatise, describing the use of ipecacuanha in diarrhoea and dysentery.

Great confusion existed for a long time respecting the plant yielding Ipecacuanha. In 1800 Dr. Gomes returned from the Brazils, and brought with him the plant, on which he published a dissertation. In 1802 Brotero described it under the name of Callicocca Ipecacuanha, which Richard afterwards changed to Cephaëlis Ipecacuanha.

BOTANY. Gen. CHAR.—Tube of the calyx obviate; limb very short, five-toothed. Corolla somewhat funnell-shaped; its lobes five, small, rather obtuse. Anthers inclosed. Stigma bifid, usually exerted. Berry obovate-oblung, crowned with the remains of the calyx, two-celled, two-seeded (De Cand.)

Sp. CHAR.—Stem ascending, at length erect, somewhat pubescent at the apex. Leaves oblong-ovate, rough above, finely pubescent beneath. Stipules cleft into setaceous segments. Heads terminal, erect, at length pendulous. Bracts four, somewhat cordate (De Cand.)

Root perennial, annulated, simple, or dividing into a few diverging branches, flexuous, from four to six inches long; when fresh, pale brown externally. Stem somewhat shrubby, two or three feet long, emitting runners. Leaves rarely more

---

* Trans. of the Linn. Soc. vol. vi. p. 137.
* Bull. de la Soc. de la Fac. de Méd. 1818.
than four or six, placed at the end of the stem and branches; petioles pubescent, which are connected to each by the erect stipules. Stipules membranous at their base. Peduncles solitary, erect when in flower, reflexed when in fruit. Head semiglobose, eight- to ten-flowered. Involucre one-leafed, spreading, deeply four- to six-parted: segments obovate. Bracts acute, pubescent; a single one to each flower. Calyx minute. Corolla white. Stamens five. Ovary obovate; style filiform, white; stigmas linear, spreading. Berry soft, fleshy, violet-black. Seeds (nucules) pale, plane-convex: albumen horny.

Hab.—Brazil; in moist shady situations from 8° to 20° south latitude. Abundant in the valleys of the granitic mountains, which run (more or less distant from the sea) through the provinces of Rio Janeiro, Espirito Santo, and Bahia; also met with in Pernambuco. Humboldt and Bonpland found it on the St. Lucar mountains of New Granada.

Collection of the Roots.—The roots are gathered at all seasons of the year, though more frequently from January to March inclusive; and as no care is taken in the cultivation of the plant, it has become scarce around the principal towns. Those Brazilian farmers who reside in the neighbourhood of the plant, carry on considerable commerce with it. The native Indians also are very assiduous in the collection of it. Those called by the Portuguese the Coroados, who live near the river Xipotó, in the province of Minas, as well as their neighbours, the Púi, are the greatest collectors of it. They sometimes leave their villages for two months at a time, fixing their habitations in those places in which this plant abounds. They cut the roots from the stems, dry them in the sun, and pack them in bundles of various sizes and forms.

Commerce.—Ipecacuanha is imported into this country from Rio Janeiro, in bales, barrels, bags, and serons. The duty is 1s. per lb. The quantities on which this was paid, for the last six years, are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>9,038 lbs.</td>
</tr>
<tr>
<td>1835</td>
<td>7,469</td>
</tr>
<tr>
<td>1836</td>
<td>11,437</td>
</tr>
<tr>
<td>1837</td>
<td>11,435 lbs.</td>
</tr>
<tr>
<td>1838</td>
<td>12,426</td>
</tr>
<tr>
<td>1839</td>
<td>7,453</td>
</tr>
<tr>
<td>1840</td>
<td>6,483 lbs.</td>
</tr>
<tr>
<td>1841</td>
<td>9,623</td>
</tr>
</tbody>
</table>

Description.—The root of this plant is the ipecacuanha (radix ipecacuanhae) of the shops. No other root is known in English commerce by this name. By continental writers it is denominated annulated ipecacuanha (radix ipecacuanhae annulata) to distinguish it from the roots of Psychotria emetica and Richardsonia scabra; the first of which is termed striated ipecacuanha—the second, undulated ipecacuanha: both will be described hereafter.

The root of Cephaelis Ipecacuanha occurs in pieces of three or four inches long, and about the size of a small writing-quill: va-

---

2 Martius, op. cit. p. 6.
Brown Ipecacuanha Root.

a. Ringed portion.
b. Portion of a root without rings.

Richard, Merat, and Guibourf admit three varieties of annulated ipecacuanha, whose principal distinction is the colour of the epidermis. The age of the root, the nature of the soil, and the mode of drying, are among the different circumstances producing these varieties. Sometimes they are met with in the same bale.

Var. a. Brown Annulated Ipecacuanha, Richard; Brown Ipecacuanha, Lemery.—(Radix ipecacuanhae annulata fusca.) This is the best kind. The greater part of the ipecacuanha of commerce consists of this variety. Its epidermis is more or less deeply brown, sometimes even blackish; its fracture is gray, or brownish: its powder is gray. The cortical portion has a horny appearance. The root which I have received from Professor Guibourt, as blackish gray ipecacuanha, is somewhat less brown. It is the gray or annulated ipecacuanha of Merat.

I have occasionally found in commerce a brown non-annulated variety of ipecacuanha (fig. 268 b) imported in distinct bales. It consists of slender, cylindrical, often branched pieces, frequently several inches long, smooth, or slightly warty, but not annulated or moniliform, with a very thin cortex, and a woody medullium of the usual size, or thicker. These pieces appear to be the subterranean bases of the stems or runners, and the ends of the roots. Occasionally pieces of the brown annulated ipecacuanha are found attached.

Var. b. Red Annulated Ipecacuanha, Richard.—This differs from the preceding by the lighter and reddish colour of its epidermis, by its less powerful odour, and by its want of aromatic taste. Sometimes it has, when broken, the
same horny and semi-transparent quality of the brown ipecacuanha, but more frequently it is opaque, dull, and farinaceous; in which case it is generally less active. These differences probably depend on the nature of the soil in which the plant grew. The root which I have received from Professor Guibourt under the name of reddish gray annulated ipecacuanha, is scarcely so red as the pieces which I have met with in English commerce. It is the red-gray ipecacuanha of Lemery and Merat.

**Var. y. Gray Annulated Ipecacuanha, Richard; White Gray Ipecacuanha, Merat; Greater Annulated Ipecacuanha, Guibourt.**—The colour of this variety is grayish-white. Professor Guibourt has met with it of a reddish-gray colour. Gray ipecacuanha occurs in pieces of larger diameter than either of the foregoing kinds, with fewer, more irregular, and less prominent rings. It is merely a portion of the root of Cephaelis, which has become more developed, either from meeting with excess of nourishment, or from some other circumstance.

I have found, in English commerce, a gray ipecacuanha, whose roots were not longer than the brown variety, but whose rings were imperfectly developed.

**Composition.**—The most important analyses of ipecacuanha are those of Pelletier, Richard and Barruel, and Bucholz.

<table>
<thead>
<tr>
<th>Pelletier’s Analyses.</th>
<th>Bucholz’s Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Brown Annulated Ipecacuanha.</strong></td>
<td><strong>Emetic extractive (emetina)</strong></td>
</tr>
<tr>
<td>Cortex.</td>
<td>Medullium.</td>
</tr>
<tr>
<td>Emetina</td>
<td>16</td>
</tr>
<tr>
<td>Odorous Fatty matter</td>
<td>2</td>
</tr>
<tr>
<td>Wax</td>
<td>6</td>
</tr>
<tr>
<td>Gun</td>
<td>10</td>
</tr>
<tr>
<td>Starch</td>
<td>42</td>
</tr>
<tr>
<td>Ligneous matter</td>
<td>20</td>
</tr>
<tr>
<td>Non-emetic extractive</td>
<td>0</td>
</tr>
<tr>
<td>Loss</td>
<td>4</td>
</tr>
<tr>
<td><strong>Ipecacuanha</strong></td>
<td>100</td>
</tr>
</tbody>
</table>

1. **Odorous Fatty Matter.**—It is extracted from ipecacuanha by ether. It is of a brownish-yellow colour, soluble in alcohol and ether, to both of which it communicates a yellow colour. Its odour is very strong, and similar to that of the essential oil of the horse-radish: it becomes insupportable when heat is applied, but is weak and analogous to that of the ipecacuanha root when diluted. The taste is acrid; the specific gravity is greater than that of alcohol.

This fatty matter consists of two substances: 1st, a very fugacious volatile substance, which is the odorous principle of ipecacuanha root; 2dly, a fixed fatty matter (which some chemists have mistaken, when mixed with emetina, for resin), having little or no odour.

Notwithstanding its stong taste and odour, the fatty matter of this root does not seem to have any effect on the stomach. Given in large doses to animals, it had no sensible operation. Caventou took six grains at one time, but experienced no marked effects therefrom. Pelletier and Magendie swallowed some grains of it, and experienced a disagreeable impression on the throat, but it was temporary only.

2. **Emetina.**—When first discovered by Pelletier and Magendie, in 1817, it was termed la matière vomitive, or emetine (from émeter, I vomit.)

Pure emetina is white (when not absolutely pure it has a grayish-yellow tinge), pulverulent, inodorous, with a slightly bitter taste; fusible at 122° F.; very slightly soluble in cold, but much more so in hot, water; very soluble in alcohol, but scarcely soluble in ether and oils. It dissolves in acids, the acidity of which it does not entirely destroy. The salts of emetina are slightly acid, and very crystallizable. They form gummy masses, in some only of which are traces
of crystallization occasionally found. Emetina restores the blue colour of litmus which has been reddened by an acid. I find that the yellowish-white emetina, sold in the shops under the name of pure emetina, is coloured red by nitric acid, the red colour being much deepened on the addition of ammonia. An alcoholic solution of iodine, added to an alcoholic solution of emetina, produces a reddish precipitate (hydriodate of emetina?). Tincture of galls copiously precipitates solutions of emetina (tannate of emetina?). The effect of these reagents on emetina is similar to their effect on morphin; but from this last substance emetina is distinguished by the salts of iron, which produce no change of colour in it.

The following is the composition of emetina:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Dumas and Pelletier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>33</td>
<td>210</td>
<td>63.42</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>25</td>
<td>25</td>
<td>7.49</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>4.36</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9</td>
<td>72</td>
<td>24.43</td>
</tr>
<tr>
<td>Emetina</td>
<td>1</td>
<td>321</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The following are stated by Magendie as the effects of impure emetina:—From half a grain to two grains given to cats and dogs caused at first vomiting, then sleep. In doses of from six to ten grains, vomiting, sleep, and death, took place. Dissection shewed inflammation of the pulmonary tissue, and of the mucous membrane of the alimentary canal, from the cardia to the anus. The same effects (namely, vomiting, sleep, and death) were observed when impure emetina was dissolved in water, and injected into the jugular vein, into the pleura, into the anus, or into the muscular tissue. On man a quarter of a grain excited nausea and vomiting; a grain and a half, or two grains, taken fasting, caused continued vomiting, and decided disposition to sleep.

The effects of pure emetina are similar, but more energetic. In one case 1-16th of a grain caused vomiting in a man eighty-five years of age: two grains are sufficient to kill a dog.

Emetina has been proposed as a remedial agent,—as a substitute for ipecacuanha, all the advantages of which it is said to possess in a much smaller dose, and without the unpleasant taste and odour which the root is known to have. I confess, however, I think very little advantage is likely to be gained by the substitution. When we wish to give emetina in a liquid form, it may be readily dissolved in water by the aid of acetic or dilute sulphuric acid.

**Chemical Characteristics.**—A decoction of the root, filtered and allowed to cool, becomes, on the addition of a solution of free iodine, blue (iodide of starch). Tincture of nutgalls forms, in the decoction as well as in the tincture diluted with water, a grayish white precipitate (tannate of emetina). Sesquichloride of iron communicates a greenish tint (tannate [gallate, Pelletier] of iron) to the decoction as well as to the diluted tincture. A solution of isinglass forms in the infusion, after twelve hours, a precipitate (tannate of gelatine). Alcohol renders the decoction turbid (gum). Diacetate of lead forms with the tincture, and especially with the decoction, a precipitate (colouring matter, gum, and oxide of lead).

**Physiological Effects.**—If the powder or dust of ipecacuanha be applied to the eyes or face, it acts as an irritant, and causes redness and swelling of these parts. Inhaled, it irritates the respiratory
passages, and, in some persons, brings on difficulty of breathing, similar to an attack of spasmodic asthma. Mr. Roberts, surgeon, at Dudley, is affected in this way; and I have received from him the following account of his case:—

If I remain in a room where the preparation of ipecacuanha is going on—for instance, making the pulv. ipecac. comp.—I am sure to have a regular attack of asthma. In a few seconds dyspnœa comes on in a violent degree, attended with wheezing and great weight and anxiety about the praecordia. The attack generally remains about an hour, but I obtain no relief until a copious expectoration takes place, which is invariably the case. After the attack is over I suffer no further inconvenience. I have always considered that the attack proceeds from the minute particles of the ipecacuanha floating in the atmosphere, acting as an irritant on the mucous membrane of the trachea and bronchial tubes.

In some cases the mere odour of the root seems sufficient to excite difficulty of breathing, with a feeling of suffocation.

There is one case recorded of poisoning by the incautious inhalation of the dust of ipecacuanha, in the process of powdering it, by a druggist's assistant. It is mentioned by Dr. Prieger. The patient, who was suffering with catarrh and cough, inhaled, during three hours, the dust from the root; in consequence of which vomiting came on, followed by a tightness of the chest. An hour after this he complained of a sense of suffocation, and constriction of the trachea and throat: his appearance was pale and deathly. The physician who was called in, bled him, and gave asafoetida and belladonna with temporary relief; but in five hours a fresh attack came on, with the most imminent danger of suffocation. A strong decoction of uva-ursi, with the extract of rhatany, was administered with almost immediate relief, and in an hour his breathing was much freer. He was able to leave the house in two days, but suffered several days with difficulty of breathing.

When taken in small and repeated doses, ipecacuanha principally directs its influence to the secreting organs, especially those of the chest, whose activity it promotes. It specifically affects the bronchial membrane, in some morbid conditions of which it promotes expectoration, while in others, attended with a profuse secretion of phlegm, it exerts a beneficial influence, and often contributes to the restoration of the part to its normal condition. In somewhat larger doses it creates nausea with its concomitant phenomena, depression, increased secretion of saliva and buccal mucus, &c. If a diaphoretic regimen be adopted, it exerts a powerfully relaxing influence over the skin. In full medicinal doses it occasions vomiting, followed by a tendency to sleep. Its operation as an emetic is exceedingly safe, since inflammation is not produced by it, even when an overdose has been swallowed.
The vomiting produced by ipecacuanha is not so violent as that induced by emetic tartar, neither is it so long continued, nor attended with such nausea. Furthermore, ipecacuanha is less disposed to act on the bowels. The tonic and astringent qualities of the zincic compounds, as well as their want of diaphoretic power, distinguish these emetic substances from ipecacuanha. Squill (with which ipecacuanha agrees in its expectorant and emetic qualities) is distinguished by its greater acridity, and by its influence not being concentrated on the pulmonary organs, as is the case with ipecacuanha, which does not, therefore, possess that power of stimulating the urinary organs possessed by squill (see pp. 981-2).

The most remarkable of the effects of ipecacuanha seem to be produced by the agency of the eighth pair of nerves. "How singular it is," says Dr. M. Hall⁵, "that ipecacuanha taken into the bronchia should excite asthma, and taken into the stomach should induce another affection of the respiratory system, vomiting." Sundelin⁶ ascribes the red condition of the bronchial membrane, and the congestion of the lungs of animals killed by emetine, not to the specific stimulus exerted by this substance over the pulmonary mucous membrane, but to an exhausting stimulus over the eighth pair of nerves, by which a condition similar to suffocative catarrh (Steckflus) is brought on; for he has observed the same appearances in the bodies of persons who have died of this disease, where there was certainly no inflammatory condition of the bronchial membrane, but a paralytic condition of its small blood-vessels.

Uses.—Ipecacuanha is employed in full doses as an emetic, or in smaller doses as an expectorant and nauseant.

1. *In full doses, as an emetic.*—The mildness of its operation adapts ipecacuanha for the use of delicate and debilitated persons, where our object is merely to evacuate the contents of the stomach. Thus it is well fitted for the disorders of children requiring the use of emetics (as when the stomach is overloaded with food, in hoo, cough, croup, &c.) on account of the mildness and certainty of its action. It is also exceedingly useful for adults (especially delicate females); thus, in gastric disorders, to evacuate undigested acrid matters from the stomach,—to promote the passage of biliary calculi,—as a counter-irritant at the commencement of fevers,—in many inflammatory diseases (as acute mucous catarrh, cynanche, hernia humoralis, and ophthalmia),—in asthma,—and as an evacuant in cases of narcotic poisoning. When the indication is to excite gentle vomiting in very weak and debilitated frames, Dr. Pye⁷ has shown that it may be effected frequently with the utmost ease and safety by ipecacuanha in doses of from two to four grains. Dr. Cullen⁸ has expressed some doubt with respect to the correctness of this statement; but it is well known that ten grains of Dover's

---

⁵ *Lectures in the Lancet* for April 21, 1838.
⁶ Handb. d. sp. Heilmittell. ii. 5.
⁷ Med. Obs. and Inq. vol. i. 240.
⁸ Mat. Med. ii. 474.
powder (containing one grain of ipecacuanha) not unfrequently causes vomiting.

The mildness of its operation is not the only ground for preferring ipecacuanha to other emetic substances. Its specific power over the pulmonary organs and the stomach leads us to prefer it in maladies of these parts, in which vomiting is likely to be beneficial; especially in those affections in which the nerves appear to be more than ordinarily involved, as spasmodic asthma and hooping-cough. In the first of the complaints, Dr. Akenside has shown that it proves equally serviceable even when it fails to occasion vomiting, and merely produces nausea. He gave a scruple, in the paroxysm, to create vomiting, and, in the interval, five grains every morning, or ten grains every morning. Dr. Wright recommends gentle emetics of ipecacuanha at the commencement of the treatment of dysentery.

2. In small doses as a nauseant, antispasmodic, diaphoretic, and expectorant.—When given in doses insufficient to occasion vomiting, ipecacuanha is serviceable in several classes of complaints, especially those of the chest and alimentary canal.

a. In Affections of the Respiratory Organs.—Nauseating doses of ipecacuanha are used with considerable advantage in acute cases of mucous catarrh. They favour expectoration, and relaxation of the cutaneous vessels. In milder and more chronic forms, smaller doses, which do not occasion nausea, will be sufficient. In children, who bear vomiting much better than adults, full nauseating or even emetic doses are to be preferred.

"When a child becomes hoarse, and begins to cough," says Dr. Cheyne, "let every kind of stimulating food be withdrawn; let him be confined to an apartment of agreeable warmth; have a tepid bath; and take a drachm of the following mixture every hour, or every two hours, if it produces sickness:—p. Vini Ipecacuanhæ, 3ij.; Syrupi Tolut. 5v.; Mucil. Acacise, 5j. Mix.: and all danger will probably be averted. Whereas, if no change be made in the quality of the food, and if he be sent into the open air, he will probably undergo an attack of bronchitis or croup."

In hooping-cough, in which disease considerable benefit is obtained by the use of emetic substances, ipecacuanha is frequently administered with advantage. After giving it to create vomiting, it should be administered in nauseating doses. In asthma, benefit is obtained by it, not only when given so as to occasion nausea and vomiting, as above noticed, but also in small and repeated doses. In both this and the preceding disease, the benefit procured by the use of ipecacuanha arises, not from the mere expectorating and nauseating operation alone of this remedy, but from its influence otherwise over the eighth pair of nerves. In bronchial hemorrhage (haemoptysis) the efficacy of ipecacuanha has been greatly commended. A. N.
Aasheim, a Danish physician, gave it in doses of one-fourth of a grain every three hours during the day, and every four hours during the night. In this way it excites nausea, and sometimes even vomiting. It checks the hemorrhage, alleviates the cough, and relaxes the skin.

3. In Affections of the Alimentary Canal.—In indigestion, Daubenton gave it in doses just sufficient to excite a slight sensation of vermicular motion of the stomach, without carrying it to the point of nausea. Eberle tried it, in his own case, with evident advantage. An anti-emetic quality has been assigned to it by Schönheimer. In dysentery, ipecacuanha has gained no trifling celebrity, whence its name of radix antidysenterica. In severe forms of the disease no one, I suspect, now would think of relying on it as his principal remedy; but as an auxiliary, its efficacy is not to be denied. The advocates for its use, however, are not agreed as to the best mode of using it. Sir George Baker, and Dr. Cullen, consider it to be of most benefit where it acts as a purgative, but this can scarcely be its methodus medendi. From my own observations of its use in the milder forms of dysentery met with in this country, I am disposed to ascribe its efficacy in part to its diaphoretic powers, since I have always seen it promoted by conjoining a diaphoretic regimen. But its tendency to produce an antiperistaltic movement of the intestines doubtless contributes to its antidysenteric property. It is best given, I think, in conjunction with opium, (of course depletion proportional to the violence of the disease and the strength of the patient preceding its use). Its determination to the skin should be promoted by warm clothing, and the free use of mild, tepid aliments. Mr. Twining gave ipecacuanha in large doses (grs. vj.), with extract of gentian, without causing vomiting. Mr. Playfair recommends from half a drachm to a drachm of ipecacuanha, with from thirty to sixty drops of laudanum, to be given at the commencement of the disease.

γ. In various other maladies.—As a sudorific, ipecacuanha is given in combination with opium, (see Pulvis Ipecacuanhae compositus) in various diseases. On the continent it is esteemed as an antispasmodic. In uterine hemorrhage also it has been employed. In chronic visceral enlargements it has been administered as a resolvent.

Administration.—The usual dose of ipecacuanha, in powder, as an emetic, is grs. xv. But a much smaller quantity (for example, six, or four, or even two grains) will frequently suffice, as I have before mentioned. But a scruple, or half a drachm, may be taken with perfect safety. A commonly-used emetic consists of one grain of emetic tartar, and ten or fifteen grains of ipecacuanha. For in-
fants, half a grain or a grain of this root is usually sufficient to occasion vomiting. In all cases, the operation of the remedy should be assisted by diluents. As a nauseant the dose is from one to three grains. As an expectorant and sudorific, the dose should not exceed one grain: for infants, one-quarter or one-eighth of a grain. Ipecacuanha lozenges contain usually from a quarter to half a grain of the powder, and may be used in catarrhal affections to promoteexpectoration. **Infusion of ipecacuanha** (prepared by digesting 8ij. of the coarsely-powdered root in 83v. of boiling water) may be used as an emetic, in cases of narcotic poisoning, in doses of 83j. to 85ij.

1. VINUM IPECACUAME, L. E. D.; Wine of Ipecacuanha.—(Ipecacuanha, bruised, 8ij. [8ij. D.]; Sherry Wine, Oij. [wine measure, D.].) Macerate for fourteen [seven, ?] days, and strain).—According to Dr. A. T. Thomson, a pint (i.e. 83vij.) of wine takes up 100 grains of the soluble matter of ipecacuanha. This preparation is diaphoretic, expectorant, and emetic.—Dose, for an adult, as a diaphoretic and expectorant, 8nx. to 8nxl.; as an emetic, 83ij. to 85iv. On account of the mildness of its operation, it is given, as an emetic, to children: the dose is from 83xx. to 83xxl.; according to the age of the child. It is also exceedingly useful as an expectorant in the diseases of infants: dose from 8v. to 8nx.

2. SYRUPUS IPECACUANHAE, E.; Syrup of Ipecacuanha.—(Ipecacuanha, in coarse powder, 8iv.; Rectified Spirit, Oj.; Proof Spirit and Water, of each 83xiv.; Syrup, Ovij. Digest the ipecacuanha in four fluidounces of the rectified spirit, at a gentle heat, for twenty-four hours; strain and squeeze the liquor, and filter. Repeat this process with the residuum and proof spirit; and again with the water. Unite the fluids, and distil off the spirit till the residuum amount to twelve ounces; add to the residuum five fluidounces of rectified spirit, and then the syrup).—A syrup of ipecacuanha is a very useful preparation for children; but some difficulties attend its preparation. An aqueous decoction of this root contains so much starch that it can scarcely be filtered. Even the infusion filters slowly, is always turbid, and yields a syrup which does not keep well. Hence MM. Guibourt and Henry introduced a process, of which that of the Edinburgh Pharmacopoeia is a modification (improvement?). They prepared an alcoholic extract, which is dissolved in water and mixed with concentrated syrup. About two fluidscruples of the Edinburgh preparation contain the strength of one grain of ipecacuanha; hence the dose of it, as an emetic, for infants, will be half a tea-spoonful; for adults, 83j. or 83iss. As an expectorant, the dose is 83j. to 83ij.

3. PULVIS IPECACUANHAE COMPOSITUS, L. E. D.; Compound Powder of Ipecacuanha; Dover’s Powder; Pulvis Doveri, offic.—(Ipecacuanha, powdered; Hard Opium, powdered, of each 8j.; Sulphate of Potash, powdered, 3j. Mix them. The proportions used by all the British Colleges are the same. The Dublin College directs the Sul-
phate of Potash to be rubbed with the Opium, and the Ipecacuanha to be then intermixed).—This preparation is an imitation, (though not a very exact one) of a formula given by Dover⁹; whence it is commonly known in the shops as Dover's Powder. The following is Dr. Dover's recipe:

"Take opium, 3j.; saltpetre; tartar vitriolated, of each ½iv.; ipecacuanha, 3j.; liquorice, 3j. Put the saltpetre and tartar into a red hot mortar, stirring them with a spoon until they have done flaming. Then powder them very fine. After that slice in your opium; grind these to a powder, and then mix the other powders with them. Dose, from 40 to 60 or 70 grs. in a glass of white wine posset, going to bed. Covering up warm, and drinking a quart or three pints of the posset drink while sweating."

The compound powder of ipecacuanha is one of our most certain, powerful, and valuable sudorifics. The sulphate of potash is intended to serve the double purpose of promoting the sudorific operation of the other ingredients, and of minutely dividing, by the hardness of its particles, the opium and ipecacuanha. The nitrate of potash also employed by Dr. Dover probably contributed still further to the sudorific effect of the powder. The opium and ipecacuanha combined, enjoy great sudorific properties not possessed by either of these substances individually. I am inclined, however, to ascribe the greater part of the activity of the compound to the opium, which it is well known strongly determines to the cutaneous surface (see Opium), and often produces pricking or itching of the skin; and when assisted by the copious use of warm aqueous diluents, operates as a sudorific. This effect, however, is greatly promoted by the ipecacuanha, which has a relaxing influence over the cutaneous vessels. The use of the posset, enjoined by Dr. Dover, is an important part of the sudorific plan. The contra-indications for the use of compound powder of ipecacuanha are an irritable condition of the stomach (when this preparation is apt to occasion sickness), and cerebral disorder. Thus, in fever, a dry furred tongue, and a dry skin, with much disorder of the cerebro-spinal functions, it, like other opiates, is calculated to prove most injurious. In such cases, the antimonial sudorifics may be resorted to (see pp. 198 and 678). But when the tongue is moist, the skin, if not damp, at least soft, and the functions of the brain not much involved, it will probably operate beneficially. In slight colds, catarrhs, and rheumatic pains, it often proves most effectual. In various inflammatory affections, when the febrile excitement does not run too high, and when the brain is undisturbed, it may be used with good effect. In acute rheumatism, it is occasionally highly serviceable. In diarrhoea and dysentery also. In hemorrhages from internal organs, as the uterus, it is useful on the principle of revulsion or counter-irritation (see p. 145), by its power of determining to the skin. The dose of this preparation is usually from grs. v. to grs. x., given in curraunt jelly or gruel, or made into a pill (see Pilulæ Ipecacuanhae et Opī), or administered in a common saline draught. Where the

stomach is irritable, I have frequently seen five grains cause sickness. On the other hand, in some cases where a powerful sudorific is required, and the head quite free, grs. xv. or even 2j. of this powder are not unfrequently given.

4. PILULE IPECACUANHÆ COMPOSITÆ, L.; Pilulæ Ipecacuanhæ et Opii, E.; Compound Pills of Ipecacuanha; Pills of Ipecacuanha and Opium.—(Compound Powder of Ipecacuanha, siij.; Squill, fresh-dried; Ammoniacum, of each, 5j.; Mixture of Acacia, as much as may be sufficient. Beat them together until incorporated, L.—Powder of Ipecacuanha and Opium, three parts; Conserve of Red Roses, one part; beat them into a proper mass, which is to be divided into four-grain pills, E.)—Narcotic, and sudorific. Employed in chronic catarrh.—Dose, gr. v. to gr. x.

5. TROCHISCHI MORPHIE ET IPECACUANH. (See Morphia).

3. UNCA'RIA GAMB'IER, Roxburgh, E.—THE GAMBIR.

Nau clea Gam'bir, Hunter.

Sex. Syst. Pentandria, Monogynia.

(The extract obtained from the leaves, E.; Gambir, or Gambir-Catechu.)

History.—Gambier, or Gambir, is the Malay name of an extract obtained from the leaves of this shrub. Rumphius ⁷ has described the plant under the name of Funis uncatus or Daun Gatta Gambir.


—Climbing shrubs. Peduncles when old becoming axillary compressed hooked spines. Flowers in loose heads (Lindley; De Cand.).

Sp. Char.—Branches terete. Leaves ovate-lanceolate, acute, with short petioles, smooth on both sides. Stipules ovate. Peduncles axillary, solitary, opposite, bracteolated about the middle; the lowest ones sterile, converted into hooked spines (De Cand.)


Hab.—Islands of East Indian Archipelago. Extensively cultivated. On the Island of Bintang there are 60,000 Gambir plantations ⁸.

Extraction of Gambir.—Two methods of obtaining Gambir are described: one consists in boiling the leaves in water, and inspissating the decoction; the other, which yields the best Gambir, consists in infusing the leaves in warm water, by which a fecula is obtained, which is inspissated by the heat of the sun, and formed into cakes ⁴.

Dr. Campbell ⁶ has described the method of making the circular or cylindrical variety of Gambier, as followed in the colony established

—

⁷ Herb. Amboin. vol. v. tab. 34.
⁸ Bennett's Wanderings, ii.
⁹ Asiatic Researches, xi. 188.
⁶ Roxburgh, Fl. Ind. i. 518.
by the Sultan of Moco, where the manufacture is carried on to a con-
siderable extent. It consists in shredding and bruising the young
shoots and leaves "in water for some hours, until a fecula is depo-
sited; this, inspissated in the sun to the consistence of a paste, is
thrown into moulds of a circular form, and in this state the Gambier
is brought to market." Dr. Roxburgh * describes the manufacture of
the cubical variety as practised eastward to the Bay of Bengal. The
process consists in "boiling the leaves and young shoots; evaporat-
ing the decoction by fire and the heat of the sun. When sufficiently
inspissated, it is spread out thin, and cut into little square cakes, and
dried."

Mr. Bennett" has given a very full account of the method of
making the cubical variety as practised at Singapore. The leaves
are plucked from the prunings, and boiled in a qualie, or cauldron
(made of bark, with an iron bottom); after being boiled twice and
rinsed, they are used as a manure for the pepper vine. The decoction
is evaporated to the consistence of a very thick extract, of a light,
yellowish, brown colour, like clay, which is placed in oblong moulds.
The pieces thus obtained are divided into squares, and dried in the
sun on a raised platform. Hunter" says, Sago is often intermixed
with the extract, but Bennett denies that this is done at Singapore.
The best Gambier is made at Rio, in the isle of Bintang; the next
best is that of Lingin.

COMMERCE.—Gambir (the cubical variety) is import
ed from Sin-
pore principally. Its principal use here is for tanning; and among
dealers it is distinguished from catechu, cutch, &c. by the name of
terra japonica. The following are the quantities imported during the
last four years;—

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1836</td>
<td>970 tons.</td>
</tr>
<tr>
<td>1837</td>
<td>2738 tons.</td>
</tr>
<tr>
<td>1838</td>
<td>1600 tons.</td>
</tr>
<tr>
<td>1839</td>
<td>5213 tons.</td>
</tr>
</tbody>
</table>

During the last three years, its price has varied from 15s. to 26s.
per cwt. The duty on it is 1s. per cwt. It is brought over in cane
baskets, lined with palm leaves. Mr. Bennett says they are made of
a kind of rattan found in the jungle at Singapore.

DESCRIPTION AND VARIETIES.—Gambir (terra Japonica, of tanners;
Catechu in square cakes, of druggists; Cubical Resinous Catechu, of
Guibourt; Gambier of Second Quality, Bennett *) occurs in cubes,
whose faces are about one inch square. When thrown into water, it
floats. These cubes are externally of a deep reddish or yellowish
brown colour; their fracture is dull and porous, and internally their
colour is paler than that of their surface, being yellowish cinnamon
brown; the fractured surface not unfrequently presenting some darker
feebly shining stripes, extending from without inwards. This kind
has no odour; its taste is powerfully astringent and bitter, but sub-
sequently becoming sweetish. It melts entirely in the mouth. When

---

*Ibid.
*Wanderings, ii. 183.
*Linn. Trans. ix.
heated in a platinum crucible it undergoes a kind of semifusion, and
swells up; and when incinerated leaves a light white ash. Nees v.
Esenbeck\(^a\) says twenty grains of this Gambir leave only half a grain
of ash. It is partially soluble in cold water. When boiled in water
it almost completely dissolves and yields a decoction which, while
hot, is clear reddish brown, but, on cooling, becomes turbid, owing
to the deposition of catechine. By digestion in ether it forms a deep
reddish-brown tincture, which, by evaporation, yields a reddish-brown
astringent extract: the portion which is insoluble in ether is dark
brown, tough and elastic. Examined by the microscope, Gambir is
found to consist in great part of myriads of minute crystals (catechine)
termixed with a kind of mucous tissue.

Mr. Bennett\(^b\) has described three qualities of Gambir, specimens of which are
contained in my own collection, as well as in that of the Medico-Botanical
Society of London. To these I must add a fourth, which I have received from
Professor Guibourt.

1. Small Circular Moulded Gambir: Gambir of the first quality, Bennett:
Lozenge Gambir.—This occurs in small round cakes, about the size of a small
lozenge. Its form is something like that of a plano-convex lens, slightly flat-
tened on the convex side. One of its surfaces is flat, round, about half an inch
in diameter; the other one is convex, with a star-like pattern impressed on it.
Its colour is pale pinkish yellowish white. It has a chalky or earthy feel, and
is brittle. Specimens of this are in the collection of the Medico-Botanical
Society.

Amylaceous Lozenge Gambir.—Under the name of Gambir, or China Catechu,
I have received from Bombay small circular cakes of gambir adulterated with
sago meal. The cakes are circular and cylindrical, about 3½ lines in diameter,
and 2 lines thick; flat at the bottom, and slightly convex at the top. They are
greyish yellowish white; have a cretaceous feel, and are easily reduced to powder.
Their decoction when cold is rendered blue by tincture of iodine. Examined by
the microscope multitudes of particles of sago may be detected, intermixed with
crystals of catechine. I have received the same kind of gambir from Dr. D.
Maclagan, of Edinburgh, under the name of White Gambir.

2. Gambir in parallelopipeds: Gambir of the second quality, Bennett.—
This occurs in two forms: cubes (forming the Gambir of English commerce,
described in the text), and square prisms or oblong pieces. The latter I received
from Dr. Maclagan, of Edinburgh, under the name of Yellow Gambir in parallel-
opipeds. The length of the prisms is two inches; the size of the terminal faces
half an inch square. In other respects the oblong variety agrees with the
square kind.

3. Cylindrical Gambir: Gambir of the third quality, Bennett.—This occurs in
circular discs, or short cylindrical pieces, the length of the cylinder being only
about one-third of an inch, while its diameter is one inch and a quarter. One
of the round surfaces is marked with the fibres of a cloth, on which the cakes
have been dried. The colour internally is pale, dull, pinkish yellow, externally
being a shade darker. Its fracture is dull and porous. It is easily scraped to
powder with the nail, and in this state has a chalky feel. Its taste is astringent,
but less so than the other kinds; it is gritty under the teeth. It sinks in water.
The samples in the Medico-Botanical Society are somewhat smaller than those
which I have found in commerce. This kind contains many impurities.

4. Cubical Amylaceous Gambir.—It is in cubes, which swim in water, and
whose faces are about half an inch square. Externally these cubes are dark
brown, being darker coloured than the kind just described. Its fracture is dull
and porous, its colour internally being pale cinnamon brown. It is readily dis-
tinguished from all other kinds of Gambir, by the black colour produced when

---

\(^a\) Haadv. d. Med. pharm. Botan. i. 881.
the tincture of iodine is applied to the fractured surface. When digested in water it is resolved into two parts—

<table>
<thead>
<tr>
<th>Matter soluble in water</th>
<th>Matter insoluble in water, principally amylaceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>55</td>
</tr>
</tbody>
</table>

The amylaceous matter is probably sago.

**Composition.**—Gambir (the cubical variety) was analyzed by Nees v. Esenbeck, who found Tannin 36 to 40 per cent., Peculiar Matter, Gum or Gummy Extractive, Tannic Deposit (similar to red cinchonic), and 2½ per cent. of Woody Fibre.

1. **Tannic Acid**—The properties of this acid have been before (p. 1080), described. That extracted from Gambir is soluble in water, alcohol, and ether, and gives a green colour to the salts of iron.

2. **Catechin; Catechu Acid; Tannamysäure, Buchner; Resinous Tannin, Nees.**—When gambir is treated with cold water, an insoluble residuum is left: this is impure catechine, and was termed by Nees, Resinous Tannin. When obtained quite pure, it is a white, light powder, composed of silky needles, having a peculiar sweet taste. It is very slightly soluble only in cold water, more so in boiling water. Ether, and especially alcohol, are better solvents for it. It produces a green colour with salts of iron, but does not produce a precipitate with a gelatinous solution. Its composition is \( C_{13} H_{10} O_5 \). If it be digested in caustic potash, and the solution exposed to the air, oxygen is absorbed, and the catechene acid is converted into Japanese Acid, composed of \( C_{13} H_{10} O_5 \). But if it be dissolved in carbonate of potash, and exposed to the air without heat, it is converted into Rubinic Acid, composed of \( C_{13} H_{10} O_5 \).

**Physiological Effects.**—Gambir is one of the most powerful of the pure astringents, whose effects have been before described (see p. 188). Its sweet taste depends, in part at least, on catechunic acid.

**Uses.**—It is employed by druggists as catechu (see Acacia Catechu).

4. **Rúbia Tinctórum, Linn. D.—DYER'S MADDER.**

*Sex. Synt. Tetrandria, Monogynia*.

History.—Madder (ἵπποςπόκαυρος) was employed in medicine by Hippocrates, Theophrastus, Dioscorides, and Pliny, also mention this substance. In the middle ages it was called varancia.

Botany. Gen. Char.—Tube of the calyx ovate-globose; limb scarcely any. **Corolla** five-partite, rotate. **Stamens** short. **Styles** two, short. **Fruit** didymous, somewhat globose, baccate, juicy (De Cand.).

Sp. Char.—Herbaceous. **Leaves** four to six in a whorl, somewhat petiolate, lanceolate, smooth above; their margin and keel, as well as the angles of the **stem**, aculate, rough. **Peduncles** axillary, trichotomous. Lobes of the **corolla** gradually callous-acuminating, not cuspidate (De Cand.).

Root perennial, horizontal, long, crouching, reddish brown. **Stems** several, herbaceous, tetragonal, with hooked prickles. **Leaves** somewhat membranous. **Flowers** small, yellow.

Hab.—Levant and south of Europe.
**Description and Varieties.**—Madder roots (*radix rubia tinctorum*) are long, cylindrical, about the thickness of a writing quill, branched, externally deep reddish brown. They consist of an easily separable cortex, whose epidermis is thin, and of a ligneous meditullium, which in the fresh state is yellow, but by drying becomes reddish. The odour of the root is feeble; the taste is bitter and astringent.

Levant, Turkey, or Smyrna Madder, is imported whole, and constitutes the roots usually found in the shops. Dutch or Zealand Madder is imported ground. Four kinds of the powder are distinguished: crop (the best), ombro, gamene, and mull (the worst). French Madder is imported both ground and whole; it is produced in the environs of Avignon and Alsace. Small quantities of Spanish Madder are imported. The substance termed East India Madder, or Munjeet, is the root of *Rubia Munjista*, Roxb.

**Composition.**—Several analyses of madder have been made, viz. by Bucholz, John, and Kuhlmann.

<table>
<thead>
<tr>
<th>Bucholz</th>
<th>Kuhlmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resinous red colouring matter</td>
<td>Red colouring matter</td>
</tr>
<tr>
<td>Extractive ditto</td>
<td>Yellow ditto (Xanthin)</td>
</tr>
<tr>
<td>Reddish brown substance, soluble in potash and hot alcohol</td>
<td>Mucilage</td>
</tr>
<tr>
<td>A pungent extractive</td>
<td>Nitrogenous matter</td>
</tr>
<tr>
<td>Gummy matter</td>
<td>Bitter substance</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>Gum</td>
</tr>
<tr>
<td>Matter soluble in potash</td>
<td>Sugar</td>
</tr>
<tr>
<td>Vegetable salts of lime, with colouring matter</td>
<td>Woody fibre</td>
</tr>
<tr>
<td>Water</td>
<td>Vegetable acid</td>
</tr>
<tr>
<td>Loss</td>
<td>Porous resin</td>
</tr>
</tbody>
</table>

Madder root ................................ 100.0 Madder root.

The nature of the colouring matters of madder has been further investigated by Robiquet and Colin, by Gaultier de Claubry and Persoz, and by Runge. According to the last mentioned chemist, there are no less than five colouring matters in madder. The same chemist mentions two colourless acids of madder; viz. Madderic and Rubiacic Acids. The colouring matters are as follows:

1. **Madder Purple** (? Purpurin, Robiquet and Colin).—An orange-yellow crystalline powder. It is slightly soluble in cold water, very readily so in alcohol and ether. A strong solution of alum dissolves it. Alkalis dissolve it, forming cherry-red solutions. The colours which it imparts to mordanted tissues are less permanent than those produced by madder-red.

2. **Madder Red** (? Alizarin, Robiquet and Colin).—Is red, insipid, odourless, crystallizable by sublimation, insoluble in a strong solution of alum, almost insoluble in cold water, but is soluble in alcohol and ether. Alkalis dissolve it, forming violet-coloured solutions. It dyes cloths, which have been mordanted, red. Its composition is $C_{17}H_{12}O_{10}$.

3. **Madder Orange.**—Is very soluble in ether, sparingly so in cold alcohol. If water be added to a hot solution in spirit, crystals are deposited.

---

2. Ibid.
5. *Records of Science*, ii. 432, and iii. 44, and 133.
4. Madder Yellow (? Xanthin, Kuhlmann)—It is very soluble in water and alcohol. It has no affinity for cotton impregnated with the alum mordant.

5. Madder Brown.—Not being valuable as a dye-stuff, it has not been carefully examined.

It appears from Decaisne’s observations that the colouring matter of Rubia tinctorum does not reside in peculiar vessels or secretory apparatus, but in the interior of the elementary organs. Nor is it confined to the root, for in the stem of full-grown plants larger or smaller spots are here and there found, where the cells and spiral vessels are filled with it. Moreover, it appears that in madder root only yellow colouring matter is observed, which is the more intense as the plant is older. When the yellow sap of the root comes in contact with the atmosphere, it acquires, by the influence of oxygen and moisture, a red colour, and a granular substance forms in it.

Physiological Effects.—The influence of madder over the system is exceeding slight. Its topical effect is scarcely obvious. Home ascribed to it emmenagogue qualities. Others have declared it to be diuretic. Neither of these effects, however, were observed by Dr. Cullen. It may, perhaps, possess mild astringent and tonic properties.

But the most remarkable physiological effect of madder is that of colouring the bones of animals fed with it, red. This fact was noticed by Belcher; though Beckmann has adduced evidence to prove that some hints of it are to be found in the works of the ancients. This effect on the bones is produced more effectually, and in a much shorter time, in young than in old animals. In birds, the beak and claws become coloured. As the nerves, cartilages, aponeuroses, tendons, and periosteum are not tinged, the effect is ascribed to the chemical affinity of the phosphate of lime for this colouring matter. Mr. Gibson accounts for it as follows:—The blood charged with the red particles imparts its superabundance of them to the phosphate as it circulates through the bones. But as soon as the blood is freed from the madder by excretion, the serum then attracts the colouring matter, and in a little time entirely abstracts it.

This hypothesis has, however, been combated by Mr. Paget, who asserts that the madder colours only those particles of phosphate of lime which are deposited during its use; and that it has no influence on the phosphate already existing in the bones before its administration, nor has the serum any chemical power to remove the colour from the phosphate once tinged. The coloured phosphate does indeed regain its whiteness after a time, when the madder is no longer exhibited; but this he ascribes to the “gradual decomposition of the madder, as reddened skeletons gradually lose their colour when exposed to air and light.” As, however, living bones are not subjected to the same influence of air and light (powerful decolorizers), which the skeletons referred to are, the analogy does not hold good; and this part of Mr. Paget’s hypothesis is, therefore, unsatisfactory.
Tiedemann and Gmelin could not detect the colouring matter of madder in the chyle; and the red tint of the serum prevented them ascertaining its existence in the blood, though of this scarcely a doubt can exist, inasmuch as it has been found in the excretions (for example, urine, milk, and sweat).

Uses.—It was formerly a favourite remedy in jaundice, in which disease Sydenham used it. On account of its capability of tinging the bodies red, it has been recommended in rickets and mollities ossium, on the supposition of its promoting the deposition of bone earth; but this notion appears to be groundless. Home employed it as an emmenagogue in uterine complaints.—The dose of it is 5ss. to 3ij. three or four times a day.

OTHER MEDICINAL AND DIETETICAL RUBIACEÆ.

1. Psychotria emetica is a native of Colombia, Peru, and probably of other parts of South America. Its roots constitute the striated ipecacuanha of Richard, Guibourt, and Merat; the black or Peruvian ipecacuanha of some other authors. They are neither annulated nor undulated, but longitudinally striated. They have deep circular intersections at various distances, giving them the appearance of being articulated; and when slight force is used, they fracture at these parts. As met with in commerce, they have externally a blackish-gray colour, with a brownish tinge; but when fresh, they are said to be dirty reddish-gray. Their fracture is resinous: the medullary, or central ligneous cord, is yellowish, and perforated by numerous holes, which are very visible by a magnifier: the cortical portion is softish, easily separable, and of a grayish-black colour, becoming much deeper when moistened. Its powder is deep gray. According to the analysis of Pelletier, this root consists of—emetina 9, fatty matter 12, gallic acid a trace, gum, starch, and ligneous matter 79.

2. Richarsonia scabra (R. braziliensis, Gomez) is a native of the Brazils, New Granada, Peru, &c. Its root is the undulated ipecacuanha of Guibourt; the amylaceous or white ipecacuanha of Merat. It has a jointed appearance, from constrictions which are remote from each other. It is about the same size as that of the annulated species; is tortuous, attenuated at the extremities; externally of a grayish-white colour, becoming brownish by age. It presents no rings, properly so called,
but is marked by semicircular grooves. It consists, like the annulated species, of a thin yellowish medullium, and a cortical portion. The fracture of the root is not at all resinous, but farinaceous, and of a dull-white colour: the fractured surface presenting, when examined by a magnifier, numerous shining pearly, probably amylaceous, spots. The odour is musty. The composition of it, according to Pelletier, is emetina 6, fatty matter 2, starch and ligneous matter (very little of the latter) 92.

3. Coffea Arabica.—The important dietetical uses of coffee (semina coffeae), the albumen of the seed of Coffea arabica, demands a short notice. The coffee plant is a native of Arabia Felix and Ethiopia, but is extensively cultivated in Asia and America. It is an ever-green shrub, from 15 to 20 feet high, with oblong-ovate, acuminate, smooth leaves, a five-toothed calyx, a white tubular corolla, with a five-parted spreading limb, five stamens, one pistil with a bifid style, and an oval, succulent, blackish-red or purplish two-seeded berry. The seeds are inclosed in a membranous endocarp (the parchment-like putamen of some botanists), and consist of a horny, yellow, bluish or greenish albumen, which is on one side flat with a longitudinal furrow, on the other convex. At one end of the seed is the embryo, with its cordiform cotyledons. The dried berries were imported from Demerara in 1839. Occasionally the seeds contained in their endocarp (coffee in the husk) are met with in commerce.

The varieties of coffee are distinguished in commerce according to their places of growth; but considered with reference to their physical properties, they are characterized by colour (yellow, bluish, or greenish) and size (the smallest seeds are about three lines long and two broad, the largest five lines long and two lines and a half broad). Arabian or Mocha Coffee is small, and dark yellow. Java and East India (Malabar) kinds are larger, and paler yellow. The Ceylon is more analogous to the West India kinds (Jamaica, Berbice, Demerara, Dominica, Barbadoes, &c.), which, as well as the Brazilian, have a bluish or greenish grey tint. Roasted Coffee (semina coffeae tosta) is, when ground, extensively adulterated with chicory. To detect the adulteration, shake the suspected coffee with cold water in a wine-glass: if it be pure coffee it will swim, and scarcely communicate any colour to the fluid. Chicory, on the other hand, sinks, and communicates a deep red tint to the water. The presence of roasted corn may be detected by the blue colour produced on the addition of a solution of iodine to the cold decoction. Coffee, in both the raw and roasted states, has been the subject of repeated chemical investigations; but the results hitherto obtained can scarcely be considered satisfactory. The distilled water of coffee offers traces of a volatile oil. Pfaff declares that the aroma of roasted coffee depends on the volatilization, or rather decomposition, of a peculiar acid contained in raw coffee, and which has been denominated caffeic acid. The same authority gives for the composition of this acid—Carbon 29'1, Hydrogen 6'9, and Oxygen 6'4. Zenneck, however, asserts, that the aromatic principle of roasted coffee is neither acid nor alkaline. It is, probably, a volatile oil generated during torrefaction, though it is not known what constituent of the raw coffee produces it. Caffein is a volatile, crystalline, neutral constituent of coffee. Its composition is C8 H5 N2 O2. The decoction of coffee is coloured green by the persalts of iron, probably in consequence of the presence of catechine. By the action of alkalis on a volatile principle of coffee, a green substance is produced, called coffee green. The other constituents of coffee are—gum, resin, fixed oil, extractive, albumen, and lignin.

The following is a comparative analysis of raw and roasted Martinico coffee, made by Schrader:

<table>
<thead>
<tr>
<th>Raw Coffee</th>
<th>Roasted Coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peculiar coffee principle</td>
<td>Coffee principle</td>
</tr>
<tr>
<td>17'58</td>
<td>12'50</td>
</tr>
<tr>
<td>Gummy and mucilaginous extract</td>
<td>Extractive</td>
</tr>
<tr>
<td>3'64</td>
<td>4'80</td>
</tr>
<tr>
<td>Extractive</td>
<td>Gum and mucilage</td>
</tr>
<tr>
<td>0'62</td>
<td>10'42</td>
</tr>
<tr>
<td>Resin</td>
<td>Oil and resin</td>
</tr>
<tr>
<td>0'41</td>
<td>2'38</td>
</tr>
<tr>
<td>Fatty oil</td>
<td>Solid residue</td>
</tr>
<tr>
<td>0'53</td>
<td>66'75</td>
</tr>
<tr>
<td>Solid residue</td>
<td>Loss (water?)</td>
</tr>
<tr>
<td>66'66</td>
<td>1'45</td>
</tr>
<tr>
<td>Loss (water?)</td>
<td></td>
</tr>
</tbody>
</table>

Raw coffee must be slightly nutritious, on account of the gum and other nutritive principles which it contains. Rasori employed it, like powdered bark, in intermittent fever; and Grindel used it, in other cases, also as a substitute for cinchona. By roasting, its nutritive principles are (for the most part) destroyed, while the empyreumatic matters developed communicate a stimulant influence with respect to the nervous system.

Roasted coffee possesses powerfully anti-soporific properties; hence its use as a drink by those who desire nocturnal study, and as an antidote to counteract the effects of opium, and other narcotics, and to relieve intoxication. In those unaccustomed to its use it is apt to occasion thirst and constipation. I know two persons on whom it acts as a purgative. It is sometimes very useful in relieving headache. It has also been employed as a febrifuge, in intermittents; as a stomachic, in some forms of dyspepsia; as an astringent, in diarrhoea; and as a stimulant to the cerebro-spinal system, in some nervous disorders. Floyer, Dr. Percival, and others, have used it in spasmodic asthma; and Laennec says, “I have myself seen several cases in which coffee was really useful.”

Order LIII.—CAPRIFOLIACEÆ, Jussieu.—THE HONEY-SUCKLE TRIBE.

Essential Character.—Calyx superior, four- or five-cleft, usually with two or more bracts at its base. Corolla superior, monopetalous or polypetalous, rotate or tubular, regular or irregular. Stamens epipetalous, equal in number to the lobes of the corolla, and alternate with them. Ovary with from one to three or four cells, one of which is often monospermous, the others polyspermous: in the former the ovule is pendulous; style one; stigmas one, or three to four. Fruit indehiscent, one- or more-celled, either dry, fleshy, or succulent, crowned by the persistent lobes of the calyx. Seeds either solitary and pendulous, or numerous and attached to the axis; testa often long; embryo straight, in fleshy albumen; radicle next the hilum.—Shrubs or herbaceous plants, with opposite leaves, destitute of stipules. Flowers usually corymbose, and often sweet-scented (Lindley).

Properties.—Not uniform.

SAMBUCUS NIGRA, Linn. L. E. D.—COMMON ELDER.

Sex. Syst. Pentandria, Trigynia.

(Flores, L.—Flowers, E.—Flores. Baccae. Cortex interior, D.)

History.—Hippocrates employed the elder (ukryan) in medicine.

pulpy, one-celled (Gärtn.), three- to five-seeded; funiculi bearing the oblong seeds in the axis of the fruit (De Cand.)

Sp. Char. — Stem shrubby, somewhat arboreous. Leaves pinnate-sect, smooth; segments ovate-lanceolate, serrate. Corymbs five-partite (De Cand.)

Stem much and irregularly (though always oppositely) branched, of quick growth; branches (after a year’s growth) clothed with smooth gray bark, and filled with a light spongy pith. Leaflets deep green, smooth, usually two pair, with an odd one. Cymes (corymbs) large, smooth, of numerous cream-coloured flowers, with a sweet but faint smell; some in each cyme sessile. Berries globular, purplish-black; their stalks reddish (Smith).

Hab. — Indigenous: in hedges, coppices, and woods; common.

Description. — The liber or inner bark (cortex interior sambuci) is collected from the branches: its colour is greenish-white; its taste sweetish astringent; its odour feeble. Its infusion is rendered slightly green by the sesquichloride of iron. Elder flowers (flores sambuci) are white when fresh, but by drying become yellow, and retain an agreeable odour. Elder berries (baccae sambuci) yield, by expression, a purple juice, called elder rob.

Composition. — I am unacquainted with any analysis of elder bark. The flowers were analyzed by Eliason, who obtained from them volatile oil, acrid resin, tannin, oxidized extractive, nitrogenous extractive, gum, woody fibre, glutinous matter, albumen, malates of potash and lime, mineral salts, and a trace of sulphur. Elder juice contains malic acid, a little citric acid, sugar, pectin, and colouring matter, which is reddened by acids, and made green by alkalis.

Physiological Effects. — The flowers, owing to their volatile oil, are mildly stimulant, and, perhaps, sudorific. The berries are cooling, aperient, and diuretic. The inner bark (liber) is hydragogue, cathartic, and emetic. The leaves, probably, possess similar, though less energetic, properties.

Uses. — The flowers are seldom employed, except in the preparation of elder-flower water and elder ointment. The use of the berries is now almost solely confined to the manufacture of elder wine. The inspissated juice of the berries is, however, an official preparation. The inner bark has been used as a hydragogue cathartic in dropsy. It may be given in decoction (prepared by boiling 5j. of the bark in Oij. of water to Oj.), in doses of f3iv. Smaller doses have been used as an aperient and resolvent in various chronic disorders.

4. Oleum Sambuci, L. Oil of Elder. — (Directed to be obtained from the flowers by submitting them to distillation with water.) — By distillation the flowers yield a small quantity of a butyrous, odoriferous oil, but totally unfit for any useful purpose. Its introduction into the Pharmacopoeia must, therefore, have been an oversight. The liquid sold in the shops as Green Oil (Oleum viride) or Oil of Elder,
is prepared by boiling leaves (usually those of the elder) in rape oil.
It is employed as a liniment.

2. **AQUA SAMBUCI, L. E.; Elder Flower Water** (Elder flowers [fresh, E.], lb. x. [or Oil of Elder, 3.ij. L.]; Water, Cong. ij.; Proof Spirit, f3vij. [Rectified Spirit, f3vij. E.] Mix them, and let a gallon distil).—Elder-flower water is frequently made from the *pickled flowers (flores sambuci saliti)* which are prepared with alternate layers of
the flowers and common salt compressed and preserved in a well-closed
vessel [usually a cask]: the water which exudes being rejected. It
cannot be made from the oil, as ordered by the London College. It is
principally used as a perfume.

3. **UNGUENTUM SAMBUCI, L. D.; Elder Ointment** (Elder Flowers,
Lard, of each lb. ij.; Boil the Elder flowers in the Lard until they
become crisp; then press through a linen cloth.—The *Dublin College*
uses the leaves instead of the flowers. The formula is as follows:
—Fresh leaves of Elder, lb. iij.; Prepared Hog’s Lard, lb. iv.; Pre-
pared Mutton Suet, lb. ij. Make an ointment in the same manner as
the Savine Ointment.

The *Unguentum Sambuci, Ph. L.* is the *white elder ointment of
the shops*. Except in its agreeable odour it has no advantage over sper-
maceti ointment. The *Unguentum Sambuci, Ph. D.* is the *green elder
ointment of the shops*: it is odorous. It is popularly used as a
cooling ointment.

4. **SUCCUS SPISSATUS SAMBUCI, D.; Inspissated Juice of Elder;
Elder Rob.** (Prepared as the *succus spissatus aconiti*).—Refrigerant,
laxative, and diuretic. Diluted with water it forms a cooling bever-
rage in febrile and inflammatory disorders.—Dose, 5j. to 5ij.

**Order LIV.—ARALIACEÆ, Richard.—The Aralia Tribe.**

**Aralia, Jussieu.**

1. **Pa’nax quinquefolium**, Linn. is a native of North America, growing in
the Northern, Middle, and Western States of the
Union. Its root is the *American Ginseng (radix ginseng)*. It is exported to China, where it is highly
valued. Pieces of it are said to be occasionally found
intermixed with *senega root*.

2. **Pa’nax Schin’seng, Nees v. Esenbeck**, is a native of Asia, and has been usually confounded
with the preceding species. Nees admits three
varieties: — *P. Schin-seng, var. coraiensis; P.
Schin-seng, var. japonica, and P. Schin-seng, var.
nepalensis (P. Pseudo-ginseng, Wallich)*. The root
of this species is the *Asiatic Ginseng (radix ninsi)*.

The Chinese physicians ascribe the most im-
probable and extravagant virtues to ginseng.
They regard it as an invigorating and aphrodisiac
agent. At Pekin it is said to have been sometimes
worth its weight in gold! To the taste it is mucil-
laginous, sweetish, somewhat bitter, and slightly
aromatic. In Europe it is believed to possess very
little power.
Order LV.—UMBELLIFER.E, Jussieu.—THE UMBELLI-
FEROUS TRIBE.

ApiACEiE, Lindley.

Essential Character. — Tube of the calyx adherent to the ovary; the limb [superior calyx of Lindley] entire, or five-toothed, or obsolete. Petals five, inserted into the upper part of the calyx [inserted on the outside of a fleshy epigynous disc, Lindley], usually inflexed at the point; aestivation imbricate, rarely valvate. Stamens five, alternate with the petals, incurved in aestivation. Ovary [inferior Lindley] adherent to the calyx, two- (rarely one-) celled, with solitary pendulous ovules: styles two, distinct, incrassated at the base into stylopodia, covering the whole of the ovarium; stigmas simple. Fruit (called diachena, polyachena, or cremocarpum) consisting of two mericarps (i.e. two carpella, with half of the calyx attached, so that they can be called neither carpella nor achenia), separable from a common axis (carpophorus), to which they adhere by their face (commissure); the dorsal surface of each carpel is traversed by ridges, of which five are primary (costae seu juga primariae), and four secondary (juga secundariae); the latter are sometimes absent: the spaces between the ridges are called chasmels (valleculae). In the channels, within the pericarp, are, sometimes, linear oily receptacles, called vitae. Seed pendulous, usually adhering inseparably to the pericarp, rarely loose: embryo minute, pendulous from the apex of the axis (carpophorus); radicle pointing to the hilum; albumen abundant, horny, flat (Orthospermb), or rolled inwards at the edges (Campylospermb), or rarely curved inwards from the base to the apex (Caelospermb).—Herbaceous plants, with fistular furrowed stems. Leaves usually divided, sometimes simple, sheathing at the base. Flowers in umbels, white, pink, yellow, or blue, generally surrounded by an involucre (Condensed from De Candolle).

Properties.—Extremely variable.

1. CA'RUM CA'RUI, Linn. L. E. D.—COMMON CARAWAY.

Sex. Syst. Pentandria, Digynia.

(Fructus, L.—Fruit, E.—Semina, D.)

History.—Caraway is not mentioned in the writings attributed to Hippocrates. Pliny d and Dioscorides e, however, speak of it: the former calls it Careum (from Caria, its native country),—the latter terms it κάρος.

Botany. Gen. Char.—Margin of the calyx obsolete. Petals regular, obovate, emarginate, with an inflexed lobe. Stylodium depressed. Styles deflexed. Fruit contracted at the side, ovate, or oblong. Mericarps [half-fruits] with five equal filiform ridges, the

---


e Lib. iii. cap. 66.
lateral ones marginal. **Commissure** flat, bivittate. **Channels** one-vittate. **Carpophorus** free, forked at the apex. **Seeds** terete-convex, flat in front.—Smooth often perennial **herbs**. **Root** tuberous, edible. **Leaves** pinnatisect; the segments many-cleft. **Involucre** variable. **Flowers** white (De Cand.)

**Sp. Char.**—**Root** fusiform. **Leaves** bipinnatisect; the lower segments of the branches decussate, all many-cleft. **Involucre** none (De Cand.)

**Biennial.** **Stem** branched, about 2 feet high. **Umbels** numerous, dense. **Flowers** white or pale flesh-coloured; appear in June.

**Hab.**—In meadows and pastures all over Europe; naturalized in England. Largely cultivated in Essex.

**Description.**—The mericarps, commonly called caraway seeds (**fructus seu semina carui**) are from 1 1/4 to 2 lines long, usually separated, slightly curved inwards, of a brownish colour, with five lighter coloured primary ridges; there are no secondary ones. In each channel is one vitta, and on the commissure are two. The smell is aromatic and peculiar, the taste warm and spicy. The caraway of the shops is in part the produce of this country, but is partly supplied from Germany. In 1839, duty (30s. per cwt.) was paid on 515 cwts. which were imported.

**Composition.**—No analysis of the fruit has been made. The aromatic qualities depend on a volatile oil.

**OLEUM CARUI** (see below).

**Physiological Effects.**—Caraway is an aromatic stimulant and condiment (see p. 181). Its effects are similar to those of dill and anise.

**Uses.**—Caraway is principally consumed by the confectioner and cook. It is also used by the distiller for flavouring liqueurs. Its medicinal employment is not extensive. It is given to relieve the flatulent colic of children, and enters, as an adjuvant or corrective, into several officinal compounds. It is less seldom employed in substance than in the form of oil, spirit, or water.

1. **OLEUM CARUI**, L. E. D.; **Oil of Caraway.**—(Obtained by submitting the fruit [bruised, E.] to distillation with water).—The quantity obtained from a given weight of fruit is variable. Recluz says about 4.7 per cent.; but I am informed, by a manufacturing chemist, that he has obtained 213 lbs. of oil from 35 cwts. of the fruit; which is about 5.43 per cent. When fresh prepared it is colourless; but it becomes yellow and subsequently brown by keeping. It is limpid, and has the aromatic odour of the fruit and an acrid taste. Its
1446  ELEMENTS OF MATERIA MEDICA.

sp. gr. is 0.950. According to Schweizer, it consists of carbon 86.14, hydrogen 10.68, and oxygen 3.18. When submitted to distillation with caustic potash it yields a carbo-hydrogen (caruen) whose formula is \( C^{10} H^8 \). The brown residue in the retort yields, when mixed with water, a brown resin and a brown alkaline solution. If the latter be saturated with an acid and distilled, an acrid oil (caruacrol) is obtained. Oil of Caraway is generally employed in the preparation of the spirit and water. It is used to impart flavour, to correct the nauseating and griping qualities of some medicines, and to relieve flatulence. It is frequently added to cathartic pills and powders.


— Dose, \( \frac{1}{2} \)j. to \( \frac{3}{2} \)iv. Sweetened with sugar, this spirit is drunk in Germany as a dram (Kümelliqueur; Kumelbrandtwiein).

3. AQUA CARALL, L. D.; Caraway Water.— (Caraway, lb. iss. [lb. j. D.]; Water, Cong. ij. [enough to prevent empyreuma, D.]; [Proof Spirit, \( f^vij. \) L.] Distil a gallon). — This is usually imitated by dissolving or diffusing the oil through water by the aid of sugar or of carbonate of magnesia. It is employed as a carminative vehicle for purgatives (as saline purgatives, magnesia, &c.) and in the flatulent colic of children.

2. PIMPINEL'LA AN'ISUM, Linn. L. E. D.—THE ANISE.

Sex. Syst. Pentandria, Digynia.

(Fructus, L.—Fruit, E.—Semina, D.)

History.—Anise was used by Hippocrates. It is also mentioned by Pliny and Dioscorides. The latter terms it \( \alpha\nu\nu\sigma\nu\)ν. It was introduced into this country in 1551. In our translation of the New Testament, the word anise occurs instead of dill.

Botany. Gen. Char.—Margin of the calyx obsolete. Petals obovate, emarginate, with an inflexed lobe. Fruit contracted at the side, ovate, crowned by a cushion-like disk, and reflexed, somewhat capitate styles. Mericarps [half-fruits] with five, filiform, equal ridges, the lateral ones being marginal. Channels multivittate, with a bifid free carpophorus. Seed gibbous convex, anteriorly flattish. — Roots simple, radical leaves pinnatisect; the segments roundish, toothed.

---

1 Pharmaceutisches Central-Blatt für 1841, S. 789.
4 Lib. iii. cap. 65.
5 Matth. xxiii. 23.
rarely undivided, those of the stem more finely cut. **Umbels** of many rays. **Involucres** none. **Petals** white, rarely pink or yellow (De Cand.)

**Sp. Char.** — Stem smooth. Radical leaves cordate, somewhat roundish, lobed, incised, serrate; middle ones pinnate lobed, the lobes cuneate or lanceolate; the upper ones trifid, undivided, linear. **Fruit** bearing a few scattered hairs (De Cand.).

**Root** tapering. **Stem** erect, branched, about a foot high. **Flowers** small, white.

**Hab.** — Island of Scio and Egypt. Largely cultivated for its fruit in Malta, Spain, and various parts of Germany. It also grows in Asia.

**Description.** — The fruit, called aniseed (**fructus seu semina anisi**), is slightly compressed at the sides. The separated mericarps are ovate, of a grayish-green colour, with five paler, thin, filiform, primary ridges (there are no secondary ones), and covered with downy hairs. In each channel are three vittae. The odour is aromatic, and similar to that of the fruit of *Illicium anisatum*, or *star anise*, a plant belonging to the family Winteraceae. The taste is sweetish and aromatic. By careless observers, aniseed may be confounded with the fruit of hemlock.

**Commerce.** — Aniseed is principally imported from Alicant and Germany (the first is preferred); but some is also brought from the East Indies. In 1839, duty (5s. per cwt.) was paid on 192 cwt.

**Composition.** — A very elaborate analysis of the fruit has been made by Brandes and Reimann in 1826. The following are their results: — Volatile oil 3°00, stearin combined with chlorophylle 0°12, resin 0°58, fatty oil soluble in alcohol 3°38, phytocol 7°85, incrystallizable sugar 0°65, gum 6°50, extractive 0°50, substance analogous to ulmin (*Anis-ulmin*) 8°60, gumoin 2°90, lignin 32°85, salts (acetate, malate, phosphate, and sulphate) of lime and potash 8°17, inorganic salts, with silicic acid and oxide of iron 3°55, water 23°00 (excess 1°65).

**Oil of Anise** (see p. 1448).

**Physiological Effects.** — Anise is an aromatic stimulant (see p. 181). Its effects are similar to those of dill. The odour of anise is said to be recognised in the milk of those who have taken it: moreover, the urine, we are told, acquires an unpleasant smell from it; hence it would appear that the oil of anise becomes absorbed. It has been supposed to promote the secretion of milk, urine, bronchial mucus, and of the menses, though without sufficient evidence. Vogel says, that he accidentally discovered that pigeons are readily killed by a few drops of the oleum anisi. Hillefield also notices its poisonous operation on pigeons.

**Uses.** — Anise is used to flavour liqueurs, sweetmeats, confectionary of various kinds, ragouts, &c.
In medicine it is employed to relieve flatulence and colicky pains, especially of children, and to prevent the griping effects of some cathartics. Nurses sometimes take it to promote the secretion of milk. It has also been employed in pulmonary affections. It is used as a horse medicine.

1. **OLEUM ANISI, L. E. D. Oil of Anise.**—(Obtained by submitting the fruit with water to distillation).—Mr. Brande says, that from 1 cwt. of fruit about two pounds of oil are obtained. The greater part of the oil consumed in this country is foreign. The oil of anise of the shops is imported into this country from Germany and the East Indies. In 1839 duty (1s. 4d. per lb.) was paid on 1544 lbs. It is procured, by distillation, from the fruit, in whose pericarp it resides. When carefully prepared it is transparent and nearly colourless, having a slightly yellow tinge. It has the odour and taste of the fruit from which it is obtained. Its specific gravity increases with its age: thus Martius says, that when the oil is fresh distilled, the specific gravity is only 0’979; but after keeping it for a year and a half, the specific gravity had increased to 0’9853. It congeals at 50° F., and does not liquefy again under 62°. It is soluble in all proportions in alcohol; but spirit, whose specific gravity is 0’84, dissolves only 0’42 of its weight. By exposure to the air it forms resin, and becomes less disposed to concreted. It is composed of two volatile oils,—one solid at ordinary temperatures (stearoptene); the other liquid (eleoptene)—in the following proportions:—eleoptene 75, stearoptene 25. According to Cabours the steaoptene consists of C_{20}H_{12}O_{2}.

The oleum badiani, or the oil of star-anise (Illicium anisatum), has the odour and taste of the oil of anise; but it preserves its fluidity at 35.6° F. It is said to be sometimes substituted for the oleum anisi.

Spermaceti, which is said to be sometimes added to oil of anise, to promote its solidification, may be distinguished by its insolubility in cold alcohol. Camphor, said to be added for the same purpose, is recognized by its odour.—Dose, five to fifteen drops on sugar, or rubbed up with sugar, in camphor mixture.

2. **SPIRITUS ANISI, L. Spiritus, Anisi compositus, D.; Spirit of Anise.**—(Anise, bruised, 3x. [Anise and Angelica seeds of each lb. ss. D.]; Proof Spirit, Cong. j. [wine-measure, D.]; Water, Oij. [sufficient to prevent empyreuma, D.] Mix [macerate for twenty-four hours, D.] and let a gallon distil).—Stimulant, stomachic, and carminative. Dr. Montgomery\(^a\) says that the preparation of the Dublin Pharmacopoeia is nearly the composition of the Irish Usquebaugh, which is coloured yellow by saffron, or green by sap-green. A spirit of anise, sweetened with sugar, is sold by the liqueur dealers. A somewhat similar compound is prepared in France, under the name of crème d'anise. The pharmacopoeial preparation is usually imitated by dissolving the oil in spirit.—Dose, f 3j. to f 5iv.

\(^a\) Observ. on the Dubl. Phurm.
3. AQUA ANISI. Anise Water.—(Extemporaneously made by diffusing the oil through water by the aid of sugar or spirit).—Employed to relieve flatulent colic of infants, and as a vehicle for other medicines.

3. Fœnic’culum Vulga’reme, Gartner, L.—COMMON FENNEL.

Foeniculum officinale, E.—Anethum Foeniculum, D.

Sex. Syst. Pentandria, Monogynia.

History.—Fennel (μάρονας) was used by Hippocrates. Some botanists (e. g. Matthiolus) have been of opinion that μάρονας of Dioscorides is sweet fennel (Foeniculum dulce, De Cand.), and that the ἰππαρδέων of the same authority is common fennel (Foeniculum vulgare, De Cand.) ; but the latter part of the opinion does not, from an observation of Bauhin, appear probable.

Botany. Gen. Char.—Margin of the calyx swollen, obsolete, toothless. Petals roundish, entire, involute, with a squarish, blunt lobe. Fruit by a transverse section nearly taper. Mericarps [half fruits] with five, prominent, bluntly-keeled ridges, of which the lateral ones are marginal and rather broader. Channels univittate. Commissure bivittate. Seed nearly semi-terete.—Biennial or perennial herbs. Stems taper, somewhat striated, branched. Leaves pinnatisect, decompound; the segments linear, setaceous. Involucre scarcely any. Flowers yellow (De Cand.)

Sp. Char.—Stem somewhat terete at the base. Lobes of the leaves linear, subulate, elongated. Umbels of 13 to 20 rays. Involucre none (De Cand.)

A biennial, three or four feet high. Flowers golden yellow. Fruit scarcely two lines long, oval, of a dark or blackish aspect; the channel is brownish owing to the vitta, the ridges are pale yellowish gray.

Hab. —Sandy and chalky ground all over Europe.

Description.—The fruit, called wild fennel seed (semina seu fructus fœniculi vulgaris) has a strong aromatic, acrid taste, and an aromatic odour. Its other qualities have been described.

Composition.—The peculiar properties of the fruit depend on a volatile oil.

Oil of Common, Wild, or Bitter Fennel. (Oleum Fœniculi vulgaris.)—A pale yellow, limpid oil, having the peculiar odour of the fruit. Its sp. gr. is 0·997. It congeals by cold, though with much more difficulty than oil of anise. It consists of a stearoptene which has the same composition as that of oil of anise; and a liquid oil which is isomeric with oil of turpentine.
Physiological Effects.—Aromatic stimulant (see p. 181), similar to those of sweet fennel.

Uses.—This species is not employed in medicine.

4. Foeniculum dulce, C. Bauhin; De Cand.—SWEET FENNEL.

Sex. Syst. Pentandria, Monogyenia.

(Fructus.)

History.—This plant is regarded by some botanists as a cultivated variety of the former plant. De Candolle is the principal systematic writer who regards them as distinct species. The London College, in quoting his *F. vulgare* as the officinal plant, has committed an obvious error, seeing that it is his *F. dulce* which is always employed in medicine in this country.

Botany. Gen. Char.—See *F. vulgare*.

Sp. Char.—Stem somewhat compressed at the base. Radical leaves somewhat distichous; lobes capillary, elongated. Umbels of six to eight rays (De Cand.)

This plant differs from *F. vulgare* in several other particulars. It is an annual, and much smaller plant. It flowers earlier. Its turiones are sweeter, less aromatic, and, therefore, edible. The fruit is much longer; some of the specimens being nearly five lines in length, less compressed, somewhat curved and paler, with a greenish tinge.

Hab.—Italy, Portugal, &c. Cultivated as a pot-herb, and for garnishing.

Description.—The fruit, termed sweet fennel seeds (fructus seu semina foeniculi dulcis vel foeniculi cretici), has a more agreeable odour and flavour than common or wild fennel. Two kinds are known in trade, *shorts* and *longs*: the latter is most esteemed.

Composition.—The peculiar properties of the fruit depend on a volatile oil.

Physiological Effects.—Sweet fennel is an aromatic stimulant (see p. 181); its effects are similar to those of anise or dill.

Uses.—Seldom employed. May be given in the flatulent colic of children, or as a carminative vehicle for remedies which are apt to gripe.

1. Oleum Foeniculi, E. D.; Oil of Sweet Fennel; Oleum Foeniculi dulcis.—(Obtained by submitting the fruit [bruised, E.] with water to distillation).—Nineteen cwts. of the fruit (shorts) yield 78 lbs. of oil *. This oil is distinguished from the oil of wild fennel by its more agreeable odour and taste. Stimulant and carminative. Seldom used.—Dose, two to twenty drops.


* Prodr. iv. 142.
* Private information.
fants, and as a vehicle for other medicines.—Dose, for an adult, $\frac{f}{3}j.$ to $f\frac{1}{2}ij.$; for an infant, $f\frac{1}{2}j.$ to $f\frac{1}{2}ij.$

5. **ARCHANGELICA OFFICINÁLIS, Hoffm. and Koch.—GARDEN ANGELICA.**

*Angelica Archangelica* Linn., E. D.

Sex. Syst. Pentandria, Digynia.

(Root, E.—Semina, D.)

History.—It is doubtful whether the ancient Greeks and Romans were acquainted with this plant, as no certain notice of it appears in their writings. C. Bauhin calls it *Angelica sativa.*

Botany. Gen. Char.—Margin of the calyx with five short teeth. Petals elliptical, entire, acuminate, with the point curved inwards. Fruit somewhat compressed at the back, with a somewhat central raphe, two-winged on each side. Mericarps [half-fruits] with thick, keeled ridges; the three dorsal ones elevated, the two lateral ones dilated into a twice as broad wing. Seed not adhering to the integument; the nucleus free, covered all over with numerous vitæ. *Carpophorus* two-partite.—Perennial herbs. Leaves pinnatisect; segments broadly ovate, acute, coarsely dentate, terminal, lobed. Petioles large, sheathing, saccate. Involucre scarcely any; partial one halved, many leaved. Flowers white, or greenish (De Cand.)

Sp. Char.—Stem smooth, terete, striated. Leaves bipinnatisect; segments subcordate, lobed, sharply serrated, the odd one three-lobed; sheaths loose, saccate. Leaflets of the partial involucre equalling the partial umbel (De Cand.)

Root biennial, large, fleshy, branched, resinous, pungently aromatic. Stem four or five feet high, a little glaucous. Foliage, stalks, and even the flowers, bright green. It flowers from June to September.

Hab.—Indigenous; northern parts of Europe. Cultivated in moist situations, and on the banks of ditches.

Description.—The dried angelica root (*radix angelicae*) of the shops is imported from Hamburg in casks. In 1839 duty (4s. per cwt.) was paid on 386 cwts. Formerly Spanish Angelica was alone employed for medicinal purposes. The dried root of the shops consists of a short cylindrical head, from which numerous branches arise. The size of these branches varies: the larger ones are as thick as the little finger, and six or eight inches long. Externally the root is corrugated, and grayish brown. Internally it is dirty white, and presents, when cut transversely, numerous dark points, which are the cut extremities of vessels or intercellular spaces filled with a liquid, strongly odorous, oil or oleo-resin. To the taste the root is at first sweet, then hot, aromatic, and bitter. The odour is peculiar, and not very disagreeable. The fruit, called *angelica seeds*
(fructus seu semina angelicae), have the odour and taste, but in a diminished degree, of the root.

Composition.—Angelica root has been analyzed by John, and by Bucholz and Brandes. The latter chemists obtained volatile oil about 0·70, acrid soft resin 6·02, bitter extractive 26·40, gum with some common salt 31·75, starch (not inulin) 5·40, woody fibre 8·60, peculiar matter (oxidized extractive?) 0·66, albumen 0·97, water 17·50, [loss 2·0]. The aromatic qualities of the root and seeds depend on the volatile oil and resin.

Physiological Effects.—Both root and seeds are pungent aromatic stimulants and mild tonics.

Uses.—Angelica (either root or seeds) is scarcely employed in modern practice, though it was formerly much esteemed. The tender stems, stalks, and midribs of the leaves, are made, with sugar, into a sweetmeat or candy (candied angelica; caules seu rami angelicae conditi), which, taken as a dessert, is a very agreeable stomachic. The seeds are used in the preparation of the spiritus anisi compositus, D. The principal consumption of angelica root and seeds is by rectifiers and compounders in the preparation of gin and the liqueur termed bitters.

6. OPOP'ONAX CHIRO'NIUM, Koch. L.—THE OPOPONAX.

Pastina'ca, Opop'onax, Linn. D.

Sex. Syst. Pentandria, Monogyinia.

(Gummi-resina, L. D.)

History.—Hippocrates employed opoponax (πανάκες). Theophrastus mentions four, and Dioscorides, three kinds of πανάκες. The latter of these writers has given a good account of opoponax (οποπάναι), which he says is procured from πανάκες ἱράκλειον.


Sp. Char.—The only species.—A plant six or seven feet high, resembling the parsnip.

Hab.—Sunny parts of the South of France, Italy, Sicily, Croatia, and Greece.
Extraction.—According to Dioscorides, whose account is probably correct, this gum-resin is obtained by incisions into the root: a milky juice exudes, which, by drying, becomes yellow, and forms opoponax.

Description.—Opoponax (gummi opoponax) occurs in irregular yellowish-red lumps (opoponax in massis), or in reddish tears (opoponax in lachrymis). It has an acrid bitter taste, and an unpleasant odour. Rubbed with water it forms an emulsion. Its general properties as a gum resin have been before (p. 183) noticed.

Composition.—Opoponax has been analysed by Pelletier. He found the constituents to be—

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>42.0</td>
</tr>
<tr>
<td>Gum</td>
<td>32.4</td>
</tr>
<tr>
<td>Starch</td>
<td>4.2</td>
</tr>
<tr>
<td>Extractive</td>
<td>1.6</td>
</tr>
<tr>
<td>Wax</td>
<td>0.3</td>
</tr>
<tr>
<td>Malic acid</td>
<td>2.8</td>
</tr>
<tr>
<td>Lignin</td>
<td>9.8</td>
</tr>
<tr>
<td>Volatile oil, traces of caoutchouc, and loss</td>
<td>5.9</td>
</tr>
<tr>
<td><strong>Opoponax</strong></td>
<td><strong>100.0</strong></td>
</tr>
</tbody>
</table>

Resin.—Reddish yellow; fusible at 122° F. Soluble in alkalis, alcohol, and ether. The alkaline solution is reddish: the resin is precipitated from it, by hydrochloric acid, in the form of yellow flocks. Nitric acid acts freely on the resin. Its composition, according to Johnston, is C_{20}H_{25}O_{14}.

Physiological Effects.—Similar to the other fetid, antispasmodic gum-resins (see p. 181). It is, perhaps, more allied to ammoniacum than to any other of these substances.

Uses.—Opoponax is rarely employed. It is adapted to the same cases as the other gum-resins of this class (see p. 181).


Sex. Syst. Pentandria, Digynia.

(Gummi-resina, L. D.—Gummi-resinous exudation, E.)

History.—It is uncertain at what period asafoetida was first known or described. The difficulty in determining its history arises from the confusion which has existed with respect to the Succus Cyrenaiicus and asafoetida. By many writers the two substances were considered to be identical; but this opinion seems now to have been satisfactorily disproved by the discovery of the plant, called by the Greeks σιλφίων, by the Romans laserpitium (Thapsia Silphion, Viviani), which yields the Cyrenaic juice, and which agrees tolerably well with the rude figures struck on the Cyrenean coins. It would appear, however, that the Cyrenaic juice becoming scarce, the ancients employed some other substance of similar, though inferior, properties, as a substitute, and to both of these they applied the term

---

a Bull. de Pharm. iv. 49.
b See Geoffroy, Tract. de Mat. Med. ii. 609.
laser. "For many years," says Pliny, "this plant [laserpitium or silphion] has not been found in Cyrenaica, because the publicans [or farmers] who rent the pastures, finding it more profitable, destroy it as food for cattle. One stalk only, found in our days, was sent to the emperor Nero. We may know when cattle meet with young shoots of it, by the sleeping of the sheep when they have eaten it, and the sneezing of the goats. For a long time past the only laser brought to us is that which is produced abundantly in Persia, Media, and America; but it is far inferior to the Cyrenaic."

Now it is not at all improbable that the laser of Persia may have been our asafoetida. The word "asafoetida," says Murray, "seems to have been introduced by the Monks into the school of Salernum." But it appears to have been of oriental origin, and may be, as some have suspected, derived from the word laser. Nicolaus Myrepsicus, almost the last of the Greek physicians, and who lived, according to Sprengel, about 1227, A. D. speaks of ἄσα φυτεύτ. "There are two kinds of Assa [i. e. laser, Lat. Trans.]," says Avicenna, "one fetid, the other odoriferous."

Botany. Gen. Char.—Margin of the calyx shortly five-toothed. Petals ovate, entire, acuminate, with an ascending or incurved point. Fruit flattened at the back, with a dilated flat border. Mericarps [half-fruits] with three, dorsal, filiform ridges, the two lateral obsolete and lost in the dilated margin. Vitae in the dorsal channels three or more; in the commissure four or many. Seed flat. Carpophorus bipartite.—Herbs. Stem tall. Leaves supra-decompound; the segments usually divided into linear lobes. Umbels of many rays, lateral, often opposite or verticillate. Involucre various. Flowers yellow (De Cand.)

Sp. Char.—Stem terete, simple, cloathed with leafless sheaths. Leaves radical, pinnatisect; the segment one- or two-pinnatifid-sinuate; lobes oblong, obtuse. Involucre none (De Cand.)

Root perennial, tapering, ponderous, increasing to the size of a man's arm or leg, covered with a blackish-coloured bark, beset near the top with many strong, rigid fibres; its internal substance white, fleshy, abounding with a thick, milky juice, which has an excessively strong, fetid, alliaceous smell. Stem two or three yards high or more, six or seven inches in circumference at the base, smooth. Radical leaves near two feet long. Kämpfer compares their shape to the leaves of Paeonia officinalis; but in colour, and other respects, he says they resemble Ligusticum Levisticum, or Lovage. The fruit is flat, thin, reddish-brown, like that of parsnip, only rather larger and darker (Kämpfer).

Hab.—Persia; mountains of Chorasam and Laar. The asafoetida plant, stated by Lieut. Burnes to grow at an elevation of 7,000
feet, on the Hindoo Koosh, is described as being an annual. If the description be correct, the plant can scarcely be F. Asafoetida.

There is reason to suspect that Ferula Asafoetida is not the only plant from which a gum-resin, called asafoetida, is obtained; but that one, if not more, other species yield it. Ferula persica has been described by Dr. Pope as the true asafoetida plant; and the Edinburgh College has admitted it as being, probably, one source of asafoetida. Michaux sent its fruit from Persia as asafoetida. That it does really yield asafoetida seems furthermore probable, from the strong smell of that drug, which pervades the whole plant. It is, I think, not unlikely that the tear and lump asafoetida of the shops are procured from different species. Dr. Royle suggests, that Prangos pabularia was one of the kinds of Silphion of the ancients, and may be an asafoetida plant.

Extraction.—Asafoetida is obtained by making incisions into the upper part of the root; the footstalks of the leaves and the fibres at the top of the root being previously removed. Kämpfer divides the business of collecting into four parts: the first begins about the middle of April, and consists in digging the earth about the root, removing the leaves and fibres, which are afterwards laid over the root to defend it from the sun. The second commences on the 25th of May. Each collector is provided with a sharp knife to cut the root, a broad iron spatula to scrape off the juice, a cup fixed to his thigh to receive it, and two baskets hung over his shoulders upon a pole. The top of the root is then cut off transversely, and, on the third day (i. e. the 27th of May), the juice is scraped off and put in the cups. A fresh incision is then made, and the juice removed the day but one following (i. e. the 29th of May), when they again cut the roots. The cups are from time to time emptied into large vessels. The juice is exposed to the sun to become harder, and is conveyed home in the baskets (see fig. 276, p. 1456). The third and fourth acts are mere repetitions of the second. The third commences about the 10th of June, the fourth about the 3rd of July. Except after the last operation, the roots are carefully defended from the sun, after each incision, by covering them with leaves.

Commerce.—Asafoetida is exported from the Persian gulf to Bombay, from whence it is sent to Europe. It comes over usually in casks and cases. In 1825 the quantity imported was 106,770 lbs.; in 1830 only 8,722 lbs. The quantity retained for home consumption, is, however, very small. In 1838, duty (6s. per cwt.) was paid on 60 cwts.; in 1839, on 24 cwts.

Description and Varieties.—Asafoetida (Asafoetida; Gummi Asafoetida, offic.) occurs in irregular pieces of variable size. Externally they are yellowish- or pinkish-brown. The fracture is a conchoidal whitish, or milk-white, translucent, pearly, with a waxy lustre. By exposure to light and air the recently-fractured surface acquires, in a

2 Phil. Trans. vol. lxxv.
3 Lindley, Fl. Med. 46.
5 Illust. 230.
6 Kaempfer, op. cit.
few hours, a violet-red or peach-blossom red colour, which, after some
days or weeks, diminishes in intensity, and gradually passes into

Fig. 276.

Extraction of Asafetida.

yellowish or pinkish-brown. Asafoetida is fusible and inflammable,
burning in the air with a white flame and the evolution of much
smoke. Its taste is acrid and bitter, and its odour strong, alliaceous,
and peculiar; to most persons being remarkably disagreeable, whence
the Germans have denominated asafoetida *Teufelsdreck*, or *Stercus
Diaboli*; in plain English, *Devil's dung*. However, this dislike to
the asafoetida is not universal; some of the Asiatics being exceed-
ingly fond of it, taking it with their food as a condiment, or using it
to flavour their sauces, or even eating it alone. Hence, among some
of the older writers, we find it denominated *Cibus Deorum,—Food of
the Gods*. Captain M. Kinnier ⁷ tells us, that in Persia the leaves of
the plant are eaten like common greens, as is the root when roasted:

⁷ Ainslie, *Mat. Ind.* i. 21.
and Lieut. Burnes, speaking of asafoetida, says, "in the fresh state it has the same abominable smell; yet our fellow-travellers greedily devoured it." But the fondness for this substance is not confined to the Asiatics; for I am assured, by an experienced gastronome, that the finest relish which a beef steak can possess, may be communicated by rubbing the gridiron, on which the steak is to be cooked, with asafoetida.

I am acquainted with three varieties only of asafoetida:—

1. Asafoetida in the tear (Asafoetida in granis seu lachrymis).

? Asafoetida of the Ferula persica.—This kind occurs in distinct, roundish, flattened or oval tears, and also in irregular pieces, varying from the size of a pea to that of a walnut, of a yellow or brownish-yellow colour externally, but white internally. This kind is comparatively rare. I think it not at all improbable that this variety is obtained from a different plant to that which furnishes the lump variety; for its colour, externally, is more yellow, its odour is much feebler, and its fresh-fractured surface becomes more slowly and less intensely red by exposure to the air. As it has considerable resemblance to ammoniacum in the tear (with which, indeed, except by its odour, it might be readily confounded), may it not be the substance which Olivier calls ammoniacum, and which he says is produced by Ferula persica?

b. Lump Asafoetida (Asafoetida in massis). Asafoetida of the Ferula Asafoetida.—This variety is the kind usually met with in the shops. It occurs in variable sized masses, of irregular forms, and having a reddish or brownish-yellow colour. Frequently these masses are observed to be made up of tears, agglutinated by a reddish-brown substance; these form that kind of asafoetida sometimes denominated amygdaloid (asafoetida amygdaloïdes).

c. Stony Asafoetida (Asafoetida petraea).—I have never met with this kind in English commerce. My samples were received from Dr. Martiny. It occurs in irregular, more or less angular pieces, which have the odour of asafoetida, and a yellowish brown colour, and present numerous small shining points or plates. It slightly effervesces in hydrochloric acid. By incineration it yields a white ash, which strongly effervescens on the addition of acids. Angelini found in stony asafoetida, 51.9 per cent. of gypsum.

Composition.—Asafoetida has been analyzed by Pelletier, Trommsdorff, Brandes, and Angelini:

<table>
<thead>
<tr>
<th>Pelletier's Analysis</th>
<th>Brandes's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>65-00</td>
</tr>
<tr>
<td>Gum</td>
<td>19-74</td>
</tr>
<tr>
<td>Bassorin</td>
<td>11-56</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>3-60</td>
</tr>
<tr>
<td>Supernalate of lime, and loss</td>
<td>0-30</td>
</tr>
<tr>
<td>Asafoetida</td>
<td>100-00</td>
</tr>
<tr>
<td>Resin</td>
<td>48-85</td>
</tr>
<tr>
<td>Gum, with traces of saline matters</td>
<td>19-40</td>
</tr>
<tr>
<td>Bassorin</td>
<td>6-40</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>4-60</td>
</tr>
<tr>
<td>Extractive, with saline matters</td>
<td>1-40</td>
</tr>
<tr>
<td>Sulphate and carbonate of lime</td>
<td>9-70</td>
</tr>
<tr>
<td>Oxide of iron and alumina</td>
<td>0-40</td>
</tr>
<tr>
<td>Sand and lignin</td>
<td>4-60</td>
</tr>
<tr>
<td>Water</td>
<td>6-00</td>
</tr>
<tr>
<td>Asafoetida</td>
<td>101-35</td>
</tr>
</tbody>
</table>

1 Traveles, ii. 243.
2 Fée, Hist. Nat. Pharm. ii. 199.
3 Bull. de Pharm. iii. 556.
1. **Volatiles Oil of Asafoetida.**—This is obtained by distilling asafoetida with either water or alcohol. It is on this principle that the odour of this gum-resin depends. It is lighter than water, and is at first colourless, but by exposure to the air acquires a yellow tinge. It dissolves in all proportions in alcohol and ether, but requires more than 2000 times its weight of water to dissolve it. Its taste is at first mild, then bitter and acrid; its odour is very strong. It evaporates very quickly, and soon fills a large room with its odour. Sulphur, and probably phosphorus, are among its elementary constituents. The presence of sulphur in asafoetida is shown in various ways: thus if chloride of barium be added to water distilled from asafoetida, and likewise a little chlorine, the sulphur becomes gradually acidified, and after some time a precipitate of sulphate of baryta is formed. If the oil be rubbed with mercury, it forms sulphate of mercury. Moreover, if pills made of asafoetida be rolled in silver leaf, the latter, after a few days, is blackened by the formation of a sulphuret of silver.

2. **Resin of Asafoetida.**—The resinous matter of asafoetida is soluble in alcohol. When the alcoholic solution is mixed with water, a milky fluid is formed, owing to the deposition of the hydrated resin. Oil of turpentine and the oil of almonds also dissolve the resin, but less readily than alcohol. The resin obtained by evaporating the alcoholic solution, consists, according to Johnston, of C_{40} H_{26} O_{10}. By exposure to the sun's rays it becomes violet red. Brandes has shown that the resin of asafoetida is of two kinds; one insoluble in ether, the other soluble. The proportion of the first to the second is as 1:6 to 47:25.

a. **Resin insoluble in ether.**—Is brownish-yellow, brittle, tasteless, has a slight alliaceous odour, is fusible, and soluble in warm caustic potash.

b. **Resin soluble in ether.**—Is greenish-brown, brittle, has an aromatic odour, and a faint, but permanent, alliaceous bitter taste. Chlorine decolorizes it. Cold oil of vitriol renders it dark red: if heat be applied, sulphurous acid is evolved, and the mixture becomes black; if the liquid be diluted with water, and saturated with an alkali, the surface assumes a sky-blue colour. Nitric acid renders it first orange, then yellow, and makes it almost insoluble in ether. Hydrochloric acid dissolves it, and colours it pale-red. It dissolves in boiling concentrated acetic acid, but is deposited when the solution cools.

**Characteristics.**—Asafoetida possesses the usual characteristics of a gum-resin (p. 183). From other gum-resins it is distinguished by its peculiar odour, which is especially obvious when a small portion of this substance is heated on the point of a knife, and by its fresh-fractured surface becoming red on exposure to air. Heated with sulphuric acid it blackens, yields a dark, blood-red liquid, and develops sulphurous acid gas: if the liquid be diluted with water, and saturated with caustic potash, it becomes blue, especially on the surface, by reflected light, similar to that observed when disulphate of quina is dissolved in water.

**Physiological Effects.**—Asafoetida is usually placed, by pharmacological writers, among those remedies denominated antispasmodics or stimulants. It is the most powerful of the fetid gum-resins already noticed (p. 183). Its local effects are moderate: it is devoid of those acrid and irritating properties possessed by gamboge, euphorbium, scammony, and many other resinous and gummy-resinous substances. In the mouth, as already mentioned, it causes a sensation of heat, and the same effect, accompanied by eructations, is experienced in the stomach, when it is swallowed. In Professor Jorg and his pupils (males and females), who endeavoured to elucidate the effects of this medicine by experiments made on

themselves, doses of asafoetida, not exceeding a scruple, caused un-
easiness and pain of the stomach, increased secretion of the gastro-
intestinal membrane, and alvine evacuations. The pulse was in-
creased in frequency, the animal heat augmented, the respiration
quickened, and the secretions from the bronchial membrane and skin
promoted. A very constant effect was headache and giddiness. The
urino-genital apparatus appeared to be specifically affected, for in
the males there was an increase of the venereal feelings, with irritation
about the glans penis, while in the females the catamenial dis-
charge appeared before its usual period, and uterine pain was
experienced.

These stimulant effects of asafoetida were observed in a greater or
less degree in all the nine persons experimented on; and it should
be borne in mind, that the dose did not, in any one case, exceed a
scruple. Very opposite to these results, and to the observations of
practitioners generally, is the statement of MM. Trousseau and Pi-
doux, who tell us that they have taken half an ounce of good asafoe-
tida at one dose, with no other effect than that of altering the odour
of their secretions, by which they were kept for two days in an in-
fected atmosphere, possessing a more horrible degree of fetidity than
even asafoetida itself! These apparently contradictory results seem
to prove, that different individuals are most unequally susceptible of
the influence of this remedy.

The influence of asafoetida in convulsive and spasmodic diseases
seems indisputable. As in these cases the functions of the excito-
motory system are the functions principally or essentially involved, it
is not assuming too much to suppose, that the influence of asafoetida
is principally directed to the excito-motory nerves. To paraphrase
the words of Dr. M. Hall, asafoetida acts through the excitor nerves;
its effects are manifested through the motor nerves. The varying
degrees of excitability or susceptibility (natural and morbid) of these
nerves in different subjects, will, perhaps, in some measure account
for the unequal effects produced by this agent on different healthy
individuals, as well as for the therapeutical influence in certain sub-
jects being disproportionate to the observed physiological effects.

Asafoetida, or its odorous principle, becomes absorbed by the veins,
though slowly. Flandrin gave half a pound of this gum-resin to a
horse; the animal was fed as usual, and killed sixteen hours after-
wards. The odour of asafoetida was distinguished in the veins of the
stomach, of the small intestine, and the caecum: it was not noticed in
the arterial blood, nor in the lymph. Tiedemann and Gmelin were
not successful in their search for it; they gave two drachms of asafoe-
tida to a dog, and at the end of three hours were unable to recognize
the odour of it either in the chyle of the thoracic duct, or in the blood
of the splenic and portal veins; but they detected it in the stomach.
and small intestines. In farther proof of the opinion that asafetida becomes absorbed, may be mentioned the detection of the odour of this substance in the secretions. The experience of MM. Trousseau and Pidoux, already related, may be adduced as corroborative of this statement. We are told that the transpiration of Asiatics who use asafetida daily, is extremely fetid; a circumstance to which Aristophanes\(^a\) alludes. Vogt\(^b\) says, that the secretions from carious ulcers sometimes smell of asafetida, when this substance has been taken for some time.

The stimulant influence of asafetida over the organs of circulation and of secretion (as the bronchial membrane and skin), depends apparently on the topical action of the oily and resinous particles on the vessels in their passage through the latter.

**Uses.**—From the foregoing remarks it will be readily gathered, that asafetida is contra-indicated in febrile and inflammatory diseases, on account of its stimulant properties; as also in vascular irritation, or inflammation of the stomach, on account of its topical influence on this viscus. On the other hand, it is found highly useful in spasmodic or convulsive diseases not dependent on disease of the nervous centres, but of the kind called by Dr. Hall eccentric.

1. **In spasmodic and convulsive Diseases.**—Few remedies have acquired such celebrity in *hysteria*, as asafetida. Dr. Cullen\(^c\) speaks in the highest terms of it, and I believe the experience of most practitioners corroborates his opinion of its virtues. "I have found it," says he, "to be the most powerful in all hysterical cases; and when the presence of an hysterical paroxysm prevented medicines being taken by the mouth, I have found it given in clyster to be very effectual." When the circulation is very languid, ammonia may with advantage be conjoined. Schönheyder\(^d\) recommends asafetida with opium, in the form of clyster. In *infantine convulsions*, clysters of asafetida are often used with good effect. Even in the *epilepsy* of adults they are not always without value. In purely *spasmodic asthma*, I have never seen relief from the use of asafetida. This observation, which accords with Dr. Cullen's experience, does not agree with the statements of others. Trousseau and Pidoux\(^e\) declare they have seen it produce good and undoubted effects. But in old chronic catarrhs, with occasional spasmodic difficulty of breathing and spasmodic cough, I have procured the most marked relief by the combined use of asafetida and ammonia. I have no experience of the use of this gum-resin in the disease called *laryngismus stridulus*, in which Millar\(^f\), and others, have found it beneficial. In *hooping cough*, both Millar and Kopp\(^g\) have found it beneficial. It promotes expectoration, and diminishes both the violence and frequency of the

---

\(a\) Equites, Act. ii. Scen. 4.
\(b\) Pharmacodynam. ii. 126, 2\(^{nd}\) Aufl.
\(c\) Med. Med. ii. 367.
\(d\) Acta Reg. Soc. Hafn. i. 168.
\(f\) Obs. on the Asthma and Hooping Cough. 1762.
\(g\) Lond. Med. Gaz. i. 581.
attacks. The repugnance which children manifest to its use is, however, a great drawback to its employment. In flatulent colic of hysterical and dyspeptic individuals, or of infants, few remedies are more efficacious, when the disease is unaccompanied by any marks of inflammatory action, and is attended with constipation. Of its efficacy in the flatulent colic of infants, I can speak from repeated observation; it is given with great advantage in the form of clyster. In most cases, its laxative operation is an advantage; but should this be an objection, it may be counteracted by the addition of laudanum.

2. As a stimulating expectorant and antispasmodic in chronic catarrh, it is often of considerable use. It is adapted for old persons, and where the disease is of long standing. I have found it most beneficial in those cases where the cough and difficulty of breathing assume at intervals a spasmodic form, and where the wheezing is considerable. In such, I have found full doses of asafetida with ammonia give great relief. In delicate females, subject to repeated attacks of catarrh, attended with wasting, sweating, and other constitutional symptoms of phthisis, I have found asafetida of frequent benefit. In these cases it does not act merely by its expectorant effects, for oftentimes one good consequence of its use is diminution of excessive bronchial secretion.

3. In affections of the alimentary canal.—The use of asafetida in flatulent colic has been above noticed. It is often of considerable value in relieving flatulence in old persons, especially in hypochondriacal and hysterical subjects, and when accompanied with constipation, as it has a laxative effect. It provokes the expulsion of the gaseous matter, and appears to aid in preventing its re-production. It is beneficially used in the form of clyster, to relieve a tympanitic condition of the abdomen and flatulent distension of the bowels in low fevers. In constipation, with flatulence, it is an useful addition to purgative mixtures or enemata. It has often been used as an anthelmintic; but is of less frequent efficacy.

4. As an emmenagogue in uterine obstructions (amenorrhœa and chlorosis) asafetida has been employed from a notion that it specifically affected the womb,—an opinion which is supported by the reports of Jörg's female pupils, that it brought on the catamenial discharge earlier than usual. Experience, however, has not been much in favour of the emmenagogue operation of asafetida when this remedy has been employed in diseases. "Whether it be owing," says Dr. Cullen, "to the imperfect state in which we too frequently have this medicine, or to somewhat in the nature of the amenorrhœa, I would not positively determine; but this is certain, that I have very seldom succeeded in employing the asafetida as an emmenagogue."

5. As a condiment.—I have already referred to the condimentary uses made of asafetida, especially by oriental nations. At the Pass of "Dundan Shikun," says Lieutenant Burnes, "we found the
asafoetida plant in exuberance, and which our fellow-travellers ate with great relish." It is much used by the Brahmins against flatulence, and to correct their cold vegetable food.

Administration.—The dose of asafoetida is from grs. v. to 5j. or 5ss. It may be given in substance, in the form of pill, or made into an emulsion. In hysteria and flatulent colic, where we want an immediate effect, it is best administered in a liquid form. Used as an enema, it may be administered to the extent of two drachms, rubbed up with warm water. The following are the official preparations of asafoetida:

1. MISTURA ASSAFETIDÆ, L. D.; Lac Asafoetidae; Mixture of Asafoetida.—(Asafoetida, 5v. [5i. D.]; water 0j.) [Pennyroyal water, fɔvij. D.]. Triturate the asafoetida with the water, gradually poured on, until they are perfectly mixed.)—Stimulant and antispasmodic. Used in hysteria, in doses of 5ss. to fɔjss. Frequently employed as an enema in the flatulent colic and convulsions of children, as well as in worms. The tincture of asafoetida, mixed with pennyroyal water, is often used as a substitute for the official mixture.

2. ENEMA FOETIDUM, D. E.; Asafoetida or Fetid Clyster.—(Made by adding to the cathartic enema two [fluid] drachms of tincture of asafoetida).—The fetid clyster is a valuable stimulant, antispasmodic, and carminative purgative, which may be used with most beneficial results in hysteria, flatulent colic, infantile convulsions, and worms in the rectum.

—Dose, 5ss. to fɔj. Pennyroyal is a good vehicle for it. When mixed with aqueous liquids, it becomes milky, owing to the deposition of the hydrated resin.

4. PILULE ASSAFETIDÆ, E.; Pilule Galbani Composite, L. D.; Asafoetida or Compound Galbanum Pills.—(Asafoetida; Galbanum; and Myrrh, three parts of each; Conserve of Red Roses, four parts, or a sufficiency; mix them, and beat them into a proper pill mass, E.—Galbanum, 3j.; Myrrh; Sagapenum; of each 3ss.; Asafoetida, 3ss.; Syrup [Treacle, D.] as much as may be sufficient. Beat them together until incorporated, L. D.)—As the most powerful ingredient of this combination is asafoetida, the more appropriate name for the pills would be pilule asafoetida composite. This compound is stimulant and antispasmodic. It is used in hysteria, chlorosis, &c.—Dose, grs. x. to 3j.

Ainslie, Materia Indica, vol. i. 21.
5. PILULÆ ALOES ET ASSAFOETIDÆ, E. (See pp. 977 and 1464).

6. SPIRITUS AMMONII FOETIDUS, L. E. D. (See p. 307.)

7. EMPYLAEUM ASSAFOETIDÆ, E.; Plaster of Asafoetida. (Litharge Plaster; Asafoetida, of each 3ij.; Galbanum; Bees’-wax, of each 3j. Liquefy the gum-resins together, and strain them; then add the plaster and wax also in the fluid state, and mix them all thoroughly.)—It is applied, as an antispasmodic, over the stomach or abdomen in hysteria with flatulence, to the chest or between the shoulders in hooping-cough.

8. FE’RULA? AN UNCERTAIN SPECIES YIELDING SAGAPENUM, L.

   Sex. Syst. Pentandria, Digynia.
   (Gummi-resina, L. D.)

History.—Sagapenum (σαγαπέννον) is mentioned both by Hippocrates and Dioscorides. Pliny calls it Sacopenium. Dioscorides says it is a liquor obtained from a ferulaceous plant growing in Media.

Botany.—Nothing is known with respect to the plant yielding sagapenum. Willdenow considered it to be Ferula persica, and he has been followed by Sprengel and Fée. But his opinion was not supported by any well-ascertained fact; on the contrary, several circumstances already mentioned (p. 1455) seem to show that this plant produces a kind of asafoetida. There is, indeed, no evidence to prove that sagapenum is got from a Ferula, for the statement of Dioscorides cannot be admitted as having much weight.

Description.—Two kinds of sagapenum (sagapenum; gummi sagapenum) are occasionally met with. The finest (sagapenum in the tear), consists of masses made up of agglutinated, brownish yellow, semi-transparent tears, and resembling galbanum, but having a darker colour and a more alliaceous odour. A commoner kind (soft sagapenum), occurs in soft, tough masses, in which no distinct tears are distinguishable. When heated on the point of a knife in the candle, sagapenum gives out a much more aromatic and agreeable odour than galbanum. It has a hot and acrid taste. It is imported from the Levant.

Composition.—Sagapenum has been analyzed by Pelletier; and by Brandes.

<table>
<thead>
<tr>
<th>Pelletier’s Analysis</th>
<th>Brandes’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin</td>
<td>54:26</td>
</tr>
<tr>
<td>Gum</td>
<td>31:94</td>
</tr>
<tr>
<td>Volatile oil and loss</td>
<td>11:89</td>
</tr>
<tr>
<td>Bassorin</td>
<td>1:00</td>
</tr>
<tr>
<td>Malate of lime</td>
<td>0:40</td>
</tr>
<tr>
<td>Peculiar matter</td>
<td>0:60</td>
</tr>
<tr>
<td>Sagapenum</td>
<td>100:00</td>
</tr>
</tbody>
</table>

| Resins               | 50:29              |
| Gum, with calcareous salts | 32:72          |
| Volatile oil         | 3:73               |
| Bassorin             | +48                |
| Malate and phosphate of lime | 1:12          |
| Impurities           | 4:39               |
| Water                | 4:60               |
| Sagapenum            | 101:24             |

---

Page 626, ed. Foss.
Lib. iii. cap. 95.
Bull. de Pharm. iii. 481.
1. **Oil of Sagapenum.**—Pale yellow, lighter than water, soluble in alcohol and ether. Has a strong alliaceous odour, and a mild (afterwards hot) bitter, alliaceous taste. Sulphuric acid renders it dark red.

2. **Resin of Sagapenum.**—Obtained by evaporating an alcoholic solution, it is pale yellow, having a strong garlic odour, and becoming fluid at 212° F. Its composition according to Johnston is C_{10}H_{29}O_{9}. By the action of ether it is resolved into two resins,

a. **Resin insoluble in ether.**—Brownish-yellow, tasteless, odourless, fusible, soluble in warm liquor potassa and in spirit, but insoluble in the oils of turpentine and almonds.

b. **Resin soluble in ether.**—Reddish-yellow, with a feeble odour of sagapenum, and a mild (afterwards bitter) taste. It is soluble in spirit, and slightly so in the oils of turpentine and almonds. It dissolves in sulphuric acid, forming a blood-red solution, from which water separates a violet substance.

**Physiological Effects and Uses.**—Its effects and uses are the same as those of asafetida. It is usually considered to hold an intermediate rank between asafetida and galbanum; but it is rarely employed.

**Administration.**—It is given in substance, in the form of pill, in doses of from grains v. to 3j. or 5ss.

### PILILAE SAGAPEMI COMPOSITAE, L.; Compound Pills of Sagapenum.

(Sagapenum, 3j.; Aloes, 5ss.; Syrup of Ginger, as much as may be sufficient.)—This preparation corresponds to the *Pillae Aloes et Assafortitae*, E. (p. 977); the latter, however, being more active. It is used as a warm stimulating purgative in dyspepsia, with flatulence and costiveness. — Dose grains v. to 3j.

### 8. DOREMA AMMONIACUM, Don. L.E.—THE AMMONIACUM DOREMA.

**Sex, Syst.** Pentandria, Digynia.

**History.**—The term *ammoniacum* has been applied to two different gum-resins; one, the produce of *Ferula tingitana*; the other, of *Dorema Ammoniacum*. The first is the ammoniacum of Hippocrates' Dioscorides and Pliny; the latter is the commercial ammoniacum of the present day.

Dioscorides says *ámmovia* is obtained from a species of *Ferula*, which he calls *áγαρδυλλίς*, growing near Cyrene, in Africa. Pliny terms the plant *Metopion*, and says it grows in that part of Africa which is subject to Ethiopia, near the temple of Jupiter Hammon (or Ammon), which, as well as the gum-resin, received its name from *áμμος, sand*, on account of the sandy soil of the country. Both Dioscorides and Pliny mention two kinds of ammoniacum; the best, called *Thrauston* (*Σαφώμα*) resembled olibanum, and had an odour like castoreum, and a bitter taste; and the commonest, termed *Phyrama* (*φύραμα*) had a resinous appearance, and was adulterated with earth and stones. *African ammoniacum* (in Arabic, *Fasogh* or *Fasbyh* or *Vaid.* hid. Xaf. lib. xii. cap. 49. ed. Valp. 

---

\*Page 670, ed. Fors.
\* Lib. iii. cap. 98.
Feshook) is, Dr. Lindley informs me, “certainly the produce of Ferula tingitana.”

I have not been able to ascertain when Persian ammoniacum (the produce of Dorema Ammoniacum) first came into use. As the Greeks and Romans make no mention of it, they were, probably, unacquainted with it. Avicenna does not mention the origin of his ammoniacum (assach, Arab.) The ammoniac (eschak, Arab.) of Abu Mansur Mowajik, an ancient Persian physician, who wrote about 1055, A.D., was doubtless of the Persian kind; as was also the ammoniac (derukht ushuk) of Beva Ben Khuas Khan, A.D. 1512. The Arabic terms (assach, eschak, and ushuk) by which the three last named authors designate ammoniac, closely resemble that (oshaec) by which the ammoniacum plant is now known in Persia; hence we infer they all referred to the same object.

Botany. Gen. Char. — Epigynous disk, cup-shaped. Fruit slightly compressed from the back, edged; with three distinct, filiform, primary ridges near the middle, and, alternating with them, four obtuse secondary ridges; the whole enveloped in wool. Vitta, one to each secondary ridge, one to each primary marginal ridge, and four to the commissure, of which two are very small (Lindley).

Sp. Char. — The only species.

A glaucous green plant, about seven feet high, looking like the Opoponax. Root perennial. Stem about four inches in circumference at the base. Leaves large, petiolate, somewhat bipinnate, two feet long; pinnæ in three pairs; petioles downy, sheathing at the base. Umbels proliferous, racemose; partial ones globose, on short stalks, often arranged in a spiked manner. Involute, general or partial, none. Petals white. Stamens and styles white. Ovaries buried in wool. Fruit naked. (Condensed from Don.)

Hab. — Persia, in the province of Irak, near Jezud Khast, and on the plains between Yerdekaust and Kumisha.

Extraction. — The whole plant is abundantly pervaded with a milky juice, which oozes forth upon the slightest puncture being made, even at the ends of the leaves. This juice when hardened constitutes ammoniacum. Through the kindness of my friend Dr. Lindley, I have in my museum the upper part of the (apparently flowering) stem, about ten inches long, with lumps of ammoniacum sticking to it at the origin of every branch. It was gathered by Sir J. M'Niel, in Persia (I believe between Ghorian and Khaft). It does not appear that artificial incisions are ever made in the stem. Lieut.-Col. Kennet says, “When the plant has attained perfection, innumerable beetles, armed with an anterior and posterior probe of half an inch in length, pierce it in all directions; it [ammoniacum] soon becomes dry, and is then picked off, and sent via Bushire to India, and various parts of the world.”

1 Lib. ii. cap. 8. 4 Lib. Fund. Phorm. i. 25. ined. R. Seligmann. 1830. 8 Ainslie, Bot. Ind. i. 160. 6 Linna. Trans. vol. xvi. 605. 7 Linna. Trans. xvi. 605.
Ammoniac is usually imported from Bombay, but occasionally it comes from the Levant. It is brought over in chests, cases, and boxes. The quantity imported is but small.

Description.—Common or Persian ammoniacum, usually termed gum ammoniacum or ammoniacum (gummi ammoniacum), occurs in two forms; in the tear and in the lump.

a. Ammoniacum in the Tear (ammoniacum in lachrymis seu granis) occurs in distinct dry tears, usually more or less spheroidal, though frequently of irregular forms, varying in size from that of the fruit of coriander (or even smaller) to that of a walnut. Externally they are of a yellow (pale reddish or brownish) colour, with a waxy lustre; internally they are white or opalescent, opaque, or only feebly translucent at the edge of thin films. At ordinary temperatures, it is moderately hard and brittle, but softens like wax in the hand.

b. Lump Ammoniacum (ammoniacum in placentis seu massis). This occurs in masses usually composed of agglutinated tears, whose properties it possesses. It is sometimes met with in soft plastic masses, of a darker colour, and mixed with various impurities. To separate these, it is melted and strained (Strained Ammoniacum; Ammoniacum colatum).

Both kinds have a faint, unpleasant, peculiar odour, by which this gum-resin may be readily distinguished from all others. This odour is best detected by heating the ammoniacum on the point of a pen-knife. The taste is bitter, nauseous, and acrid. Umbelliferous fruits are not unfrequently found intermixed with both sorts. In most of its other properties ammoniacum agrees with other gum-resins (see p. 183).

I am indebted to Dr. Lindley for a fine sample of African Ammoniacum (Ammoniacum, Diosc.) It was sent by W. D. Hays, Esq., the British Consul at Tangier, to the Hon. W. T. Fox Strangways, and is marked, "Gum Ammoniac or Fussigh, Tangier, 17 June, 1839, J. W. D. H." It is an oblong piece, about three inches long, and one and a half inches thick, and broad. Its weight is about 830 grains. Externally it is irregular and uneven, and has a dirty appearance, similar to what ammoniacum would acquire from repeated handling and long exposure to the air in a dusty situation. It is partially covered with paper. A few pieces of reddish chalky earth (which effervesces with acids) are found sticking to it, thus confirming the account given of it by Jackson, though the quantity of this on my specimen is not sufficient to affect in any way the sale-ability of it. It appears to be made up of agglutinated tears, like the lump Persian ammoniacum. Internally it has very much the appearance of lump ammoniacum, but is not so white, but has a brownish, reddish, and in some places a faint bluish tint. Its odour is very faint, and not at all like Persian ammoniacum. Heated on the point of a knife, its distinction from Persian ammoniacum is very obvious. Its taste is also much slighter than that of the commercial ammoniacum. Rubbed with water, it forms an emulsion like the latter. It is the produce of Ferula tingitana (Lindley).

Composition.—Ammoniacum has been analyzed by Calmeyer, Bucholz, Bracconot, and by Hagen.
1. **Volatile Oil of Ammoniacum.**—Transparent, lighter than water.

2. **Resin of Ammoniacum.**—Reddish-yellow, tasteless, has the odour of the gum-resin. Soluble in alkalis and alcohol; partially soluble in ether and the oils (fixed and volatile). Its preparation according to Johnston is \( \text{C}_{40} \text{H}_{25} \text{O}_9 \).

**Physiological Effects.**—The effects of ammoniacum are similar to, though less powerful than, those of asafoetida (p. 183) and of the other fetid gum-resins already (p. 183) mentioned. MM. Trousseau and Pidoux assert that in all the cases in which they have employed it, it had no stimulant effect either local or general. "We have taken," say these authors, "two drachms of this substance at once, without experiencing any of those accidents complaisantly indicated by authors." I would remark, however, that the local irritation produced by the plaster of ammoniacum is known to most practitioners,—a papular eruption being a frequent result of the application of this agent. Ammoniacum contains much less volatile oil than either asafoetida or galbanum; its stimulant influence is less than either of these. Full doses of it readily disturb the stomach.

**Uses.**—Though applicable to all the same cases as asafoetida (p. 1460) and the other fetid gum-resins (p. 183), its internal use is principally or almost solely confined to chronic pulmonary affections. It is not fitted for irritation or inflammation of the bronchial membrane. But in chronic coughs, with deficient expectoration, or in chronic catarrhs and asthmatic cases of old persons with profuse secretion, it sometimes gives slight relief. Though I have seen it extensively employed, in a few cases only have I observed it beneficial. As a topical, discutient, or resolvent application, in the form of plaster, to glandular enlargements, indolent affections of the joints, &c. it occasionally proves useful.

**Administration.**—The dose of ammoniacum is from grs. x. to 3ss. It may be given in the form of pill or emulsion. It is a constituent of the compound pills of squills (see p. 983), a very useful expectorant in old catarrhs.

1. **MISTURA AMMONIACI, L. D.** *Lac Ammoniaci; Ammoniacum Mixture; (Ammoniacum, 3v. [3]. D.); Water Oj. [Pennyroyal Water, f\( \text{v} \text{v} \text{iij. D.} \)]. Rub the ammoniacum with the water gradually poured on, until they are perfectly mixed. [It should be strained through linen, *D.*].—The resinous constituent of ammoniacum is more effectually suspended in water by the aid of the yolk of an egg. This mixture operates as a stimulant to the bronchial membrane,

---

\( ^{a} \) Tracté de Therap. p. 19.
and is used as an expectorant in chronic coughs, humoral asthma, &c. It is a convenient and useful vehicle for squills or ipecacuanha. Dose 3-4 to 3-5.

2. EMPLASTRUM AMMONIAE, L. E. D. Plaster of Ammoniacum. (Ammoniacum, 3v. ; Distilled Vinegar, 3vij. ; [5ix. E. ; Vinegar of Squills, Oss. wine measure, D.] Dissolve the ammoniacum in the vinegar, then evaporate the liquor [in an iron vessel, E.] with a slow fire, [over the vapour bath, E.] constantly stirring, to a proper consistence.)—A very adhesive, stimulant, and discutient or resolvent plaster. It sometimes causes an eruption. It is applied to indolent swellings, as of the glands and joints. A very useful application to the housemaid's swollen knee.

3. EMPLASTRUM AMMONIAE CUM HYDRARGYRO, L. E. D. (See p. 729.)

9. ANETHUM GRAVEOLENS, Linna. L. E.—COMMON GARDEN DILL.

History.—This plant is mentioned by Hippocrates, by Dioscorides, and by Pliny. It is also noticed in the New Testament.

Botany. Gen. Char.—Margin of the calyx obsolete. Petals roundish, entire, involute, with a squarish retuse lobe. Fruit lenticular, flattened from the back, surrounded by a flattened border. Mericarps [half-fruits] with equidistant, filiform ridges; the three intermediate [dorsal] acutely keeled, the two lateral more obsolete, losing themselves in the border. Vitre broad, solitary in the channels, the whole of which they fill, two on the commissure. Seeds slightly convex, flat in front.—Smooth erect annuals. Leaves decumbent, with setaceous linear lobes. Involucrum and involucellum none. Flowers yellow (De Cand.)

Sp. Char.—Fruit ellipsoidal, surrounded with flat dilated margin (De Cand.)

Root tapering long. Stem one and a half to two feet high, finely striated, simply branched. Leaves tripinnated; segments fine capillary; leaf-stalks broad and sheathing at the base. The plant greatly resembles common fennel, though its odour is less agreeable.


Description.—The fruit, commonly called dill seed (fructus seu semina anethi) is oval, flat, dorsally compressed, about a line and a half long; and from a half to one line broad, brown and surrounded by a lighter-coloured membranous margin (ala). Each mericarp

\[\text{footnotes:}^\text{a Opere, p. 359, ed. Fes.}^\text{b Lib. iii. cap. 67.}^\text{c Hist. Nat. lib. xx. cap. 71, ed. Valpy.}^\text{d Matt. xxiii. 23.}\]
(or half-fruit) has five primary ridges, but no secondary ones. In each channel is one vitta, and on the commissure are two vittae. These vittae contain the aromatic oil. The odour of the fruit is strongly aromatic; the taste warm and pungent.

Composition.—Dill owes its peculiar properties to a volatile oil. (See below.)

Physiological Effects.—Aromatic stimulant, carminative and condimentary, analogous to other aromatic umbelliferous fruits (see p. 181.)

Uses.—Employed as a condiment by the Cossacks. Loudon says the leaves are used to heighten the relish of some vegetable pickles, particularly cucumbers; and also occasionally in soups and pickles.

In medicine it is principally employed in the diseases of children. It is a common domestic remedy among nurses, to relieve flatulence and griping of infants. Occasionally it is taken under the idea of its promoting the secretion of milk. Practitioners generally use dill as a vehicle for the exhibition of purgative and other medicines to children, the griping of which it assists in preventing. The whole fruits may be given to adults in doses of ten grains to a drachm.

1. Oleum Anethi, E. Oil of Dill. (Obtained by submitting the bruised fruit of dill, with water, to distillation). Two cwt.s. of the fruit yield 8lbs. 5ozs. of oil. This oil is pale yellow. Its sp. gr. is 0·881. Its odour is peculiar and penetrating, analogous to that of the fruit. Its taste is hot, but sweetish. Alcohol and ether readily dissolve it. According to Tietzmann 1440 parts of water dissolve one part of this oil. Principally used to prepare dill water. May be taken in the dose of a few drops on sugar, or dissolved in spirit.

2. Aqua Anethi, L. E. Dill Water. (Dill, bruised, lb. jss. [3xviij. E.]; Proof Spirit, f3viij. [Rectified Spirit, 5iij. E.]; Water, Cong. ij. Mix. Let a gallon distil.)—This compound is usually prepared by diffusing the oil through water by the aid of sugar or spirit. Carminative. Dose, for adults, f3j. to f5iij.; for infants, f5j. to f5iij. It is generally given to infants with their food.


Sex. Syst. Pentandria, Digynia.

(Gummi-resina, L. D.—Concrete gummy-resinous exudation of an imperfectly ascertained umbelliferous plant, probably a species of Opopoidia, E.)

History.—Galbanum is mentioned by Moses who ranks it among the sweet spices. It was used in medicine by Hippocrates; Dioscorides says it (χαλβαρη) is the μετωπιον, growing in Syria.

1 Encyclopedia of Gardening.
2 Private Information.
3 Exodus xxx. 34.
4 Page 401, &c. ed. Fes.
5 Ib. iii. 97.
Botany.—Hitherto no sufficient evidence has been adduced to prove that galbanum is yielded by any known plant. "The Bubon Galbanum of Linnaeus possesses neither the smell nor the taste of Galbanum, but in these particulars agrees better with Fennel, and the fruit has no resemblance whatever to that found in the gum". The Dublin College, therefore, is in error in referring this gum-resin to Bubon Galbanum. Mr. Don found an umbelliferous fruit in the galbanum of commerce, which he believes to be that of the plant yielding this gum-resin, and as it constitutes a new genus, he has called it Galbanum officinale. The following are the characters of the fruit:

Fruit compressed at the back, elliptical; ridges seven, elevated, compressed, bluntly keeled, not winged; the lateral distinct, marginal. Channels broadish, concave, without vitta. Commissure flat, dilated, bivittate: vitta broad, somewhat curved. (Don.)

But though it is not at all improbable that these fruits are the produce of the galbanum plant, yet no proof of this has been hitherto adduced, and Dr. Lindley, therefore, very properly asks, "Did the fruit found by Mr. Don upon the gum really belong to it?"

More recently Sir John M'Niel sent home specimens of a plant called a second sort of ammoniacum, gathered near Durrood, July 27, 1838, to the branches of which are sticking linseys of a pale yellow waxy gum-resin, which Dr. Lindley took for galbanum; and the plant which yields it being essentially different from all others, has been named by him Opoidia galbanifera. Dr. Lindley was kind enough to send me a small fragment of this gum-resin for examination, but I was unable to identify it with any other known product of the order Umbellifera. It certainly was neither asafetida nor ammoniacum; nor did it appear to me to be either sagapenum or galbanum.

The precise country where galbanum is produced has not been hitherto ascertained. Dioscorides says it is obtained in Syria; a statement which is perhaps correct, though hitherto no evidence of this has been obtained. It is not improbable that it is also procured in Persia, or even in Arabia, as suggested by Dr. Royle. Opoidia Galbanifera grows in the province of Khorasan, near Durrood.

Extraction.—Geoffroy says, though I know not on whose authority, that galbanum is generally obtained by making an incision into the stalks about three fingers' breadth above the root, from which it issues in drops, and in a few hours becomes dry, and hard enough to gather.

Description.—The gum-resin galbanum (galbanum seu gummi-resina galbanum) occurs in the two forms of tears and lump.

a. Galbanum in the tear (galbanum in lachrymis seu granis) is rare: it occurs in distinct, round, yellow or brownish yellow, translucent

---

"Don, Linn. Trans. xvi. 603.
"Fl. Med. 51.
"Botanical Register for August 1, 1839, p. 65-6.
"Trait. de Mat. Méd. ii. 623."
tears; none of which, in my collection, exceed the size of a pea. Their fracture is feebly resinous and yellow.

\( \beta \). **Lump Galbanum** (*galbanum in massis*) is the ordinary galbanum of commerce. It consists of large irregular masses of a brownish or dark brownish yellow colour, and composed of agglutinated tears, some few of which, when broken, are observed to be translucent and blueish, or pearl-white. The mericarp, pieces of the stem, &c. are found intermixed with the tears. To separate these, galbanum is melted and strained (*strained galbanum; galbanum colatum*).

The odour of both kinds is the same; viz. balsamic, and peculiar. The taste is hot, acrid, and bitter. When exposed to cold, galbanum becomes brittle, and may be reduced to powder. In many of its other properties it agrees with the other gum-resins. It is imported from the Levant and from India, in cases and chests.

Recently another gum-resin from India has been introduced as galbanum; but it is said to resemble the latter in colour only, and to be unsaleable.

**Composition.**—Galbanum has been analyzed by Neumann, Pelletier, Fiddechow, and Meissner.

<table>
<thead>
<tr>
<th>Pelletier's Analysis</th>
<th>Meissner's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resin</strong></td>
<td>66.96</td>
</tr>
<tr>
<td><strong>Gum</strong></td>
<td>19.28</td>
</tr>
<tr>
<td><strong>Volatile oil and loss</strong></td>
<td>6.34</td>
</tr>
<tr>
<td><strong>Wood and impurities</strong></td>
<td>7.32</td>
</tr>
<tr>
<td><strong>Supermalate of lime</strong></td>
<td>traces</td>
</tr>
<tr>
<td><strong>Galbanum</strong></td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. **Volatile Oil of Galbanum.**—Obtained by submitting the gum-resin, with water, to distillation. It is colourless and limpid. Its sp. gr. is 0.912; its odour is like that of galbanum and camphor; its taste is hot, afterwards cooling and bitterish. It is soluble in spirit, ether, and the fixed oils.

2. **Resin.**—Is the residue obtained by boiling the alcoholic extract of galbanum in water. It is dark yellowish-brown, transparent, brittle, and tasteless; soluble in ether and alcohol, scarcely so in spirit containing 50 per cent. of water, or in almond oil. Very slightly soluble in oil of turpentine, even when aided by heat. It dissolves in oil of vitriol, forming a dark yellowish-brown liquid. According to Pelletier, galbanum-resin has the remarkable property of yielding an indigo-blue oil when heated to 248° F. or 266° F. The composition of galbanum resin is, according to Johnston, \( C_{40} H_{37} O \).

**Physiological Effects.**—The general effects of galbanum are those of the fetid antispasmodic gum-resins already described (p. 183). It is usually ranked between asafoetida and ammoniacum, being weaker than the former, but stronger than the latter. As it yields, by distillation, more volatile oil than asafoetida does, it has been supposed that it must exceed the latter in its stimulant influence over the vascular system; but as an antispasmodic, it is decidedly inferior.

---

* Hall, *Pharm. Tabel.* 284, 2* Ausg.*
to asafoetida. A specific stimulant influence over the uterus has been ascribed to it: hence the Germans call it *Mutterharz* (i.e. *uterine resin*).

**Uses.**—Galbanum is principally adapted for relaxed and torpid habits, and is objectionable in inflammatory or febrile disorders. It is employed in the same cases as asafoetida (p. 1458), with which it is generally given in combination. It is principally used in chronic mucous or pituitous catarrh, in which it oftentimes proves serviceable. It has also been employed in amenorrhœa and chronic rheumatism. Externally it is applied as a mild stimulant, resolvent, or suppurant, in indolent swellings.

**Administration.**—It may be given in substance, in doses of from grs. x. to 3ss., or in the form of emulsion.

1. **Tinctura Galbanum.** D. Tincture of Galbanum. (Galbanum, cut very small, 3ij.; Proof Spirit, Oij. [wine measure]. Digest for seven days, and filter).—Stimulant and antispasmodic. “Used for the same purposes as the tincture of asafoetida, than which it is less nauseous and less powerful.”—Dose, f3ij. to f5iiij.

2. **Pilule Galbani Composite, L. D.** (See p. 1462).

3. **Emplastrum Galbani, L. D. Emplastrum gummosum, F. Plaster of Galbanum.** (Galbanum, 3viij.; Plaster of Lead, lb. iij.; Common Turpentine, 3x.; Resin of the Spruce Fir, powdered, 3iiij. Add first the Resin of the Spruce Fir, then the Plaster of Lead melted with a slow fire, to the Galbanum and Turpentine melted together, and mix them all, L.—“Litharge plaster, 3iv.; ammoniac, galbanum, and bees’ wax, of each 3ss. Melt the gum-resins together, and strain them: melt also together the plaster and wax: add the former to the latter mixture, and mix the whole thoroughly.” E.—Litharge Plaster, lb. ij.; Galbanum, lb. ss.; Scrapings of Yellow Wax, 3iv. Melt the galbanum, and add the litharge plaster and wax; then melt them together with a medium heat, and strain, D.)—This plaster, spread upon leather, is applied to indolent tumours, to promote their suppuration, and to disperse them. Its operation appears to be that of a mild stimulant. It is also applied to the chest in chronic pulmonary complaints. In weakly, rickety children, with weakness of the lower extremities, it is applied to the lumbar region.

11. **Cumminum Cyminum, Linn. L. E.—The Officinal Cumin.**

**Serr. Syst.** Pentandria, Digynia.

(Frutus, L.—Fruit, E.)

**History.**—This plant is mentioned in both the Old and New Testament, and by Hippocrates, Dioscorides, and Pliny. The Greeks call it κύμμον ὀμηρών vel αἰθιωτικῶν.

---

1 Isaiah, xxviii. 27; Matthew, xxiii. 23.
2 Opera, 407, &c. ed. Fos.
3 Lib. iii. cap. 68.
OFFICINAL CUMIN.

BOTANY. Gen. Char.—Teeth of the calyx five, lanceolate, setaceous, unequal, persistent. Petals oblong, emarginate, erect, spreading, with an inflexed lobe. Fruit contracted at the side. Mericarps [half fruits] with wingless ridges; the primary ones five, filiform, minutely muricated, the laterals forming a border; the secondary ones four, more prominent, and aculeate. Channels under the secondary ridges one-vittate. Carpophorus bipartite. Seed somewhat concave anteriorly, on the back convex.—Herbs. Leaves many-cleft: lobes linear, setaceous. Leaflets of the involucre two to four, simple or divided. Involucellum halved, two- to four-leaved, becoming reflexed. Flowers white or pink (De Cand.)

Sp. Char.—Lobes of the leaves linear, setaceous, acute. Umbel three- to five-cleft. Partial involucre equalling the pubescent fruit (De Cand.)

Root annual. Stem slender, branched, about a foot high. Leaves filiform. Flowers white or reddish.

Hab.—Upper Egypt, Ethiopia. Extensively cultivated in Sicily and Malta.

DESCRIPTION.—The fruit, commonly termed cumin seeds (fructus seu semina cumini), is larger than anise, and of a light-brown or grayish-yellow colour. It has some resemblance to, though it is larger than, caraway. Each mericarp has five primary ridges, which are filiform, and furnished with very fine prickles. The four secondary ridges are prominent and prickly. Under each of these is one vitta. The odour of the fruit is strong and aromatic. Both odour and taste are somewhat analogous to, but less agreeable than, caraway. Cumin is imported from Sicily and Malta. In 1839, duty (2s. per cwt.) was paid on 53 cwts.

COMPOSITION.—The peculiar properties of cumin reside in a volatile oil.

Oil of Cumin; Oleum Cumini. Obtained by submitting the fruit to distillation with water. Sixteen cwts. of the fruit yield about 44lbs. of oil. This oil, as usually met with, is pale yellow and limpid. Its smell is disagreeable; its taste very acrid. It consists of two oils, one a carbo-hydrogen called Cumin or Cymen C18 H34; the other an oxygenated oil called Hydroret of Cumyl C20 H11 O2 + H. Cumyl is an hypothetical base composed of C20 H11 O2. When treated with caustic potash, oil of cumin yields hydrated cuminic acid C20 H11 O3 + Aq. This is a crystallizable solid.

PHYSIOLOGICAL EFFECTS.—Cumin agrees with the other aromatic umbelliferous fruits (see p. 183) in its mildly stimulant and carminative qualities.

USES.—Internally, cumin is rarely used; caraway being an equally efficient, and much more agreeable medicine. As a discutient and resolvent, it was formerly employed, externally, in the form of plaster (emplastrum cumini, Ph. L. 1824) and cataplasm (cataplasma e cumino, Quincy). As there is now no preparation of cumin in the British Pharmacopoeia, I am surprised at the retention of this substance in the Materia Medica. The dose of cumin is grs. xv. to 5ss. It is principally used in veterinary surgery.
12. **Daucus Carota, Linn. L. D. — Common or Wild Carrot.**

*Ser. Syst.* Pentandria, Digynia.

(Fructus; Radix recens, L.—Radix, D.)

D. Carota, var. sativa, De Candolle, E. (Root).

D. Carota, var. sylvestris, D. (Semina).

**History.**—According to Dr. Sibthorp," this plant is the σταφυλίνος of Dioscorides". Hippocrates employed it in medicine under the same name. The σταφυλίνος ἁγρωσ of Dioscorides is, according to Dr. Sibthorp, the *Daucus guttatus*.

**Botany.** *Gen. Char.*—Margin of the calyx five-toothed. Petals obovate, emarginate, with an inflexed point; the outer generally radiating, and deeply bifid. Fruit somewhat compressed from the back, ovate or oblong. *Mericarps* [half fruits] with the five primary ridges filiform and bristly; the three middle ones at the back; the two laterals on the plane of the commissure; the four secondary ridges equal, more prominent, winged, split into a simple row of spines. Channels beneath the secondary ridges one-vittate. *Seed* anteriorly flattish. —Usually biennial *herbs*. Leaves bipinnatisect.

*Involucre* of many, tri-, or pinnatifid leaflets; partial involucres of many, entire, or trifid leaflets. *Flowers* white or yellow; the central generally fleshy, blackish purple, sterile (De Cand.)

*Sp. Char.*—Stem hispid. Leaves two- or three-pinnatisect; the segments pinnatifid; the lobes lanceolate, cuspidate, almost equal to the umbel. *Prickles* equal to the diameter of the oblong-oval fruit (De Cand.)

Root slender, yellowish, aromatic, and sweetish. Stem two or three feet high, branched, erect, leafy, hairy or bristly. Leaves on broad, concave, ribbed footstalks, distinctly hairy. *Umbels* large, white, except the one central neutral flower, which is blood-red. *Fruit* small, protected by the incurvation of the flower-stalks, by which the umbels are rendered hollow, like a bird’s nest.—(Condensed from Smith).

**Hab.**—Indigenous; in pastures and the borders of fields, in a gravelly soil, common. Europe, Crimea, and the Caucasus; from thence, probably, carried to China, Cochin-China, and America.

**Daucus Carota, var. sativa, D.C.; E. Cultivated or Garden Carrot.**—This has a thick succulent root, whose colour varies. Loudon mentions ten garden varieties.

**Description.**—The officinal *root* is that of the cultivated plant (radix dauci sativi). It is tap-shaped, now and then branched, reddish or pale straw-coloured, succulent, of a peculiar, not unpleasant odour, and a sweet, mucilaginous, agreeable taste. *Carrot juice* (rob dauci) is reddish, turbid, with the odour and taste of the root. By

---

2. *Lib. iii. cap. 59.
standing, a feculent matter (amylum dauci), which has been recently employed in medicine, deposits. It coagulates at a temperature under 212° F. The coagulum is yellow, and when dried amounts to 0.629 of the juice. The root of the wild, or uncultivated, carrot is small, woody, acrid, and bitter, with a strong aromatic odour. The officinal fruits, usually called carrot seeds (fructus seu semina dauci sylvestris) are those of the wild carrot: they are brownish, from one to one and a half lines long, with a peculiar and aromatic odour, and a bitter and warm taste. Their other characters have been described (p. 1474). The seeds of the cultivated carrot are much milder.

**Composition.**—The fruit (commonly termed seeds) has not been analyzed: the seeds owe their peculiar properties to volatile oil (oleum seminum dauci sylvestris). The root has been analyzed by Vaucelin, by Wackenroder, and by C. Sprengel. The constituents of the expressed juice, evaporated to dryness, are, according to Wackenroder, fixed oil with some volatile oil 1.0, carotin 0.34, uncrystallizable sugar with some starch and malic acid 93.71, albumen 4.35, ashes composed of alumina, lime, and iron 0.60.

1. **Volatile Oil of Carrot-Root.**—Colourless, has a smell of carrots, a strong, permanent, unpleasant taste, and a sp. gr. of 0.8863 at 54° F. It is little soluble in water, but very soluble in alcohol and ether. From 34 lbs. of the fresh root only half a drachm of oil was obtained. It is probable that the volatile oil of carrot-fruits possesses analogous properties.

2. **Carotin.**—A crystalline, ruby-red, tasteless, odourless, neutral substance. It is fusible and combustible, but not volatile, soluble in the mixed and volatile oils, slightly so in alcohol, not in ether unless fat oil be present. Its solutions are decolorized by solar light.

3. **Pectic Acid.**—By the action of alkalies on the ligneous tissue of carrots, Braconnot procured pectic acid. I have repeated his experiments, and can confirm his statements, but the quantity obtained is small. Pectic acid consists, according to Fremy, of C_24_ H_17_ O_22_.

**Physiological Effects and Uses.**—The fruit (seed of the shops) of the carrot is an aromatic stimulant and carminative, like the other aromatic umbelliferous fruits (see p. 183). Arethæus says it possesses diuretic properties, a statement confirmed by Eberle. It has been employed in suppressions of urine and painful micturition, and also in dropsies. The expressed juice has been used as an anthelmintic. The boiled root is a well-known article of food. Raw scraped carrot is sometimes applied to chapped nipples: it is a stimulant, and occasionally proves a painful, application. Boiled carrots are only employed in the form of poultice.

**CATAPLASMA DAUCI, D.; Carrot Poultice.** (Root of Cultivated Carrot, any quantity. Boil the root in water until it becomes soft
13. **CONIUM** MACULA'TUM, Linn. L.E.D.—**THE COMMON OR SPOTTED HEMLOCK.**

**History.**—This plant is usually supposed to be the κώνελος of the Greek writers,—the celebrated Athenian state poison, by which Socrates and Phocion died,—and the cicuta of the Roman authors. Various reasons contribute to give the common opinion on this point a high degree of probability. Dioscorides described the plant sufficiently well to prove it must have been one of the Umbelliferae; and he tells us that it had a heavy odour, and a fruit like that of anise. The latter simile applies to our Conium, for a very intelligent druggist mistook, in my presence, the fruit of the hemlock for that of anise; and at the examination for M. B. at the University of London, in 1839, a considerable number of the candidates, to whom the hemlock fruit was shown, made the same mistake. Dioscorides also tells us, that the κώνελος of Crete and Megara was the most powerful, and next to this came that of Attica, Chio, and Cilicia. Now Dr. Sibthorp found Conium maculatum growing near Constantinople, not unfrequently in the Peloponnesus, and most abundantly between Athens and Megara. So that the locality of our Conium agrees, as far as has been ascertained, with that of the ancient plant. Moreover, Conium maculatum is at this present time called by the Greeks κώνελος. We may gather from the poetical account of the effects of κώνελος given by Nicander, that this plant "brings on obliteration of the mental faculties, dimness of sight, giddiness, staggering, stifling, coldness of the limbs, and death by asphyxia; a view of its effects," says Dr. Christison, "which differs little from the modern notions of the poisonous action of the spotted hemlock." It is also remarkable that the ancients regarded κώνελος as having the power of discussing tumors—a virtue which has been assigned to hemlock by writers of the present day.

I am fully aware that the characters of the ancient plant, as given us by Dioscorides and Pliny, are insufficient to distinguish it from some other Umbelliferae, yet I think the evidence of its being our Conium maculatum is deserving of much greater confidence than Dr. Christison is disposed to give it. The absence of all notice, in

---

2 This word is sometimes incorrectly accented Co’nine. But "those words which, in Greek, are written with ei before a vowel, and in Latin with e or i, have the e or i long; as Alabina, Cassiapina, Citharida, Centauria," &c. (Grant’s Institutes of Latin Grammar, p. 343, 2nd ed. 1823.)
4 Plutarch’s Lives.
5 Lib. iv. cap. 79.
6 Prodr. Fl. Graec. i. 187.
7 Εὐαγγελικα Φαρμακοποια. 1837.
10 Hist. Nat. lib. xxv. cap. 93, ed. Vaup.
the writings of the ancients, of the purple spots on the stem, has been urged against the probability of this opinion. "Pliny's term nigricans, applied to the stem, is but a feeble approach," says Dr. Christison, "to the very remarkable character of the modern plant, the purple spotted stem." But in 1839 I showed to the pupils attending my lectures a stem of hemlock to which the term blackish might be applied without greater impropriety of language than is daily made use of when a man is said to have a black eye; for the dark purple spots had coalesced so as to cover most completely the lower part of the stem. Admitting, however, that the term is not strictly correct, I would observe, first, that there is no poisonous umbelliferous plant to which it applies so well as to hemlock; and, secondly, Dioscorides and Pliny may be well excused for using it, seeing that a distinguished living professor describes the spots on the stem as blackish."

It is evident that our generic term Conium is derived from the Greek word κόμιον. Linnaeus has been censured by Lamarck for using this name, since the Latin authors call our hemlock Cicuta, which he, therefore, contends ought to be its designation now. But it ought to be remembered that Linnaeus has only restored its ancient name, for the word Cicuta is unknown to the Greek language. By modern botanists the latter term is applied to a distinct genus of plants; and when, therefore, we meet with it in botanical works, we must not confound it with the cicuta of the Romans. Especially careful should the student be not to confound Conium maculatum with Cicuta maculata. It is certainly much to be regretted that such a ground of confusion should exist, but I am afraid it is now too late to obviate it.

Botany. Gen. Char.—Margin of the calyx obsolete. Petals obcordate, somewhat emarginate, with a very short inflexed lobe. Fruit compressed at the side, ovate. Mericarps [half-fruits] with five, prominent, undulated, crenulated, equal ridges, the lateral ones marginal. Channels with many striæ, but no vittæ. Carpophorus bifid at the apex. Seed incised with a deep narrow groove, and confounded with it.—European, biennial, poisonous herbs. Root fusiform. Stem round, branched. Leaves decompound. Both partial and general involucres, three to five-leaved; partial one, halved. Flowers white, all fertile (De Cand.)

Sp. Char.—Leaflet of the partial involucre lanceolate. Partial umbel short (De Cand.)

Root biennial, tap-shaped, fusiform, whitish, from six to twelve inches long, somewhat resembling a young parsnip. Stem from two to six feet high, round, smooth, glaucous, shining, hollow, spotted with purple. Leaves tripinnate, with lanceolate, pinnatifid leaflets, of a dark and shining green colour, smooth, very fetid when bruised, with long, furrowed footstalks, sheathing at their base. Umbels of

* See Orfila, Toxicol. Gén. ii. 299. 1818.
many general as well as partial rays. General involucre of several (usually three to seven) leaflets: partial involucre of three leaflets on one side. Margin of calyx obsolete. Petals five, white, obcordate, with inflexed points. Stamens five, epigynous, as long as the petals. Ovarium ovate, two-celled, striated; styles two, filiform, spreading; stigma round. Fruit ovate, compressed laterally; mericarps (half-fruits) with five primary, but no secondary, ridges, which are undulato-crenated; the channels have many striae, but no vitta. Seed with a deep, hollow groove in front.

Hab. — Indigenous; hedges and waste ground, especially near towns and villages. In other parts of Europe, the East of Asia, and in the cultivated parts of North America and Chili, into which it has been introduced.

In distinguishing Conium maculatum from other Umbelliferae, the following characters should be attended to:—The large, round, smooth, spotted stem; the smooth, dark, and shining green colour of the lower leaves; the general involucre of from three to seven leaflets; the partial involucre, of three leaflets; the fruit with undulated crenated primary ridges. To these must be added, that the whole herb, when bruised, has a disagreeable smell (compared by some to that of mice, by others to that of fresh cantharides or of cats' urine).

The indigenous Umbelliferae most likely to be confused with Conium maculatum, are, Ethusa Cynapium and Anthriscus vulgariis. Ethusa Cynapium, or Fool's Parsley, is distinguished from hemlock by its smaller size, by the absence of the strong disagreeable smell which distinguishes the leaves of hemlock, by the want of a general involucre, by the three long, narrow, unilateral, pendulous leaflets composing the partial involucre, by the ridges of the fruit being entire (i.e. not undulate or crenate), and by the presence of vitta. Anthriscus vulgaris, or Common Beaked-Parsley, is known from hemlock by the paler colour and slight hairiness of the leaves, by the absence of spots on the stem, by the swelling under each joint, by the absence of a general involucre, by the roughness of the fruit, and by the absence of a strong unpleasant odour when the leaves are bruised. Anthriscus sylvestris (Chervophilum sylvestre), or Common Cow-Parsley, is scarcely likely to be confused with hemlock. The stem, though purplish, is striated, downy at the lower part, and slightly swollen below the joint; the leaves are rough edged; there is no general involucre; and the partial one usually consists of five or more leaflets.

Description.—The leaves (folia conii) only are officinal. They should be gathered from wild plants, just before the time, or at the commencement of flowering. If intended for drying, the larger stalks should be removed, and the foliaceous parts quickly dried in baskets, by the gentle heat (not exceeding 120° F.) of a proper stove. Exclusion from solar light contributes greatly to the preservation of the colour. If properly dried, the leaves should have a fine green colour, and their characteristic odour; and when rubbed with caustic potash should evolve the odour of conia. They should be preserved in cool, closed, perfectly opaque, and dry vessels. Tin canisters possess these properties. However, no reliance can be placed on the dried leaves, however carefully prepared, for they sometimes yield no conia, though they possess the proper hemlock-odour and a fine green colour. If the fresh leaves be subjected to pressure, they yield a greenish juice (succus conii) from which, on standing, a green fècula subsides. The fruit, commonly termed hemlock seeds (fructus...
SPOTTED HEMLOCK.

1479

seu semina conii), has very little odour, and a slight, somewhat bitterish taste. It retains for a much longer time than the leaves its active principle unchanged (see Conia).

Composition.—Schrader made a comparative analysis of wild and cultivated hemlock, but with no important result. He also made a comparative examination of hemlock and cabbage (Brassica oleacea), the only curious part of which was, that he found a striking resemblance between them. Peschier found in hemlock a salt which he called coniate of conia, being composed of a peculiar crystallizable acid (coniic acid), and a peculiar base. Hemlock juice was analyzed by Bertrand; the leaves by Dr. Golding Bird; the ashes by Brandes. An analysis of hemlock (leaves?) by the last-mentioned chemist, is quoted by Merat and De Lens. Peschier and Brandes first announced the existence, in this plant, of a peculiar basic principle, which Giseke, in 1827, obtained in combination with sulphuric acid. But Geiger, in 1831, procured it, for the first time, in an isolated form, and described some of its properties and effects on animals. It was afterwards examined by Dr. Christison, and by MM. Boutran-Charlard and O. Henry.

Schrader's Analyses.

<table>
<thead>
<tr>
<th></th>
<th>Hemlock</th>
<th>Cabbage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive</td>
<td>2.73</td>
<td>2.34</td>
</tr>
<tr>
<td>Gummy extractive</td>
<td>3.52</td>
<td>2.89</td>
</tr>
<tr>
<td>Resin</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Vegetable albumen</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>Green fucula</td>
<td>0.80</td>
<td>0.63</td>
</tr>
<tr>
<td>Water, with acetic acid and various salts</td>
<td>92.49</td>
<td>93.80</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Brandes's Analyses.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peculiar basic principle (conitnine).</td>
<td>Very odorous oil.</td>
<td></td>
</tr>
<tr>
<td>Vegetable albumen.</td>
<td>Resins.</td>
<td></td>
</tr>
<tr>
<td>Colouring matter.</td>
<td>Salt.</td>
<td></td>
</tr>
<tr>
<td>[Lignin and water].</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. VOLATILE OIL OF HEMLOCK. (Odorous principle).—The distilled water of hemlock possesses, in a high degree, the characteristic odour of hemlock, but is scarcely, if at all, poisonous. Hence it is obvious that the odoriferous matter is not the active principle. Furthermore it shows that the characteristic odour of hemlock, in the different preparations of this plant, is not to be taken as a necessary indication of their activity. Bertrand isolated the odoriferous matter, and found it to be a volatile oil of an acrid taste and peculiar odour.

2. CONIA (Conicine ; Conein ; Cicutine.—Exists in hemlock in combination with an acid (coniic acid, Peschier;) so that it cannot be recognized by its odour, nor obtained by distillation, without the assistance of an alkali. It exists, probably, in all parts of the plant, but is more copious in the fruit than in the leaves; and, most remarkably, it may be preserved for a much longer time in the former than in the latter. Geiger procured from six lbs. of fresh, and nine lbs. of dried fruits, about one ounce of conia, whereas from 100 lbs. of the fresh herb he obtained only a drachm of this alkaloid. He could get traces only of it in fresh dried

* Berlin Jahrbuch, 1805, S. 152.
* Recueil de Mem. de Méd. de Chir. et de Pharm. Mil. t. ix. p. 300.
* Berlin Jahrbuch, 1819, S. 116.
* Diet, de Mat. Med. ii. 391.
* Journ. de Pharm. xiii. 366.
* Mag. für Pharm. xxxv. 75 and 259.
leaves, while he extracted a drachm of it from nine ounces of the fruit which had been preserved (not very carefully) for sixteen years. This by no means agrees with my own observations and experiments; for I have found that fruit which had been kept for three years yielded only a very minute portion of conia; though from the same sample when fresh gathered I had obtained a considerable quantity. From 40 lbs. of the ripe, but green, seeds (mericarps), Dr. Christison obtained two ozs. and a half of hydrated conia. Conia, free from all impurity but water, may be obtained by distilling the alcoholic soft or syrupy extract of the seeds (mericarps) with its own weight of water and a little caustic potash. The conia passes over readily, and floats on the surface of the water (which contains conia in solution). When pure, conia is an oily-looking transparent liquid, lighter than water. Its odour is strong and penetrating, somewhat like that of hemlock, or more analogous to a combination of the odours of tobacco and mice. Its taste is acrid; it is sparingly soluble in water, but is entirely soluble in alcohol and ether. It reddens turmeric, and neutralizes the dilute acids, forming salts. While saturating, the liquors have a bluish-green tint, which subsequently passes to a reddish-brown. It combines with about a fourth of its weight of water to form a hydrate of conia. When placed in a vacuum, in the presence of bodies very attractive of water, it in part volatilizes, and leaves a reddish, very acrid, pitchy residue, which appears to be anhydrous [partially decomposed?] conia. The vapour of conia is inflammable. By exposure to the air, liquid conia acquires a dark colour, and is resolved into a brown resin and ammonia. Its boiling point is 370° F., but it readily distils with water at 212° F.

Conia is characterized by its liquidity at ordinary temperatures, its volatility, its peculiar odour, its reddening turmeric paper, its vapour forming white fumes (hydrochlorate of conia) with the vapour of hydrochloric acid, its solution in water, forming, with infusion of nutgalls, a white precipitate (taunate of conia), its sulphate and other salts being deliquescent and soluble in alcohol, its not being reddened by either nitric or iodic acids, and lastly, by its alcoholic solution not being precipitated by the alcholohic solution of carbazotic acid. Several of the salts of conia are crystallizable. When solutions of them are evaporated they lose a part of their base, the odour of which becomes sensible. The nitrate of conia, when decomposed by heat, yields brown pyrogenous products. Potash added to a salt of conia sets the base free, which is then recognized by its odour.

Liebig analyzed conia. Its constituents are:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per cent.</th>
<th>Liebig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>12</td>
<td>72</td>
<td>66-67</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>14</td>
<td>14</td>
<td>12-96</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
<td>12-96</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
<td>7-41</td>
</tr>
<tr>
<td>Conia</td>
<td>1</td>
<td>108</td>
<td>100-00</td>
</tr>
</tbody>
</table>

The effects of conia have been tried on mammals (the dog, cat, rabbit, and mouse), birds (pigeon, kite, and sparrow), reptiles (slow-worm), amphibials (the frog), annelids (earth-worm), and insects (fly and flea). One drop placed in the eye of a rabbit killed it in nine minutes; three drops employed in the same way killed a strong cat in a minute and a half; five drops poured into the throat of a small dog began to act in thirty seconds, and in as many more motion and respiration had entirely ceased.

The following are the symptoms produced, as detailed by Dr. Christison. "It is, in the first place, a local irritant. It has an acrid taste; when dropped into the eye, or on the peritoneum, it causes redness or vascularity; and to whatever texture or part it is applied, expressions of pain are immediately excited. But these local effects are soon overwhelmed by the indirect or remote action which speedily follows. This consists essentially of swiftly-spreading palsy of the muscles,—affecting first those of voluntary motion, then the respiratory muscles of the chest and abdomen, lastly the diaphragm, and thus ending in death by asphyxia." Convulsive tremors, and twitches of the limbs, sometimes, though not invariably, are observed. The external senses do not appear to be affected until respiration is impaired. If a rabbit be lifted up by his ears when under the influence of the poison, he makes the same kind of struggles to be released that he does when in health. So also if we place him in an uneasy posture, he makes
attempts to alter his position, proving that his senses are unimpaired. After death the muscles are susceptible of the galvanic influence. MM. Boutran-Charlard and O. Henry state, that most of the animals to whom they gave conia became "a prey to the most dreadful convulsions. The plaintive cries, the contortions, and the rigidity of the limbs, which have always preceded death, leave no doubt as to the cruel pains which this kind of poisoning brings on." This account agrees neither with my own observations, nor with those published by Dr. Christison.

Does conia become absorbed? In favour of the affirmative view of this question may be mentioned the fact, that this alkali acts on all the textures admitting of absorption; and that the quickness with which the effects occur, are in proportion to the absorbing power of the part. But the rapidity of its action, when introduced into the veins, is a barrier to the supposition of its acting on the nervous centres by local contact; for Dr. Christison states, that two drops, neutralized by dilute muriatic acid, and injected into the femoral vein of a young dog, killed the animal in two or three seconds at farthest.

The primary seat of the action of conia is probably the spinal cord. In this conia and strychnia agree; but in the nature of the effect, they seem, as Dr. Christison has observed, to be the counterparts of each other. Conia exhausts the nervous energy of the cord, and causes muscular paralysis; strychnia irritates it, and produces permanent spasm of the respiratory muscles. It is evident, therefore, that, like strychnia and nux vomica (see p. 1299), its operation is on the seat of the reflex functions, which, according to Mr. Grainger, is the gray matter of the spinal cord.

These effects of conia suggest its employment in convulsive or spasmodic diseases; as tetanus, poisoning by strychnia, brucia, or nux vomica, hydrophobia, &c. I have tried it on two rabbits under the influence of strychnia, and found that it stopped the convulsions, but hastened rather than prevented death. In September, 1838, it was tried in a case of hydrophobia at the London Hospital. The following is a brief report of the case:—"In the case of hydrophobia, in a middle-aged man, after the disease was fully formed, two minims of conia, dissolved in thirty drops of acetic acid, were applied endermically to the praecordium (the cuticle being previously removed by a blister). The effects were instantaneous. The pulse fell from 64 to 46, and became more regular. The vomiting and convulsions ceased; the respiration became less difficult, and the symptoms of the disease appeared to be altogether mitigated. The man expressed himself as feeling much better, and entertaining hopes of an ultimate recovery. These effects were, however, but transitory, and in about seven minutes the symptoms began to reappear, and shortly assumed their previous urgency. Three minims of conia were injected into the rectum, about a quarter of an hour after the endermic application of it, but it produced no effect in allaying the symptoms of the disease. The remedy was not repeated, and the man became rapidly worse, and died in a few hours."

3. Empyreumatic Oil of Hemlock (Pyro-conia ?).—This oil, obtained by the destructive distillation of hemlock, resembles, according to Dr. Morries, that procured from foxglove (see p. 1209).

Characteristics for Medico-legal purposes.—Hemlock can only be properly recognized by its botanical characters, already described: yet its remarkable odour may sometimes be of considerable assistance in recognizing the plant or its preparations; nor is the fact to be lost sight of, that potash develops a strong smell of conia. In some cases it might be possible to obtain some conia by distilling the alcoholic extract of the suspected substance with water and caustic potash.

1 Obs. on the Struct. and Funct. of the Spinal Cord.
Physiological Effects. a. On Vegetables.—Marcet placed a haricot plant (Phaseolus vulgaris) in a solution of five grains of the extract of hemlock. In a few minutes the two lower leaves curled at their extremities; the next day they were yellow, and subsequently died. Schübler and Zeller also confirm its poisonous operation.

b. On Animals generally.—The effects of hemlock on animals have been tried by Harder, Wepfer, Orfila, and Schubarth. The animals experimented on were the dog, wolf, rabbit, and guinea-pig. The action of hemlock on the solipedes and ruminants is very much less energetic than on the carnivora. Moiroud has given three lbs. and a half of the plant to a young horse, without inconvenience; but in another instance the decoction of four ounces proved fatal. It caused dejection, stupor, dilatation of the pupils, trembling, salivation, nausea, spasmodic contraction of the muscles of the extremities, rolling of the eye, grinding of the teeth, and copious cold sweats. From the observations of Orfila, hemlock is a local irritant (though this action was not constantly observed), and produces giddiness, convulsions, loss of sensibility, palsy, and coma. This account, as Dr. Christison observes, does not agree with the symptoms induced by conia, which does not seem to affect the senses so long as the respiration goes on. “But it is possible,” he adds, “that the difference is more apparent than real, and that hemlock has been supposed to extinguish sensation, merely because by inducing paralysis it takes away the power of expression; at least in some experiments I have made, sensation did not appear to be affected; and the whole phenomena were identical with those produced by conia. In these experiments I used very strong extracts, prepared by absolute alcohol from the fresh leaves or full-grown seeds; and each of them occasioned, in doses of thirty grains or thereabouts, paralysis of the voluntary muscles, with occasional slight convulsions, then paralysis of the respiratory muscles of the chest and abdomen, and finally cessation of the action of the diaphragm. Sensation appeared to continue so long as it was practicable to make an observation on the subject; and the heart contracted vigorously for a long time after death.” But from the united observations of the effects of hemlock on animals and man, I cannot help suspecting, either that this plant contains a second active principle, whose operation is somewhat distinct from conia, or that the influence of this alkaloid is greatly modified in the plant by combination with other matters.

g. On Man.—In small or medicinal doses, hemlock has been frequently administered for a considerable period, with obvious relief, in certain diseases (tumours of various kinds, for example), without any other evident effect; hence the statement of some authors, that

---

% Hist. Cient. aquat. p. 201, 1733.
T Toxicol. Gén. ii.
Pharm. Vet. 359.
hemlock acts insensibly on the system. "It seldom purges," says Storck, "and very rarely vomits. Sometimes it increases perspiration, and often it occasions a copious discharge of viscid urine. In many patients, nevertheless, it does not sensibly augment any of the secretions." Long-continued use, especially if the doses be increased, will sometimes occasion disorder of the digestive organs or of the nervous system, dryness of the throat, thirst, and occasionally, it is said, an eruption on the skin. Choquet mentions the case of a man who gradually increased the dose of the extract to half a drachm; it produced slight delirium and syncope, which obliged him to suspend its use.

The ancients were of opinion that hemlock exercised a specific influence over the breasts and testicles. "It extinguishes the milk," says Dioscorides, "and prevents the development of the mammae of virgins; moreover, in boys it causes wasting of the testicles." Pliny gives a similar account of it, and adds, "it reduces all tumours." The same notions of its effects seem to have been entertained by the Arabians; for Avicenna praises it as a remedy for tumours of the breasts and testicles. More recently, somewhat similar effects on the breasts have been ascribed to it. In two cases it is said to have caused atrophy of the mammae.

In large or poisonous doses the symptoms are those indicating disorder of the cerebro-spinal functions. In some of the best-recorded cases the leading symptom was coma; the effects being altogether analogous to those of opium. In other instances, convulsions, or violent delirium, or both, were the prominent symptoms. As an illustration of the comatose condition, sometimes brought on by this poison, I shall quote a case recorded by M. Haaf, a French army surgeon, and which occurred to him while in garrison at Torrequemada, in Spain, in March, 1812.

A soldier having eaten of some broth, into which hemlock had been put, went to sleep immediately after his supper. In an hour and a half he was found groaning and breathing with difficulty; in consequence of which M. Haaf was sent for. He found his patient in a profound sleep, without sense, respiring with difficulty, and lying on the ground. His pulse was 30, small, and hard; the extremities cold; the face bluish, and distended with blood, like that of a person strangled. Twelve grains of emetic tartar were given, and occasioned some fruitless attempts to vomit. He became gradually worse, had violent palpitations of the heart, and died in three hours after his fatal supper.

Several other cases in which coma was the leading symptom might be quoted, but the one just related is the best.

We have no well-detailed cases in which delirium was the leading symptom. The following must suffice, by way of illustration; it is

---

1 Essay on Hemlock, Eng. Tr. 2d ed. 1762.
2 Orfia, Toxicol. Gen. ii.
4 Ortia, Toxicol. Gen.
from Kircher\(^1\) — Two priests ate hemlock root by mistake; they became raving mad, and mistaking themselves for geese, plunged into the water. For three years they suffered with partial palsy and violent pain. Orfila also mentions a vine-dresser and his wife, who became mad and furious from hemlock.

As illustrations of the convulsions caused by hemlock, I may refer to the cases mentioned by Limprecht and Ehrhard\(^2\). The first states that an old woman suffered for three months with abdominal pain and convulsive movements of the limbs, in consequence of eating hemlock root. Ehrhard mentions trismus as one of the symptoms in another case. Dr. Watson\(^3\) has related two cases in which giddiness, coma, and convulsions occurred.

These statements, as well as others of a like tendency which might be quoted, do not agree with the (as yet ascertained) effects of conia. The post-mortem appearances throw but little light on the modus operandi of hemlock. Venous congestion, especially of the cerebral vessels, a fluid condition of the blood, and, in the lower animals, redness of the alimentary canal, are the occasional appearances.

Uses.—In the present state of uncertainty with respect to the real physiological operation of hemlock, it is obviously impossible to lay down indications or contra-indications for its use, which can be much relied on. Acute inflammation, fever, apoplexy, or tendency to it, and paralysis, are among the circumstances which oppose the employment of hemlock.

The uses of hemlock may be reduced to two heads: those which depend on its influence over the organic functions; and, secondly, those which have reference to its influence over the cerebro-spinal system. The resolvent or discutient and alterative uses come under the first head; the antispasmodic and anodyne under the second.

1. As a resolvent or discutient and alterative.—Under the continued use of small and repeated doses of hemlock, glandular and visceral enlargements have frequently subsided; hence has arisen the opinion, entertained in all ages, of the resolvent and discutient powers of this remedy, and of the stimulus which it communicates to the absorbing vessels. The mammae and the skin are the parts in which these powers have been supposed to be more especially manifested; and the asserted effects (wasting of the breast, profuse sweating, and eruptions) of hemlock on these parts, in healthy individuals, lend support to this opinion. But the influence of hemlock over the organic functions does not appear to be limited to this resolvent operation. In foul ulcers the quality of the discharge has been greatly improved, while pain has been alleviated, and the tendency of the sores to spread has apparently been greatly diminished. If, then, these effects be really referrible to hemlock (and they have been asserted by so many writers in all ages, that we can scarcely refuse to admit them), they prove that this plant exercises a most profound

---

\(^1\) Wibmer, Wirk. &c. ii. 172.
\(^2\) Wibmer, op. cit.
\(^3\) Phil. Trans. vol. xiii. No. 473, p. 18.
influence over nutrition and the other organic functions, and which we have no better term to indicate than that of alterative. But so frequently has this influence failed to manifest itself, especially in those cases where it was most desired, that a very proper doubt has prevailed among practitioners of the present day, whether it really exists, and whether those phenomena which have been supposed to indicate it, are not really referrible to other influences and circumstances. That hemlock has some influence of the kind referred to, I confess I do not doubt; but it has been greatly exaggerated, and thereby much unmerited discredit has been brought on the remedy; for practitioners, finding that it would not do all that had been ascribed to it, have frequently dismissed it as altogether useless. Whether the failures ought, in part at least, to be ascribed to imperfect modes of preparing and administering this plant, we are, as yet, unable positively to affirm. One fact, however, is certain, that many of the preparations of hemlock in ordinary cases are inert, or nearly so; and others, probably, have had their properties greatly changed in the process of their preparation. The remark made by Dr. Christison, with respect to the physiological effects of this plant, applies well to the point under discussion. "If," says this writer, "physicians or physiologists would acquire definite information as to the physiological effects of hemlock, in small or medicinal doses, they must begin the inquiry anew. Little importance can be attached to anything already done in this field, as I have no doubt whatever that by far the greater proportion of the preparations of hemlock hitherto employed have been of very little energy, and, in the doses commonly used, are absolutely inert."

The diseases to which the preceding remarks especially apply, are, enlargements and indurations of the absorbing and secreting glands, and of the viscera, scrofula, obstinate chronic skin diseases, and foul ulcers. I am not prepared to offer any opinion, as to whether the diseases to which the terms scirrhous and cancer are strictly applicable, have ever been cured by hemlock. One fact is undoubted, that diseases, supposed to have been scirrhous and cancerous, have been greatly alleviated, and, in some cases, apparently cured by this remedy. This fact does not rest on the sole testimony of Storck, but on that of a multitude of practitioners. Bayle has collected, from various writers, forty-six cases of cancerous diseases, said to have been cured, and twenty-eight ameliorated, by hemlock. In scrofula, in which disease Fothergill, and many others, have praised it, it seems to be occasionally useful as a palliative in irritable constitutions. It allays the pain, and assists in reducing the volume of enlarged lymphatic glands, and in scrofulous ulcerations improves the quality of the discharge, and disposes the sores to heal. Even enlargements of the liver, spleen, and pancreas, have been, at times, apparently, benefited by hemlock. In mammary tumors and profuse secretion of milk

2 See Bayle, Bibl. Therap. i. 618.
3 Med. Obs. and Inq. iii. 400.
4 See Bayle, op. cit.
(galactorrhoea), a trial of it should never be omitted. In bronchocele it has been found efficacious by Dr. Gibson, Professor of Surgery in the University of Pennsylvania. In syphilis it is useful, by alleviating nocturnal pains, and in diminishing the tendency to spread of irritable sores. In chronic skin diseases (lepra, herpes, &c.) it is now but rarely employed.

2. As a cerebro-spinal agent (antispasmodic and anodyne).—The power possessed by conia of paralyzing the motor nerves, suggests the employment of hemlock as an antispasmodic. Hitherto, however, trials of it have been made in a few spasmodic diseases only, and those have not proved favourable to its reputation. In some spasmodic affections of the respiratory organs it has gained a temporary celebrity only. In hooping cough, Dr. Butter spoke favourably of it, as having the advantage over opium of not being liable to check expectoration. But though the violent and periodic fits of coughing are obviously of a spasmodic nature, and, therefore, apparently adapted for the use of hemlock, experience has fully proved that the disease is one which will run through a certain course. At the best, therefore, hemlock can prove a palliative only. In other forms of spasmodic cough, as well as in spasmodic asthma, hemlock deserves farther trial. In tetanus, conia or hemlock held out some hopes (fallacious, I am afraid) of doing good. Mr. Curling has kindly furnished me with the notes of a case which occurred in the London Hospital. A tincture of hemlock seeds was exhibited on the eighth day of the disease, at first in doses of $\frac{1}{2}$, every hour, which were increased in the course of the three following days to $\frac{1}{4}$, every quarter of an hour, until the patient (a man aged 46) had taken, in all, two pints! but without any decided effect on the spasms or brain. Morphia and laudanum were afterwards used, but the man died. A small quantity of conia, obtained from three ounces of the same tincture used in this case, killed a cat in less than four minutes. In a case of chorea, treated by Mr. Curling, no relief was obtained by the use of the above-mentioned tincture, given to the extent of three ounces in twelve hours. The patient (a young man) ultimately died, exhausted from the long-continued and violent convulsions of nearly all the voluntary muscles.

Hemlock has been frequently employed as an anodyne, and often with apparent relief. As, however, conia does not appear to have the same paralyzing influence over the sensitive, that it has over the motor nerves, some doubt has been raised on the real anodyne influence of hemlock. However, in tender glandular enlargements, in painful ulcers, in scirrhus and cancer, in rheumatism, and in neuralgia, hemlock has, at times, evidently mitigated pain; and its power of allaying troublesome cough, is, in some instances, referrible to its diminishing the preternatural sensibility of the bronchial membrane.

---

* United States Dispensary.
* Treat. on the Kink-cough. 1773.
Anaphrodisiac properties have been ascribed to hemlock, and hence this remedy has been used in nymphomania and satyriasis.

Administration.—Hemlock is used in the form of powder, tincture, extract, ointment, and poultice.

Antidotes.—No chemical antidote is known for hemlock, though it is not improbable that an infusion of galls might be serviceable, as mentioned for conia. The first object, therefore, is to evacuate the poison from the stomach; this is to be effected by the same means as directed for poisoning by opium. If the poison be suspected to have passed into the bowels, a purgative is to be administered, unless diarrhoea have come on. The subsequent treatment will depend on the symptoms: blood-letting is frequently required, to relieve the congested state of the cerebral vessels. Opium is generally prejudicial. Artificial respiration should not be omitted in extreme cases. As strychnia and nux-vomica appear to produce a condition of the spinal cord opposite to that of conia, would either of these agents be serviceable?

1. Pulvis Conii; Powder of Hemlock.—The powder, when properly prepared from the leaves, has the peculiar odour of the plant, and a fine green colour: but neither the odour nor the colour are absolutely indicative of activity. The test of the presence of conia is caustic potash, and, as the Edinburgh College properly observes, "the powder, triturated with aqua potassa, exhales a powerful odour of conia." But the odour of the volatile oil of the plant being very analogous to that of conia, creates some difficulty with inexperienced persons. The vapour of conia, evolved from powdered hemlock by potash, fumes with hydrochloric acid; but the same occurs with ammonia, set free by the same agent. As the powder, however well prepared, quickly spoils by keeping, it is not a preparation which deserves confidence, and should never be used if it have been kept beyond the year. The dose of it is three or four grains twice or thrice daily, the quantity being gradually increased until some obvious effect (nausea, dryness of the throat, giddiness, headache, or disordered vision) in the system is produced. As different parcels of the powder possess very unequal powers, it is necessary, when changing the parcels, to recommence with small doses. I have already (p. 1479) referred to the observation of Geiger as to the small quantity, or even entire absence, of conia, in the dried leaves of hemlock.

2. Tinctura Conii; Tincture of Hemlock. (Hemlock leaves, dried, 3v. [3ij. D.]; Cardamom seeds, bruised, 3j.; Proof Spirit, Oij. [Oj. wine-measure, D.]) Macerate for fourteen [seven D.] days, and strain. The formula of the Edinburgh College is as follows: "Fresh leaves of Conium, 3xij.; Tincture of Cardamom, Oss.; Rectified Spirit, Oiss. Bruise the hemlock leaves, and express the juice strongly; bruise the residuum, pack it firmly in a percolator; transmit first the tincture of cardamom, and then the rectified spirit, allowing the spirituous liquors to mix with the expressed juice as they pass through; add gently water enough to the percolator for pushing through the spirit remaining in the residuum. Filter the liquor after
agitation." — The process of the Edinburgh College yields a much more energetic preparation than that of the London and Dublin Colleges, as it obviates the necessity of drying the leaves, and, therefore, much deserves the preference. If, however, the percolation were dispensed with, and the tincture prepared merely by adding spirit (not tincture of cardamom) to the expressed juice, the process would be greatly improved. If the leaves have been sufficiently pressed, the percolation is scarcely necessary, and, therefore, only adds to the labour and expense of the process. Any active matter lost by omitting percolation, may be easily compensated for, by increasing the quantity of juice employed, the cost of which scarcely deserves notice. The employment of tincture of cardamom is objectionable, since it prevents the apothecary from forming a judgment of the colour, taste, and smell of, and the effect of potash on, this preparation. And lastly, if the percolation process be adopted, surely the directions of the Edinburgh College are too loose. The quantity of water which is to be employed "for pushing through the spirit" should be accurately defined, or it will be impossible to have preparations made at different times, and by different persons, of uniform strength. Good tincture of hemlock should evolve a strong odour of conia on the addition of potash. In 1837 I recommended the use of an alcoholic tincture of the bruised fruit. More recently, Dr. Osborne has advised the same. *Tinctura conii, L. D.* is given in doses of f s or f s j. which are to be gradually increased until some effect is produced. *Tinctura conii, E.* must be employed more cautiously; though the quantity of hemlock leaves used by the Edinburgh College would, if dried, be scarcely half that employed by the London and Dublin Colleges (as 1000 parts of the fresh leaves yield only 185 parts when dried, according to Henry and Guibourt). The drying, however, as I have already noticed, greatly deteriorates the activity of the leaves.

Succus Conii; Preserved Juice of Hemlock. — The method of preparing the preserved vegetable juices has been before described (see p. 365). Mr. Bentley informs me that from 1 cwt. of hemlock leaves gathered in May he procured twelve imperial quarts of juice. The preserved juice of hemlock appears to me to be an excellent preparation.

3. *EXTRACTUM CONII, L. E.; Succus inspissatus Conii, D.; Extract of Hemlock.* (Fresh hemlock leaves, lb. j.; bruise them, sprinkled with a little water, in a stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence, L. The Dublin College directs it to be prepared as the inspissated juice of Aconite. The following are the directions of the Edinburgh College: "Take of Conium any convenient quantity, beat it into a uniform pulp in a marble mortar, express the juice, and filter it. Let this juice be evaporated to the consistence of a very firm extract, either in a vacuum with the

---

\[^2\] Deb. Journ. xvi. 469.  
\[^3\] Pharm. Raisin. i. 27.
aid of heat, or spontaneously in shallow vessels exposed to a strong current of air freed of dust by gauze skreens. This extract is of good quality only when a very strong odour of conia is disengaged by degrees, on its being carefully triturated with aqua potassæ.”—Most of the extract of the shops is inert, or nearly so. “We were one day,” says Orfila, “in the shop of an apothecary, who had several times furnished us with the extract of hemlock, which we had administered to dogs to the dose of ten drachms, without producing any serious accident. We endeavoured to prove to him that the medicine was badly prepared; and, in order to convince him effectually, we swallowed, in the presence of several persons who happened to be in his shop, a drachm of this extract (seventy-two grains) dissolved in two drachms of water. We felt no effect from it, whilst twenty or thirty grains of the extract, well prepared, would have probably proved fatal to us. Let it be conceived now what advantage a person is likely to derive from such an extract, who takes one or two grains of it per day, or even thirty or forty, with the hope of getting rid of a scirrhous tumour, or of any other disease.”

The extract of hemlock contains very little conia; this has been shewn by Geiber and Christison, and has been verified by myself. From 5iv. of extract, procured from one of the most respectable drug houses in town, I was unable to procure any sensible quantity of this alkali. “From what has come under my own observation,” says Dr Christison, “the extracts of hemlock may become feeble, if not inert, in one or two ways,—either by the heat being continued after the concentration has been carried to a certain extent, or by long keeping. On the one hand, I have always observed, that from the point at which the extract attains the consistence of this syrup, ammonia begins to be given off in abundance, together with a modified odour of conia. And, on the other hand, I have found extracts, which were unquestionably well prepared at first, entirely destitute of conia in a few years,—a remark which applies even to the superior extract prepared by Mr. Barry, of London, by evaporation in vacuo.”

Mr. Brande observes that “the most active extract is that which is procured by moderate pressure from the leaves only; when the stalks and stems are used, and violent pressure employed, the extract is glutinous, dark-coloured, and viscid, and less active than in the former case, when it has a somewhat mealy consistency, and an olive-green colour. With every caution, however, on the part of the operator, the colour, odour, and efficacy of extract of hemlock, will vary with the season, and with the situation and soil in which the herb has grown. The best method of preparing this and similar extracts, consists in gradually heating the expressed juice to a temperature of about 212° [by which the vegetable albumen coagulates, and retains, mechanically or chemically, a portion of the active principle], then
to suffer it to cool, to strain it through moderately fine linen, and evaporate the strained liquor, and when it has nearly acquired a proper consistency, to add the matter which remained upon the strainer." One cwt. of hemlock yields from three to five lbs. of extract. If ammonia be evolved during the preparation of the extract, we may infer that decomposition of the conia is going on. However carefully extract of hemlock may be prepared, I prefer for medicinal use the tincture made with the expressed juice as before stated. The dose of the extract should, at the commencement, be two or three grains, and gradually increased until some obvious effect is observed.

4. PILULAE CONII COMPOSITAE, L.; Compound Pills of Hemlock. (Extract of Hemlock, 5v.; 1pecacuahantha, powdered, 5j.; Mixture of Acacia, as much as may be sufficient. Beat them together until incorpored.) — Antispasmodic, slightly narcotic, and expectorant. Used in spasmodic coughs, bronchitis, the incipient stage of phthisis, &c.—Dose, grs. v. to grs. x. twice or thrice daily.

5. UNGUENTUM CONII, D.; Hemlock Ointment. (Fresh leaves of Hemlock, Prepared Hogs' Lard, of each lbs. ij.; boil the leaves in the lard until they become crisp, then express through linen.) — It is employed as an anodyne application to foul, painful, and cancerous sores, to glandular and scirrhous swellings, and to painful piles. An extemperanceous substitute may be prepared with lard and the extract of hemlock.

6. CATAPLASMA CONII, L. D.; Hemlock Poultice. (Extract of Hemlock, 3ij.; Water, Oij. Mix, and add Linseed, bruised, as much as may be sufficient to make it of a proper consistence, L. The formula of the Dublin College is as follows: Leaves of Hemlock, dried, 3ij.; Water, Oiss. Boil down to a pint, and having strained the liquor, add as much of the same kind of liquor as is sufficient to form a cataplasm.) — A poultice of hemlock is sometimes employed as a soothing anodyne application to cancerous, scrofulous, venereal, and other foul ulcers. It is sometimes prepared with the unstrained decoction and bruised meal; occasionally the bruised leaves, or the dried herb with hot water, is used. Hemlock fomentation (fotus conii) is sometimes applied to painful swellings. It is prepared with the herb (fresh when it can be procured) and hot water.

14. CORIANDRUM SATIVUM, Linn. L. E. D.—THE OFFICINAL CORIANDER.

Sex. Syst. Pentandria, Digynia.
(Fructus, L.—Fruit, E.—Semina, D.)

History.—Coriander is mentioned by Moses •. It was used by Hippocrates 1. Dioscorides 2 and Pliny, also mention it. The Greeks called it κόρινον or κορίαννον.

---

1 Exod. xvi. 31.
3 Lib. iii. cap. 71.
4 Hist. Nat. lib. xx. cap. 82, ed. Valp.
Botany. **Gen. Char.**—Teeth of the **calyx** five, acute, unequal, persistent. **Petals** obovate, emarginate, with an inflexed lobe, the exterior radiating, bifid. **Fruit** globose, ten-ribbed, scarcely separating. **Mericarps** [half-fruit] with five primary, depressed, wavy ridges, and four secondary ones [besides the marginals] more prominent and keeled. **Channels** evittate. **Commissure** bivittate. **Carpospadium** in the middle face, semi-bifid, adnate at the base and apex. **Seed** excavated in the front, covered with a loose membrane.—**Smooth herbs. Stem** round. **Leaves** (upper ones at least) many cleft. **Umbel** with three to five rays. **Involucre** none. **Involucella** about three-leaved, halved. **Flower-bud** sometimes roseate. **Flowers** white. **Stylopodium** conical (De Cand.)

**Sp. Char.**—The only species.

**Root** tapering. **Stem** erect, twelve to eighteen inches high. **Leaves** scarcely stalked, all bipinnate and cut; the **leaflet**s of some of the lowermost wedge-shaped, or fan-shaped; acute notched; of the rest, in fine, linear segments. **Flowers** white, often with a reddish tint.

**Hab.**—Grows wild about Ipswich and some parts of Essex, but is not really indigenous. Native of the south of Europe. Cultivated in Essex.

**Description.**—The fruit, commonly termed **coriander seeds** (**fructus** seu **semina** **coriandri**), is globular, about the size of white pepper, of a grayish-yellow colour, and is finely ribbed. It consists of two hemispherical mericarps, adherent by their concave surfaces. Each mericarp has five primary ridges, which are depressed and wavy; and four secondary ridges, more prominent and carinate. The channels are without vittae, but the commissure has two. The odour of coriander is peculiar and aromatic.

**Composition.**—The odour, taste, and medicinal qualities of the fruit depend on volatile oil.

**Volatile Oil of Coriander (Oleum Coriandri).**—Yellowish; smells strongly and pretty agreeably of the coriander.

**Physiological Effects.**—Aromatic stimulant, like the other carminative umbelliferous fruits (p. 181).

**Uses.**—Dr. Cullen considered coriander as more powerfully correcting the odour and taste of senna than any other aromatic; and hence it was formerly a constituent of the compound infusion of senna, though now ginger is substituted for it. It is only employed in medicine as an adjuvant or corrigent. It is used, however, by the confectioners and distillers. It is a constituent of the confectio sennae.

—The dose of coriander is 5ss. to 5j.

**OTHER UMBELLIFERÆ, DIETETICAL OR POISONOUS.**

All the more important medicinal Umbelliferae have been noticed. It remains now to enumerate those plants in common use for dietetical purposes, or which are indigenous and poisonous.

Of the **Dietetical Umbelliferae** several have been already mentioned. To
these may be added Parsley (Petroselinum sativum) and Chervil (Anthriscus cerefolium), used as pot-herbs and garnishings; the Parsnip (Pastinaca sativa) and Skirret (Sium sisarum), employed on account of their esculent roots; Celery (Apium graveolens), an aceto-arious plant, the blanched leaf-stalks of which are eaten raw as a salad; Common Samphire (Crithmum maritimum), which is pickled; Eryngo (Eryngium campestre), the root of which is preserved, and eaten as a candy (Candied Eryngo; Radix Eryngii condita); and Lovage (Levisticum officinale), used by distillers for preparing a liqueur termed lovage.

The Poisonous Indigenous Umbelliferae are acro-narcotics. When swallowed they cause gastric irritation, giddiness, delirium, convulsions, and coma. The most important (after Conium maculatum, before mentioned), are Fool’s Parsley (Echiocephalus), which contains a peculiar alkaloid called cynapium; Skirret Water-dropwort (Enantia crocata); Celery-leaved Water-dropwort (Enantia apiolata) and Water Hemlock (Cicuta virosa).

Order LVI.—Cucurbitacea, Jussieu.—THE GOURL TRIBE.

Essential Character. —Flowers usually unisexual, sometimes hermaphrodite. Calyx five-toothed, sometimes obsolete. Corolla five-parted, scarcely distinguishable from the calyx, very cellular, with strongly-marked reticulated veins, sometimes fringed. Stamens five, either distinct or cohering in three parcels; anthers two-celled, very long and sinuous. Ovary inferior one-celled, with three parietal placenta; style short; stigmas very thick, velvety or fringed. Fruit fleshy, more or less succulent [occasionally dry, opening by valves], crowned by the scar of the calyx, one-celled [in some Momordicas three- or four-celled], with three parietal placenta. Seeds flat, ovate, enveloped in an aril, which is either juicy, or dry and membranous; testa coriaceous, often thick at the margin; embryo flat, with no albumen; cotyledons folicious, veined; radicle next the hilum. Roots annual or perennial, fibrous or tuberous. Stem succulent, climbing by means of tendrils formed by abortive leaves (stipules, St. Hil.) Leaves palmated, or with palmated ribs, very succulent, covered with numerous asperities. Flowers white, red, or yellow (Lindley).

Properties. —Variable; suspicious. The roots and fruits of many species are drastic cathartics. The fruits of other species are employed as articles of food.

1. CUCUMIS COLOCYNTHIS, Linn. L. E. D.—THE BITTER CUCUMBER, OR COLOCYNTH.

Sex. Syst. Monoeia, Syngenesia* (Linn.)
(Pepomum Pulpa Exsiccata, L.—Pulp of the Fruit, E.—Fructus pulpa, D.)

History.—Colocynth is supposed to be the plant termed, in the Old Testament, the wild vine (literally the vine of the field), whose fruit the Sacred historian calls pakkoth, a word which in our trans-

* The followers of Linnaeus are by no means agreed with their great master, or among themselves, as to the true order of Cucumis, and some other cucurbitaceous genera. The male flowers have, apparently, three stamina; but of these two have an anomalous structure, and are regarded by some botanists as stamina with doubly-folded anthers; by others as being composed each of two adherent stamina. Hence some have regarded the flowers as triandrous, some as pentandrous; the latter, taking into account the adhesion of the stamina, consider them to be syngenesious, triadellphous (polyadellphous), or monadelphous. So that while Linnaeus adopted Monoeia, Syngenesia, as the class and order, Turton placed Cucumis in Monoeia, Triandria; Smith in Monoeia, Pentandria; or Mon. Polyadellphia (see his Intro. to Botany, p. 363, 4th ed.); Willdenow, Persoon, Loudon, &c. in Monoeia, Monadelphia; while Sprengel, in conformity with his modification of Linnaeus’s sexual system, places it in Monadelphia, Monandria.

† 2 Kings, iv. 30.
ination is rendered wild gourd. To understand the passage referred to, it is to be remembered that different kinds of gourd are commonly used in the East for shredding into pottages. Colocynthis was employed by the Greeks at a very early period. Hippocrates employed κολοκυνθική γύρα (cucurbita sylvestris, or wild gourd) only in pessaries for bringing on menstruation. Dioscorides gives a good description of colocynthis. Pliny calls it colocynthis.

Botany. Gen. Char.—Calyx tubular-campanulate, with subulate segments scarcely the length of the tube. Petals scarcely adherent to each other and to the calyx. Males: stamina five, triadephous. Females: stigmas three, thick, bipartite. Fruit (peponida) three- to six-celled. Seeds ovate, compressed, not marginate.—Flowers monocious or hermaphrodite, yellow (De Cand.)

Sp. Char.—Stem procumbent, somewhat hispid. Leaves cordate-ovate, many-lobed, white, with hairs beneath; the lobes obtuse; the petioles as long as the lamina. Tendrils short. Flowers axillary, solitary, stalked; females with the tube of the calyx globose, somewhat hispid, the limb campanulate, with narrow segments. Petals small. Fruit globose, smooth, yellow when ripe, with a thin solid rind and a very bitter flesh (De Cand.)

Root annual, white, branched. Stems herbaceous, angular, branched. Leaves bright green on the upper side, paler and clothed with whitish hairs underneath. Tendril filiform, branching, opposite each leaf. Calyx five-toothed. Corolla yellow, with greenish veins. Males: stamens three, short, free; two of which have doubly-bent anthers, or consist of two anthers; in which case the number of stamens is really five. Females: ovarium round, smooth, inferior; style short, cylindrical; stigmas three; filaments without anthers. Fruit (pepo) about the size of an orange, with a thin but solid rind.

Hab.—Japan, the sandy lands of Coromandel, Cape of Good Hope, Syria, Nubia, Egypt, Turkey, and the islands of the Grecian Archipelago. Cultivated in Spain.

Preparation of the Fruit.—The fruit is gathered in autumn, when ripe and yellow, and in most countries is peeled and dried, either by the sun or by stoves.

Commerce.—Colocynthis is imported from Spain (Almeria, Gibraltar, Cadiz, Malaga, &c.), Trieste, Smyrna, Alexandretta, Mogadore, &c. It comes over in cases, casks, boxes, &c. In 1839, duty (2d per lb.) was paid on 10,417 lbs.

Description.—The fruit called colocynthis or coloquintida (colocynthis; poma colocynthidis) is imported either peeled (generally), or sometimes unpeeled. Its pulp (pulpa colocynthidis exsiccata) is nearly white, inodorous, light, spongy, porous, tough, intensely and nauseously bitter. The seeds (semina colocynthidis) are smooth, either white or yellowish white (white colocynthis seeds), or brownish (black

---

* Picture Bible, ii. 226.
* Pages 263 and 265, ed. Foss.
* Lib. iv. cap. 178.
colocynth seeds), bitter (especially the dark-coloured ones) and in-
odorous. By digesting them in repeated portions of boiling water, and
afterwards well washing them, the greater part of the bitterness
may be extracted. Two kinds of colocynth, distinguished as Turkey
and Mogadore colocynth, are known in commerce.

a. Turkey Colocynth: Peeled Colocynth.—This is imported from the
Levant, Spain, &c. The usual size of each pepo is about two or
three inches in diameter; the shape is more or less globular, accord-
ing to the evenness with which the rind has been removed, and the
degree of contraction in drying; the colour is white, or pale yellow-
ish white. One hundred parts by weight are said to consist of 28
parts pulp, and 72 parts seed.

β. Mogadore Colocynth: Unpeeled Colocynth. — The pepo of this
kind is larger than the preceeding, and is covered with a yellowish,
smooth, firm rind. It is imported from Mogadore in small quantity
only, and is principally used by druggists for shew-bottles.

The seeds of colocynth are usually described as white, perfectly bland, and
highly nutritious. Captain Lyon⁵ states they constitute an important article of
food in Northern Africa. "The seeds of Cucurbitaceae," says De Candolle⁶,
"do not participate in the qualities of the pulp which surrounds them; they are
bland, demulcent, of an oily nature, and susceptible of easily taking the form of
an emulsion." These statements do not apply to Colocynth seeds of commerce,
which I never found devoid of bitterness; and Hillefeld⁷ says a scruple of them
purged a dog. Heise⁸ found them poisonous.

Composition.—In 1817, Braconnor⁹ analyzed the watery extract.
The pulp was analyzed in 1818 by Meissner." Vauquelin⁹ examined the active principle.

<table>
<thead>
<tr>
<th>Meissner’s Analysis.</th>
<th>Braconnor’s Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter matter (Colocynthin)</td>
<td>Bitter matter (Colocynthin) with some</td>
</tr>
<tr>
<td>Extractive</td>
<td>resin</td>
</tr>
<tr>
<td>Bitter fixed oil</td>
<td>41&quot;4</td>
</tr>
<tr>
<td>Resin insoluble in ether</td>
<td>10&quot;0</td>
</tr>
<tr>
<td>Gum</td>
<td>4&quot;2</td>
</tr>
<tr>
<td>Bassorin</td>
<td>13&quot;2</td>
</tr>
</tbody>
</table>
| Gummy extract (obtained from the lig-
  neous fibre by potash)              | Resin                                                   |
| Vegetable jelly                      | 9"5                                                     |
| Phosphate of lime and magnesia       | Vegetable jelly (pectin)                                 |
| Ligneous fibre                       | 3"0                                                     |
| Water                                | Azotic matter                                           |
|                                      | 17"0                                                    |
| Colocynth Pulp                       | Acetate of potash                                       |
                                      | 8"6                                                     |
                                      | Deliquescent salt of potash not soluble in              |
                                      | water                                                   |
                                      | 5"7                                                     |
                                      | Alcohol                                                 |
                                      | 7"1                                                     |

Colocynthin: Colocynthite; Bitter or Purgative Principle of Colocynth.—
By digesting the watery extract of colocynth in alcohol, and evaporating the
tincture thus procured, we obtain a mass, composed, according to Vauquelin, of
a bitter principle and acetate of potash. A little water readily dissolves the
latter, leaving the bitter resinoid matter, to which the name of Colocynthin has

been applied. It is a yellowish brown, translucent, brittle substance, dissolving in water, but much more readily in alcohol. The aqueous solution is precipitated by the tincture of galls, and by some metallic solutions (protosulphate of iron, sulphate of copper, and nitrate of mercury).

Chemical Characteristics.—The cold infusion is pale yellow, and very bitter; nitrate of mercury, sulphate of copper, and acetate of lead, cause in it gelatinous-flocculent precipitates, (pectates?); sesquichloride of iron and tincture of nutgalls do not render it turbid. Powdered colocynth gives scarcely any evidence of the presence of starch, on mixing it with tincture of iodine and water.

Physiological Effects. a. On Animals generally.—The animals on whom the action of colocynth has been examined, are horses, dogs, sheep, and pigs. On dogs its operation appears to be analogous to that on man. Thus Viborg, states that two drachms caused in a dog violent vomiting and purging; and Orfila has shewn that three drachms introduced into the stomach (the oesophagus being tied) are capable of causing death. It is remarkable, however, that its operation on horses is comparatively slight, at least according to the testimony of Viborg, Bourgelat, and Moiroud. The last-mentioned writer says he has given four drachms to a horse without exciting the least disorder; and he adds that another cucurbitaceous plant (briony) has likewise very little effect on the horse.

β. On Man.—Thunberg tells us, that at the Cape of Good Hope, the colocynth fruit is said to be eaten when pickled, both by the natives and colonists, although it is very bitter. Mr. Dunsterville, Surgeon, of Algoa Bay, formerly one of my pupils, tells me that the colocynth growing there does not possess the least bitterness. Is it Cucumis Colocynthis?

Colocynth taken in small or moderate doses acts as a very safe and useful purgative. Its operation is not limited to the acceleration of the vermicular movements, but is extended to the secreting and exhalting vessels of the alimentary canal, whose functions it promotes. Moreover, it stimulates the other abdominal organs; and after the absorption of its bitter acrid principle, it not unfrequently proves diuretic. In full doses, it operates as a very active or drastic cathartic and hydragogue; but I have never seen any ill effects from its use. These remarks apply to the compound extract, the only preparation of colocynth of which I have personal experience. It would appear, partly from observation in the human subject, and also from the experiments of Orfila on dogs, that colocynth is one of those purgatives which exert a specific stimulant influence over the large intestines.

In excessive doses, colocynth, both in powder and decoction, has on several occasions operated as a mortal poison, causing violent vomiting and purging, griping pain, and other symptoms of gastro-intes-
1496 ELEMENTS OF MATERIA MEDICA.

A tea-spoonful and a half of the powder (about 5 i.s.) has proved fatal. In a case related by Ortila there were, besides the preceding symptoms, dimness of sight and slight delirium. In M. Carron d'Anmecy's case the purging was followed by extreme tension and tenderness of belly, suppression of stools and urine, retraction of the testicles, and priapism. On a post-mortem examination there were found, besides the usual evidences of inflammation of the bowels, traces of inflammation of the liver, kidneys, and the bladder.

Considered in relation to other cathartics, colocynth will be found to rank near gamboge, from which it is distinguished by at least two circumstances: first, its cathartic effect is not the mere result of its topical acrid operation, but, in part, of its specific influence over the bowels; secondly, its action on the large intestine is more manifest than that of gamboge. In the latter property, colocynth approximates to aloes; but while it greatly exceeds the latter in its cathartic and hydragogue effects, it is devoid of the tonic influence possessed by aloes, when used in small doses.

Uses.—Besides being useful as an ordinary purgative, colocynth is adapted for acting as a stimulus to the abdominal and pelvic vessels and nerves in cases of torpor or inactivity, and, on the principle of counter-irritation already explained (p. 145), for determining from other organs. The objections to its use are acute inflammatory affections of the alimentary canal, diseases of the large intestine, &c. The following are the principal cases in which it is employed.

1. In Habitual Constipation.—As an ordinary purgative for keeping the bowels regular, the compound extract of colocynth is in common use both among the public and medical men. It operates mildly, certainly, and effectually. I am acquainted with individuals who have taken this substance for years, without suffering any inconvenience therefrom. The simple extract is sometimes employed as a substitute, but is less advantageous.

2. In Alvine Obstruction.—In some cases of obstinate constipation, with sickness and other symptoms of an extremely irritable stomach, the compound extract of colocynth occasionally proves invaluable. Occupying but a small bulk, it is retained on the stomach, and succeeds in producing alvine evacuations, where the ordinary liquid purgatives fail, in consequence of being vomited up. Doubtful cases of intus-susception and hernia, even with stercoraceous vomiting, I have seen completely relieved by it. More than once have I known an operation averted by its use, in those who, in addition to the above symptoms, had old hernia, which led the surgeon to suspect strangulation. A slight degree of abdominal tenderness is not to be considered as absolutely prohibiting its use. Occasionally the extract is rubbed down with soap and water, and administered as an enema (see Enema Colocynthidis).

3. In Diseases of the Brain.—In apoplexy, or a tendency thereto,

---

1 Christison, On Poisons. Toricol, Gen. Ibid.
in paralysis, insanity, violent headache, &c. colocyntli is sometimes employed with good effect, on the principle of revulsion or counter-irritation.

4. In Dropsy.—In dropical affections, colocyntli has been used as a hydragogue. But in this country it is less frequently employed for this than for other purposes: various other hydragogues (especially elaterium and jalap) being usually preferred. It is sometimes employed as a diuretic; being given in the form of decoction. Hufeland regarded it as a most effectual diuretic in persons of a cold and sluggish habit of body.

5. In Amenorrhœa and Chlorosis.—In some cases of obstructed menstruation, benefit is obtained by the use of drastic purgatives, like colocyntli, which act on the rectum, and, by contiguous sympathy, affect the uterus.

Administration.—The powder, which is rarely used, may be administered in doses of from two to eight or ten grains, intimately mixed with some mild powder (gum, or starch). The decoction (prepared by boiling 3ij. of cooclynth in Oij. of water for six minutes, and, according to Hufeland, adding to the strained liquor, f3ij. of the spirit of sulphuric ether, and f 3j. of syrup of orange peel) is given in doses of f3ss. three times a day. The tincture (prepared according to the Prussian Pharmacopeia, by digesting 3j. of colocyntli pulp and 5j. of star-anise in lb. j. of rectified spirit) is given in doses of twenty drops. Colocynth has been employed iatapeutically (see p. 148) by Dr. Chrestien. The tincture of colocynth, or twenty grains of the powder mixed with hog’s-lard, were used by way of friction on the abdomen and inner side of the thighs, in disorders of the intellectual functions. Diuresis was a common effect. The following are the officinal preparations of colocynth.

Antidote. See Elaterium, p. 1509.

1. EXTRACTUM COLOCYNTHIDIS, L. E. D.; Extract of Colocynth: (Colocynth pulp [in pieces, L.] lb. j.; Water [Distilled, L.] Congij. [Cong, y wine measure, D.]. Mix and boil with a slow fire for six hours, frequently adding distilled water, that it may always fill the same measure. Strain the liquor while hot; lastly, evaporate it to a proper consistence, L.—The directions of the Edinburgh College are essentially the same, except that the evaporation is directed to be effected by the vapour bath.—The Dublin College directs the mixture to be boiled down to four pints, and the liquor filtered while hot; then evaporated to a proper consistence.)—When the decoction is very concentrated, it readily gelatinizes on cooling; hence it is necessary to strain it while hot. At Apothecaries’ Hall, the produce of 100 lbs. of pulp is about 65 lbs. of extract. Extract of colocynth is an objectionable preparation, as it is very apt to become either mouldy or tough and hard by keeping.—The dose of it is grs. v. to 3j.

2. EXTRACTUM COLOCYNTHIDIS COMPOSITUM, L. D. Pilulae Colocynthidis, E.; Compound Extract of Colocynth. (Colocynth pulp, cut

---

1 Fehrle, Mat. Med. i. 119, 2nd ed.
2 Méth. Intrad. p. 172.
3 Barker and Montgomery, Obs. on the Dub. Pharm.
in pieces, \(\frac{3}{4}\); Purified Extract of Aloes [Hepatic Aloes, D.] \(\frac{3}{4}\); Scammony, powdered, \(\frac{3}{4}\); Cardamom Seeds, powdered, \(\frac{3}{4}\); Soap, \(\frac{3}{4}\); Proof Spirit, Cong. j. [wine measure, D.]

Macerate the colocynth in the spirit, with a gentle heat, for four days. Strain the spirit, and add to it the aloes, scammony, and soap: afterwards evaporate to a proper consistence, the cardamom being mixed towards the end, L.—The process of the Dublin College is essentially the same.—The process of the Edinburgh College is as follows:—"Socotrine or East Indian Aloes, and Scammony, of each, eight parts; Colocynth, four parts; Sulphate of Potash, and Oil of Cloves, of each, one part; Rectified Spirit, a sufficiency. Pulverize the aloes, scammony, and sulphate of potash, together; mix with them the colocynth previously reduced to fine powder; add the oil of cloves; and, with the aid of a small quantity of rectified spirit, beat the whole into a proper pill mass, which is to be divided into five-grain pills."—Compound extract of colocynth, made according to the London Pharmacopœia, is an exceedingly valuable preparation; but owing to carelessness, inattention, fraud, or ignorance, the preparation of the shops is very unequal in its powers.

The aloes used in the process should be purified (by straining) as directed by the London College: the necessity of this will be obvious to any one who has ever seen a cwt. of aloes melted. Should the Cape variety be substituted for the finer kind of aloes, the odour would detect the fraud. The scammony employed should be of the best quality (see p. 1265). If the common (i.e. adulterated) kinds be used, the activity of the preparation is thereby deteriorated. If the compound extract, rolled into a ball and dropped into water, effervesce on the addition of hydrochloric acid, we may infer that the scammony employed was adulterated with chalk. If the filtered decoction, slightly acidified, become blue or purplish on the addition of tincture of iodine, the presence of some starchy substance (as jalap or adulterated scammony) may be inferred. The mode of detecting gamboge will be described hereafter (see Gamboge). If colocynth seeds have been employed as a substitute for the pulp, the tenacity of the extract, I am told, is greatly deteriorated. Some druggists substitute oil of cardamoms for the powder of the seeds, and by this means increase the odour of the preparation; but unless some inert powder be added, to compensate for the powder of the seeds omitted, the strength of the preparation would be somewhat greater than that intended in the Pharmacopœia.

Compound extract of colocynth is a powerful, sure, yet safe cathartic. Its uses are the same as those of colocynth before described. The dose of it is from five grains to a scruple. Calomel is frequently given in combination with it. The tartare cathartica composita, U. S. (before noticed, p. 746) contains the compound extract of colocynth, extract of jalap, and calomel. Extract of hyoscymus is frequently given in conjunction with the compound extract of colocynth. (See pilulae colocynthidis et hyoscyami, E.)

In the shops a cheap substitute for the compound extract of colocynth is often sold under the name of pill cochiae (pilulae coeciae, or
pilula cochiniae minores of Galen). The substitute sold under this name at Apothecaries’ Hall, London, is the pilulae colocynthidis, Ph. Ed. without the sulphate of potash.

Colocynthis is a constituent of Morison’s Pills.  

3. PILULAE COLOCYNTIDIS ET HYOSCYAMI, E.; Pills of Colocynth and Henbane.—(Colocynth-pill mass, two parts; Extract of Hyoscyamus, one part. Beat them well together, adding a few drops of rectified spirit, if necessary; and divide the mass into thirty-six pills.)—Extract of hyoscyamus diminishes the pain and griping frequently experienced from the use of colocynth, but does not injure its evacuant properties. Both Sir H. Halford and Dr. Paris bear testimony to this.—The dose of this pill is grs. v. to grs. xv.

4. ENEMA COLOCYNTIDIS, L.; Colocynth Glyster.—(Compound Extract of Colocynth, 3/4; Soft Soap, 3/4; Water, 1/4. Mix, and rub them together.)—A useful cathartic enema in obstinate constipation, whether arising from colic, or from other non-inflammatory conditions.

2. MOMORDICA ELATERIUM, Linn. L. E. D.—SQUIRTING CUCUMBER.

Ecbalium officinale, Nees & Ebermaier.
Ser. Syst. Monocica, Syngenesia. Linn. (Pepones recentes, L.—Feculence of the juice of the fruit, E.—Fructus; Fecula, Folia; D.)

History.—The term ἐλαρήπον (from ἔλαυνω, I impel or urge forward) was employed by the Greeks to signify, not merely a medicine prepared from the σίκυς ἄγριος, or wild cucumber (Momordica Elaterium), but also any purgative substance. Hippocrates employed the root and leaves of the plant, as well as ἐλαρήπον, in medicine, Dioscorides minutely describes the method of preparing ἐλαρήπον by drying the feculence of the expressed juice of the fruit, and making it into troches. Pliny calls the plant cucumis sylvestris, and gives a short account of the method of making elaterium. C. Bauhin terms the plant cucumis asinus, or asses’ cucumber.

Botany. Gen. Char.—Flowers monoeious, yellow, or white; with a filiform peduncle having one bract (always ?). Males: calyx five-cleft, with a very short tube. Corolla five-parted. Stamens triadelpous; anthers connate. Females: filaments three? (rather five, triadelpous), sterile. Style three-cleft. Ovarium bilocular. Fruit often (always ?) muricate, opening with elasticity when ripe. Seeds compressed, reticulated when ripe (always ?). (De Cand.)

Sp. Char.—Hispid, rough, glaucous. Stem short, without tendrils

2 Pharmacologia, i. 299, 6th ed.
3 See the note to Cucumis Colocynthis, p. 1492.
4 Frevisus, Econom. Hipp.
5 Opera, ed. Rea, pp. 415, 547, and 877.
6 Lib. iv. cap. 155.
8 Pinax, 311.
Leaves cordate, somewhat lobed, crenate-dentate, very rugose on long stalks. Fruit ovate, obtuse, hispid-rough, with long peduncles. Seeds chestnut-brown (De Cand.)

Root annual. Stem thick, round, trailing, and branching. Leaves obtuse, grayish, and strongly reticulated on the under side; petioles long and bristly. Flowers axillary; the males form racemes of five or six flowers. Calyx adherent, with five, lanceolate, acute teeth. Corolla campanulate, yellow, reticulated with green veins. Males: Stamina three, two of which bear doubly-folded anthers [or five, four of which cohere, so as to form two bundles of two anthers each]. Females: filaments three, sterile; ovarium inferior, one celled (spuriously three-celled); style simple; stigmas three, bifid. Pepo small, ellipitical, pedunculated, grayish-green, covered with soft prickles; when ripe separating from its stalk, and expelling, with considerable violence, its brown seeds, and a thin mucus through the aperture at the insertion of the stalk.

The phenomenon of the expulsion of the seeds of this plant has acquired, of late years, increased interest, from the circumstances of Dutrochet having adduced it as one of the effects of endosmosis. It is well known that when two fluids of unequal density are separated from each other by membrane (animal or vegetable,) a double permeation of fluids takes place,—that is, each fluid passes through the membrane, and mixes with the other fluid; the current in one direction is called endosmosis, that in the opposite direction exosmosis. The instrument employed by Dutrochet in conducting his experiments he called an endosmometer: it consists of a bell-shaped glass vessel (a bottomless bottle, for example), closed at the lower end by bladder, at the neck by a cork, through which passes a straight tube; or we may have a curved tube issuing from the side of the neck (as in Fig. 278).

If syrup be put into the bell, and the bell then immersed in water, a portion of syrup will exude through the bladder, while a larger quantity of water will pass in; and if mercury be placed in the curved portion of the tube (as in Fig. 278), the liquid metal is pushed up. If, on the other hand, the bell contain water, and be immersed in syrup, the stronger current is from within outwards. In other words, the stronger current is, in general, from the lighter towards the denser fluid. Hence we comprehend why cherries and plumbs shrivel when
preserved in syrup, but remain plump in brandy: in the first place exosmosis preponderates, because the syrup is denser than the juice of the fruit,—in the second, endosmosis, because the juice is denser than the brandy: the separating membrane is, of course, the skin or epicarp of the fruit.

Now to apply these facts to the phenomena of the Elaterium apple. In the centre of this fruit, and surrounding the seeds, is a very singular variety of organic matter, which appears like thick mucus. It is called by some botanists placental matter (see fig. 277, e.) More external to this, that is, in the tissue of the pericarp, there is another organic liquid, whose density is less than that of the placental matter. Now these two fluids being separated from each other by membrane, are in the exact condition for the operation of endosmosis; consequently the central cell gradually becomes very much distended (at the expense of the liquid in the tissue of the pericarp), and ultimately gives way at the weakest point—namely, where the peduncle is articulated with the fruit, and the contents of the cells are expelled with great violence, from the sudden contraction of the distended tissues.

Seat of elaterium.—Some years since Dr. Clutterbuck a ascertained that the active substance, elaterium, "is neither lodged in the roots, leaves, flowers, nor stalks, in any considerable quantity; nor is it to be found in the body of the fruit itself, or in the seeds contained within it; it was only in the juice around the seeds, therefore, that it could be looked for," and here it was found.

The precise situation of it will be readily comprehended by inspecting a transverse section of the elaterium pepo (see fig. 277, c.). We observe that the external portion of the pericarp (namely, the epicarp) is furnished with rigid hairs; within the epicarp is a whitish sarcocarp, forming what Dr. Clutterbuck terms the body of the fruit. The centre of the fruit is divided into three cells, by projections of the three parietal placentae to which the seeds are attached. Between these projections, and surrounding the seeds, is the pulp, the placental matter, or the juice around the seeds (Clutterbuck). It is paler than the sarcocarp, and is composed of a very lax tissue, which, as the fruit maturates, takes on, says Aug. St.-Hilaire, a gelatinous consistence, becomes disorganized, and melts into water.

"The centre of the fruit of Momordica Elaterium," says Dutrochet, "contains a very singular organic substance, and which has no resemblance to any other vegetable tissue. It seems to be a green very thick mucus. Viewed by the microscope, it appears to consist of an immense quantity of very small globules, agglomerated sometimes confusedly, sometimes so as to form irregular striae. This substance is penetrated by a whitish liquid, by a sort of emulsion, which is so much the more dense as we observe it at an epoch nearer maturity. This aqueous liquid escapes immediately we open the green fruit. By the microscope we see some almost imperceptible globules which swim in this liquid. At the epoch of maturity this whitish liquid is much more abundant, and at the same time much denser; the globules, which it holds in suspension, have become much larger."

Hab.—South of Europe. Common on rubbish in the villages of Greece and the Archipelago. A few acres of it are annually cultivated at Mitcham.

---

Extraction of Elaterium.—We are indebted to Dr. Clutterbuck for the present improved method of manufacturing elaterium.

**a. Dr. Clutterbuck's Process.**—"The cucumbers should be gathered when nearly as ripe as possible, and without violence that might endanger their bursting. They should then be wetted by the affusion of cold water, that less of the juice when they are cut may adhere to the external surface. In this state they should be cut through longitudinally, and the juice allowed to strain through a fine sieve, placed in a large earthenware vessel. The seeds and surrounding pulp should be scooped out upon the sieve, and washed with repeated affusions of cold water, by which they will be freed from all adhering juice. Something will be saved also by afterwards rinsing the split cucumbers themselves in cold water, from which a portion of elaterium may be collected.

"After standing a few hours a sediment is formed, from which the clear liquor is to be poured off; it is then to be thinly spread on fine linen, and exposed to the air to dry; a gentle warmth may be employed without injury; but the access of sunshine destroys the fine green colour which the substance otherwise acquires." From forty fruits, Dr. Clutterbuck obtained only six grains of elaterium. The elaterium thus procured is of the finest quality; but the product is very small.

**b. Process of the British Pharmacopoeias.**—The London College gives the following directions for its preparation:—Slice ripe wild cucumbers, and strain the juice, very gently expressed, through a very fine hair-sieve; then set it by for some hours, until the thicker part has subsided. The thinner supernatant part being rejected, dry the thicker part with a gentle heat. — The processes of the Edinburgh and Dublin Colleges are essentially the same.

**γ. Process actually followed.**—The following is the mode of preparation which I have seen practised at Apothecaries' Hall, London:—The fruits are cut longitudinally in halves by women, and are then placed in a hempen cloth and put into a common screw press. Apparently a tolerable pressure is applied but for a few minutes only, being removed before all the juice has ceased running out. A greenish slightly turbid liquor runs out. When the fruits are taken out of the press they are but very slightly crushed, so that the pressure cannot have been great. The juice as it runs from the press falls into a hair-sieve, through which it flows into a cylindrical-lipped glass jar. Here it is allowed to remain for about two hours, in which time a greenish fæcula has deposited. The supernatant liquor is then carefully poured off, and the thicker liquid at the bottom is placed on a paper filter supported by a cloth one stretched on a wooden frame. A bitter, yellowish-brown (sherry-coloured) liquor runs through, and a green mass is left on the filter. The latter is then carefully dried by a stove, and constitutes the finest elaterium. The mother liquor which was poured off from the deposit is placed in shallow brown pans, and there lets fall a fresh deposit, which when separated and dried forms a paler elaterium.

After the elaterium has deposited from the juice, a mucilaginous matter subsides, which greatly deteriorates the elaterium (if it has not been previously separated), and renders it when dry, dark, gummy, and much curled.

**Theory of the Process.**—Dr. Clutterbuck's experiments have shown that the finest elaterium is obtained without pressure from the fruits when nearly as ripe as possible. In practice, however, pressure must be employed; because the cucumbers must not be too ripe when gathered, or they are apt to burst during their journey to town, or by handling; and in this imperfectly ripe state the juice does not flow from them until pressure be employed.

If the juice of one of the fruits be received on a plate of glass, it
is at first nearly colourless and transparent. In a few minutes, however, by exposure to the air, it becomes slightly turbid (milky); and small white coagula are formed in it. By slow and spontaneous evaporation crystals of a rhomboidal figure are perceptible on the glass when examined by a magnifier. These crystals are elaterin. They are probably formed by the influence of the air on the juice. Elaterium of commerce consists essentially of this elaterin contaminated with the green colouring matter, cellular tissue, and starch, expressed from the fruit, and mixed with the residue obtained by drying the bitter liquor above referred to, with which the tissues and elaterin were moistened.

Description. — The Elaterium (elaterium : extractum elaterii, L. E. D. seu elaterium, D.) of commerce, is a very variable article. Two kinds are distinguished, the English and the Maltese.

2. English Elaterium (Elaterium anglicum) is manufactured at Apothecaries’ Hall, at Mitcham, and perhaps at other places. The finest (elaterium album, Auct.) occurs in light, friable, thin, very slightly curled flakes, or flat cakes, or fragments, which frequently bear the impression of the paper or muslin on which the elaterium was dried. Its colour is pale, greyish green, which by exposure becomes yellowish. Its taste is acrid and bitterish; it has a faint animal odour (not very dissimilar to that of ergot of rye), but combined with a fragrancy which reminds me of senna or tea. By keeping nine or ten years, a sample of good elaterium in my museum has assumed a sparkling appearance, as if it contained very minute crystals.

Inferior kinds (elaterium nigrum, Auct.) are sometimes hard, break with difficulty, or with a resinous fracture, are much curled, gummy, and dark coloured (brown or olive-green). They are probably prepared from the juice, after the finest elaterium has been separated. In my museum, I have several varieties of this inferior kind, which were collected by Dr. Clutterbuck. One is in the form of a brownish powder.

Dr. Clutterbuck states, that of the best specimens of elaterium from Apothecaries’ Hall, spirit dissolves more than half; while of inferior sorts, a fourth part only is dissolved. Mr. Barry says that the solubility of elaterium, manufactured by Dr. Clutterbuck’s process, is as follows:

<table>
<thead>
<tr>
<th>Ten grains of Elaterium, manufactured according to Dr. Clutterbuck’s process.</th>
<th>Dissolved in spirit, of Specific Gravity 0·809.</th>
</tr>
</thead>
<tbody>
<tr>
<td>By Messrs. Allen and Co.</td>
<td></td>
</tr>
<tr>
<td>1st sample</td>
<td>5·5 grains.</td>
</tr>
<tr>
<td>2d sample</td>
<td>6·2 grains.</td>
</tr>
<tr>
<td>3d sample</td>
<td>6·4 grains.</td>
</tr>
<tr>
<td>At Apothecaries’ Hall</td>
<td>6 grains.</td>
</tr>
</tbody>
</table>

2. Maltese Elaterium (Elaterium melitense). — This is imported from
Malta. It is in much larger flakes than the best English elaterium, and frequently has some adherent paper on which it has been dried; its colour is much paler, sometimes with hardly a trace of green. Some specimens are more friable and softer, and occasionally are rather chalky to the touch. My specimens are mixtures of chalk and starch; hence they effervesce with acids, and become blue with iodine. I am assured that Maltese elaterium is mixed, in this country, with buckthorn juice, to deepen its colour, and promote its purgative operation.

Composition.—Braconnot analyzed the expressed, boiled, filtered, and evaporated juice of the plant. Soon after Dr. Clutterbuck's experiments on elaterium, Dr. Paris analyzed this substance. In 1831, Mr. Hennell published an analysis of it. In 1835, Landerer examined the juice of the fruit growing in Nauplia (Napoli). Furthermore, the active principle of elaterium was examined in 1831 by Dr. Morries, and afterwards by Marquart.

<table>
<thead>
<tr>
<th>Dr. Paris's Analysis</th>
<th>Mr. Hennell's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elatin 1.2%</td>
<td>Crystallizable substance (Elaterin) 44%</td>
</tr>
<tr>
<td>Bitter matter 2.6%</td>
<td>Green resin 17%</td>
</tr>
<tr>
<td>Extractive 2.8%</td>
<td>Starch 6%</td>
</tr>
<tr>
<td>Fecula 0.5%</td>
<td>Woody fibre 27%</td>
</tr>
<tr>
<td>Gluten 2.5%</td>
<td>Saline matters 7%</td>
</tr>
<tr>
<td>Woody matter 0.4%</td>
<td>Elaterium 101%</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Elaterium 100%</td>
<td></td>
</tr>
</tbody>
</table>

1. **Elaterin (Elaterine; Momordicine).** Dr. Clutterbuck shewed, in 1819, that the active principle of elaterium was insoluble in water, but soluble in alcohol; for he found a watery infusion of eight grains had no effect, whereas the alcoholic extract in the dose of one-sixteenth of a grain produced considerable purging, and often vomiting; and when the dose was increased to a quarter of a grain the effect was more considerable, and often took place in a very few minutes. The action of these liquids on elaterium led Dr. Clutterbuck to believe that the active principle was of a resinous nature. But the alcoholic tincture of elaterium contains three principles: elaterin, the green resin, and a bitter matter. By treating this alcoholic extract with boiling distilled water, the bitter matter is dissolved: the residue (elaterin and green resin) was termed by Dr. Paris elatin. Dr. Morries, in 1831, separated the green resin and isolated elaterin; though Mr. Hennell seems to have discovered it about the same time. Dr. Morries obtained it by evaporating the alcoholic tincture of elaterium to the consistency of thin oil, and then throwing it into boiling distilled water; a white crystalline precipitate was formed, which increased as the liquor cooled. This precipitate was afterwards purified by a second solution in alcohol and subsequent precipitation by water. Mr. Hennell's process was different. He separated the resin from the crystalline matter of the alcoholic extract of elaterium by ether, which took up the resin and left the elaterin; the latter was then purified by solution in hot alcohol and subsequent crystallization. Marquart's process is less likely to yield pure elaterin, since he procured it from an extract prepared by evaporating the expressed juice. Another method (founded I

---

2. Pharmacologia.
3. Journal of the Royal Institution, i. 532.
presume on the directions of the Edinburgh College, for the determination of the
goodness of elaterium, see p. 1506) is to treat the alcoholic extract of elaterium
with a solution of potash, which takes up the bitter matter and the resin, and
leaves the elaterin. The quantity of elaterin in elaterium is thus stated by
different authorities:

<table>
<thead>
<tr>
<th>100 parts of Elaterium.</th>
<th>Quantity of Elaterin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared according to the London College (Hennell)</td>
<td>44</td>
</tr>
<tr>
<td>Best British Elaterium (Morries)</td>
<td>26</td>
</tr>
<tr>
<td>Worst ditto (Morries)</td>
<td>15</td>
</tr>
<tr>
<td>French Elaterium (Morries)</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Elaterium (Edinburgh Pharmacopoeia)</td>
<td>14 to 25</td>
</tr>
<tr>
<td>Best specimens (Bainner)</td>
<td>33</td>
</tr>
<tr>
<td>Fine sample, prepared at Apothecaries’ Hall in 1839, and dried by steam heat (Pereira)</td>
<td>26</td>
</tr>
</tbody>
</table>

These discrepancies must arise principally from the different degrees of good-
ness of samples examined; but partly also from different modes of proceed-
ing. I found that 30 grs of fine elaterium prepared at Apothecaries’ Hall in 1839,
lost by drying on a steam bath 1·5 grs. Boiled in repeated portions of rectified
spirit, the dried mass lost 18 grs. The concentrated green tincture poured into
diluted liquor potassæ (see process of the Edinburgh Pharmacopoeia, p. 1506) de-
posited crystals which dried by steam heat, weighed 7·5 grs.

Elaterin possesses the following qualities: it is crystalline, and has a silky
appearance; the crystals, viewed by a magnifying glass, are observed to be
rhombic prisms with striated sides; it is very bitter, but odourless; is neither
acid nor alkaline, and is insoluble in water, but soluble in hot alcohol. Mr.
Hennell says it is only very slightly soluble in ether; whereas Dr. Morries states
it to be readily soluble in both ether and fixed oil. It is fusible, according to
Mr. Hennell, at 350° F. The latter chemist states that it is composed of Carbon
36·9, Hydrogen 23·9, and Oxygen 39·2, which nearly corresponds to the formula
C6 H12 O5. Dr. Morries says, that at a high temperature it is dissipated in a
thick, white, pungent vapour, having an ammoniacal odour: if so, nitrogen
must be a constituent. But neither by the odour, nor by turmeric, can I detect
ammonia in this vapour. The late Dr. Duncan, of Edinburgh, ascertained
that in doses of one-twelfth or one-sixteenth of a grain it had all the effects
of a dose of elaterium. “A tenth of a grain,” says Dr. Christison, “as I have
myself witnessed, will sometimes cause purging in man; and a fifth of a grain, in
two doses, administered at an interval of twenty-four hours to a rabbit, killed it
in seventeen hours after the second dose.” Dr. Golding Bird thinks one-sixteenth
of a grain a fair dose to commence with; he repeats it every two hours until
some effect is produced. It may be taken dissolved in spirit, and by this diffused
through an aqueous vehicle.

2. Green Resin (Chlorophylle ?) — Is insoluble in water, but dissolves in
alcohol, ether, and caustic potash. It does not redder litmus, though from its
ready solubility in caustic potash its acid nature might be suspected. Some of
it prepared by Mr. Hennell was tried at St. Bartholomew’s Hospital, and found
to act powerfully as a purgative in doses of less than a third of a grain. Perhaps
this might have arisen from the presence of elaterin; for twenty-one grains of
the resin yielded four grains of elaterin.

3. Bitter Matter.—This is soluble both in water and alcohol. Its taste is
intensely bitter: its colour is brownish yellow.

Characteristics.—Good elaterium is friable, has a pale greenish-gray colour, and an animal odour. Digested in rectified spirit it
yields a fine green tincture. Thrown into water it swims. It does not effervescce in diluted hydrochloric acid: the acid liquor being
digested on elaterium, and subsequently rendered nearly neutral by ammonia, gives scarcely any cloudiness on the addition of oxalate of

ammonia. Touched with tincture of iodine, it gives no evidence of
the presence of starch: though if it be boiled in water, the decoction,
when cold, gives traces of starch, by the blue colour developed on the
addition of iodine. If the cinder formed by the burning of elaterium
in the air be ignited in the outer cone of the flame of a candle, the
presence of potash is indicated by the bluish or violet tinge.

Maltese elaterium has no odour, and scarcely any green tinge. Examined by the microscope, it is found to contain globules of
wheaten starch. It sinks in water, effervesces with diluted hydro-
chloric acid, yielding a solution which, when nearly neutralized by
ammonia, gives a copious precipitate (calcium oxalate) on the addition
of oxalate of ammonia. Tincture of iodine stains it bluish or greenish
black (iodide of starch). If the cinder obtained by burning Maltese
elaterium in the air be ignited in the outer cone of the flame of the
candle, it communicates an orange tint to the flame. The adultera-
tion of elaterium by starch was known to Dioscorides. The Edin-
burgh College, (1841), gives the following characteristics of good
elaterium:

“Colour pale-gray: when exhausted by rectified spirit, the solution, concen-
trated, and poured into hot diluted aqua potassae, deposits, on cooling, minute
silky, colourless crystals, weighing from a seventh to a fourth of the elaterium.”

In the Edinburgh Pharmacopoeia for 1839, it was stated that
elaterium should yield “at least a seventh” of elaterin; and in the
first edition of the “Elements,” I observe that “these characteristics
are not sufficiently accurate. Good elaterium is pale greenish-gray:
and when treated as the College directs, should yield 26 per cent.
of crystals (i.e. elaterin).” It will be seen that the College has now
somewhat modified its original statement.

Physiological Effects. a. On Vegetables.—Macaire found a
branch of the Momordica Elaterium was speedily destroyed by im-
mersing it in a solution of the extract of this plant.

b. On Animals.—Viborg gave a pound of the fruit of Momordica
Elaterium to the horse without any effect. Two and a half pounds
of the whole plant (roots, leaves, and stem) also appeared inert.
The only experiments made with the extract of elaterium that I am
acquainted with, are those of Orfila on dogs. They are three in
number, and prove that this substance is a powerful local irritant,
producing death even when it has been applied to the cellular tissue
of the thigh, in consequence, as he supposes, of the nervous system
being sympathetically affected. Moreover, he concludes, from his
observations, that elaterium exerts a special action on the rectum.

g. On Man.—The acridity of elaterium in its local operation is
well shown by various facts. Pliny truly observes that the juice of
the elaterium apple is dangerous when applied to the eye; and Dr.
Clutterbuck mentions that some of it “getting accidentally into the
eye in one instance, it occasioned severe pain and inflammation,
with an erysipelatous swelling of the eyelids, that continued till the following day." We have a further proof of its irritant properties in the inflammation and ulceration of the fingers of those employed in its preparation.

When swallowed, therefore, it irritates the gastro-intestinal membrane, and occasions vomiting and violent purging; hence it is called a *drastic purgative*. Fine elaterium, in the dose of 1-8th of a grain, seldom fails to purge violently, and sometimes to vomit. This was long since noticed by Dr. Clutterbuck, and I can verify his statement from repeated observations. Even 1-16th of a grain will generally excite considerable purging.

The elaterium of the shops, however, is rarely so active as this; and I have known two grains given with no more effect than the pure elaterium would excite in the dose of 1-8th of a grain. Elaterium powerfully excites the secreting and exhaling vessels of the alimentary canal, and thereby occasions very watery stools; hence the term *hydragogue* applied to it. In some dropsical cases I have known a single dose discharge several pints of fluid by the bowels. The gripings and the increased number of evacuations prove that the irritation is not confined to the mucous coat, but is extended to the muscular coat. Under the influence of a full dose, the pulse is excited, the tongue becomes dry, and sometimes furred, and great thirst is produced. Occasionally the skin becomes damp under the operation of elaterium.

Elaterium has been supposed to exert a specific influence over the uterus. Thus Dioscorides and even later writers state that it provokes the menses, and is apt to produce the death of the foetus in utero. Its uterine influence, however, is probably not greater, in proportion to its cathartic property, than that of other violent drastics, which act powerfully on the large intestines.

Does elaterium become absorbed? We have no stronger evidence to offer in favour of the affirmative of this question than that mentioned by Hippocrates, that the milk of women and goats who have eaten elaterium, or the wild cucumber, possesses purgative properties. Furthermore, the accident which occurred to Dr. Robert Dickson, Lecturer on Botany at St. George's Hospital, seems to prove that absorption must have taken place by the skin. Dr. Dickson carried a specimen of the plant in his hat to his lodgings, in Paris, from the Jardin-du-Roi. In half an hour he experienced violent headache, which was followed by colicky pain, violent purging, vomiting, and fever.

Considered with respect to other cathartics, we find it pre-eminently distinguished by the violence of its purgative effect. Croton oil alone approximates to it. Its hydragogue operation exceeds that of most, if not all other, ordinarily used drastics.

**Uses.**—The principal use of elaterium is to excite watery evacu-
ations in dropsy, by which a two-fold effect is to be hoped for; viz. first, absorption of the effused fluid; secondly, the stoppage of any further effusion in consequence of the metastasis of vital action from the seat of the dropsy to the intestinal membrane. In dropsies dependent on, or accompanied with, disease of the kidney, the evacuation of water from the bowels is much to be preferred to the employment of stimulating diuretics which may add to the severity of the renal malady. Of the violent hydragogue purgatives, elaterium I believe to be the most useful in dropsy. It evacuates more watery fluid than the others; while, if it be good, its operation may be relied on. It is objectionable where there is great debility, and where any inflammatory or other disease of the bowels exists. I have seen the fatal termination of dropsy apparently accelerated by the use of elaterium. A dropsical patient, much debilitated, took, by order of his physician, a dose of elaterium, which caused excessive alvine evacuations, great exhaustion, sinking of the pulse, syncope, and death. Where no contra-indication to the use of elaterium exists, one or two doses of it should be given every other day, for a week or ten days. If continued longer than this, it might perhaps bring on an inflammatory condition of the bowels. Dr. Darwall mentions a case in which hypercatharsis and maniacal delirium were produced by the prolonged use of elaterium; the delirium, however, went off in a few hours. Some tonic (usually gentian) is commonly conjoined with elaterium. Thus a pill composed of elaterium and extract of gentian is frequently employed; or we may exhibit infusion of gentian on alternate days with the elaterium. Where there is a febrile condition of system, and also where there is an irritable or inflammatory condition of the alimentary canal, elaterium is inadmissible. It is best adapted for cold phlegmatic constitutions. Sydenham recommended elaterium in dropsy. Afterwards Lister, Heberden, Ferrier, Clutterbuck, and other experienced practitioners, bore testimony to its exceeding great efficacy. But judging by the doses recommended, all of them, except the last-mentioned writer, seem to have been unaware of the great activity of the medicine when pure.

2. In cerebral affections, such as apoplexy, or a tendency to it (manifested by sleepiness, stupor, or giddiness), mania, &c., elaterium, as a drastic purgative, sometimes proves serviceable on the principle of counter-irritation or revulsion (see p. 145).

3. In obstinate constipation from sluggishness of the intestinal tube, elaterium is occasionally useful. But care must be taken to ascertain that the constipation does not depend on any mechanical impediment (as hernia, intus-susception, &c.) to the passage of the faeces.

\v Works, by Dr. Pechey, p. 393, 4th ed. 1705.
\m Dekydrope.
\n Dehydrope.
\o Comment, art. Dropsy.
\q Lectures in Lancet for May 6th, 1826, p. 170.
4. In gout.—A combination of elaterium and opium has been found serviceable in gout (see p. 945).

Administration.—The dose of good elaterium is from one-sixteenth to one-half of a grain. I hear and read of practitioners giving this substance to the extent of one, two, or even three grains; but this can only be from the bad quality of the drug. I have repeatedly employed, and seen others exhibit elaterium, and have always observed that a quarter of a grain of good elaterium acted very powerfully, sometimes bringing away several pints of fluid; and half a grain usually occasioning vomiting, as well as violent purging. I confess I should not venture to exhibit a grain of the same preparation. It is usually given in the form of pills. The basis of the pills may be extract of gentian.

As elaterin (the active principle of elaterium) is soluble in rectified spirit, a tincture of elaterium (tinctura elaterii) may be employed. It contains, besides elaterin, a bitter principle and green resin. Elaterin has been given either in powder (mixed with sixty-four times its weight of bitartrate of potash), or in solution in rectified spirit (solutio elaterinae) by Dr. Golding Bird in doses of one-sixteenth to one-eighth of a grain (see p. 1505).

Antidotes.—In the event of a case of poisoning by elaterium, the remedies would be demulcent drinks and elsters, opium, the warm bath, and fomentations to the abdomen; stimulants (such as ammonia and brandy) if the circulation fail; bloodletting to subdue the inflammatory symptoms, should the state of the general system not contraindicate it.

OTHER DIETETICAL, MEDICINAL, OR POISONOUS CUCURBITACEAE.

The fruits of several cucurbitaceous plants are employed as articles of food. The Cucumber (Cucumis sativus), the Melon (Cucumis Melo), the Water Melon (Cucumis Citrullus), the Vegetable Marrow (Cucurbita ovifera), the Pumpkin or Pumpion (Cucurbita Pepo), and the Melon-Pumpkin or Squash (Cucurbita Melopepo), are those in most frequent use. They contain a watery, sweet or acidulous cooling pulp, which is slightly nutritious when taken raw, and in some habits proves laxative.

The fresh root of Bryonia dioica is sold by herbalists under the name of white briony and mandrake root (see p. 1260). Fashioned into a rude representation of the human figure, I have seen it exhibited at an herb-shop as a sign. Bryony root contains a peculiar bitter matter called bryonin. The root operates as a violent emetic and purgative. I have seen one case of poisoning by it. The symptoms were those of cholera. As the accident occurred at the time when this disease was raging here, the practitioner who was called in concluded it was a case of cholera, and mistook a piece of briony root shewn him as being part of what the patient had eaten, for a piece of turnip. The patient (a woman) recovered. Bryony root is employed as a topical application to bruised parts.

\(^9\) Also Sutton, Tracts on Gout, p. 201.
\(^1\) Lond. Med. Gaz. xxv. 938.
Order LVII.—MYRTACEÆ, R. Brown.—THE MYRTLE TRIBE.

Characters.—Sepals four—six, generally five, concreted into a tube, which is adnate to the ovary, sometimes distinct at the apex, and as far as the margin of the ovary, at other times concrete at the apex, and as far as the throat. Petals inserted on the calyx, as many as the sepals with which they alternate, and quincuncial in aestivation, very rarely absent. Stamens inserted with the petals, often in many rows, double, or generally many-times the number of the petals: filaments either free or variously all connected or polyadelphous, before flowering somewhat incurved; anthers ovate, bilocular, small, dehiscing by a double chink. Carpel four—six, generally five, by abortion often fewer, concrete into a many-celled ovary, which is adnate to the calyx. Style, composed of many partial styles concreted, and, therefore, called single, with a simple stigma. Fruit various, many-celled, many-seeded. Seeds various; embryo exalbuminous (De Cand.)—Trees or shrubs. Leaves generally opposite, rarely alternate, exstipulate, quite entire, dotted with pellucid glands, and usually with a vein running parallel with their margin. Inflorescence variable; usually axillary. Flowers red, white, occasionally yellow, never blue.

Properties.—Aromatic volatile oil and astringent matter (especially the former) are the principles to which the medicinal properties of Myrtaceæ are referrible. The pellucid dotting of the leaves and other parts indicates the volatile oil.

1. MELALEUCA MINOR, Smith, L. E.—THE LESSER MELALEUCA.

Melaleuca Cajuputi: Maton; Roxburgh.

Sex. Syst. Polyadelphia, Icosandria.

(Oleum e foliis destillatum, L.—Volatile oil of the leaves, E.)

History.—This tree was described by Rumphius ⁵ under the names of Arbor alba minor, Cajuputi, Daun kitsjil, and Caju-kilan. It has got its name from its colour kayu-puti, which signifies white wood, and hence its appellation, as given to it by Rumphius, arbor alba ⁴.

Botany. Gen. Char.—Tube of the calyx almost hemispherical; limb five-partite. Petals five. Bundles of stamens five, elongated, alternate with the petals; anthers incumbent. Style filiform; stigma obtuse. Capsule connate with, and enclosed in, the thickened tube of the calyx, which is adnate at its base to the branch; three-celled, many-seeded. Seeds angular (De Cand.)—Trees or shrubs. Leaves alternate or opposite, quite entire, equal at the base. Flowers sessile, or somewhat adnate, spiked or capitulate, white, yellowish, or purplish.

Sp. Char.—Leaves alternate, elliptical-lanceolate, somewhat acute, slightly falcate, three-five-nerved. Flowers spiked, rather distant. Rachis, calyx, and branchlets, villose (De Cand.)

---

⁴ Herb. Amboin. lib. ii. p. 76.
⁵ Mat. Indica, i. 261; and Crawford, Hist. Ind. Archip. vol. i. p. 513.
Trunk tolerably erect, but crooked: bark thick, spongy, whitish ash-coloured, the exterior lamina peeling off in thin flakes. Branches scattered, often drooping. Leaves short-stalked, while young silky, when full grown smooth, deep green, from three to five inches long, and from half to three-quarters of an inch broad, very aromatic when bruised. Spikes terminal. Bracts solitary, lanceolate. Calyx urceolate. Corolla white. Filaments from thirty to forty, united into five portions at the base: anthers with a yellow gland at the apex. Style rather longer than the stamina; stigma obscurely three-lobed; ovary ovate, united to the calyx. Capsule three-valved.

Hab.—Moluccas.

Extraction of the Oil.—Rumphius states that the leaves are gathered on a warm day, and placed in a sack, where they become hot and damp. They are then macerated in water, and left to ferment for a night, and afterwards submitted to distillation. Two sackfuls of the leaves yield scarcely three drachms of oil, which is limpid, pellucid, and volatile. Lesson has described the method of obtaining the oil at Bourou, one of the Molucca islands. The leaves, he says, are gathered in the latter end of September, and put into the cucurbit of a copper alembic, surmounted by a neck, terminated by a capital without a refrigeratory, and a sufficient quantity of water is then added. By distillation, this liquid is made to traverse a worm immersed in a hogshead filled with water, and is collected in a vessel; the oil which floats is very light, and of an herbaceous green colour, which is owing to chlorophyll, or perhaps a somewhat different resinous principle. By rectification it becomes colourless.

Description.—Cajuput or Kýapootie oil (oleum cajuputi) is usually imported in green glass bottles (in appearance similar to long-necked beer bottles). Its colour is green, the tint being that of a strong solution of chloride of copper. It is transparent, limpid, of a strong penetrating smell, resembling the combined odour of camphor, rosemary, and cardamom, and of an aromatic camphoraceous taste, succeeded by a sensation of coolness like that caused by oil of peppermint. In the mass the odour is disagreeable, but in small quantity, as when rubbed on the hand, is much more fragrant. An apparently pure sample, which has been several years in my museum, has a sp. gr. of 0.925. Dr. Thomson says, the sp. gr. varies from 0.914 to 0.9274: while Mr. Brande states it to be 0.980. Oil of cajuput is soluble in alcohol. When carefully distilled with water, the first portion of oil which passes over is very light, and quite colourless: but towards the end of the process, a heavier and greenish oil distils over.

* Condensed from Roxburgh, Fl. Ind. iii. 395; and Trans. Med.-Bot. Soc. April 11, 1828.
* Herb. Amboin.
* Org. Chem. 476.
* Diet. of Pharm.
Composition.—According to Blanchet, the composition of oil of cajuput is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

| Cajuputi Oil | 1 | 77 | 100.00 |

Adulteration.—M. Guibourt detected in several samples of oil of cajuput, oxide of copper in solution. It is, he says, easily recognised by shaking the oil with a solution of ferrocyanide of potassium, when a red precipitate (ferrocyanide of copper) is formed. To this metal, derived as it is supposed from the copper vessels in which the oil has sojourned, M. Guibourt ascribes the green colour of the oil. This conclusion, however, was somewhat premature; for all the samples of the oil which I have examined were, though green, quite devoid of copper; and Mr. Brande observes, that none of the samples which he has examined have contained even a trace of copper.

In 1831, oil of cajuputi was extolled as a remedy for cholera. In consequence of the great demand for it, which was thereby created, the price rose from two to fourteen shillings per ounce; and various imitations of it soon made their appearance in the market. One of these consisted of oil of rosemary flavoured with camphor and oil of cardamoms, and coloured. Except on this extraordinary occasion, the oil of cajuputi met with in the shops of this country, I believe to be pure as imported.

Physiological Effects.—Cajuput oil is a powerful antispasmodic diffusible stimulant and sudorific (see p. 184). From the ordinary distilled oils (as those of the labiate plants and umbelliferous fruits) it is distinguished by its stronger influence over the nervous system (evinced by its antispasmodic qualities) and by the greater diffusibility of its stimulant operation. It is allied to valerian (p. 1367) between which and camphor (p. 1153) it ought perhaps to be placed in a physiological classification; but in large doses, it does not disorder the mental faculties as these two medicines do.

Uses.—Cajuput oil has acquired considerable celebrity among the Malays; and has been more frequently employed in Germany than in any other European nation. By British practitioners its uses have hitherto been very limited. As a diffusible stimulant it is useful where we wish promptly to raise the energy of the vital powers, especially when at the same time any spasmodic movements are to be allayed. With these views it has been employed in low fevers, paralytic affections, and cholera. In the last-mentioned diseases it

---

1 Quoted by Thomson, op. cit.


acquired an ephemeral reputation, in consequence of the favourable reports of Sir Matthew Tierney, and others. As an antispasmodic, it is a very efficacious remedy, in painful spasmatic affections of the stomach, and in flatulent colic; but of its uses in epilepsy, chorea, hysteria, tetanus, spasmatic asthma, and some other spasmodic diseases, in which its efficacy has been extolled by oriental and continental practitioners, I have no experience. As a stimulating sudorific, it proves occasionally useful in chronic rheumatism. As an external remedy, it is probably scarcely superior to most other volatile oils. It has sometimes been applied to a carious tooth, to relieve tooth-ache; and mixed with olive oil, has been used as a stimulating liniment in chronic rheumatism, painful affections, local paralysis, &c. As an anthelmintic, it was used by Rudolphi.

Administration.—The dose of it is from two to ten, or even more, drops. It may be taken on sugar, or in the form of an emulsion.

2. CARYOPHYLL'US AROMAT'ICUS, Linn. L. E.—CLOVE-TREE.

Eugenia caryophylla'ta. Thunberg. D.

Sex. Syst. Icosandria, Monogynia.

(Flores nondum explicati, exsiccati; Oleum è floribus destillatum, L.—Dried undeveloped flower; Volatile oil of the undeveloped flowers, E.—Flores nondum explicati, et Oleum volatile, D.)

History.—The garyophyllon of Pliny cannot have been our clove, since that naturalist describes it as being like a peppercorn, but larger and more brittle. Indeed it is not certain who first speaks of the clove. Paulus Aegineta notices καρύοφυλλον, and, I think, probably refers to the clove; though Sprengel regards Simeon Seth as the first who mentions cloves.

Botany. Gen. Char. — Tube of the calyx cylindrical; limb four-partite. Petals four, adhering by their points in a sort of calyptra. Stamens distinct, arranged in four parcels, inserted in a quadrangular fleshy hollow near the teeth of the calyx. Ovary two-celled, each cell containing twenty ovules. Berry, when ripe, one- or two-celled, one- or two-seeded. Seeds cylindrical or semi-ovate: cotyledons thick, fleshy, concave externally, sinuous in various ways internally; radicle arising from the centre of the cotyledons, straight, superiorly hidden by the cotyledons. — Trees. Leaves opposite, coriaceous, dotted. Cymes terminal or in the forking of the branches; somewhat corymbose (De Cand.)

Sp. Char. — Leaves obovate-oblong, acuminate at both ends. Cymes many-flowered (De Cand.)
Trunk from 15 to 30 feet high. Leaves about four inches long, with a strong mid-rib and parallel lateral nerves; footstalks slender, aromatic; almost two inches long. Flowers odorous. Calyx at first green, afterwards purplish-red. Petals four, larger than the calyx, imbricated into a globe in bud, at length spreading, roundish, concave, yellowish-red, very soon caducous. In the centre of the calyx, and occupying the top of the ovary, is a quadrangular elevated line (or gland) surrounding, but not embracing, the base of the shortish, obtusely subulate style. Filaments much longer than the petals, yellow: anthers ovate-cordate, yellow, two-celled. Ovary oblong, or almost cylindrical. Berry purplish, elliptical, one-seeded. Seed with a thin, soft integument; embryo elliptical, greenish, dotted (Condensed from Bot. Mag. t. 2749.)

Hab.—Molucca Islands; where, as well as at Sumatra, Mauritius, Bourbon, Martinique, St. Vincent's, &c., it is now extensively cultivated. The short-sighted and selfish policy of the Dutch, to limit the cultivation of the plant to the Molucca Islands, has, therefore, completely failed.

Collection.—Cloves are collected by the hand, or beaten with reeds, so as to fall upon cloths placed under the tree, and dried by fire, or what is better, in the sun.

Commerce.—They are imported in casks or bags. Those produced in the Molucca Islands usually come by way of Rotterdam. In 1839 duty (6d. per lb.) was paid on 93,549 lbs.

Description.—The clove of commerce (caryophyllus) is the unexpanded flower, the corolla forming a ball or sphere at the top, between the four teeth of the calyx, and thus with the tapering, somewhat quadrangular tube of the calyx, giving the appearance of a nail (whence the word clove, from the French clou, a nail). The length of the clove is from five to ten lines; its thickness from one to one-and-a-half lines. Its colour is dark-brown with a yellowish-red tint; the corolla somewhat deeper. Good cloves should be dark-brown, ad perfect in all parts, have a strong fragrant odour, and a hot acrid taste, and when slightly pressed with the nail, give out oil. They are distinguished in commerce by their place of growth. Those from the East Indies (Amboyna and Bencoolen cloves) are the best: they are the largest, plumpest, and most oily. The Bencoolen clove is the

most esteemed. Cloves produced in the French possessions (Bourbon and Cayenne cloves) are smaller, more shrivelled, contain less oil, and are of inferior value. The Cayenne clove is the least esteemed.

Under the name of Mother cloves (matrices caryophyllii seu anthophyllii) are described, in several authors, the fruits of the clove (fructus caryophylli aromatici) which have been occasionally introduced as articles of commerce, and a sample of which has been preserved in the collection of the East India House. On the 8th of Feb. 1841, five bags of mother cloves were put up for sale in London. They have the shape of an olive, than which they are smaller. Superiorly they are crowned with the four teeth of the calyx, with the remains of the style in the centre. Their colour is similar to that of the clove: their odour and flavour similar, but much weaker. Internally we find the embryo with its two sinuous cotyledons.

The broken peduncles of the clove (clove stalks; griffe de giraffe) are sometimes substituted by distillers for cloves (Guibourt).

**Composition.**—Cloves were analyzed by Trommsdorff, who found them to consist of, volatile oil 18, almost tasteless resin 6, peculiar kind of tannin 13, difficultly soluble extractive with tannin 4, gum 13, woody fibre 28, and water 18.

1. **Volatile Oil.** (See p. 1516.)
2. **Eugenin (Stearoptene of Oil of Cloves).**—This was found in oil of cloves by Bonastre. It is in thin, white, pearly scales, which become yellow by keeping. It is very soluble in alcohol and ether; has the odour and taste of cloves, but weaker, and is reddened by nitric acid. According to Dumas, its composition is Carbon 72.25, Hydrogen 7.64, Oxygen 20.11; or C_20 H_36 O_6.

3. **Caryophyllin (Clove sub-resin).**—First described by Lodibert, and afterwards examined by Bonastre. It is extracted from cloves by alcohol. The Molucca cloves yield the largest quantity of it; those of Bourbon contain less; and the Cayenne cloves none. It is a satiny, crystalline, odourless, tasteless, fusible and volatile substance; insoluble in water, soluble in alcohol and ether; slightly so in caustic alkalies. It is reddened by sulphuric acid. According to Dumas it is composed of Carbon 79.5, Hydrogen 10.5, Oxygen 10.0; hence its formula is C_20 H_36 O_6; so that its composition is similar to that of camphor (p. 1152).

4. **Clove-tannin.**—The tannin of cloves is less acerb than ordinary tannin, and its compound with gelatine has less elasticity.

**Chemical Characteristics.**—Nitric acid reddens infusion of cloves. Tincture of sesquichloride of iron renders it blue. The oil of cloves also undergoes similar changes to the infusion. These facts deserve especial attention in relation to opium and morphia (see Opium) on account of the analogous phenomena presented by morphia when acted on by nitric and sesquichloride of iron. Infusion and oil of allspice are similarly affected.

**Physiological Effects.**—Cloves have a very agreeable flavour and odour, and are devoid of the fiery taste and acridity which distinguish pepper and ginger: in other respects their effects agree with

---

1 Gmelin, Handb. d. Chem. ii. 1272.
2 Journ. de Pharm. xi. 101.
3 Ibid. p. 103.
5 Journ. de Pharm. xi. 539 and 566.
those of other spices (see p. 181). Though volatile oil is by far the most important of their active principles, yet the tannin, extractive, and resin, must contribute something to their operation.

Uses. — Cloves are principally used for culinary purposes, as flavouring ingredients. They are not employed in sufficient quantity to prove of much importance as condimentary stimulants, yet they are applicable as gastric excitants, in dyspeptic cases connected with relaxation of the alimentary canal. In medicine cloves are rarely employed alone, or as the basis or principal medicine, but usually as an addition to other medicines, the flavour of which they improve, or whose operation they correct. When, however, they are given alone, it is merely as a stomachic and carminative, to relieve nausea, vomiting, flatulence, or some allied stomach disorder. Distillers prepare a liqueur called cloves.

Administration. — In substance cloves may be taken in doses of five or ten grains, or ad libitum.


2. OLEUM CARYOPHYLLI, L. E.; Oleum Eugeniae Caryophyllatae, D.; Oil of Cloves. — (Obtained by submitting cloves, with water, to repeated distillation). — No directions are given by the London and Dublin Colleges for the preparation of oil of cloves, which is placed by them among the articles of the Materia Medica.

To extract the whole of the oil from cloves, they must be subjected to repeated cohabitations. On an average they yield from 17 to 22 per cent, of volatile oil (including the heavy and light oils). By distillation with water, cloves yield two volatile oils—one lighter, the other heavier, than water. Mr. Whipple informs me, that by the ordinary modes of distillation the heavy oil comes over first. The oil of cloves of commerce is a mixture of these two oils. When carefully and recently prepared it is colourless or light-yellow, but by keeping becomes brownish-red. It has a hot, acrid taste, and the well-known odour of cloves, and is soluble in alcohol, ether, concentrated acetic acid, and the fixed oils. Its sp. gr. is probably variable, though always greater than that of water. Lewis found it to be 1'034. Bonastre says, that of the unrectified oil is 1'055, but by rectification part of the light oil is lost, and the sp. gr. is then 1'361. Ettling says its composition is, Carbon 74'6279, Hydrogen 8'1531, and Oxygen 17'2189. To separate it into the two oils he mixed it with potash ley, and distilled: a light oil passed over, while a com-

* Poggendorff's Annul. xxxi. 526.
pound of the heavy oil (clove acid) and potash remained in the retort, and, by distillation with phosphoric or sulphuric acid, gives out the heavy oil.

a. Light Oil of Cloves (Clove Hydro-Carbon).—Colourless. Sp. gr. 0.918. Incapable of combining with bases, but absorbing hydrochloric acid gas without yielding a crystalline compound. It consists of $C^{10}H^8$; hence it is isomeric with oil of turpentine (see p. 1050).

β. Heavy Oil of Cloves (Clove Acid; Caryophyllic Acid; Eugenic Acid).—It is colourless when recently prepared, but becomes coloured by age. Its sp. gr., according to Bonastre, is 1.079. It combines with alkalis to form crystalline salts (alkaline caryophyllates or eugenates; clove-oil alkalis). If a salt of iron be added to one of these, it yields a blue, violet, or reddish compound (a ferruginous caryophyllate), varying somewhat according to the nature of the ferruginous salt used: thus the protosulphate of iron yields a lilac, the persulphate a red, which becomes violet and afterwards blue: while the sesquichloride gives a vinous tint, which turns to red (Bonastre). Nitric acid reddens caryophyllic acid.

The composition of caryophyllic acid is as follows:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Ettling</th>
<th>Boeckmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>24</td>
<td>144</td>
<td>72.36</td>
<td>72.696</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>15</td>
<td>15</td>
<td>7.54</td>
<td>7.434</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5</td>
<td>40</td>
<td>20.10</td>
<td>19.870</td>
</tr>
<tr>
<td><strong>Clove Acid</strong></td>
<td>1</td>
<td>199</td>
<td>100.00</td>
<td>99.998</td>
</tr>
</tbody>
</table>

This statement does not agree with that of Dumas, who from his first analysis gave the formula $C^{20}H^{13}O^3$; and from his second one, $C^{20}H^{12}O^5$. But various reasons, not necessary here to enumerate, lead me to believe that Ettling’s formula is the correct one, supported as it is by Boeckmann’s analysis and by Dumas’s statement, that the sp. gr. of the vapour of caryophyllic acid is 6.4.

The oil of cloves is sometimes placed in the hollow of a carious tooth, to relieve toothache; but its more frequent medicinal use is as an addition to purgatives (e. g. pilulae colocynthidis, E.) to check nausea and griping.—The dose of it is two to six drops. Distillers and soap-makers extensively use oil of cloves.

3. TINCTURA CARYOPHYLLI; Tincture of Cloves—(Cloves, $\frac{3}{2}j$; Rectified Spirit, $\frac{3}{4}iv$. Macerate for seven days, and then filter).—Though not contained in any of the British pharmacopoeias, this is a very useful and elegant preparation, and has a place in the French Codex. A solution of the oil in spirit is less agreeable, and becomes milky on the addition of water.—Dose, $\frac{3}{4}x$ to $\frac{3}{2}j$. It may be usefully employed as an addition to purgeative, stomachic, and tonic mixtures.

---

\[\text{Footnotes:}  \\
^p\text{Ann. d. Chim. et Phys. liii. 164.} \\
^r\text{Ibid.; also Thomson’s Org. Chem. p. 1046.} \]
3. EUGENIA PIMENTA, De Candolle, E.—THE COMMON ALLSPICE.

(Myr'tas Pimen'ta, Linn. L. D.)

Sex. Sytt. Icosandria, Monotreia.

(Baccæ immature exsiccatæ, L.—Unripe berries, E.—Fructus, D.)

History.—It is scarcely probable that the ancients should have been acquainted with allspice, which is a native of the West Indies, and therefore could not have been known to Europeans before the discovery of America. Yet Clusius* thought that it was the garyophyllon of Pliny†; an opinion, however, which, for the above-mentioned reason, can scarcely be correct.

Botany. Gen. Char.—Tube of the calyx roundish; limb divided, as far as the ovary, into four segments. Petals as many as the lobes. Stamens indefinite, free. Ovary two- or three-celled; cells containing many seeds. Berry nearly globose, crowned by the calyx; when ripe, one-, rarely two-celled. Seeds one or two, somewhat rounded, large; embryo spuriously monocotyledonous; cotyledons very thick, combined into one mass; radicle scarcely distinct, very short (De Cand.)—Trees or shrubs.

Sp. Char.—Peduncles axillary and terminal, trichotomous-paniculate. Flowers four-cleft, in the forks of the peduncle, nearly sessile, others paniculate. Leaves oblong or oval, pellucid-dotted, somewhat opaque, smooth. Branches terete; branchlets compressed; the younger ones, as well as the pedicels, pubescent (De Cand.)

Trunk about 30 feet high. Leaves about four inches long, on short footstalks. Flowers numerous. Sepals roundish. Petals reflected, greenish-white. Berry succulent, black or dark-purple when ripe; two-seeded. Embryo roundish, with the cotyledons consolidated.

Hab.—West Indies. It is cultivated in Jamaica in regular walks (Pimento walks).

Collection.—When the fruit has attained the full size, but is yet green, it is gathered and sun-dried on platforms and sheets. When nearly dry it is frequently winnowed. It is afterwards put in bags of 100 cwt. each, for the European market. Some planters kiln-dry it.

Description.—Pimento or Jamaica pepper (pimenta seu piper jamaicense), commonly called allspice (because its flavour is considered to approach that of cinnamon, cloves, and nutmegs) is about the size of, or somewhat larger than, a peppercorn. It is round, brown, dull, roughish but not wrinkled, crowned with the segments of the calyx, and occasionally, though rarely, has a short pedicel. It consists of an external, somewhat hard but brittle shell, which is

---

* Exotic, lib. i. cap. 17.
‡ Sloane's Jamaica, 157.
§ Condensed from Botanical Magazine, t. 1356.
* Wright, Med. Plants of Jamaica; Brown, Nat. Hist. of Jamaica; 248.
paler within, and encloses two dark brown cochleate seeds. Allspice has an aromatic agreeable odour (intermediate between pepper and cloves), and a strong aromatic clove-like taste.

**Ovate Pimento (Brasilianischer oder Kron-Piment, Dierbach; Piment couronné ou Poivre de Thévet, Guibourt)—**This is the fruit of *Myrtus pimentoides*, Nees v. Esenbeck, called by De Candolle *Myrcia pimentoides*, a native of the West Indies. Except in shape, it strongly resembles the common allspice. It is ovate or oval, terminated superiorly by a large crown, formed by the five-toothed limb of the calyx. It is usually two-, more rarely three- or four-celled, each cell containing one seed. Guibourt has always found three, four, or six seeds in each fruit. In the only sample I have seen, and which came from St. Vincent's, there were in most of the fruits only two seeds.

**Commerce.**—Pimento is imported in bags, usually from the West Indies (almost entirely from Jamaica). In 1839, duty (9d. per lb.) was paid on 277,185 lbs.

**Composition.**—Pimento was analysed by Braconnot, and in 1825 by Bonastre.

<table>
<thead>
<tr>
<th>Bonastre's Analysis</th>
<th>Braconnot's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Husks</strong></td>
<td><strong>Kernels</strong></td>
</tr>
<tr>
<td>Volatile oil</td>
<td>10.0</td>
</tr>
<tr>
<td>Green oil</td>
<td>8.4</td>
</tr>
<tr>
<td>Solid fat oil</td>
<td>0.9</td>
</tr>
<tr>
<td>Astringent extract</td>
<td>11.4</td>
</tr>
<tr>
<td>Gummy extract</td>
<td>3.0</td>
</tr>
<tr>
<td>Colouring matter</td>
<td>4.0</td>
</tr>
<tr>
<td>Resinous matter</td>
<td>1.2</td>
</tr>
<tr>
<td>Uncrystallizable sugar</td>
<td>3.0</td>
</tr>
<tr>
<td>Malic or gallic acid</td>
<td>0.6</td>
</tr>
<tr>
<td>Lignin</td>
<td>5.0</td>
</tr>
<tr>
<td>Saline ashes</td>
<td>2.8</td>
</tr>
<tr>
<td>Water</td>
<td>3.5</td>
</tr>
<tr>
<td>Loss</td>
<td>1.6</td>
</tr>
<tr>
<td>Red matter, insoluble in water</td>
<td></td>
</tr>
<tr>
<td>Pellicular residue</td>
<td></td>
</tr>
<tr>
<td>Brown floculi</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>100.0</td>
</tr>
</tbody>
</table>

1. **Volatile Oil.** (See 1520.)

2. **Green Oil (Resin?)** This substance, which has an acid burning taste, contributes to the activity of pimento. Its odour is rancid, but somewhat clove-like. It dissolves readily in alcohol and ether, to which it communicates a green colour.

3. **Pimento-tannin.—** Is soluble in alcohol, strikes a green colour with the persalts of iron, and precipitates emetic tartar.

**Chemical Characteristics.**—See Chemical Characteristics of cloves, p. 1515.

**Physiological Effects.**—Allspice possesses the general properties of the species already noticed (p. 151). It holds an intermediate rank between pepper and cloves.
ELEMENTS OF MATERIA MEDICA.

1520

Uses.—Its principal employment is by the cook, for flavouring. It may be taken with advantage by those troubled with relaxed or atonic conditions of stomach. In medicine, its uses are similar to those of cloves; viz. to relieve flatulency, to cover the flavour of nauseous remedies, and to promote the operation of tonics and stomachics, and to prevent the gripping of purgatives.

Administration.—In substance, allspice may be taken in doses of from ten grains to a drachm or more.

1. Oleum Pimente, L. E. D.; Oil of Pimento; Oil of Allspice. (Obtained by submitting allspice, bruised, with water, to distillation). Mr. Whipple informs me that from 8 cwt. of pimento he procured 41 lbs. 6 oz. of oil (heavy and light). This is nearly six per cent. He also informs me that the light oil comes over first,—the reverse being the case with oil of cloves (see p. 1516). The oil of pimento of the shops is a mixture of these two oils. Except in odour, its properties are almost identical with those of oil of cloves. By distillation with caustic potash, the light oil is separated; the residue, mixed with sulphuric acid and submitted to distillation, gives out the heavy oil.

a. Light Oil of Pimento (Pimento-Hydro-Carbon).—Has not, to my knowledge, been previously examined. Its properties appear to be similar to those of the light oil of cloves. It floats on water and on liquor potassa, and is slightly reddened by nitric acid. Potassium sinks in, and is scarcely if at all acted on by it.

β. Heavy Oil of Pimento (Pimentic Acid).—Very similar to caryophyllic acid. It forms with the alkalis, crystalline compounds (alkaline pimentates) which become blue or greenish on the addition of the tincture of chloride of iron (owing to the formation of a ferruginous pimentate). Nitric acid acts violently on and reddens it.

The medicinal uses of the oil of pimento are very limited. It is sometimes employed to relieve tooth-ache, to correct the operation of other medicines, as purgatives and tonics, and to prepare the spiritus and aqua pimentae. The dose of it is from two to six drops.

2. Spiritus Pimente, L. E. D.; Spirit of Pimento; Spirit of Allspice. (Pimento, bruised, 3ijss. [3ijj. D.]; Proof Spirit, Cong. j. [wine-measure, D.]; Water, Oj. [sufficient to prevent empyreuma, D.]. The Edinburgh College directs half a pound of bruised pimento to be used, and to proceed as for spirit of caraway [see p. 1446].)—Carminative and stomachic. Used in dyspepsia, and flatulent colic. Dose, f 5j. to f 5iv. In the shops, a spirituous solution of the oil is frequently substituted for the pharmacopoeial preparation.

THE LOOSESTRIFE TRIBE.

Employed for its flavouring, carminative, and stomachic properties, as a vehicle for stimulant, tonic, and purgative medicines. Dose, \( \frac{f}{s} \) to \( \frac{f}{s} \). In the shops, it is usually prepared with the oil.

OTHER MEDICINAL MYRTACEÆ.

The substance called Botany Bay Kino is the astringent inspissated juice of Eucalyptus resinifera or Iron Bark, a native of Australia and Van Diemen’s Land. This tree, we are told, sometimes yields on incision sixty gallons of juice. Botany Bay kino is imported in boxes. That which I have met with came from Van Diemen’s Island. It occurs in irregular odourless masses, many of which are in the form of tears, somewhat resembling those of cherry-tree gum in form, and as large as the tears of Senegal gum. The purer pieces are vitreous, almost black in the mass, but transparent, and of a beautiful ruby-red in small and thin fragments. Some of the pieces, however, are opaque and dull, from the intermixture of wood and other impurities. When chewed it sticks to the teeth, and has an astringent taste. Digested in cold water it swells, becomes soft and gelatinous (like red-currant jelly), and yields a red liquid which reddens litmus, and yields precipitates with lime water, gelatin, acetate of lead, sesquichloride of iron, and, if caustic potash or ammonia be previously added, with the chloride of calcium. Alcohol and emetic tartar occasion no precipitate. Digestes in rectified spirit, Botany Bay kino becomes gelatinous, as with water, and yields a similar red solution, from which water precipitates nothing, but which reddens litmus, and deposits a copious precipitate when potash, ammonia, or lime-water, is dropped in. From these and other experiments, I infer that Botany Bay kino consists principally of a peculiar substance (Eucalyptin) analogous somewhat to pectin and tannic acid. It has been used in diarrhoea. Ainslie says it is the only kind employed in India; but I suspect there is some error in this statement.

ORDER LVIII. LYTHRACEÆ, Lindley.—THE LOOSESTRIFE TRIBE.

Salicarie, Jussieu.—Lythraceæ, De Candolle.

Essential Character.—Sepals definite in number, coherent beyond the middle. Calyx free, tubular or campanulate; lobes valvate, or distant in aestivation; the sinuses being sometimes lengthened into conical lobes or external teeth. Petals inserted on the upper part of the tube of the calyx, between the lobes, various in number, sometimes none, generally very caduceous. Stamens inserted

\[ ^d \] White, Journ. of a Voyage to New South Wales, p. 231, 1790.
\[ ^e \] White, op. cit.
\[ ^f \] Mat. Indica.
into the tube of the calyx below the petals; equal, double, triple, or quadruple the number of petals, sometimes fewer. **Anthers** oval, bilocular, adnate. **Ovary** free; **style** filiform; **stigma** capitate. **Capsule** membranous, covered or surrounded by the calyx; of two to four carpels; while young generally (always?) two-celled by the slender margins of the carpels being inflexed; but when ripe one-celled by the disappearance of the dissepimenta, either dehiscing longitudinally, or more rarely and irregularly with a circumscissile dehiscence. **Placenta** central, adnate to the dissepiment when present, or free, thick, either compressed-cylindrical or obscurely trigonal or tetragonal; the apex with some threads, conveyers of the seminal aura, continuous with the base of the style. **Seeds** many, small, exalbuminous; **embryo** straight; **radicle** turned towards the hilum; **cotyledons** flat, foliaceous. (De Candolle.)

**Properties.** — Variable. Except *Lythrum Salicaria*, which is astringent, the medical properties of few species are well known. *Nesaea salicifolia* is said to be diuretic, diaphoretic, and purgative.

**LYTHRUM SALICARIA, Linn. D.** — SPIKED PURPLE LOOSESTRIFE.

**Sex.** St/st. Dodecandria Monogynia. (Herba, D.)

**History.** — As this plant is a native of the Grecian Archipelago, it must have been known to the ancients; but hitherto it has not been satisfactorily identified with any plant described by them.

**Botany. Gen. Char.** — Calyx cylindrical, striated, toothed at the apex; teeth eight to twelve, of which four to six are broader than the rest, and erect, and the remaining four to six alternate ones, subulate, often horn-shaped, sometimes not present, or very small. **Petals** four to six, arising from the apex of the tube, alternate with the erect teeth. **Stamens** arising from the middle or base of the calyx, double or equal the number of the petals, or by abortion fewer. **Style** filiform; **stigma** capitate. **Capsule** oblong, covered by the calyx, two-celled, many-seeded. **Placentae** thick, adhering to the dissepiment.

—Herbs, or rarely undershrubs. **Leaves** entire. **Flowers** axillary, purple or white (De Cand.)

**Sp. Char.** — **Leaves** lanceolate, cordate at the base. **Flowers** spiked, almost sessile (De Cand.)

**Stems** two or three feet high, four-sided. **Spires** very long. **Flowers** purple. **Petals** oblong, cuneiform. **Stamens** usually twelve, of which six are long and six short.

**Hab.** — Ditches and watery places of this and other countries of Europe, west of Asia, New Holland, and North America.

**Description.** — The herb (Herba Salicarie seu Lysimachiae purpureae) when dry, is inodorous, but has an herbaceous, somewhat astringent taste, and by chewing becomes very mucilaginous. Its infusion is darkened by the ferruginous salts.

**Composition.** — I am unacquainted with any analysis of this plant. Its obvious constituents are tannic acid, mucilage, chlorophyll, and woody fibre.

**Physiological Effects.** — Demulcent and astringent.
Uses.—Principally employed in diarrhœa and dysentery. In the former of these complaints it was recommended by Bang, De Haen, and others. In dysentery, it was spoken favourably of by Gardane and others.

Administration.—Dose of the powdered herb 5 j. twice or thrice a day. A decoction of the root, prepared by boiling 5 j. of the root in 0 j. of boiling water, may be taken in doses of 1/2 5 j. or 1 5 j.

Order LIX.—Granateæ, Don.—The Pomegranate Tribe.

Essential Character.—Tube of the calyx turbinate; limb five- or seven-cleft, coriaceous; lobes valvate by aestivation. Petals five or seven. Stamens indefinite; filaments free; anthers anteriorly two-celled, dehiscing by a double chink. Style filiform; stigma capitate, pimpled. Fruit large, spherical, crowned with the somewhat tubular limb of the calyx, coated with the tube of the calyx, indehiscent, unequally divided into two chambers by a horizontal diaphragm; the upper one five- or nine-celled, the lower one smaller, three-celled; the dissepiments of both membranous. Placentæ of the upper chamber fleshy, spreading from the sides to the centre; those of the lower chamber irregular processes from its base. Seeds innumerable, mixed with a pellucid somewhat crystalline pulp, exalbuminous; embryo oblong; radicle short, straight; cotyledons foliaceous, spirally convoluted.—Trees or shrubs. Leaves deciduous, opposite, oblong, entire, without dots. Flowers scarlet (De Cand.)

Properties.—See Punica Granatum.


Sex. Syst. Icosandria, Monogynia.

(Fructus cortex, L.—Root-bark, E.—Baccae tunica exterior; Radicis cortex; Flores, D.)

History.—The pomegranate is repeatedly referred to in the Bible. Homer also mentions it. The leaves, the flowers, and the fruit. were employed in medicine by the ancients.

Botany. Gen. Char.—Only one genus (See the characters of the Order).

Sp. Char.—Leaves lanceolate. Stem arborescent (De Cand.)
Small tree, with a brownish bark. Leaves on short stalks, smooth. Flowers terminal on the young branches. Calyx thick, fleshy, red. Petals much crumpled, membranous, rich scarlet. Stamina numerous, inserted on the calyx; anthers yellow. Ovary roundish; style simple; stigma globular. Fruit larger than an orange, with a thick coriaceous rind, and crowned by the teeth of the calyx; cells several, arranged in two strata, one upper, the other lower, separated by a transverse diaphragm; lower stratum of three, upper one of from five to nine cells.—Some difficulty having been experienced in comprehending the structure of this anomalous fruit, Dr. Lindley\textsuperscript{m} has explained it thus: within the calyx are two rows of carpella, a lower and inner one, consisting of three or four carpella surrounding the axis, and placed in the bottom of the calyx; and an upper and outer one, consisting of from five to ten carpella, surrounding the lower, but adherent to the upper part of the tube of the calyx. The two strata or tiers of cells in the pomegranate are formed by the two rows or tiers of carpella; the upper and outer row being forced to the top of the fruit by the contraction of the tube of the calyx from which they arise. The transverse diaphragm is formed by the adhesion of the upper to the lower stratum of carpella; and the outer part of the rind of the pomegranate is formed by the calyx which contains the carpella.

Hab.—Northern Africa, from whence it has been introduced into Europe, where it is now naturalized. Asia (Bengal, China, Persia).

Description.—The flowers, called balaustine flowers (flores granati seu balaustiae), are odourless, of a fine red colour, and slightly styptic taste. They communicate a reddish colour to the saliva. The rind of the fruit (cortex granati: malicorium), when dry, occurs in irregular arched, dry, brittle, odourless, very astringent, and slightly bitter fragments, which are brownish (more or less yellow or reddish), and paler within. The seeds (semina granati) are each surrounded by a thin vesicle filled with an acidulous styptic juice. The root (radix granati) is woody, knotty, hard, heavy, of a yellow colour, and astringent taste. Its bark (cortex radicis granati) occurs in smallish frag-

\textsuperscript{m} Nat. Syst. 2d ed. p. 44, and Introd. to Bot.
ments, of a yellowish- or ash-gray colour externally, yellow within, brittle, not fibrous; of an astringent, but not bitter taste. By its want of bitterness it may be distinguished from the bark of the box-tree (Buxus sempervirens), which is said to be sometimes substituted for it. Moistened with water, and rubbed on paper, it leaves a yellow stain, which becomes deep-blue by the contact of sulphate of iron.

COMPOSITION.—Reuss examined the watery extract of the rind of the fruit. The bark of the root has been analysed by Wackenroder; in 1824 by Mitouart; and, in 1831, by Latour de Trie.

<table>
<thead>
<tr>
<th>Watery extract of Pomegranate Rind</th>
<th>Bark of the Pomegranate Root</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>REUSS’S ANALYSIS.</strong></td>
<td><strong>WACKENRODER’S ANALYSIS.</strong></td>
</tr>
<tr>
<td>Resin .......................... 0·92</td>
<td>Rancid fat oil .............. 2·46</td>
</tr>
<tr>
<td>Tannin .......................... 27·78</td>
<td>Tannin ........................ 21·92</td>
</tr>
<tr>
<td>Oxidized tannin .................. 10·19</td>
<td>Starch with some mucilage of lime 26·09</td>
</tr>
<tr>
<td>Extractive ...................... 21·76</td>
<td>Woody fibre with albumen 45·45</td>
</tr>
<tr>
<td>Gum .............................. 34·26</td>
<td>Loss .......................... 4·98</td>
</tr>
<tr>
<td>Loss ................................ 5·09</td>
<td>Extract of the Rind 100·00</td>
</tr>
<tr>
<td>Dried Bark ........................ 100·00</td>
<td>Bark of the Root.</td>
</tr>
<tr>
<td><strong>Extract of the Rind 100·00</strong></td>
<td><strong>Dried Bark 100·00</strong></td>
</tr>
</tbody>
</table>

1. **MANNITE (Granadin).**—The sweet substance which Latour de Trie considered to be peculiar, and called granadin, has been satisfactorily shown to be mannite (described at p. 1320).

2. **TANNIC ACID.**—On this the astringency of the fruit and root almost solely depends. It is this principle which enables the infusion, or decoction, of the rind and bark to produce precipitates (tannates) with a solution of gelatine, and with the ferruginous salts.

3. **RESIN.**—Latour de Trie describes this as being without any remarkable odour and taste. It is insoluble in water, slightly so in cold alcohol, and more so in hot alcohol, and in small quantity in ether.

**PHYSIOLOGICAL EFFECTS.**—All parts of the plant (root-bark, rind of the fruit, juice surrounding the seeds, and flowers) possess astringency, owing principally to tannic acid, and in some slight degree to a minute quantity of gallic acid. The bark of the root, taken in small quantities, occasions no remarkable effects. In full doses, however, it causes nausea, vomiting, and purging, and occasionally giddiness and faintness.

**USES.**—Rarely employed in medicine. The root-bark has been occasionally used as a vermifuge. Celsus, Dioscorides, Pliny, and other ancient writers, speak of its anthelmintic qualities. The Indians, also, were acquainted with them at a very early period. Of late years attention has been again drawn to this bark as a remedy for tape-worm, by the recommendations of Dr. Fleming, Dr. Guibourt, Hist. des Drog. i. 501.

* Guibourt, Hist. des Drog. i. 501.
* Ibid.
* Journ. de Pharm. x. 352.
* Ibid. xvii. 503-601.
* Journ. de Pharm. xxi. 169.
* Asiatic Researches, vol. xi.
Buchanan, Mr. Breton, Gomes, Deslandes, and others; but in this country it has been almost entirely superseded by oil of turpentine. The *rind of the fruit* has been employed on account of its astringency, in the form of decoction, as a gargle, in relaxed sore throat; as an injection, in leucorrhoea; and, internally, in diarrhoea, dysentery, and colliquative sweats. The powder of the rind may be administered as a tonic. The *flowers* are mild astringents, but are not employed in this country. The *fruit* may be eaten to allay thirst, and as a refreshing refrigerant and astringent in febrile disorders, especially those called bilious. It contains an acidulous styptic juice, which is inclosed in a thin vesicle surrounding the seeds.

**Administration.**—The *root-bark* is given in decoction. This is prepared by boiling 3ij. of the fresh bruised bark in Oij. of water to Oj.; the dose is a wine-glassful every half hour till the whole is taken. It usually occasions slight sickness, but seldom fails to destroy the worm. The patient should be prepared for the remedy by the use of a dose of castor oil and a strict regimen the day previously. The *rind of the fruit* may be given, as an astringent and tonic, in doses of 5ss. to 3j.

**Order LX.—Rosaceæ, Jussieu.—The Rose Tribe.**

**Essential Character.**—*Calyx* generally of five sepals, cohering at the base to form a tube; therefore five-lobed, generally persistent, usually free, sometimes adherent to the ovary. *Petals* as many as the sepals, rarely by abortion none, inserted on the calyx, quinuncial in aestivation, generally regular. * Stamens* inserted with the petals, mostly indefinite; *filaments* incurved in aestivation; *anthers* two-celled, dehiscing by a double chink. *Carpels* numerous, either solitary by abortion, or having the appearance of a single ovary, from their union, either together or with the tube of the calyx. *Ovaries* one-celled; *styles* simple, dilated at the apex into *stigmas* of variable shape, usually arising from the side of the ovary, either distinct, or, more rarely, coherent. *Seeds* in each carpel usually one or two, seldom numerous; erect or inverse, exalbuminous (Hirtella and Neillia excepted). *Embryo* straight; *cotyledons* either foliaceous or fleshy.—*Herbs*, *shrubs*, and *trees*. *Leaves* alternate, bistipulate at the base, simple or compound. *Inflorescence* various (De Cand.).

**Properties.**—The prevailing quality of Rosaceæ is astringency. This is especially obvious in the root. The tribe Amygdaleæ is distinguished from other rosaceous plants by the poisonous properties of the kernels and leaves, which yield hydrocyanic acid when distilled with water, and by the gummy exudation from the stems.

**Tribe I.—Amygdaleæ.**

1. **Amygdalus communis, Linna. L. E. D.—Common Almond.**

   **Sex. Syst.** Icosandria, Monogynia.


   **History.**—Almonds were well known to the ancients. They are mentioned in the earliest part of the Old Testament. Hippocrates

---

* Bayle, Bibl. de Thérup. i. 313.
* Genesis, xliii. 11.
employed both the sweet and bitter almonds, and their expressed oil, in medicine. Dioscorides describes the mode of expressing the oil.

**Botany.** **Gen. Char.**—Drupe pubescent, velvety; with a fibrous, juiceless cortex, which falls off irregularly; putamen (shell) pitted or smooth. Young leaves folded flat (conduplicate). Flowers somewhat sessile, solitary or in pairs, earlier than the leaves, arising from scaly buds. Fruit woolly (De Cand.)

**Sp. Char.**—Leaves oblong-lanceolate, serrulate. Flowers solitary. Calyx campanulate. Fruit ovoid-compressed, tomentose (De Cand.)

A small tree. Leaves on glandular footstalks, acuminate. Flowers moderately large, rose-red or white, nearly sessile, appearing before the leaves. Calyx reddish, campanulate, five-cleft; the segments blunt. Petals five, ovate, irregularly notched, rose-red. Stamens numerous (about thirty), shorter than the petals, inserted into the mouth of the calyx. Ovarium woolly; style simple; stigma round. Drupe ovoid, compressed, leathery, marked with a longitudinal furrow, where it opens when ripe; epicarp greenish-gray, tomentose; mesocarp (or sarcocarp) fibrous, cracking and dropping off; endocarp (putamen) woody or almost osseous, oblong or ovate, acute, marked with pits or furrows. Seed one (rarely two) in each drupe.

De Candolle admits five varieties of this species:

a. amara. Bitter Almond.—Styles almost as long as the stamens, tomentose below. Seeds bitter.—Flowers larger; petals white, roseate at the base. It varies with a hard and brittle putamen.


δ. macrocarpa. Large fruited. —Leaves broader, acuminate, scarcely ash-coloured. Peduncles shorter, turgid. Fruit larger, umbilicated, acuminate at the apex. Putamen hard.—Flowers white-roseate, large, appearing before the leaves. Petals broadly obcordate, undulate. It varies—1st, with a lesser fruit called the Sultana Almond; 2ndly, with a very small fruit termed the Pistachio Almond.

e. persicoides. Peach Almond.—Leaves like those of the peach. Fruit oval, obtuse. Sarcocarp succulent. Putamen yellowish-black, Seeds sweet.—On the same branch the fruit is sometimes ovate, obtuse, and somewhat fleshy; and dry, ovoid-compressed, and acuminate.

**Hab.**—Barbary and Syria. Cultivated in the southern parts of Europe.

**Description.**—Almonds in the shell (Amygdala cum putamine) consist of the seed, or kernel (Amygdala), enclosed in the endocarp (putamen or shell), which may be hard or soft. The seed is of an
Section of an almond.

a. One of the cotyledons.
b. Radicle and plumule.

oval shape, compressed, rounded at one end, and somewhat pointed at the other. The outer covering of the seed (epidermis seminalis; Bischoff) is glanduliferous, bitter, of a reddish-brown colour, and veined by the ramifications of the raphé. At the pointed extremity of the seed is a small perforation (foramen), and on one side of this, at the edge, is the rugged line (hilum) which constitutes, botanically, the base of the seed. The seed is connected, at the hilum, with the shell by the umbilical cord. The large or round end of the almond is curiously enough termed its apex. That part of the internal seed-coat (endopleura, De Candolle) which corresponds to the blunt or rounded end of the almond, is dark-coloured, indicating the situation of the chalaza. By soaking almonds in warm water, the seed-coats (pellicle or skin) are easily removed. Blanched almonds (amygdalæ decorticata) consist of the embryo only, composed of the two large fleshy cotyledons, between which, at the pointed extremity of the seed, we observe the plumule, with the radicle pointing towards the foramen (see fig. 284.)

1. Sweet Almonds (Amygdalæ dulces).—These are odourless, and have a bland, sweetish, agreeable taste. Three varieties are known in commerce:—“1. Jordan almonds, which are the finest, come from Malaga. Of these there are two kinds; the one above an inch in length, flat, and with a clear brown cuticle, sweet, mucilaginous, and rather tough; the other more plump and pointed at one end, brittle, but equally sweet with the former.—2. Valentia almonds are about three-eighths of an inch broad, not quite an inch long, round at one end and obtusely pointed at the other; flat, of a dingy-brown colour, and dusty cuticle.—3. Barbary and Italian almonds resemble the latter, but are generally smaller, and less flattened. Rancid, worm-eaten, and broken almonds should be rejected.” Sweet almonds are rarely employed for pressing, on account of their greater cost, and the less value of their residual almond cake (placenta amygdalæ dulcis). Almond powder (farina amygdalæ) is the ground almond cake, and is employed as a soap for washing the hands, and as a lute.

2. Bitter Almonds (Amygdalæ amaræ).—These are brought chiefly from Mogadore. In external appearance they resemble the sweet almond, but are somewhat smaller. They are distinguished by their bitter flavour, and, when rubbed with a little water, remarkable odour. They are extensively used for pressing. Their cake (placenta amygdalæ amaræ) is distilled with water to yield the volatile oil of bitter almonds, and is afterwards employed to fatten pigs, and for other purposes.

Commerce.—The following table shows the quantity of almonds

---

See Rusby’s Journal of a recent Visit to the principal Vineyards of Spain and France, p. 47. Lond. 1834.

Brande, Diet. of Pharm. 55.
(bitter and sweet) on which duty was paid during 1838 and 1839:\n
<table>
<thead>
<tr>
<th>Duty per cwt.</th>
<th>Quantity on which duty was paid.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In 1833.</td>
</tr>
<tr>
<td>Jordan</td>
<td>40s.</td>
</tr>
<tr>
<td>Not Jordan</td>
<td>20s.</td>
</tr>
<tr>
<td>Bitter</td>
<td>4s.</td>
</tr>
</tbody>
</table>

Almonds are imported in barrels, serons, boxes, bales, &c.

**COMPOSITION.** — *Sweet almonds* were analysed by Pronst^1; in 1817 by Boullay^2, and in 1825 by Payen and Henry fils^3. — *Bitter almonds* were analysed by Vogel^4.

**Boiloulay's Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed oil</td>
<td>54.0</td>
</tr>
<tr>
<td>Emulsin</td>
<td>24.0</td>
</tr>
<tr>
<td>Liquid sugar</td>
<td>6.0</td>
</tr>
<tr>
<td>Gum</td>
<td>3.0</td>
</tr>
<tr>
<td>Seed-coats</td>
<td>5.0</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>4.0</td>
</tr>
<tr>
<td>Water</td>
<td>3.5</td>
</tr>
<tr>
<td>Acetic acid and loss</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**Vogel's Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil and hydrocyanic acid</td>
<td>3</td>
</tr>
<tr>
<td>Fixed oil</td>
<td>28.0</td>
</tr>
<tr>
<td>Emulsin</td>
<td>25.0</td>
</tr>
<tr>
<td>Liquid sugar</td>
<td>6.5</td>
</tr>
<tr>
<td>Gum</td>
<td>3.0</td>
</tr>
<tr>
<td>Seed-coats</td>
<td>8.5</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>5.0</td>
</tr>
<tr>
<td>Loss</td>
<td>19.0</td>
</tr>
</tbody>
</table>

**Sweet almonds.**

**Bitter almonds.**

---

1. **Fixed Oil of Almonds** (See p. 1533.)

2. **Emulsin (Vegetable Albumen of Almonds).** — This remarkable constituent of almonds is white, and soluble in cold water; hence it is a constituent of almond emulsion. From its watery solution it is precipitated in thick white flocks by alcohol; these flocks dissolve in water, even if they have been previously dried. If the watery solution be heated to 212° F. the emulsin coagulates, and the liquor becomes thick, like starch mucilage. From ordinary vegetable albumen, emulsin is distinguished by its producing the decomposition of amygdalin, and yielding, among other products, the volatile oil of bitter almonds and hydrocyanic acid. When, however, emulsin has been coagulated by heat, it loses its power of acting on amygdalin. The composition of emulsin, according to Mr. Richardson, is as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
<th>Richardson.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>24</td>
<td>295</td>
<td>100:00</td>
<td>100:200</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>23</td>
<td>295</td>
<td>100:00</td>
<td>100:200</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>4</td>
<td>295</td>
<td>100:00</td>
<td>100:200</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9</td>
<td>295</td>
<td>100:00</td>
<td>100:200</td>
</tr>
</tbody>
</table>

Boiled with baryta, emulsin evolves ammonia, and yields a barytic salt containing a peculiar acid, which has been termed emulsic acid. It is probable, therefore, that emulsin is an amide of emulsic acid (i.e. emulsate of ammonia, minus an atom of water). Robiquet^5 regards the emulsin of Wöhler and Liebig as a very complex product.

3. **Amygdalin.** — A crystallizable substance found in the bitter, but not in the sweet, almond. From four lbs. of bitter almonds Liebig obtained one ounce of pure amygdalin. It is white, odourless, has at first a sweet, then a bitter taste, is very soluble in boiling alcohol and water,

---

^1 Trade List.
^2 Gmelin, Handb. d. Chem.
^3 Ibid. vi, 406.
^5 Gmelin, Handb. d. Chem. ii. 1268.
^6 Wöhler and Liebig, Journ. de Pharm. xxxiii. 391.
^7 Thomson, Organ. Chemistry, 653.
^8 Journ. de Pharm. xxiv. 196.
but is insoluble in ether. Crystallized out of an alcoholic solution it is in pearly scales, and is anhydrous. The crystals obtained from a watery solution are colourless, transparent, and prismatic, and contain six atoms of water of crystallization. The watery solution has a feebly bitter taste. Submitted to distillation with nitric acid, it yields hydrocyanic acid, oil of bitter almonds, formic acid, and some benzoic acid. Heated with an alkaline solution, it evolves ammonia, and yields an alkaline salt, which contains a peculiar acid, called amygdalic acid, composed of $\text{C}_5\text{H}_8\text{O}_2\text{N} + \text{Aq.}$; hence, perhaps, amygdalin is an amide of amygdalic acid (i.e. an amygdalate of ammonia, minus an atom of water). By the action of a solution of emulsin on a solution of amygdalin, we obtain, among other products, hydrocyanic acid and the volatile oil of bitter almonds (see Volatile Oil of Bitter Almonds). The following is the composition of amygdalin, according to Wöhler and Liebig:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Oxygen</td>
<td>22</td>
<td>176</td>
</tr>
</tbody>
</table>

Amygdalin = 1 atom = 457, and 6 atoms of Water = 54.

4. Volatile Oil of Bitter Almonds (see p. 1534).

Physiological Effects and Uses. α. Of Sweet Almonds.—Sweet almonds are nutritive and emollient; but on account of the quantity of oil which they contain, they are somewhat difficult of digestion, at least if taken in large quantities, or by persons whose digestive powers are weak. When rancid they are still more apt to disorder the stomach. The husk or pellicle of the almond has been known to occasion nausea, uneasiness in the stomach and bowels, increased heat, òedematous swelling of the face, followed by urticaria. Dr. Winterbottom suffered twice in this way from the use of unblanched sweet almonds, but blanched almonds caused no inconvenience.

For dietetical purposes, almonds are employed as a dessert for puddings, cakes, &c. On account of the irritant qualities of the husk, almonds for the table should always be blanched. Blanched and roasted they have been used as a substitute for coffee. Medicinally they are used in the preparation of the confection, emulsion, and oil.

β. Of Bitter Almonds.—Bitter almonds are more or less poisonous to all classes of animals. As in the cases of other poisonous vegetable substances, the larger herbivora are much less powerfully affected by them. Thus, three-quarters of a pound of bitter almonds, given to a horse, caused merely dulness and a small pulse. One drachm of bitter almonds has killed some of the smaller animals, as pigeons. Twenty seeds have killed a small robust dog. The symptoms which they induce in animals, are, trembling, weakness, palsy, convulsions (often of the tetanic kind), and, finally, coma. If vomiting occur early, the animal in that way may escape.

---

Op. cit.; also Journ. de Pharm. xxiii.
Murray, App. Med. iii. 25.
Orfila, Toxicol. Gén.
In small doses bitter almonds sometimes act on man as irritants to the digestive organs, and occasion nausea, vomiting, and purging. Owing to idiosyncrasy, some individuals are remarkably affected by them. On the late Dr. Gregory they caused, "first, sickness, generally tremors, then vomiting, next a hot fit, with an eruption of urticaria, particularly on the upper part of the body. At the same time the face and head swelled very much, and there was a general feeling like intoxication. The symptoms lasted only a few hours. The rash did not alternately appear and disappear, as in common nettle-rash" (Christison). In large doses bitter almonds have caused serious, or even fatal consequences. Pierer mentions that three children having eaten some of these seeds, were attacked in a few minutes with nausea, vomiting, loss of consciousness and of speech, and convulsions. Mr. Kennedy has noticed the case of a stout labourer, who died after the use of a great quantity of bitter almonds. These, and other observations referred to by Wibmer, Coullon, and others, prove that the poisonous effects of the bitter almond are similar to those of hydrocyanic acid (see p. 436).

The emulsion of bitter almonds partakes of the properties of the seeds. Pouzaire (quoted by Wibmer) states that a child of between four and five years of age suffered colic, head affection, grinding of the teeth, trismus, insensibility, and death, from the use of a strong dose of this liquid.

The distilled water of bitter almonds (aqua amygdalæ amarae) possesses poisonous properties, when either swallowed or applied externally. Sömmering states that half an ounce of concentrated bitter almond-water killed a dog.

Macaroons and Ratafia cakes, as well as Noyau, which owe their peculiar flavour to bitter almonds, act injuriously when taken in large quantities.

The effects of the volatile oil of bitter almonds will be noticed presently (see p. 1537).

The principal consumption of the bitter almond is for pressing, flavouring, and scenting. For flavouring, the seeds, or their essential oil, are used by the cook and confectioner (see p. 1538).

By the medical practitioners in this country, bitter almonds are rarely administered. They sometimes enter into the composition of the almond emulsion, but usually as a flavouring ingredient only. They are applicable, however, to all the uses of hydrocyanic acid (see p. 441); as pulmonary affections, gastrodynia, hooping-cough, &c.; but the objection to their use is their varying and uncertain strength. Bergius, and subsequently Frank, Hufeland, and others,
have successfully administered them against intermittent fever. They have also been used to expel tape-worm, and, it is said, with good effect 77. Pittschaft 7 prescribed bitter almond water to relieve painful menstruation. The emulsion has been employed as a wash to relieve irritation in various skin diseases; as herpes, prurigo, acne, impetigo, &c.

**ADMINISTRATION.**—Bitter almonds may be taken in substance or emulsion. Kranichfeld ²² employed the powder of the bitter almond cake (farina amygdalæ amarœ) in doses of one to six grs. As a substitute for the distilled water of bitter almonds (aqua amygdalæ amarœ), which is of variable strength, Wöhler and Liebig ² recommend the following emulsion (emulsio amygdalæ cum amygdalinœ) on account of its uniform strength:—Sweet almonds, 5j.; Water, and Sugar sufficient to make ½j. of emulsion, in which, when strained, dissolve Amygdalin, grs. xvii. This quantity of amygdalin, when acted upon by the emulsion, yields one grain of anhydrous hydrocyanic acid, and eight grains of volatile oil.—The dose of this emulsion is gtt. x. to f½j. Almond paste is sold in the shops for softening the skin and preventing chaps. Dr. Paris ²⁶ gives the following recipe for making it:—Bitter Almonds, blanched, ¾iv.; the white of an Egg; Rose Water and Rectified Spirit, p. æ., as much as may be sufficient.

1. **CONFECTIO AMYGDALE, L.** Conserva Amygdalarum, E.; Confecção Amygdalarum, D.; Almond Confection.—(Sweet Almonds, 3viij.; Powder of Gum Arabic, 3j.; Sugar, ¾iv. The almonds being first macerated in cold water, and their pellicles removed, beat all the ingredients until thoroughly incorporated. — The process of the Dublin College is essentially the same.—The London College adds, that this confection can be preserved unaltered for a longer time, if the almonds, gum arabic, and sugar, are separately powdered, and afterwards mixed. Then, whenever the confection is to be used, beat all the ingredients together until they are thoroughly incorporated).—Almond confection, prepared without water, is not more apt to spoil or become rancid than when the ingredients are separately powdered, and subsequently mixed; but if, in order to soften the mass, a little water be added, it then soon becomes mouldy or rancid, or both ²⁸. The only use of almond confection is in the preparation of the emulsion.

2. **MISTURA AMYGDALE, L.** Mistura Amygdalarum, E. D.; Lac Amygdale; Almond Emulsion; Almond Milk.—(Almond Confection, ¾ijs.; Distilled Water, Oj. Gradually add the water to the confection, while rubbing, until they are mixed; then strain through...
COMMON ALMOND. 1533

linen, L.—The Edinburgh College employs 5ij. of the Confection to Oij. of Water, and strains the mixture through linen or calico; or they direct it to be prepared by the following process: "Sweet Almonds, 5j. and 5ij.; Pure Sugar, 5v.; Mucilage, 5ss.; Water, Oij. Steep the almonds in hot water and peel them, and proceed as for the Mistura Acaciae."—The Dublin College prepares it as follows: Sweet Almonds, blanched, 5ss.; Bitter Almonds, 2ij.; Refined Sugar, 5ss.; Water, Oijss. Rub the almonds with the sugar, adding gradually the water, then strain.)—Notwithstanding that the formulae of the three Colleges are different, none of them precisely agree with that which is in common use. No one who wishes to procure good almond milk would prepare it with the confection, on account of the changes which this preparation suffers by being kept. Powdered gum arabic is, for ordinary purposes, a more convenient and ready ingredient than mucilage, and does not undergo any change by keeping. Lastly, the emulsion containing bitter almonds, though agreeable to most persons, and perhaps useful in some cases, is not applicable to all the purposes for which the ordinary emulsion is employed, and is apt to disagree with some individuals. The following formula yields a preparation identical with that of the London College: Sweet Almonds, 5iv.; Powdered Gum Arabic, 5j.; White Sugar, 5ij.; Water, f5vjs.. Having blanched the almonds, beat them with the sugar and gum, the water being gradually added.—Almond milk agrees in many of its properties with animal milk. Thus it is white; when examined by the microscope it is seen to consist of myriads of oleaginous globules, suspended in water by the aid of an albuminous principle (emulsin) and sugar; and, lastly, it agrees with milk, in possessing nutritive and emollient qualities. It is used as a demulcent and emollient in pulmonary affections, to appease cough and allay irritation; and in inflammatory affections of the alimentary canal or of the urinary organs. It is an excellent vehicle for other remedies; as for the saline refrigerants (nitre, for example) in febrile cases, for expectorants and paregorics (squills, ipecacuanha, opiates, &c.) in pulmonary affections, for sudorifics (emetic tartar, for example) in febrile and inflammatory cases, for alkalises and their carbonates in affections of the urino-genital organs, and for hydrocyanic acid in gastrodynia and pulmonary disorders. Acids and alcohol (hence tinctures) coagulate the emulsin, and cause almond mixture to separate into a kind of curd and whey; a change which also takes place spontaneously when the mixture has been kept, and which is accompanied with the development of free acid. In cases where the hydrocyanic acid is admissible (see p. 441), the bitter almond may be used, as in the formula of the Dublin College.—The dose of almond emulsion is f5j. or f3ij., or ad libitum.

3. OLEUM AMYGDALI, L. Oleum Amygdalarum, D.; Almond Oil; Oil of Sweet Almonds.—(Obtained by expression from either bitter or sweet almonds; usually from the former, on account of their cheapness as well as of the greater value of their residual cake).—The average produce is from 48 to 52 lbs. from 1 cwt. of almonds.
When recently expressed it is turbid, but by rest and filtration becomes quite transparent. It usually possesses a slightly-yellow tinge, which becomes somewhat paler by exposure to solar light. It is inodorous, or nearly so, and has a purely oleaginous bland taste. It congeals less readily by cold, than olive oil. Braconnot states that at 14° F. it deposits 24 per cent. of margarine (margarate of glycerine) which fuses at 43° F. The residual oleine (oleate of glycerine) did not congeal at the greatest degree of cold. The accuracy of these statements has, however, been called in question. Its sp. gr. would appear to vary: Brandis found it 0·911, Brisson, 0·917, Saussure 0·920, at 53° F. Sulphuric ether dissolves it. Six parts of boiling, or twenty-five parts of cold alcohol, are required to dissolve one part of this oil.

**Proximate Composition.**

<table>
<thead>
<tr>
<th>Braconnot.</th>
<th>Ultimate Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleine</td>
<td>Carbon</td>
</tr>
<tr>
<td>Margarine (Stearine of Braconnot)</td>
<td>Hydrogen</td>
</tr>
<tr>
<td></td>
<td>Oxygen</td>
</tr>
<tr>
<td></td>
<td>Nitrogen [loss]</td>
</tr>
<tr>
<td>Almond oil</td>
<td>Almond oil</td>
</tr>
</tbody>
</table>

The nitrogen mentioned in Saussure's analysis is probably an error.

Almond oil is said to be adulterated with tallow oil (see p. 1356).

It possesses the dietetical and medicinal properties of the other fixed oils (see pp. 51 and 1317). Its local action is emollient (see p. 190). Swallowed in moderate doses it is nutritive, but difficult of digestion. In large doses it acts as a mild laxative (see p. 208).

Almond oil may be employed for the same purposes as olive oil (see p. 1318). Mixed with an equal volume of syrup of violets, or syrup of roses, it is given to new-born infants as a laxative. It is sometimes used with gum (in the form of mucilage), alkalis, or yolk of egg, to form an emulsion, which is used in the same cases as the mistura amygdalae. To assist in allaying troublesome cough it is not unfrequently administered in the form of linctus, with confection of dog-rose, syrup of poppies, &c.

**4. OLEUM AMYGDALÆ AMARÆ; Oleum Amygdala amara destillatum; Oil of Bitter Almonds; Essential Oil of Almonds.** (Obtained by submitting bitter almond cake [left after the expression of the fixed oil from bitter almonds] to distillation with water, either alone, or more usually with salt. To increase the quantity of volatile oil, Geiger recommended the cake to be macerated in the water for twenty-four hours before distillation).—The theory of this process is curious. Chemists formerly supposed that the volatile oil resided in the bitter almond, and that by distillation it was merely volatilized and subsequently condensed. But in opposition to this view may be urged the following facts:—

1. Neither bitter almonds, nor their residuary cake, yield any volatile oil by pressure, yet we know that the volatile oil is soluble in the fixed oil, and, therefore, when the latter was expressed it ought to contain traces of the volatile oil, if this existed in the bitter almonds.

2. They yield no oil when digested in alcohol or in ether, though the volatile oil is soluble in both of these liquids.
3. Alcohol extracts from bitter almond cake, sugar, resin, and amygdalin. When the latter substance has been removed, the cake is no longer capable of furnishing the volatile oil by distillation.

4. Ether extracts no amygdalin from bitter almond cake; and the cake left after digestion in ether, yields the volatile oil by distillation with water.

These facts, then, prove that the volatile oil does not reside in the bitter almond, but is formed by the action of water on some of the constituents of these seeds. Now, when bitter almonds are deprived of amygdalin, they are incapable of yielding the volatile oil: so that it is this principle which enables them to yield it. But amygdalin, with water only, produces no oil: hence the presence of some other substance is necessary. Wöhler and Liebig have shewn that this other substance is emulsin, and that, by the mutual reaction of amygdalin, emulsin, and water, we obtain the volatile oil of bitter almonds and hydrocyanic acid. But it appears that sugar, and some other substance (probably a compound of formic acid and altered emulsin) are simultaneously developed. These ingredients are, probably, all yielded by the amygdalin, the operation of emulsin on which has been compared to that of yeast on sugar and water. It will be seen by the following table (drawn up by Wöhler and Liebig), that amygdalin contains the elements of hydrocyanic acid, volatile oil of bitter almonds, sugar, formic acid, and water:—

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Nitrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 atom of Hydrocyanic acid</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 atoms Volatile Oil of Bitter Almonds</td>
<td>12</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1 atom of Sugar</td>
<td>6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2 atoms of Formic acid</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7 atoms of Water</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1 atom of Amygdalin</td>
<td>40</td>
<td>27</td>
<td>1</td>
</tr>
</tbody>
</table>

The essential oil of bitter almonds of the shops possesses the following properties. It is highly poisonous, has a golden-yellow colour (by rectification it may be rendered temporarily colourless), an agreeable odour (usually compared to that of hydrocyanic acid, but which, in fact, bears but little resemblance to it), and an acid, bitter, taste. It is combustible, and burns with a white flame. Its sp. gr., though always greater than that of water, probably varies somewhat. I find that a sample, which had been prepared for about eight months, had the sp. gr. of 1.0836. It is soluble in alcohol and ether. Oil of vitriol forms with it a magnificent crimson-red thick liquid, which, on the addition of water, yields a yellow emulsion.

Oil of bitter almonds, as found in commerce, is a mixture or compound of hydruret of benzule, hydrocyanic acid, a little benzoic acid, benzoin, benzimide, and probably other substances.

a. Hydruret of Benzule.—This is obtained by forming the oil into a thin paste with hydrate of lime, chloride of iron and water, and redistilling. It is a limpid colourless oil, whose sp. gr. is 1.043, and whose odour and taste are scarcely different from those of the ordinary oil. Robiquet found it innocuous, but Vogel, and more recently Liebig, declare that it still retains its poisonous properties. In some earlier experiments which I made on this subject, I found it to be highly poisonous, though I could not detect an atom of hydrocyanic acid.

---

**b** Journ. de Pharm. xxiii.
acid in it. After the sample had been kept a few months, however, I readily detected the acid in it by the potash and iron test. By a second and third rectification I completely deprived it of all traces of the acid; and I then found that four drops of it, given to a small rabbit, had no more effect than the same quantity of any other volatile oil: that is, the animal appeared dull for a few minutes, and the respiration was quickened. Hydruret of benzule is composed of $C_8H_8O_3$. Now, certain changes which it undergoes are best explained by assuming that this oil is a compound of the base of benzoic acid and hydrogen. To this base, whose composition is $C_8H_8O_3$, the name of Benzule or Benzoyl has been given; so that the oil is the hydruret of benzule, and its proximate and ultimate composition is as follows:

<table>
<thead>
<tr>
<th>Proximate Composition.</th>
<th>Ultimate Composition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzule</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
</tr>
<tr>
<td>Hydruret of Benzule</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By exposure to the air it absorbs 2 eq. oxygen, and is converted into hydrated benzoic acid $C_8H_8O_3 + 2O_2$.

6. HYDROCYANIC ACID.—The presence of hydrocyanic acid in the essential oil of bitter almonds may be detected by the usual tests, especially by potash and a salt of iron (see p. 435). The quantity of this acid is differently stated by different authorities, and is, probably, not uniform. Schrader got, from an old sample, 8.5 per cent., and from a new sample, 10.75; but Göppert obtained, from another specimen, so much as 14.383 per cent. Water in which the oil has been washed gives evidence of the presence of hydrocyanic acid by the potash and iron test before referred to.

7. BENZOIC ACID.—This is formed by the action of the oxygen of the atmosphere on hydruret of benzule as above mentioned. It is more readily produced in the pure hydruret than in raw oil of bitter almonds.

8. BENZOIN; CAMPHOR OF OIL OF BITTER ALMONDS.—Liebig states that this is a constituent of oil of bitter almonds. It is a crystalline substance usually obtained by the action of alkalis on the oil. It cannot be procured from hydruret of benzule (with which it is isomeric) unless hydrocyanic acid be present. It is soluble in boiling alcohol. Oil of vitriol also dissolves it with a violet-blue colour; if the solution be heated it becomes brown, green, and at last black, with disengagement of sulphurous acid.

9. BENZIMIDE.—This separates from oil of bitter almonds under certain circumstances. Its formula is $C_8H_8O_3N$. It is soluble in alcohol. Nordhausen sulphuric acid dissolves it, assuming a deep indigo colour: if moisture be present the colour is at first emerald green. By the action of potash and a little alcohol it evolves ammonia and forms benzoate of potash.

A crystalline matter is frequently deposited by oil of bitter almonds, when it has been kept for some time. Exposure to the air, by which the oil is enabled to absorb oxygen, and the removal of hydrocyanic acid from the oil, facilitate the deposition. In 1822, Grischow and Bahlmann, and, in 1823, Stange, declared the crystals to be those of benzoic acid; a statement which was confirmed, in 1830, by Robiquet and Boutron. I have met with three kinds of crystalline deposit, differing essentially from each other, and from benzoic acid.
1st. One of these is characterised by the *emerald-green* colour which it produces when dropped into oil of vitriol. In a few minutes, however, the green changes to red. This deposit is orange-yellow, soluble in boiling water, alcohol, and ether; when the alcoholic or ethereal solutions cool, numerous white, light, pearly crystalline plates (resembling crystalline boric acid) are deposited. If these white crystals be dropped into oil of vitriol they also become emerald green, but very slightly so: the mother liquor is rendered much more intensely green by oil of vitriol. Boiled with caustic potash they give out ammonia. By keeping for two years in a stoppered bottle, both the raw and purified crystals lost the property of becoming green by oil of vitriol; they now became red on the addition of this liquid; and the crystals on being redissolved in alcohol and recrystallized were scarcely coloured on the addition of oil of vitriol.

From raw oil of bitter almonds washed with solution of potash I have obtained, at the end of twenty-four hours, crystals which, like the above, become green on the addition of oil of vitriol.

2nd. A second crystalline deposit is characterized by the *cherry-red* colour which it assumes when dropped into oil of vitriol, and by its not evolving ammonia when boiled with caustic potash. Its appearance resembles solid oil of anise. When dissolved in boiling alcohol and re-crystallized, it yields silky prismatic crystals somewhat similar to those of nitrate of ammonia. At the end of two years it had almost lost its quality of being reddened by oil of vitriol; but when boiled with this liquor it gave out a crystalline sublimate. Heated with solution of potash it evolved faint traces of ammonia.

3rd. The third kind of deposit I did not receive until after it had been digested in alcohol. A short notice of it has been given by Mr. Letheby. The crystals are small, acicular, and lemon-yellow; they dissolve in oil of vitriol, forming a *yellow* or *orange coloured* solution. They are insoluble in water and alcohol. When heated they fuse, but, unlike the two preceding deposits, do not sublime. They do not evolve ammonia when heated with a solution of caustic potash. At the end of two years these crystals were unchanged. In all the cases in which they are found the oil had been put aside contaminated with water.

The *volatile oil of bitter almonds* is a most potent poison, acting as rapidly as the ordinary hydrocyanic acid of the shops, and giving rise to similar symptoms. A single drop has killed a cat in five minutes. Sir B. Brodie happening to touch his tongue with a probe which had been dipped in the oil, suffered, almost instantaneously, an indescribable sensation at the pit of the stomach, feebleness of the limbs, and loss of power over the muscles. These effects, however, were quite transient. Several cases of poisoning with it are recorded. The best detailed is that related by Metzdorff (quoted by Dr. Christison):—“A hypochondriacal gentleman, 48 years old, swallowed two drachms of the essential oil. A few minutes afterwards, his servant, whom he sent for, found him lying in bed, with his features spasmodically contracted, his eyes fixed, staring, and turned upward, and his chest heaving convulsively and hurriedly. A physician, who entered the room twenty minutes after the draught had been taken, found him quite insensible, the pupils immovable, the breathing stertorous and slow, the pulse feeble, and only thirty in a minute, and the breathing exhaling strongly the odour of bitter almonds. Death ensued ten minutes afterwards.” Another case of

---

* For specimens of this, as well as of the first kind of deposit, I am indebted to Mr. Whipple.
* *Lond. Med. Gaz.* xxvi. 67.
* Brodie, *Phil. Trans.* 1811, p. 178.
poisoning with this oil occurred a few years since in Aldersgate-street:—A lady, intending to take beech-nut oil, for worms, swallowed (by mistake) oil of bitter almonds, sold to her by a druggist, who supposed she inquired for peach-nut oil. Recovery has occurred, in one case, after about half an ounce (?) of the oil had been swallowed.

In this country, essential oil of bitter almonds is not employed in medicine. It is applicable in the same cases that hydrocyanic acid is employed in. But it must not be forgotten that, though its strength is somewhat variable, it is in general four times the strength of officinal hydrocyanic acid. The dose of it is a quarter of a drop to a drop and a half in an emulsion. It is extensively employed for flavouring by the cook and confectioner; and by the perfumer for scenting toilet-soap, and for other purposes.

Essence of Bitter Almonds.—This term is sometimes applied to the essential oil, and sometimes to a solution of the oil in rectified spirit. Two fluidrachms of the oil and six fluidrachms of rectified spirit, form an useful essence for flavouring and scenting.

2. PER'SICA VULGA'RIS, Miller.—THE PEACH.

Amygdalus Persica, Linn. D.
Sex. Syst. Icosandria, Monogynia.
(Folia, D.)

History.—Both Dioscorides and Pliny speak of the peach: the former terms it περσικήν μήλον; the latter malum persicum.

Botany. Gen. Char.—The same as Amygdalus, except that the drupe is very fleshy. Epicarp either velvety or quite smooth. Puntamen (stone) extremely rugose, with furrows (De Cand.)

Sp. Char.—Fruit tomentose (De Cand.)

A small tree. Leaves lanceolate, serrate or crenate, with or without glands. Flowers roseate, large or small. Both flowers and kernels exhale the bitter-almond odour.

Two varieties of the peach are usually made. These are admitted by De Candolle:—

a. Melters or Free-stones.—Flesh separating from the stone.

b. Cling-stones or Pavies.—Flesh adherent to the stone.

The Nectarine (Persica lutea, De Cand.) is distinguished from the Peach by its smooth fruit. This trivial distinction leads many botanists to regard these two fruits as varieties of the same species.

Hab.—Native of Persia. Cultivated in gardens. Flowers in April or May.

Description.—Peach leaves (folia persicae) have the peculiar odour and taste of the bitter almond. The kernels (semina persicae) closely resemble the latter, both in appearance and properties, but

---

2. Lib. i. cap. 164.
4. See Loudon, Encyc. of Gardening.
5. Gmelin, Hand. d. Chem. ii. 400.
are smaller. The flowers (flores persicae) lose the greater part of their odour by drying.

Composition.—The leaves have not been analyzed. They yield, by distillation, a volatile oil (oleum folii persicæ), which is yellow, heavier than water, and contains hydrocyanic acid. After eight years a crystalline substance was found on the water. The non-ligneous extremities of the twigs of the peach-tree yielded Gauthier 1·92 per cent. of very volatile oil, which was heavier than water. Berard analyzed the juice of the peach, both in the ripe and unripe states: the constituents were, colouring matter, sugar, gum, vegetable fibre, albumen, malic acid, lime, and water.

Physiological Effects.—The highly palatable flesh of the peach is nutritious (on account of its sugar, gum, &c.), and slightly refrigerant (from the malic acid which it contains). Taken in moderate quantities it is wholesome, but if eaten too freely is apt to disorder the bowels. The kernels, the blossoms, the leaves, and the bark, possess poisonous properties. The flowers, as well as the leaves, in the form of infusion, have been used to purge and destroy intestinal worms, especially in children; but their employment has sometimes been attended with fatal results. Bertrand says, that a child, eighteen months old, experienced convulsions, vomiting, and bloody diarrhoea, from the use of a strong decoction of the flowers; and Coulon states, that an elderly gentleman, having partaken of a salad of the flowers, was seized with giddiness, violent purging, convulsions and stupor, and died in a three days. The irritation of the alimentary canal, manifested by vomiting and purging, and the slow death, distinguish the operation of peach-flowers from that of hydrocyanic acid. The same author also states, that the peach-bark proved injurious to a cock, and caused difficulty of breathing, and purging.

Uses.—The fruit, both fresh and preserved, is employed as a dessert. Its use is objectionable in gouty persons, and in those whose bowels are easily disordered. When stewed with sugar, it may be given as a mild laxative to convalescents. The kernels may be used as the bitter almond. The blossoms are scarcely ever administered in this country; but they have been recommended as a vermifuge. The leaves are sometimes employed by the cook and liqueur-maker, for flavouring. They have also been used as a substitute for China-tea. They have been recommended as a vermifuge, and more recently to allay irritation of the bladder and urethra.

Administration.—The dose of peach-blossoms is half an ounce of the fresh, or a drachm of the dried, flowers, infused in water. The dose of the infusion of peach-leaves (prepared by digesting 3 ss. of the dried leaves in 0j. of boiling water) is 3 ss. three times a day.
3. PRUNUS DOMESTICA, LINN. L. E. D.—THE PLUM-TREE.

Sex. Syst. Icosandria, Monogynia.

(Drupe exsiccate, L.—Dried fruit, E.—Fructus siccatiis, D.)

History.—Dioscorides calls this tree the κόκκυμηλέα, while the fruit he terms κοκκυσμηλον.

Botany. Gen. Char.—Drupe ovate or oblong, fleshy, quite smooth, covered with a pruinose powder. Putamen (stone) compressed, acute on both sides, somewhat furrowed at the edges, otherwise smooth. Young leaves convolute. Pedicels umbellato-fasciculate, one-flowered, evolved before or after the leaves (De Cand.).


Gardeners cultivate several hundred varieties. De Candolle admits the following varieties:

a. Armenioïdes, including the Mirabelle Plum.
β. Claudia, including the Green Gage.
γ. Myrobalana, including the Myrobalan Plum.
δ. Damascena, including the Damash Plum.
ε. Turonensis, including the Orleans Plum.
ζ. Juliana, yields the Officinal Prune.
η. Catharinea, including the St. Catharine Plum.
θ. Aubertiana, including the Magnum Bonum, or Mogul Plum.
ι. Prunealina, including the Damson.

Hab.—South of Europe. Cultivated in gardens and orchards.

Description.—The dried fruits of the Prunus domestica are called prunes (fructus siccatiis pruni; drupae siccatae pruni). In warm countries they are dried on hurdles by solar heat; but in colder climates artificial heat is employed. In France both methods are adopted; the fruit being exposed to the heat of an oven and to that of the sun, on alternate days. Table prunes are prepared from the larger kinds of plum—as the Saint Catharine and the Reine-Claude (Green Gage): Medicinal prunes from the Saint Julien (P. domestica, var. ζ Juliana). The former have an agreeable, very sweet taste; the latter are somewhat austere. They are principally imported from Bourdeaux. The part employed in medicine is the pulp (pulpa pruni).

Composition.—John analyzed the Mirabelle Plum, and Berard the Reine-Claude (Green Gage), both in the ripe and unripe states. The constituents of the ripe fruit, according to the last-mentioned chemist, are, sugar 11·61, gum 4·85, albumen 0·93, malic acid 1·10, vegetable fibre 1·21, lime a trace, water 80·24, [loss 0·06]. Pectin is also a constituent of these fruits.

---

* Lib. i. cap. 174.
+ Don (Syst. of Gard. ii. 499) mentions 270 varieties.
\[ Gmelin, Handb. d. Chem. ii. 1269. \]
θ Thomson, Org. Chem. 890.
Physiological Effects.—Fresh ripe plums, taken in moderate quantities, are wholesome and nutritive; but in large quantities they readily disorder the bowels. The immature fruit still more easily excites ill effects. The medicinal prune is a mild laxative.

Uses.—The finer kinds of plums are employed at the table as a delicious dessert: the inferior qualities are used in pies, tarts, conserves, and sweetmeats. The larger prunes are employed at the table as a dessert. The medicinal prunes are employed as an agreeable and mild laxative for children, and during convalescence from febrile and inflammatory disorders. They are sometimes added to cathartic decoctions or infusions (as infusion of senna), to improve the flavour, and promote the purgative effect. They enter into the composition of the confection of senna.

4. Cer'asus Lauro-Cer'asus, Loisel.—Common or Cherry-Laurel.

Pru'nus Lauro-cer'asus, Linn. D. E.
Sex. Syst. Icosandria, Monogynia.
(Leaves, E.—Folia, D.)

History.—Belonius terms this plant the Cerasus trapezuntina. It was introduced into Europe, from Trebizonde, in 1576.

Botany. Gen. Char.—Drupe globose or umbilicate at the base, fleshy, quite smooth, not covered with a pruinose powder. Nucleus (stone) somewhat globose, smooth.—Young leaves conduplicate. Pedicels one-flowered or ramose (De Cand.)

Sp. Char.—Racemes shorter than the leaves. Leaves ovate-lanceolate, remotely serrate, with two or four glands beneath. Fruit ovate, acute (De Cand.)

An evergreen under-shrub. Smooth in every part. Leaves short-stalked, coriaceous, shining. Petals roundish, spreading white. Fruit black, the size of a small cherry.

Hab.—Trebizonde. Common in gardens everywhere.

Description.—Cherry-laurel leaves (folia lauro-cerasi) have scarcely any odour until bruised, when they give out the characteristic or bitter almond odour of the plant. Their taste is very bitter, aromatic, and slightly astringent. By drying they lose their odour, but retain their flavour. Their watery infusion is rendered green by the sesquichloride of iron.

Composition.—I am unacquainted with any complete analysis of cherry laurel leaves. They were imperfectly examined in 1797 by L. J. Spandaw du Celliéé. In 1802, Schrader discovered hydrocyanic acid in the volatile oil obtained from them. The recent re-
searches into the origin of the volatile oil of the bitter almond (see p. 1534), render it probable that the volatile oil of the cherry-laurel does not pre-exist in the leaves. The supposed constituents of cherry-laurel leaves are amygdalin (probably, according to Wöhler and Liebig, though they failed to procure it), resin (Spandaw), myricin (the shining appearance of the leaves is, perhaps, owing to this), chlorophylle or green colouring matter, extractive, tannic acid, ligneous fibre, and water.

Volatil Oil of the Cherry-Laurel (Oleum Lauro-cerasi).—By distillation with water, cherry-laurel leaves yield a volatile oil and a distilled water (aqua lauro-cerasi). As the oil, like the volatile oil of bitter almonds, contains both hydrocyanic acid and hydruret of benzole, it is natural to suppose that the two oils are produced in a similar manner. And though they did not succeed in procuring amygdalin, MM. Wöhler and Liebig think its presence in cherry-laurel leaves highly probable; but what substance effects its decomposition has not yet been ascertained.

Cherry-laurel oil is pale yellow, and heavier than water. It attracts oxygen from the air, and deposits benzoic acid. Oil of vitriol colours it red. It contains hydrocyanic acid, which may be detected by an alkali and a ferruginous salt (see p. 435). The quantity, according to Schrader, is 7½ per cent.; but Goppert declares it to be only 2½ per cent. It appears, therefore, to be a weaker poison than the oil of bitter almonds, with which, according to Robiquet, it agrees in all its chemical properties.

Physiological Effects.—Most parts of the plant, but more especially the leaves and seeds, possess poisonous properties.

a. On Vegetables.—The distilled water of the cherry-laurel destroys plants, like hydrocyanic acid. Goppert asserts, that its poisonous operation does not depend on the small quantity of this acid which it contains, but on some poisonous quality peculiar to it; for its activity is greater than that of water containing the same quantity of hydrocyanic acid.

b. On Animals.—The effects of cherry-laurel water on animals have been examined by a considerable number of observers. Of these it will be sufficient to mention the names of Madden, Browne Langrish, Fontana, and Orfila. It appears, says Dr. Christison, that whether cherry-laurel water is introduced into the stomach or into the anus, or into the cellular tissue, or directly into the vein, it occasions giddiness, palsy, insensibility, convulsions, coma, and speedy death;—that the tetanic state brought on by the pure acid is not always so distinctly caused by cherry-laurel water; and that tetanus is most frequently induced by medium doses. Cherry-laurel oil acts on animals as a powerful poison in the dose of a few
HERB BENNET.  

drops; the symptoms which it excites being similar, if, indeed, they be not identical, with those induced by the volatile oil of bitter almonds (see p. 1537).

γ. On Man.—Liqueurs, sweetmeats, creams and puddings, flavoured with the cherry-laurel, have oftentimes acted injuriously, and even proved fatal. Where death occurred, the symptoms were similar to those caused by hydrocyanic acid; viz. painful sensation at the stomach, sudden insensibility, and death within a few minutes. Convulsions, however, have not been frequent. In the case referred to by Dr. Madden, in which brandy, mixed with a fourth part of cherry-laurel water, proved fatal, there was no vomiting, purging, or convulsions. But in the instances mentioned by Fodéré, the individuals expired in convulsions. The effects of medicinal doses of cherry-laurel water are stated to be similar to those of small doses of hydrocyanic acid.

Uses.—Cherry-laurel leaves are not unfrequently employed by the cook for flavouring. Though the distilled water of the cherry-laurel is contained in the Edinburgh and Dublin Pharmacopoeias, yet it is rarely employed in medicine in this country. It is applicable to all the cases for which hydrocyanic acid has been used (see p. 441). It has been used as a sedative narcotic in tic-douloureux, phthisis pulmonalis, spasmodic cough, and palpitation of the heart.

AQUA LAURO-CERASI, D.; Water of Cherry Laurel; Laurel Water. (Fresh Leaves of the Cherry Laurel, lbj.; Water, Oijss. [Oij. wine measure, D.]; Compound Spirit of Lavender, 5j. Chop down the leaves, mix them with the water, distil off one pint, agitate the distilled liquid well, filter it if any milkiness remain after a few seconds of rest, and then add the lavender spirit.)—The compound spirit of lavender is added, as a colouring ingredient, to prevent the preparation being mistaken for common water. Dose 2ss. to 5j. The strength, and, therefore, the dose, are, however, liable to considerable variation. Fouquier has, in some cases, given twelve ounces during the day, without any evident effect.

TRIBE II.—DRYADEÆ.

5. GE’UM URBA’NUM, Linn. D.—COMMON AVENS. HERB BENNET.

Sex. Syst. Icosandria, Polygynia.

(Radix, D.)

History.—Pliny speaks of the medicinal properties of Geum.

Botany. Gen. Char.—Tube of the calyx concave; limb five-cleft, externally five-bracteolate. Petals five. Stamens numerous. Car-

---

v Phil. Trans. for 1731.
w Orfila, Toxicol. Gén.
y Hist. Nat. xxvi. 21, ed. Valp.
pels juiceless, tailed, disposed in a head. Style, after flowering, articulate or barbed. Seed ascending.—Herbs. Leaves variously pinnatisect (De Cand.)

Sp. Char.—Stem erect, branched, hairy. Leaves radical quinate-pinnatisect; caulinar ones ternate-palmatisect, with ovate broadly toothed crenate-lobes; upper ones one-lobed, ovate. Stipules somewhat orbicular, large. Petals obovate, as long as the calyx. Carpillary head spherical. Ovaries hairy, numerous. Styles smooth, with somewhat hairy appendices (De Cand.)

Root of many brown fibres. Stem one or two feet high. Leaves grass-green, veiny, hairy. Flowers terminal, solitary. Petals bright-yellow.

Hab.—Indigenous. Growing in woods, hedges, and dry shady places.

Description.—The root (radix caryophyllata, seu gei urbani, vel sanamundae) consists of a rootstalk of from one to three inches long, from which issues a considerable number of cylindrical fibres. Externally it is brownish; internally, reddish. When recent its odour is aromatic and clove-like; but this is greatly diminished by drying. Its taste is aromatic, astrigent, and bitterish. It should be gathered in the spring.

Composition.—The root has been the subject of repeated chemical experiment. Thus it was examined by Muehlenstedt, Anjou, Bouillon-Lagrange, Melandi and Moretti, and Trommsdorff. The latter chemist found the constituents of the dried root to be as follows:—volatile oil 0.039, resin 4, tannin soluble in alcohol and water 10, tannin insoluble in alcohol and ether, with traces of chlorides, 31, gum 15.8, bassorin 9.2, ligneous fibre 30 [excess 0.039].

Physiological Effects.—Aromatic, tonic, and astrigent.

Uses.—Scarcely employed as a medicine in this country. It has been used in chronic diarrhoea and dysentery, leucorrhoea, chronic hemorrhages, and intermittents. It is put into ale, to communicate an agreeable clove-like flavour, and to prevent the liquor turning sour. Infused in wine it has been used as a stomachic.

Administration.—Dose 5ss. to 5j., in powder or decoction, three or four times a day.

6. POTENTIL'LA TORMENTIL'LA, Sibthorp, L. E.—COMMON TORMENTIL, OR SEPTFOIL.

Tormentilla officinalis, Smith, D.—Tormentilla erecta, Linn.

Sex. Syst. Icosandria, Polgynia.

(Radix, L.—Root, E.)

History.—Sprengel considers this plant to be the πεντάφυλλον of

---

1 Murray, App. Med. iii. 123.
2 Ibid.
3 Ann. de Chim. liv. 287.
4 Bull. de Pharm. ii. 368.
5 Pfaff, Mat. Med. vi. 235.
6 Hist. Rei Herb. i. 43, 93, and 176.
Hippocrates, Theophrastus, and Dioscorides. But Sibthorp considers the latter plant to have been the *Potentilla reptans*.

**BOTANY.** *Gen. Char.*—Tube of the calyx concave; limb four- or five-cleft, externally four- or five-bracteolate. Petals four or five. *Stamens* numerous. *Carpels* numerous. *Style* lateral. *Receptacle* procumbent, persistent, juiceless, capitate. *Seed* appended.—*Herbs* or under-shrubs. *Leaves* compound. *Stipules* adnate to the petioles. *Flowers* white, yellow, rarely red (De Cand.)


*Stems* weak, slender, often procumbent, branched. *Leaves* dark-green, somewhat hairy, especially the veins. *Flowers* bright-yellow.

**Hab.**—Indigenous; growing on barren pastures, heaths, and bushy places.

**DESCRIPTION.**—The root (*radix tormentillae*) is large, compared with the size of the plant. Its external form is very irregular: sometimes it is more or less cylindrical, at others tuberculated and knobby. Its colour externally is dark red-brown, internally flesh-red or brownish. Its taste is astringent. Its watery infusion is coloured blackish-green (*tannate of iron*) by the sesquichloride of iron. A solution of gelatine causes a precipitate (*tannate of gelatine*) in it. By iodine, starch is detected in the root.

**COMPOSITION.**—Neumann and Pfaff submitted tormentilla root to a chemical investigation. Meissner made an analysis of it, and found the constituents to be as follows:—volatile oil a trace, tannin 17·4, colouring matter 18·05, ditto altered 2·57, resin 0·42, cerin 0·51, myricin 0·20, gummy extractive 4·32, gum (pectin?) 28·20, extractive 7·70, woody fibre 15·0, and water 6·45 (excess 0·82.)

**PHYSIOLOGICAL EFFECTS.**—Astringent and tonic (see pp. 188).

**USES.**—Employed in chronic diarrhœa and dysentery, passive hemorrhages, and intermittents. The decoction is also used as an astringent wash and injection; as in flabby ulcers, leucorrhœa, &c. In the dysenteries of cattle it is reputed efficacious. In the Feroe and Orkney islands it is used to tan leather; in Lapland as a red dye.

**ADMINISTRATION.**—Dose 5ss. to 5j., in powder or decoction, three or four times a day.

**DECOCTUM TORMENTILLÆ, L.** ; Decoction of Tormentilla. (Tormentil, bruised, şij. ; Distilled Water, Ojss. Boil down to a pint, and strain).—Astringent and tonic. Used internally in chronic.
diarrhoea.—Dose, $\frac{f}{3}j$ to $\frac{f}{5}j$. Sometimes employed as an injection in leucorrhoea.

**Tribe III.—ROSEÆ.**

7. RO'SA CAN'I'NA, Linn. L. E. D.—COMMON DOG-ROSE.

*Sex. Syst.* Icosandria, Polygynia.

(Fructus Pulpa, L.—Hip of R. canina, and of several allied species, deprived of the carpels, E.—Fructus, D.)

**History.**—The κυνόποδον, or Dog-Rose, of Hippocrates, is, perhaps, Rosa canina, Linn., which, according to Sibthorp, is a native of Greece. Pliny speaks of Rosa sylvestris, which he says is called cynorrhodon (i.e. Dog-rose); but as he describes the sponge as growing on it, he probably referred to Rosa rubiginosa (Sweet Briar, or Eglantine), on which it is more frequently found than on any other species.

**Botany. Gen. Char.**—Apex of the tube of the calyx contracted, the limb five-parted; segments during aestivation somewhat spirally imbricated at the apex, often pinnatisect. Petals five. Stamens numerous. Carpels many, inserted on the calyx, subsequently baccate, inclosed within the calyx, dry, indehiscent, somewhat crustaceous, bearing the style on the inner side. Styles exserted from the narrowed tube of the calyx, free or aggregated into a columnar style. Seed in an akenium, solitary, exalbuminous, inverted; embryo straight: cotyledons flat.—Shrubs or small trees. Leaves pinnate, with an odd one; leaflets serrate. Stipules adnate to the petiole (De Cand.)

**Sp. Char.**—Prickles uniform, hooked. Leaves naked or slightly hairy; their disk eglandulose. Calyx-segments fully pinnate, deciduous. Styles not united. Shoots assurgent (Hooker).

The British roses answering to these characters are subdivided by Hooker (British Flora) as follows:—


g. R. surculosa Woods. R. canina $\beta$, Smith. Leaflets naked, flat; serratures simple.

d. R. dumetorum Woods, Smith. Leaflets more or less hairy, flat.

e. R. Fosteri, Smith. R. collina Woods. Leaflets more or less hairy, not flat.

De Candolle admits no less than nineteen varieties of R. canina, Linn.

**Ramification** variable in denseness. Shoots more or less arched or erect, according to the vigour of the plant. Prickles not very numerous, hooked in various degrees, and compressed; their base conside-
COMMON DOG-ROSE.

Leaflets variable in width; their serratures, although scarcely compound, except in β., are mostly irregular in size. Bracts variable in size. Peduncle and calyx-tube commonly naked; their setae, when present, feeble and not numerous; calyx-segments free from glands, or more or less copiously fringed with them. Styles hairy. Fruit coral-red, or more scarlet [usually oblong, elliptical or ovate, rarely somewhat globose], soft and pulpy when ripe, with a pleasant somewhat acid taste (Hooker).

Hab.—Indigenous. Thickets, hedges, &c.; very common. Flowers in June and July. Perennial.

Description.—The fruit, used in medicine under the name of the hip or hep (fructus rosae caninae seu f. cynosbati), is oval, composed externally of the persistent calyx, whose sides have become thick, fleshy, beautifully red, shining; and internally, of numerous, hard, hairy akenia (commonly called seeds, but which, in fact, are the carpels, or real fruits), containing each an exalbuminous seed. The pulp or fleshy matter of the persistent calyx is sweet, acidulous, and pleasant to the taste, especially when mellowed by the frost. The hairs surrounding the akenia act as mechanical irritants, like the hairs of the pods of the cowhage, and when swallowed are apt to occasion gastric uneasiness, vomiting, and pruritus about the anus; whence one of the French vulgar names for the fruit, gratte-culs.

Composition.—According to Bilz,¹ 100 parts of the dried ripe fruit, deprived of akenia and hairs, consist of the following substances:—volatile oil a trace, fatty oil 0·065, myricin of the scale 0·05, soft resin of the pulp 1·419, reddish-yellow hard resin 0·463, tannin 0·260, incrystallizable sugar 30·6, gum 25·0, epidermis 4·552, medullary fibre 14·0, citric acid 2·95, malic acid 7·776, citrates, malates, mineral salts, water (and loss) 12·865.

Physiological Effects and Uses.—The pulp is nutritive and slightly refrigerant and astringent. It is only employed in medicine in the preparation of a conserve.

Confection Rose Canine, L.; Conserva Rosa Fructos, E.; Conserva Cynosbati; Conserve of Dog-Rose; Conserve of Hips. (Dog-Rose [Pulp of the fruit], lb. j.; Sugar, powdered, 5xx. Expose the pulp of the Rose to a gentle heat in an earthen vessel; then gradually add the Sugar, and rub together until they are thoroughly incorporated, L.—Take any convenient quantity of Hips, carefully deprived of their carpels; beat them to a fine pulp, adding, gradually, thrice their weight of white sugar, E.)—In the preparation of this conserve the akenia or carpels (commonly termed seeds), with their hairs, must be carefully separated, on account of the irritation they are apt to occasion (see above).—It is probable that the fruit of several varieties (or species?) are employed indiscriminately in the preparation of this conserve. The observation of Sir J. E. Smith deserves notice, that the flavour of the fruits, casually gathered late in autumn, present a

¹ Gmelin, Handb. d. Chem. ii. 1270.
great diversity of flavour. This conserve, being saccharine and acidulous, is nutritive and refrigerant. It is usually employed as a convenient and agreeable vehicle for other remedies; as for a pill-basis, or for the making of electuaries or linctuses. A very agreeable pectoral linctus containing almond oil, and, sometimes, syrup of poppies, is made with this conserve, acidulated with dilute sulphuric acid. A drawback to the use of this conserve is its tendency to candy or concrete by keeping.

S. RO'SA GAL'LICA, Linn. L. E. D.—FRENCH OR RED ROSE.

**Sex. Syst.** Icosandria, Polygynia.

(Petala, L. D.—Petals, E.)

**History.**—Perhaps our red rose may be the *Rosa Milesia* of Pliny, the colour of which, he says, was very warm *[ardentissimus]*, and whose petals did not exceed twelve in number. The *Rosa Trachinia*, he adds, stands next to this, but is less red.

**Botany. Gen. Char.**—See *Rosa canina*.

**Sp. Char.**—Prickles unequal. Stipules narrow, straggling at the point. Leaflets five to seven, coriaceous, rigid, ovate or lanceolate, deflexed. Flower-bud ovate-globose. Sepals spreading during flowering. Fruit somewhat globose, very coriaceous. Calyxes and peduncles more or less very finely glandulose-hispid, somewhat viscous (De Cand.)

A small shrub. Very variable in form. De Candolle admits twelve distinct varieties. Mr. G. Don enumerates more than two hundred sorts cultivated by gardeners. And we are told that the Dutch cultivators have more than five hundred varieties. The variety cultivated at Mitcham, where it is called the Damask Rose, appears to me to be *R. gallica*, var. officinalis, De Candolle.

**Hab.**—South of Europe. Common in gardens. For medicinal purposes cultivated at Mitcham.

**Description.**—The dried petals of the unexpanded flowers, deprived of their white claws or heels (*ungues*), constitute the red-rose leaves (*flores rosa rubrae*) of the shops. The flower-buds are brought to market when about the size of a large nutmeg. The calyx and claws being cut off, the petals are speedily dried. At Mitcham this is effected in a stove. Slow desiccation impairs both their astringency and colour. The petals of the buds are much more astringent than of the full-blown flowers: hence they are preferred for medicinal use. When dried they are sifted to remove the stamens, insects, &c. 2,000 flowers yield about 100 lbs. of fresh petals, or 10 lbs. of dried ones. The dried petals have a velvety appearance: their colour is purplish-red; their odour, which is principally developed

---

* *Eng. Fl. ii. 295.*
* *Hist. Nat. lib. xxi. cap. 10, ed. Valp.*
* *Prodr. ii. 603.*
* *System of Gardening.*
* *Journ. de Pharm. xii. 443.*
during desiccation, is agreeable; their taste is bitterish and astringent. As they lose their fine colour when exposed to light and air, and are apt to become mouldy or worm-eaten, they should be carefully preserved in bottles or canisters.

Composition.—The petals were analyzed by Cartier, who found the following substances:—volatile oil, colouring matter, tannin, gallic acid, fatty matter, albumen, soluble potash salts, calcareous insoluble salts, silica, and oxide of iron.

1. Astringent Matter (tannic and gallic acid).—The presence of astringent matter is shewn by the very dark colour (tannate and gallate of iron) produced in an infusion of red roses by the ferruginous salts, and by the slight precipitate (tannate of gelatine) caused on the addition of a solution of gelatine.

2. Colouring Matter.—Has not yet been isolated. A watery infusion of red rose leaves has a pale yellowish red colour: the alcoholic tincture is also pale coloured. On the addition of sulphuric acid an intense bright red colour is produced (sulphate of the colouring matter). Alkalis communicate a greenish tint to the watery infusion (probably by neutralizing the free acid to which, with the colouring matter, the red tint is owing). Sulphurous acid destroys the colour of the infusion of roses (sulphate of colouring matter?); but on the addition of sulphuric acid the intense bright red (sulphate of ditto) is produced with an evolution of sulphurous acid gas. Dr. Clarke and others had supposed that the red colour was owing to iron; but both Gay-Lussac and Cartier found more iron in white than in red roses. Thus 1000 grains of the white rose yielded the latter chemist 99 grains of ashes containing 12.4 grains of iron; while the like quantity of the red rose yielded 50 grains of ashes, in which were only 4 grains of oxide of iron.

Physiological Effects and Uses.—Red rose leaves are mild astringents and tonics; but their power is exceedingly slight, and scarcely deserves notice. By the Arabian physicians, Avicenna and Mesue, as well as by more recent writers, Riverius, Krüger, and others, conserve of roses was esteemed a valuable remedy in phthisis. At the present time red rose leaves are principally used for their colour and flavour. They yield several officinal preparations, which are valuable as forming elegant vehicles for the exhibition of other more active medicines. The full-blown flowers are said to be as laxative as those of R. centifolia. "Poterius relates, that he found a drachm of powdered red roses occasion three or four stools, and this not in a few instances, but constantly, in an extensive practice for several years."

1. Infusum Rose Compositum, L.; Infusum Rose, E.; Infusum Rose acidum, D. Infusion of Roses.—(Petals of Rosa gallica [deprived of their claws, D.], dried, 5iij. [3ss. D.]; Diluted Sulphuric Acid, 5iss. [5iij. D.]; Sugar [pure, E., refined, D.], 5vj. [3iss. D.]; Boiling Water [distilled, L.], 0j. [Oiij. wine-measure, D.] Pour the Water upon the Rose petals in a glass vessel; then mix in the Acid. Macerate for six hours [half an hour, D.], and strain the liquor [when cool, D.]; lastly, add the sugar to it, L. D.—The Edinburgh

1 Journ. de Pharm. vii.
2 Murray, App. Med. iii. 168.
3 Lewis, Mat. Med.
College infuses the petals in the water for four hours, in a vessel of glass or porcelain, not glazed with lead; then adds the acid, strains through linen or calico, and dissolves the sugar in the strained liquor.—The lengthened maceration of six, or even four hours, is unnecessary. An hour, or perhaps even half an hour, is quite sufficient. Infusion of roses is a mild, but very agreeable, refrigerant and astringent, and is a very pleasant drink in febrile disorders, hemorrhages, diarrhoea, and colliquative sweats. It forms a very elegant vehicle for other medicines; as for saline purgatives (especially sulphate of magnesia, the unpleasant taste of which it serves greatly to cover), for disulphate of quina (which is dissolved in the water by the free sulphuric acid, which also serves to prevent the tannic acid of the roses precipitating the quina), the mineral acids, bitter tinctures and infusions, alum, &c. It serves as a very useful gargle: for which purpose acids, nitre, alum, or tincture of capsicum, are usually conjoined. Of course the alkalies and the earths, as well as their carbonates, are incompatible with it: they neutralize the acid, and change the colour of the preparation to green. Sulphate of iron communicates a deep olive colour, and after some hours causes a precipitate. The sulphuric acid of the infusion of roses decomposes and destroys the activity of acetate of lead, by forming sulphate of lead. It is a common practice, however, though of course among ignorant practitioners only, to administer, in hemorrhages, a pill composed of acetate of lead and opium, and at the same time infusion of roses? (see p. 809). The dose of infusion of roses is $\frac{1}{2}$ j. to $\frac{3}{2}$ j. Each $\frac{1}{2}$ j. contains mi$\text{ss}$. of dilute sulphuric acid, which are nearly equivalent to three-sevenths of a minim of strong sulphuric acid.

2. CONFECTION ROSE GALLICE, L.; Conserva Rosae, E. D. Conserve of Red Roses.—[Petals of the Rosa gallica [petals of the buds, rejecting the claws, D.], lb. j.; Sugar [refined, D.] lb. iii. Beat the rose petals in a stone mortar, then, the sugar being added, beat them again until they are thoroughly incorporated. L. D.—Beat the petals of the Rosa gallica to a pulp, gradually adding thrice their weight of white sugar, E.].—This preparation is slightly astringent. It was formerly much esteemed in phthisis (see p. 1549). Its principal use now is as a vehicle for the exhibition of other medicines. Thus it is a common pill-basis for calomel, disulphate of quina, &c. Pilula hydrargyri (see p. 724) are prepared with it. Alone or conjoined with the confection of dog rose (see p. 1547) it forms the bases of some elegant pectoral linctuses or electuaries, containing almond oil, diluted sulphuric acid, syrup of poppies, &c. Over the confection of dog rose it has the advantage of having no tendency to candy. Furthermore, it does not ferment or become mouldy.—Dose $\frac{2}{4}$ j. to $\frac{3}{4}$ j. or more.

3. MEL ROSE, L. E. D.; Honey of Roses.—[Petals of Rosa gallica [Petals of the buds, deprived of their claws, D.], dried $\frac{1}{2}$ iv.; Boiling Water. Oijss. [Oij. wine measure, D.]; Honey, lb. v. Macerate the Rose petals in the Water for six hours; then add the
Honey to the strained [and decanted, E.] liquor, and boil down to a proper consistence, in a water bath [removing the scum, E. D.]—A mildly astringent and very agreeable preparation, principally employed in the diseases of children. It is used sometimes alone as a mild detergent in slight aphthous affections, or inflammatory conditions of the mouth and throat; or as an agreeable vehicle for the exhibition of other more powerful medicines. It is occasionally added to detergent or astringent gargles.—Dose, for children, ½.

4. SYRUPUS ROSE GALILEE, E.; Syrup of Roses.—Dried Red Rose petals, 3ij.; Boiling Water, Oj.; Pure Sugar, 5xx. Proceed as for the syrup of damask rose).—This syrup, though very slightly astringent, is principally valuable for its red colour, on account of which it is sometimes added to mixtures and electuaries (as the Electuarium Catechu, E.).

9. RO'SA CENTIFO'LIA, Linn. L. E. D.—THE HUNDRED-LEAVED OR CABBAGE ROSE.

History.—Theophrastus speaks of a Rosa centifolia (Ῥωσα κεντιθολία) which grew abundantly about Philippi. Herodotus mentions a rose growing naturally in Macedonia, and which had sixty leaves, and more than ordinary fragrance. This perhaps was R. centifolia. Pliny also notices the R. centifolia.

Botany. Gen. Char.—See Rosa canina.

Sp. Char.—Prickles nearly straight, scarcely dilated at the base. Leaflets five to seven, ovate, glandular and flaccid at the margin, hairy beneath. Flower-bud ovate, short. Sepals during flowering, spreading, not deflexed. Fruit ovate, somewhat pulpy. Calyxes and peduncles glandulose-hispid, rigid, fragrant (De Cand.).

De Candolle admits seventeen distinct varieties. In gardens are found above eighty sorts. One of the best known of them is the Moss Rose (R. Muscosa). At Mitcham the sort cultivated for medicinal purposes, under the name of the Provins or Cabbage Rose, appears to me to agree with the var. a. vulgaris * foliacea of De Candolle. Its leaflets are oval or rounded-oval. The larger prickles slightly falcate.

Hab.—Asia. Cultivated at Mitcham and other places for medicinal purposes.

Description.—The petals of the hundred-leaved rose (flore rose centifolia seu pallide) are commonly termed in the shops Provins or Cabbage-rose leaves. They should be gathered when the flowers are full blown, and before the petals begin to fall. Their odour is strongest when they are of a fine pale red, and before they begin to fade.

* Hist. Plant. vi. 6.
* Urania, cxxxviii.
When freed from the calyx cups and stamens they are to be dried in
the air. Unlike the petals of *R. gallica*, desiccation diminishes their
fragrance. Their odour is said to be singularly exalted by iodine. Their
taste is sweetish, though somewhat acidulous and bitter. To
preserve them rose leaves are frequently pickled or salted (flores rose
saliti) like elder flowers (see p. 1443).

**Composition.**—I am unacquainted with any analysis of the petals
of the *Rosa centifolia*. The following, however, may be regarded as
the ascertained constituents: —volatile oil, gallic (and tannic?) acid,
colouring matter, a saccharine matter (sweet extractive of Pfaff),
woody fibre, mineral salts, and oxide of iron.

1. **Volatile Oil** (see p. 1553).
2. **Laxative principle.** (Sweet extractive of Pfaff.)—The nature of the laxa-
tive principle of the hundred-leaved rose has scarcely been examined. Pfaff
declares it to be sweet extractive.

**Physiological Effects and Uses.**—The petals are mildly laxa-
tive, and are employed, on this account, in the form of syrup (see
*Syrupus Rose*).

On account of its delightful fragrancy, this rose is in common use
for nosegays and scent-bags, and is employed for the distillation of
*rose water*. Its odorous emanations, however, are not always inno-
cuous; but on some persons have acted as a poison, causing symp-
toms which, for the most part, are those indicating a disordered con-
dition of the cerebro-spinal system—such as headache, fainting, and
hysterical symptoms; and occasionally giving rise to local irritation,
manifested by sneezing and inflammation of the eyes.

1. **SYRUPUS ROSE, L. D. ; Syrupus Rose centifolii, E. ; Syrup of
Roses; Syrup of Damask Rose.** (Petals of *Rosa centifolia* [Damask
Rose, E.] dried, 3vij. [lb. j. E.]; Sugar [pure, E.], lb. vj. [lb. iii.,
E.]; Boiling Water, Oij. [Oiv. wine measure, D.].) Macerate the
Rose Petals in the Water for twelve hours, and strain. [Evaporate
the strained liquor, in a water-bath, to Oij. L.D.] Then add the
sugar [dissolve with the aid of heat, E. and strain].—Gently laxa-
tive. Used only for young children. Dose, f 5ij. to f 3j. Its red
colour is heightened by acids; alkalis change it to green or yellow.

2. **AQUA ROSE, L. E. D. ; Rose Water.** (Petals of *Rosa centifolia,
lb. x.; Proof Spirit, f 3vij. [Rectified Spirit, f 3ij. E.]; Water, Cong.
ij.]. Let a gallon distil. — "The petals should be preferred when fresh;
but it also answers well to use those which have been preserved, by
beating them with twice their weight of muriate of soda," E.—The
*Dublin College* directs lb. viij. of the petals of *Rosa centifolia*, and a
sufficient quantity of water, to prevent empyreuma. Distil a gallon).

—Rose water is prepared both from fresh and pickled rose leaves, but
of course the former are preferable. During its distillation a solid
volatile oil comes over with it, and floats on the water in the receiver. To prevent the water becoming sour it should be preserved in well-corked bottles, kept in cool places. Spirit of wine ought not to be mixed with it, for if a sufficient quantity be added to preserve the water, it renders it unfit for some medicinal purposes. Rose water is employed, on account of its odour only, as an addition to lotions, collyria, &c.

**3. OLEUM ROSEÆ, E.; Attar or Otto of Roses.** Obtained in the East, by distilling roses with water. The attar concretes and floats on the distilled water when cold. In Northern India, rose water and attar are distilled from *R. damascena*. The precise species of rose used at Ghazeepoor, in Hindostan, where the attar is extensively distilled, as well as at Shiraz, in Persia, has not been satisfactorily ascertained. At the latter place a rose with white flowers is said to be used. Is it *R. moschata*? In the manufacture of rose water in England, from *R. Centifolia*, a crystalline volatile oil with the odour of the attar is frequently obtained (English attar of roses). Polier says, that to procure something less than three drachms of attar from 100 lbs. of rose leaves, in India, the season must be very favourable, and the operation carefully performed. Jackson states, that from one lac of roses it is generally calculated that 180 grains, or one tolah of attar, can be procured. Heber says, 20,000 roses yield attar equal in weight to that of a rupee. According to Donald Monro the attar is procured without distillation, merely by macerating the petals in water. But Trommsdorff tried the method, and failed to procure any oil.

Attar of roses is imported from Constantinople and Smyrna. The duty on it is 1s. 4d. per lb. In 1838, 973 lbs.; in 1839, 745 lbs. paid duty. At temperatures below 80° F. attar of roses is a crystalline solid. It is usually almost colourless, but Polier says, colour is no criterion of its goodness, quality, or country. Undiluted, its odour is somewhat too powerful to be agreeable, but, when properly diffused through the air or some liquid, is most delicious. It is combustible, and with oxygen forms an explosive mixture. It fuses at between 84° F. and 86° F. Its sp. gr. at 90° F. is 0·832; water at 60° F. being 1·0. At 57° F. 1000 parts of alcohol (sp. gr. 0·806) dissolve 7 parts, and at 72° F. 33 parts of attar.

Attar of roses has been analyzed by Saussure and Blanchett, but their results do not accord.

---

"Narrative, i. 265.
"*Treat. on Med. and Pharm. Chym.* ii. 311.
"Martius, *Pharmakogn.*
"*Trade List.*
Sandal-wood oil, oil of rhodium, some of the fixed oils, and spermaceti, have been said to be occasionally employed for adulterating attar of roses. But as far as my observation extends the attar found in the shops of London is very pure.

Attar of roses consists of two volatile oils; one solid, the other liquid, at ordinary temperatures, in the proportion of about one part of the first to two parts of the second. To separate them the attar is to be frozen and compressed between folds of blotting paper, which absorbs the liquid and leaves the solid oil; or they may be separated by alcohol (of sp. gr. 0.8), which dissolves the liquid, but takes up scarcely any thing of the solid oil.

a. Solid Oil of Roses (Rose-Camphor; Stéaroptène of Oil of Roses).—Occurs in crystalline plates, fusible at about 95° F. It is composed, according to Saussure, of carbon 86.743, and hydrogen 14.889; or an equal number of atoms of carbon and hydrogen. Blanchet states its composition to be, carbon 85.86, hydrogen 14.46.

b. Liquid Oil of Roses (Éléoptène of Oil of Roses).—Has not been accurately examined. But from Saussure’s analysis of the ordinary attar and of its stéaroptène, it would appear to contain oxygen and nitrogen, in addition to carbon and hydrogen. By calculation the proportions appear to be, carbon 80.56, hydrogen 12.42, oxygen 3.92, nitrogen 1.3.

Attar of roses is employed for scenting only. In the shops various perfumes are sold, which owe their odour to the attar. Thus oil for the hair, sold as huile antique rouge à la rose, is merely olive oil coloured by alkanet (see p. 1262), and scented with the attar. Milk of roses also contains the attar. Several compound scents owe a portion of their fragrance to this oil, as lavender water. The Edinburgh College has, very properly, as I conceive, introduced this oil into the pharmacopeia; for, as medicines frequently require to be perfumed, I cannot conceive why the most delicious perfume should be excluded from the Materia Medica. It may be employed as an addition to unguents, spirit washes, &c.

TRIBE IV.—POMACEÆ.

10. CYDO'NIA VULGA'RIS, Persoon, L.E.—COMMON QUINCE.

Py'rus Cydo'nia, Linn.

Sex. Syst. Icosandria, Pentagynia.

(Semina, D.)

History.—Hippocrates used the quince-apple (κυδόνις) as

---

1 Dumas, Traité de Chim. i. 491.
1 Opere, 497, ed. Foss.
an astringent in diarrhoea. The Romans called this fruit *malum cotoneum*.


**Sp. Char.**—Leaves ovate, obtuse at the base, quite entire; their lower surface, as well as the calyx, tomentose (De Cand.)—A small, much-branched, usually crooked tree. Petals pale rose-colour or white. Pome varying in shape, yellow, covered with a thin cottony down, very austere, but having a peculiar fragrance.

De Candolle admits three varieties:


c. *Oblonga*. Oblong or Pear Quince.—Leaves oval or oblong. Cultivated and wild.

**Hab.**—South of Europe. Cultivated in gardens. Flowers in May and June.

**Description.**—Quince seeds (semina cydoniae) are ovate-acute, flat on one side, convex on the other, and of a reddish-brown colour. The most external coat (epidermis seminalis, Bischoff) is composed of very fine cells, in which is lodged a large quantity of mucilage. When, therefore, these seeds are thrown into water, the mucilage swells up, distends, and ultimately bursts the tender cells.

**Composition.**—No analysis of either fruit or seeds has been made. The *fleshy pulp* of the fruit contains an astringent matter, malic acid, sugar, pectine or vegetable jelly, a nitrogenous matter, probably volatile oil, water, and vegetable fibre. The seeds contain colouring matter, tannic acid, a large quantity of a peculiar gummy matter in their outer coat, probably amygdalin (as Stockmann obtained hydrocyanic acid from the seeds by distillation), emulsin, starch, fixed oil, and woody fibre.

**Cydonin** (Peculiar gum of Quince seed; Bassorin; Mucus; Quince Mucilage).

One part of quince seed forms, with forty parts of water, a thick mucilage, which produces, with the following salts, gelatinous coagula or precipitates; acetate and diacetate of lead, protochloride of tin, nitrate of mercury, and sesquichloride of iron. Rectified spirit produces at first scarcely any effect; after some time partial coagulation is effected. Oil of vitriol communicates a pinkish tint, and causes the separation of a frothy coagulum, which floats on the mixture. Silicate of potash, infusion of nutgalls, and oxalate of ammonia, produce no change in the mucilage. Quince mucilage, usually termed bassorin, appears to

---

* See Bischoff, *Handb. d. bot. Termin.* tab. xlii. fig. 1659.
me to be a peculiar substance: hence I propose to call it cydonin. It is distinguished from arabine (see gum Arabic) by the effect on it of alcohol, silicate of potash, sulphuric acid, and oxalate of ammonia; from bassorin and cerasin (see below) by its solubility in water, both hot and cold; from tragacanthin (see gum tragacanth) by the effect of sulphate of iron, oxalate of ammonia, and alcohol; from carrageenin (see p. 874) by the effect of silicate of potash and acetate of lead.°

Physiological Effects.—The fruit is not eatable in its raw state. Stewed in pies or tarts, along with apples, it is much esteemed. The expressed juice (succus cydoniae) is said to be cooling and astringent. An excellent marmalade (miva cydoniae) and syrup are prepared from the quince by the confectioner. The mucilage of quince seed is nutritious, demulcent, and emollient. The whole seeds, if taken in large quantity, would, perhaps, act like bitter almonds (see p. 1537), as they are said to yield hydrocyanic acid.

Uses.—Quince seeds are employed in medicine only on account of the mucilage which they yield.

DECOCTUM CYDONII, L. Mucilage of Quince Seed. (Quince seed, 5j.; Distilled Water, Oj. Boil with a gentle heat for ten minutes, and strain).—Never used internally. Employed externally as an emollient and sheathing application to cracked lips and nipples; to the inflamed conjunctiva; to the skin when affected with erysipelas; to painful hemorrhoidal tumours, &c. Hair-dressers use it, as a cement, for dressing the hair in braids.

OTHER MEDICINAL ROSACEÆ.

1. Cherry Tree Gum.—From the stems of the Cherry (Cerasus avium), Plum (Prunus domestica), and some other rosaceous trees, there exudes a mucilaginous liquor, which concretes into tears, forming the gummi nostras, cherry-tree gum (gummi cerasi), plum tree gum (gummi pruni), &c. It may be employed in medicine as a substitute for tragacanth gum. It consists of two gummy principles: one called arabine (see gum Arabic), soluble in cold water; the other termed prunin or cerasin, insoluble in cold, but soluble in hot water.

2. Alchemilla arvensis, Field Ladies' Mantle, or Parsley Piert, is a small, indigenous, herbaceous plant, with green flowers. It belongs to Tetrandria, Monoyynia, in the sexual system. It is astringent (owing to tannic acid), and, perhaps, slightly mucilaginous. It was formerly eaten raw or pickled, and thought serviceable in cases of gravel or stone: hence it was called break-stone. Prout regards it as a diuretic, and as producing, in particular states of the system, a large secretion of lithic acid. A strong infusion of it, taken frequently, sometimes gives great relief, he says, in the less severe cases of the phosphatic or earthy deposit, where the source of irritation is chiefly confined to the urinary organs, and where the constitution is sound, and the strength not remarkably reduced.

3. Bedeguar.—On various species of Rosa, perhaps most frequently on R. rubiginosa, the Sweet Briar or Églantine, is found a remarkable gall, called the Sweet Briar Sponge (Bedeguar seu Fungus Rosarum). Pliny terms it, in one place,
a little ball (pilula), in another a sponglet (spongiola). It is produced by the puncture of several insect species; viz. Cynips Rosce and Brandtii (both of which are elaborately described by Ratzeburg*), and a species of Mesoleptus. Other species (as those of Diplolepis and Pteromalus) are also found in these galls; but they are probably parasites, and not the true inhabitants. The Bedeguar is usually rounded, but of variable size, sometimes being an inch, or an inch and a half, or more, in diameter. Externally it looks shaggy, or like a ball of moss, being covered with moss-like branching fibres, which are at first green, but become afterwards purple. The nucleus is composed principally of cellular tissue, with woody fibre; and where the fibres are attached, bundles of spiral vessels are observed. Internally there are numerous cells, in each of which is the larva of an insect: if opened about August or September, maggots (larvae) are usually found. It is inodorous, or nearly so; its taste is slightly astringent, and it colours the saliva brownish. It has not been analyzed, but it is suspected to contain tannic and gallic acids. Dried and powdered, it was formerly given in doses of from ten to forty grains, as a diuretic and lithontriptic. More recently it has been recommended as an anthelmintic, and as a remedy against toothache. Pliny says, the ashes mixed with honey were used as a liniment for baldness. In another place he speaks of the fungus being mixed with bear’s grease, for the same purpose.

Order LXI. LEGUMINOSE, Jussieu.—THE BEAN TRIBE.

Essential Character.—Calyx of five (rarely of four) sepals, more or less united at the base, and, therefore, five-toothed, five-cleft, or five-partite; sepals unequal, in some cases almost equally coherent, in others concreted into two lips; the upper consisting of two sepals, which are either free at the apex or united; the lower of three sepals generally distinct at the apex. Petals five, or, by abortion, four, three, two, one, or none; generally unequal, inserted usually into the base of the calyx, rarely on the torus; in general variously imbricated, rarely valved, almost always free, sometimes united into a gamopetalous corolla. [In the sub-order Papilionaceae, the petals form a butterfly-shaped or papilionaceous corolla, composed of a large upper petal called vexillum or standard, two lateral ones termed ale or wings, and an inferior keel-shaped one denominated carina or keel, and which is, in fact, composed of two petals adherent to their margin.] Stamens inserted with the petals, generally double the number of the latter, rarely triple or quadruple or fewer; altogether free, or the filaments variously connected, being monadelphous, with the tube entire or cleft above, or diadelphous nine and one, or five and five, very rarely triadelphous: anthers two-celled. Carpel generally one, the others being abortive; or two to five. Ovary oblong or ovate, sessile or stipitate, free, or, very rarely, adnate by the stipe to the calyx. Style one, filiform, arising from the upper suture: stigma terminal or lateral. Legumes two-valved, membranous; coriaceous, rarely fleshy or drupaceous, dehiscent or indehiscent, one-celled; or by the folding in of one of the sutures, longitudi-

* Ibid. lib. xxv. cap. 6.

1558

ELEMENTS OF MATERIA MEDICA.

dinally two-celled; or by isthmi or articular crns, transversely many-celled. Seeds two, or many, or by abortion (?) solitary, affixed to the upper suture, inserted alternately into each valve, frequently oval or reniform; funiculus various, rarely expanded into an arillus; testa smooth, frequently very much so, and stony; endopleura often tumid, simulating albumen. Embryo sometimes straight [rectembria], or curved [curvembria], the radicle being inflexed on the commissure of the lobes (homotropic or pleurorhizous); in either case the radicle directed towards the hilum: cotyledons foliaceous or fleshy; the first exert, the latter germinating within the spermoderm, under ground.—Trees, shrubs, or herbs, with alternate, bistipulate, simple, or variously-compounded leaves.—(Condensed from De Candolle, with additions within the square brackets).

Properties.—Exceedingly variable. Similar organs of different, though often closely-allied, species are frequently found to elaborate most dissimilar principles; and, of course, the dietetical, medicinal, or poisonous properties vary in a corresponding manner. (For details, consult Dierbach, Abhandl. ii. d. Arzneikrafie der Planzen; and De Candolle, Essai sur les Propr. Méd.)

SUB-ORDER 1.—PAPILIONACEÆ.

1. MYROSPER'MUM PERUIF'ERUM, De Candolle, E.—THE QUIN-QUINO.

Myroxylon peruißerum, Linn. L. D.

Sex. Syst. Decandria, Monogynia.

(Balsamum liquidum, L.—Fluid balsamic exudation, E.—Balsamum, D.)

History.—This balsam was first mentioned by Nicholas Monardes under the name of balsamum\(^1\). No accurate notions of the tree yielding it were entertained until 1781, when Mutis sent some branches of it to the younger Linnaeus\(^2\). Ruiz\(^3\) afterwards described it.

Botany. Gen. Char.—Calyx campanulate, five-toothed, persistent. Petals five, the upper one largest. Stamens ten, free. Ovary stipitate, oblong, membranous, with two to six ovules; style towards the apex filiform, lateral. Legume, with stalk naked at the base but winged superiorly, samaroidal [legumen samaroidæum De Cand.], indehiscent, one-celled, one or two-seeded, laterally pointletted by the style. Seed besmeared with balsamic juice: cotyledons thick, plane (De Cand.)

---

\(^1\) Clusius, Exot. 303.
\(^2\) Murray, App. Med. vi. 111.
\(^3\) Lambert, Illustr. of the Genus Cinchona, p. 92.
Sp. Char.—*Leaves* coriaceous, persistent, smooth as well as the branches. Wing of the *legume* very thick, not veined. *Style* deciduous (De Cand.)


**Hab.**—Peru, New Grenada, Columbia, and Mexico. Grows in low, warm, and sunny situations.—Flowers from August to October.

**Collection.**—Monardes\(^x\) says, that there are two modes of procuring the balsam; viz. incision into the bark of the tree, and cocktion of the branches and trunk in water. The first method yields a white liquid balsam, the second a blackish red liquid. Ruiz\(^x\) states, that the white liquid balsam is preserved for years in bottles, in the fluid state; but when deposited in mats or calabashes, which is commonly done in Carthagena, and in the mountains of Tolu, it, after some time,condenses and hardens into resin, and is then denominated dry white balsam, or balsam of Tolu; while the extract made by boiling the bark in water is blackish, remains liquid, and is known by the name of black Peruvian balsam. There is, however, obviously some confusion in this statement; and several reasons have led pharmacologists to doubt whether the black balsam of the shops is obtained by cocktion. Ruiz does not speak from his own observation, but on the authority of Valmont de Bomare. Lastly, Hernandez\(^x\) says, the balsam obtained by incision is yellowish-black (\textit{e fulvo in nigrum}). Professor Guibourt has received, from M. Bazire, balsam of Peru, which he obtained in great abundance on the coast of Son Sonate, in the state of San-Salvador (the republic of Guatimala) by incisions in the stem of a Myrospermum, whose fruit is very different to that of \textit{M. peruifenum}\(^x\). Th. Martius\(^x\) suggests, that the black balsam of Peru is procured by a kind of destillatio per descendum; but the absence of pyrogenous products in the balsam seems to me to be opposed to this opinion.

**Commerce.**—Balsam of Peru is imported in pear-shaped earthenware pots and in tin canisters, from Valparaiso, Islay, Lima, Truxillo, Callao, Iquique, Belize, &c. The duty (1s. per lb), paid on it during the last six years, is as follows\(^b\):

<table>
<thead>
<tr>
<th>Year</th>
<th>Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>1893 lbs.</td>
</tr>
<tr>
<td>1835</td>
<td>243</td>
</tr>
<tr>
<td>1836</td>
<td>1880</td>
</tr>
<tr>
<td>1837</td>
<td>1331 lbs.</td>
</tr>
<tr>
<td>1838</td>
<td>1798</td>
</tr>
<tr>
<td>1839</td>
<td>825</td>
</tr>
</tbody>
</table>

**Description.**—Balsam of Peru (\textit{balsamum peruvianum}) called also black or liquid balsam of Peru (\textit{balsamum peruvianum nigrum}) is a transparent, deep, reddish-brown or black liquid, which has the con-

\(x\) Hist. des Droog. ii. 590, 3\textsuperscript{e} éd.
\(x\) Pharmakogn.
\(b\) Trade List.
sistence of treacle, a powerful but agreeable odour, somewhat similar to that of vanilla and benzoin, and which is increased by dropping the balsam on a red-hot coal, and a warm, acrid, bitter taste. It is inflammable, and burns with a fuliginous flame. It is soluble in alcohol; the solution, however, is not clear, but lets fall after some time a deposit. To boiling water it yields its acid, usually stated to be the benzoic, but according to Fremy and others, it appears to be the cinnamonic acid). Its sp. gr. is 1.150 to 1.160.

I have received from Professor Guibourt another balsamic substance under the name of balsam of Peru in cocoa-nut shells (baume du Pérou en cocos). The shell has the size and shape of a small lemon. The contained balsam is a deep brown, and has an odour very similar to that of balsam of Tolu. Guibourt says, "it appears to be formed of two kinds of matter: one more fluid, another more solid, grumous, and as it were crystalline. Its taste is mild and sweetish. It has a strong agreeable odour, between that of Tolu and soft liquidambar, but distinct from both."

The white balsam of Peru (balsamum peruvianum album) of Martius, and other pharmacologists, is said, by Guibourt, to be the solid balsam of liquidambar already described (p. 1070).

Adulteration.—Balsam of Peru is said to be subject to adulteration; and the formulæ given by Gray for making as well as for reducing (i.e. adulterating) it, lend support to this opinion. The demand for the balsam being small, the supply quite equal to, or even exceeding the demand, and the price being moderate, are circumstances which appear to remove all motive for adulteration, which I do not think is at present practised in this country. The characters to be attended to in judging of its genuineness are, the purity of its odour, its complete solubility in, or miscibility with, alcohol (by which the absence of fixed oil is shewn), and its undergoing no diminution of volume when mixed with water (by which the absence of alcohol is proved). A sign of its purity is, that 1000 parts of it should saturate 75 parts of pure crystallised carbonate of potash.

Composition.—Balsam of Peru has been elaborately investigated by several chemists, and the results obtained are somewhat curious. In 1806 it was examined by Lichtenberg. Stoltze, in 1825, published an analysis of it. Richter, Plantamour, and Fremy, have since examined the nature of its constituents.

**Stoltze's Analysis.**

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown slightly soluble resin</td>
<td>2.4</td>
</tr>
<tr>
<td>Brown resin</td>
<td>20.7</td>
</tr>
<tr>
<td>Oil of balsam of Peru [cinnaméine]</td>
<td>69.0</td>
</tr>
<tr>
<td>Benzoic [cinnamonic] acid</td>
<td>6.4</td>
</tr>
<tr>
<td>Extractive</td>
<td>6.6</td>
</tr>
<tr>
<td>Loss and moisture</td>
<td>0.9</td>
</tr>
<tr>
<td>Balsam of Peru</td>
<td>100.0</td>
</tr>
</tbody>
</table>

**Fremy's Analysis.**

1. An oily matter [cinnaméine], frequently containing, in solution, a crystalline substance (metacinnaméine; hydruret of cinnamyle).
2. Cinnamonic acid.
3. One or more resins (hydrates of cinnaméine).

---


Suppl. to the Pharm.

Th. Martius, Pharmakogn.


Jour. de Chim. Méd. t. 139.


Ibid. S. 825, and für 1839, S. 601.

1. Oil of Balsam of Peru. Cinnaméine of Fremy.—If an alcoholic solution of potash be added to an alcoholic solution of balsam of Peru, a compound of resin and potash (resinate of potash) is precipitated, while cinnaminate of potash and cinnaméine are left in solution. On the addition of water the latter separates, and floats on the surface. It is to be purified by solution in petroleum. Cinnaméine is a reddish-brown, acrid, odourless, oily fluid, heavier than water, soluble in alcohol and ether, insoluble in water, and inflammable. Its composition, according to Fremy, is (taking the average of five experiments), carbon 79.0, hydrogen 6.26, oxygen 14.74. His formula for it, which, however, scarcely accords with this statement, is C_{58}H_{26}O_{8} [C_{44}H_{65}O_{20} Liebig]. Caustic potash effects a change on it analogous to saponification, and converts it into two equivalents of cinnamonic acid (equal to C_{38}H_{41}O_{9}) and a light oily fluid, which Fremy calls peruvine, whose composition is, carbon 79.6, hydrogen 9.3, oxygen 11.1, or C_{18}H_{12}O_{2} [C_{36}H_{25}O_{4} Liebig]. Cinnaméine frequently (but not invariably) contains in solution a crystalline substance, termed metacinnaméine, whose composition is, carbon 81.9, hydrogen 6.0, oxygen 12.1; its formula being C_{18}H_{9}O_{2}, so that it is isomeric with hydruret of cinnamyle.

Richter asserts that oil of balsam of Peru is composed of two distinct oils;—one, called myrospermine, which is soluble in alcohol; the other, termed myroxiline, insoluble in alcohol. What relation these oils bear to cinnaméine and peruvine has not yet been made out.

2. Cinnamonic Acid. Cinnamic Acid (see p. 1144).—This constituent has usually been mistaken for benzoic acid. It is obviously formed in the balsam by the oxidation of the hydruret of cinnamyle, just as hydruret of benzule is transformed into benzoic acid (see p. 1535). In those balsams of Peru which contain no metacinnaméine, this principle has been entirely converted into cinnamonic acid.

3. Resin of Balsam of Peru. Hydrate of Cinnaméine.—The quantity of resin in balsam of Peru augments daily. It is formed by the union of cinnaméine with the elements of water; for its composition is, carbon 71.82, hydrogen 6.78, oxygen 21.40; or C_{34}H_{30}O_{12}. So that this resin consists of one equivalent cinnaméine, and four equivalents of water. It is not, however, formed at once, but gradually undergoing different degrees of viscosity. Soft resin differs from the hard only in its elements of water. Sulphuric acid converts cinnaméine into resin.

Such are the general results of Fremy’s analysis; but the correctness of some of them may be fairly called in question. His formulæ do not always agree with his experimental results (see Cinnaméine). Plantamour denies the accuracy of several of Fremy’s statements.

Physiological Effects.—Stimulant, slightly tonic, expectorant, detergent, and epulotic. Its action is similar to other balsamic substances (see p. 183), and is closely allied to that of storax and benzoin. Topically it operates as a stimulant and mild acid; and when applied to foul indolent ulcers, often cleanses them, and promotes their cicatrization. Taken internally, in full doses, it creates thirst, and quickens the pulse. Its stimulant influence is directed to the secreting organs, especially the bronchial mucous membrane. It is devoid of the powerful influence over the urinary organs, possessed by copaiva and the turpentines, and its tonic powers are not equal to those of myrrh.

Uses.—Its supposed efficacy in curing external ulcers and healing wounds has led to its use in internal diseases, formerly apprehended to depend on ulceration, as in pulmonary affections supposed to be, or which really were, phthisis. But the observations of Dr. Fothergill in part led to the discontinuance of the indiscriminate use

of balsams and other heating substances in these cases. Yet it proves serviceable in some old asthmatic cases, chronic pulmonary catarrhs, winter coughs, &c. It seems to be principally adapted to old standing chronic affections of the mucous membranes (especially the bronchial mucous membrane), particularly in persons of a cold and torpid habit. Its stimulant influence is calculated only to aggravate acute cases.

Many other uses of balsam of Peru are now obsolete: as its employment in lead colic, as recommended by Sydenham; in gonorrhoea, and leucorrhoea, by Hoffman; in convulsions from repressed perspiration: by Kirkland, and externally and internally in traumatic tetanus, by Dr. Kolloch. It is said to be now and then used in chronic rheumatism. The beneficial effects ascribed by Trouseau and Pidoux to the balsams in chronic laryngitis have been before (p. 183) referred to.

As a topical remedy, balsam of Peru is occasionally employed. It is applied either alone, or in the form of ointment, to indolent ill-conditioned ulcers; it cleanses them, promotes healthy granulation, and assists cicatrization. I have used it in some obstinate ulcerations about the nose. Dr. Ainslie speaks very highly of its powers of arresting the progress of sphenelous and phagedenic affections, so common and destructive in India. He recommends lint, soaked in the balsam, to be applied night and morning. In offensive discharges from the ear it is now and then dropped in after syringing. It is a constituent of some lip-salves. It was formerly esteemed as a vulnerary against wounds of the tendons and nerves. It is used by perfumers for scenting, and in the manufacture of fumigating pastiles.

Administration.—Dose, 33ss. to 3j. It may be taken on sugar, or made into pills with some absorbent powder, or diffused through water by means of sugar, honey, gum, or yolk of egg.

2. MYROSPER'MUM TOLUIF'ERUM, Richard, E.—THE BALSAM OF TOLU-TREE.

Toluif'era Balsamum, Miller, D.
Sex. Syst. Decandria, Monogynia.

(Concrete balsamic exudation, L.—Resina, D.)

History.—The earliest notice of balsam of Tolu is that of Monardes. He tells us that the balsam had been recently imported.

Botany. Gen. Char.—See Myrosporum peruiferum.
Sp. Char.—Branches and leaves smooth. Leaflets oblong, acuminate, equilateral, rounded at the base (De Cand.)
The tree which yields the balsam of Tolu was formerly called Toluifera Balsamum. But Richard having carefully investigated the characters of the genus Toluifera, found that, with the exception of those of the fruit, which Miller had imperfectly described, they were identical with those of the genus now called Myrospenum; and as Ruiz states that the balsams of Peru and Tolu are both obtained from one tree, the Myrospenum peruiferum has been adopted by several writers, and by the London College, as the source of both balsams.

Richard found specimens of the trees yielding these balsams in Humboldt's herbarium; and though he at first mistook them for the same species, he has subsequently recognized them to be different. He therefore made a distinct species of the tree yielding the balsam of Tolu, and it is now called Myrospenum toluiferum. It differs from M. peruiferum in its having thin, membranous, obovate leaflets, which are lengthened and acuminated at their summits. Moreover, the terminal leaflet is larger than the lateral ones.

Hab.—Mountains of Tolu, Turbaco, and on the banks of the Magdalena, between Garapatas and Monpox.

Production.—Balsam of Tolu is procured by making incisions into the bark of the tree, and receiving the liquid balsam in vessels made of a black wax. It is afterwards transferred into proper vessels. It only exudes from the tree during the heat of the day.

Commerce.—Balsam of Tolu is sometimes brought direct from Carthagena, Santa Martha, and Savanilla; more commonly, however, it comes by way of New York or Jamaica. It is usually imported in cylindrical tin canisters; now and then in earthen pots or jars, still more rarely in small calabashes.

Description.—Balsam of Tolu (balsamum tolutanum vel de Tolu), when first brought over, is generally soft and tenacious, but by age becomes hard and brittle, somewhat similar to resin, and has a granular or somewhat crystalline appearance. Formerly it was imported in this hardened state, but is now usually met with in the soft state. It is transparent, has a reddish or yellowish-brown colour, a most fragrant odour, though less powerful than that of storax or Peruvian balsam, and a pleasant sweetish taste. It softens under the teeth; when heated, it readily melts, takes fire, and burns with an agreeable odour. It is very soluble in alcohol and ether, and gives out its acid to water. The soft balsam contains more oil but less acid than the dry balsam, the acid and the resin being formed at the expense of the oil. Balsam of Tolu hardens or resinifies with much more facility than balsam of Peru.

Balsam of Tolu in calabashes (balsamum tolutanum in cucurbitis parvis, Dale) occurs in calabashes (the fruit of Crescentia Cujete, according to Sloane,) about the size of an orange; the large aperture by which the balsam has been introduced being closed with the rachis of the fruit of Zea Mays.

Composition.—According to Fremy, the composition of balsam of Tolu is similar to that of balsam of Peru, its constituents being

---

8 Monardes, op. cit. 304.
cinna
dine, cinnamonic acid, and resin. They differ, according to the same chemist, from those of balsam of Peru by the greater facility with which they become resinified.

Resin of Balsam of Tolu.—Is essentially the same as that of balsam of Peru, and, like it, also forms a fine red colour with sulphuric acid; but it is less fusible than the resin of the last-mentioned balsam. It consists of carbon 70.8, hydrogen 6.1, and oxygen 23.1; so that it contains a larger proportion of the elements of water.

Physiological Effects and Uses.—The effects of balsam of Tolu are similar to those of balsam of Peru (see p. 1561), and the other balsamic substances (p. 183). It is employed as a stimulating expectorant in chronic bronchial affections, unaccompanied with inflammatory action. It is, however, more frequently used as an agreeable flavouring adjunct to pectoral mixtures. The vapour of the ethereal solution of the balsam has been inhaled in chronic affections with benefit. Tolu lozenges form a popular and pleasant remedy for appeasing troublesome cough. The balsam is sometimes employed by confectioners to flavour sweetmeats, as marmalade. It is also used in perfumery; and is a constituent of some fumigating pastiles already described.

Administration.—The dose of the balsam is from grs. x. to 3ss. It may be taken in the form of an emulsion, made with gum or sugar. It is a constituent of the compound tincture of benzoin, L. D. before described.

1. Tinctura Balsami Tolutani, L. D. Tinctura Tolutana, E. Tincture of Tolu. (Balsam of Tolu, 3ij. [3 j. D.; 3iijss. in coarse powder, E.]; Rectified Spirit, Oij. [Oij. wine measure, D.]) Digest [with a gentle heat, E., in a close vessel, D.] until the balsam is dissolved [and filter, L. D.].—A stimulating expectorant, principally used as a flavouring adjunct to other pectorals. Its use is, of course, objectionable in inflammatory cases. Dose, 3ss. to 3ij. When mixed with water the resin is precipitated; hence it should be rubbed with mucilage, or some viscid liquor, before adding the water, to keep the resinous precipitate in suspension.

2. Syrupus Tolutanus, L. E. Syrupus Balsami Tolutani, D. Syrup of Tolu. Balsamic Syrup. (Balsam of Tolu, 5x.; Boiling Water, Oij.; Sugar, lbs. ijss. Boil the Balsam in the Water for half an hour in a vessel lightly covered, frequently stirring, and strain the cooled liquor; then add the Sugar, and dissolve it, L.—Simple Syrup, lbij. [lbjss. D.]; Tincture of Tolu, 5j. When the syrup has been recently prepared, and has not altogether cooled, add the tincture of Tolu by degrees, agitating briskly, E. D.)—Employed as an agreeable flavouring adjunct to pectoral mixtures.—Dose, f3j. to f5iv.
3. CYTISUS SCOPARIIUS, De Candolle, L. E.—COMMON BROOM.

Spartium scoparium, Linn. D.

Sex. Syst. Diadelphia, Decandria.

(Cacumina recentia, L.—Tops, E.—Cacumina, D.)

History.—It is uncertain who first mentioned this plant. The σπάρτιον of Dioscorides is Spartium junceum or Spanish Broom. The Genista of Pliny was probably the same plant, though the Roman historian was himself doubtful whether this plant was identical with that of the Greeks. Sprengel considers that Theophrastus was undoubtedly acquainted with Common Broom.

Botany. Gen. Char.—Calyx two-lipped; the upper lip generally entire, the lower one somewhat three-toothed. Vexillum ovate, large; keel very obtuse, enclosing the stamens and pistils. Stamens monadelphous. Legume plano-compressed, many-seeded, without glands.

—Shrubs. Leaves trifoliate (De Cand.)

Sp. Char.—Branches angular, smoothish. Leaves trifoliate, stalked. Tops simple. Leaflets oblong. Flowers axillary, stalked, solitary. Legumes hairy at the margin (De Cand.)

A shrub, three to six feet high. Branches long, straight, and green. Leaves deciduous; upper ones generally simple. Flowers large, bright yellow; keel broad; vexillum and alee much spreading. Legumes large, dark-brown, containing fifteen or sixteen seeds.

Hab.—Indigenous; growing on dry hills and bushy places. Flowers in June.

Description.—Broom-tops (scoparium; cacumina scoparii) have a bitter, nauseous taste, and, if fresh, a remarkable odour when bruised.

Composition.—The flowers of broom contain, according to Cadet de Gassicourt, concrete volatile oil, fatty matter, wax, chlorophylle, yellow colouring matter, tannin, a sweet substance, mucilage, oznazome, albumen, and woody fibre. The ashes amounted to 57.5 per cent., and contained 29 per cent. of carbonate of potash, besides chloride of potassium, sulphate of potash, chloride of calcium, nitrate, phosphate, and sulphate of lime, carbonates of lime, magnesia, and iron, and silica.—Salt of broom, or sal genista, is obtained by burning the whole plant. It contains a large portion of carbonate of potash. Hill says, that a pound of the green twigs, with the leaves and flowers, yields a drachm and a half of this salt.

Physiological Effects. a. On Animals generally.—In some parts of Europe broom is employed as winter food for sheep; and
Withering says that it prevents the disease called rot, and is salutary in dropsy, to which sheep are liable. According to Loudon, it is apt to produce disease of the urinary organs, to prevent which a plentiful use of water is recommended.

3. On Man.—In large doses broom-tops are an emetic and purgative. In small doses they are diuretic and mildly laxative. As a diuretic they have been celebrated by Mead and Cullen.—"Though very little in use," says Dr. Cullen, "I have inserted this in my catalogue from my own experience of it. I found it first in use among our common people; but I have since prescribed it to some of my patients in the manner following:—I order half an ounce of fresh broom-tops to be boiled in a pound of water till one-half of this is consumed, and of this decoction I give two tablespoonfuls every hour, till it operates by stool and urine; and by repeating this exhibition every day, some dropsies have been cured." Having very frequently employed broom in dropsies, I can add my testimony to its powerful effects as a diuretic. I cannot call to mind a single case in which it has failed to act on the kidneys. In some cases it produced a most marked and beneficial effect on the dropsical effusion. According to my experience, it is more certain than any other diuretic in dropsies. Dr. Pearson terms broom a tonico-diuretic; and says it improves the appetite, and invigorates the whole system.

Uses.—It has been principally or solely employed in dropsies, and, as already mentioned, sometimes with great benefit. Of course its chance of cure depends on the nature of the cause of the dropsical effusion. In acute inflammatory cases, as well as in diseased kidney, its use might be objectionable. It is said also not to be adapted to thoracic dropsy, especially when combined with pulmonary congestion, or any degree of inflammatory affection of the chest.

Administration.—Broom-tops are usually given in the form of infusion or decoction. The seeds, which keep much better than the tops, and on that account have an advantage over the latter, may be used in the form of powder, in doses of grs. x to grs. xv. in mint water or cold ginger tea; or in the form of tincture (see Spartium junceum). To promote the operation of broom, diluents should be freely used.

1. INFUSUM SCOPARII, L.; Infusion of Broom; Broom Tea. (Scoparium, 3j.; Boiling Distilled Water, Oj. Macerate for four hours in a lightly covered vessel, and strain).—A decoction is to be preferred to the infusion.—Dose, as a diuretic in dropsy, f3j. to f5j.

2. DECOCTUM SCOPARII COMPOSITUM, L.; Decoction of Broom. (Scoparium, Juniper fruit, Dandelion, of each 5ss.; Distilled Water, Oiss. Boil down to a pint, and strain. L.—Broom-tops, and Juniper-tops, of each 5ss.; Bitartrate of Potash.
COMMON LIQUORICE. 1567

5ijss.; Water, Oiss. Boil them down together to a pint, and then strain, E.)—Diuretic and laxative.—Dose, fj3j. to f|ij.

3. EXTRACTUM SPARTII SCOPARII, D.; Extract of Broom. (Prepared by the evaporation of the decoction of the tops.)—Diuretic and laxative. Employed only as a diuretic in dropsy.—Dose, 5ss. to 3j. Rarely used.

4. GLYCIRRHI'ZA GLA'BRA, Linn. L. E. D.—COMMON LIQUORICE.  

Sex. Syst. Diadelphia, Decandria. 
(Radix recens, L.—Root. Extract of the Root, E.—Radix, D.)

History.—The γλυκύρρηςα of Hippocrates, and that of Dioscorides, are doubtless identical; the latter is supposed by Sprengel and others to be our Glycyrrhiza glabra; by Dierbach to be G. glandulifera, but by Dr. Sibthorp it is said to be the G. echinata, which is now termed in Greece γλυκόρρηςα. Glycyrrhiza glabra is called, in the Pharmacopoeia Graeca, γλυκύρρηςα.

Botany. Gen. Char.—Calyx naked, tubular, five-cleft, two-lipped; with the two upper lobes united more than the others. Vexillum ovate-lanceolate, straight; keel two-parted or two-petalous, straight, acute. Stamens diadelphous. Style filiform. Legume ovate or oblong, compressed, one-celled, one- to four-seeded.—Perennial herbs with extremely sweet roots. Leaves unequally-pinnated. Racemes axillary. Flowers blue, violet, or white (De Cand.)

Sp. Char.—Leaflets ovate, slightly retuse, viscid beneath. Stipules none. Spikes pedunculated [i.e. racemes], shorter than the leaves. Flowers distant. Legumes smooth, three- or four-seeded (De Cand.)

Stem erect, smooth, four or five feet high. Leaflets yellowish-green. Flowers papilionaceous, bluish or purplish.

Hab.—South of Europe. Cultivated at Mitcham in Surrey, and at other places, for medicinal use.

Description.—The underground stem is denominated liquorice-root (radix glycyrrhizae seu liquiritiae vel liquorizae) or stick liquorice. It is in long cylindrical pieces, about the thickness of the finger. Externally it is grayish brown, internally yellow. Its odour is rather sickly and earthy: its taste remarkably sweet.

Composition.—Liquorice root (G. glabra) was analyzed by Robiquet in 1809. Trommsdorff analyzed the root of G. echinata. The constituents of the fresh root of G. glabra are, according to Robiquet, glycyrrhizin, starch, asparagin, resinous oil, albumen, woody fibre, and salts (phosphate and malate of lime and magnesia).

4 Lib. iii. cap. 7. 
5 Hist. Rei Herb. i. 
6 Arzneim. d. Hippokrates. 
7 Prodr. Fl. Graeca, ii. 77. 
8 Ann. de Chem. lxii. 143. 
ELEMENTS OF MATERIA MEDICA.

1. Glycyrrhizin (Glycyrrhiza or Liquorice Sugar.)—Belongs to the uncrystallizable sugars which are not susceptible of vinous fermentation (see p. 48). It is characterized by its affinity to acids, with which it unites to form compounds which are very slightly soluble only in water. It is yellow and transparent, and has the sweet taste of the root. It is soluble in both water and alcohol. Acids precipitate it from its solution. It combines also with bases, as well as with salts. It causes precipitates with many metallic solutions.

2. Resinous oil.—To this constituent, liquorice root owes the slight degree of acridity which it possesses.

Physiological Effects.—Liquorice root and its extract are emollient, demulcent, and nutritive.

Uses.—Employed as an emollient and demulcent in catarrhal affections of the mucous membranes. It is also used as a flavouring adjunct to other medicines. Its powder is employed in the preparation of pills, either to give them a proper consistence, or to prevent their adhesion.

Administration.—For medicinal use the root should be decorticated, as the epidermis possesses a slight degree of acridity.

1. DECOCTUM GLYCIRRHIZE, D.; Decoction of Liquorice. — (Liquorice Root, bruised, 5iss.; Water, 0j. [wine measure]. Boil for ten minutes, and strain).—An agreeable demulcent: used as a vehicle for other medicines.

2. EXTRACTUM GLYCIRRHIZE, L. E. D.; Extract of Liquorice.—(Prepared as Extract of Gentian, L. D.—Cut liquorice-root into small chips, dry it thoroughly with a gentle heat, reduce it to a moderately fine powder, and proceed as for extract of Gentian, E.)—Extract of liquorice is extensively imported under the name of liquorice juice, or, according to the countries from where it is brought, Spanish or Italian juice. Solazzi juice is most esteemed. The Spanish extract is prepared in Catalonia from G. glabra; while the Italian extract is obtained in Calabria from G. echinata. In 1839 there were imported 4059 cwts. of foreign extract of liquorice, the duty on which is £3. 15s. per cwt. It comes in cylindrical or flattened rolls of five or six inches long, and about one inch in diameter, and enveloped in bay leaves. When pure it is black and dry, with a glossy fracture and a sweetish taste; and is completely soluble in water. As met with in commerce, however, it is rarely pure. Neumann obtained 460 parts of watery extract from 480 of Spanish liquorice. It contains the soluble principles of the root, with some copper scraped off the boiler by the spatula employed to stir the extract during its preparation. Fée says, that four ounces of this extract yield two drachms and a half of metallic copper; but I suspect there must be some great mistake in this statement. If the foreign extract be dissolved in water, and the solution filtered and inspissated, we obtain refined liquorice. But I am informed that the pipe refined liquorice of the shops is a very adulterated article. The Pontefract lozenges.
are made of refined liquorice, and are much esteemed. Another preparation has been recently introduced under the name of *quintessence of liquorice*. Extract of liquorice is dissolved slowly in the mouth, to appease tickling cough. It is a very agreeable flavouring adjunct to other medicines. As it easily becomes soft by warmth it does not answer well as a pill-basis.

3. **TROCHISCI GLYCYRRHIZÆ, E.; Liquorice Lozenges.**—(Extract of Liquorice; Gum Arabic, of each 3vi.; Pure Sugar, lb. i. Dissolve them in a sufficiency of boiling water; and then concentrate the solution over the vapour-bath to a proper consistence for making lozenges.)—Employed in tickling cough and irritation of the fauces.

5. **ASTRAG'ALUS, De Candolle.**—**MILK VETCH.**

_A. ve'rus, Olivier, L._
_A. gummifer and probably A. ve'rus and other species, E._
_A. crotticus, Lamarck, D._

**Sex. Syst.** Diadelphia, Decandria.

(Succus concretus, L.—Gummy exudation, E.—Gummi, D.)

**History.**—Dr. Sibthorp¹ states, that the _πραγάκωδα_ of Dioscorides² is the _Astragalus aristatus_, which in the Peloponnesus is still called _πραγάκωδα_, and whose gum is annually sent to Italy.

**Botany. Gen. Char.**—Calyx five-toothed. Corolla with an obtuse keel. Stamens diadelphous. Legume two-celled, or half two-celled by the lower [dorsal] suture being turned inwards.—Herbs or shrubs (De Cand.)

**Species 1.** _A. ve'rus, L. E._—Flowers axillary, in clusters of two to five sessile. Calyx tomentose, obtusely five-toothed. Leaflets eight to nine pairs, linear, hispid (De Cand.)—A small shrub. Branches covered with imbricated scales and spines, the remains of former petioles. Flowers yellow, papilionaceous. Persia. According to Olivier the Tragacanth of Asia Minor, Armenia, and Northern Persia, forming the greater part of that of Europe, is yielded by this species.

2. _A. Gummifer, E._—Flowers three to five axillary, sessile. Calyx five-cleft, together with the legumes woolly. Leaflets four to six pairs, oblong-linear, smooth (De Cand.)—Lebanon. According to La Billardière this species yields Tragacanth (De Cand.) Dr. Lindley³ received this plant from Mr. Brant, English Consul at Erzeroum, as the tragacanth plant of Koordistan, which yields the white or best kind of tragacanth.

¹ *Prodr. Fl. Græc. ii. 90.*
² *Lib. iii. cap. 23.*
³ *Botanical Register, May 1840.*
3. **A. creticus.**—Flowers axillary, sessile, clustered. **Calyx** five-partite, with feathery, setaceous lobes rather longer than the corolla. **Leaflets** five to eight pairs, oblong, acute, tomentose (De Cand.)—Mount Ida, in Crete, where it yields Tragacanth, according to Tournefort.

4. **A. strobiliferus**, Lindley. — **Flowers** capitate in an ovate, sessile, axillary strobile.—**Bracts** imbricated, pointed, tomentose. **Calyx** feathery, five-cleft. **Segments** of the **corolla** equal. **Leaflets** three-paired, woolly.

This plant was sent by Mr. Brant as the "shrub from which the red or inferior species of gum tragacanth is produced".

**Production**—Tragacanth is a natural exudation from the stem of the before-mentioned plants. The cause of the exudation of this as of other gums, is thus explained by De Candolle. The gummy matter resides in the bark and albumen; it is the nutritive juice of the plant; and its escape, therefore, is analogous to hemorrhage in animals: hence plants in whom it spontaneously occurs are always in a sickly state. The mechanical cause of the expulsion of this juice is dependent on the unequal hygrometric properties of the different parts of the stem. The wood absorbs more moisture from the air than bark, and hence it swells more. In consequence of its enlargement, it distends the bark, which, by the internal pressure of the wood, gives way, and the gummy matter escapes. This explanation is quite in conformity with facts mentioned by La Billardière,—that tragacanth flows only in abundance during the night, and a little after sunrise. A cloudy night, or a heavy dew, is, he thinks, necessary for its production; for the shepherds of Lebanon only go in search of this substance when the mountain has been covered during the night with thick clouds.

**Description.**—Tragacanth (gummi tragacantha) is frequently called in the shops gum dragon.—It is white, yellowish, or yellowish-brown, hard, tough, odourless, tasteless, swelling considerably in water, and forming a thick, tenacious mucilage. Two kinds of it are known.

1. **Flaky Tragacanth**: Smyrna Tragacanth (Martius): Tragacanth of the **Astragalus verus**?—This is the tragacanth usually found in English commerce. It occurs in moderately large, broad, thin pieces, marked with arched or concentric elevations.

2. **Vermiform Tragacanth**: Morea Tragacanth (Martius): Traga-
canth of the Astragalus creticus?—This variety is rarely met with in this country, but is common on the continent. It occurs in small, twisted, filiform, spiral pieces. There is more starch in it than in the first variety.

Commerce.—Tragacanth is imported in cases and chests from Smyrna and other ports of the Levant. In 1836, duty (6s. per cwt.) was paid on 87 cwt.

Composition.—The ultimate analysis of tragacanth has been made by Hermann and by Guerin-Varry.¹

<table>
<thead>
<tr>
<th>Hermann’s Analysis</th>
<th>Guerin-Varry’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Atoms.</strong></td>
<td><strong>Eq. Wts.</strong></td>
</tr>
<tr>
<td>Carbon</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>10</td>
</tr>
<tr>
<td>Oxygen</td>
<td>10</td>
</tr>
<tr>
<td><strong>Tragacanth gum</strong></td>
<td>1</td>
</tr>
</tbody>
</table>

In 1805, Vauquelin² made an examination of the proximate constituents of tragacanth. In 1815, Bucholz³, and in 1831 Guerin-Varry⁴, published proximate analyses of this gum.

<table>
<thead>
<tr>
<th>Bucholz’s Analysis</th>
<th>Guerin-Varry’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Common gum</strong></td>
<td>57</td>
</tr>
<tr>
<td><strong>Bassorin</strong></td>
<td>43</td>
</tr>
<tr>
<td><strong>Gum Tragacanth</strong></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Tragacanthin.—Adragantin. Soluble gum or Arabin of Tragacanth.—The soluble gum of tragacanth is usually regarded as similar to gum Arabic, and hence it is called arabin; but is distinguished by silicate of potash and perchloride of iron producing no change in it, and by a peculiar appearance of the precipitate produced with alcohol (the precipitate is flocculent, and collects in a simple opaque and mucous mass.)—In common with arabin it produces precipitates with diaacetate of lead, protochloride of tin, and protonitrate of mercury. Oxalate of ammonia detects in it a calcareous salt.

2. Bassorin. Insoluble gum of Tragacanth.—The insoluble part of gum tragacanth is similar to that of gum Bassora, and hence is called Bassorin. It swells up in water.

3. Starch.—Starch globules may be detected in the bassorin (when swollen up by water) both by the microscope and by iodine. According to Guibourt⁵ tragacanth contains neither arabin nor bassorin, but is essentially formed by an organized gelatiniform matter, very different to gum Arabic both in its physical and its chemical properties, and which swells and divides in water, so as in part to pass through a filter. The insoluble part of tragacanth is, according to the same authority, a mixture of starch and lignin, which has nothing in common with bassorin. De Candolle suggests that the insolubility and swelling of tragacanth in water may arise from the gummy matter being contained in cells.

Physiological Effects.—Like other gums, tragacanth is emollient, demulcent, and nutritive; but difficult of digestion.

⁴ Op. supra cit.
⁵ Hist. des Drog. ii. 477.
Uses.—Tragacanth, in powder, is used rather as a vehicle for active and heavy medicines (as calomel), than on account of its own proper effects. It is occasionally, however, taken as a sheathing or demulcent agent in irritation of the mucous membranes.

Administration.—Dose of the powder, 3ss. to 5ij.

1. Pulvis Tragacanthei Compositus, L. E. Compound Powder of Tragacanth.—(Tragacanth, bruised; Gum Arabic, bruised; Starch, of each, 5ss.; Pure Sugar, 5ij. Rub the Starch and Sugar together to powder, then having added the Tragacanth and Gum Arabic, mix them together.)—Employed as a vehicle for the exhibition of active and heavy powders to children.—Dose for an adult, 3ss. to 5ij.

2. Mucilago Tragacanthae, E. Mucilago Gummi Tragacantha, D. Mucilage of Tragacanth.—(Tragacanth, 5ij.; Boiling Water, f3ix. "Macerate for twenty-four hours, then triturate to dissolve the gum, and express through linen or calico," E.—The Dublin College directs the powdered gum to be used, and employs f3viij. of water. Maceration is to be effected in a close vessel, until the gum is dissolved, and the mucilage then strained.)—Employed in making pills and lozenges; also to suspend heavy powders, as the metallic oxides, in water. It has also been recommended as an application to burns.


Dolichos pruriens, Linn. D.—Stizolobium pruriens, Persoon.

Sex. Syst. Diadelphia, Decandria.

(=Hairs from the Pod, E.—Pubes Leguminis, D.)

History.—One of the earliest writers who mention this plant is Ray. It was long confounded with the M. prurita, Hooker.

Botany. Gen. Char.—Calyx campanulate, two-lipped; the lower lip trifid, with acute segments, the middle one the longest; the upper lip broader, entire, obtuse. Vexillum ascending, shorter than the alæ and keel; alæ oblong, as long as the keel; keel oblong, straight, acute. Stamens diadelphous; anthers ten, of which five are oblong-linear and five ovate, hirsute. Legume oblong, knotted, two-valved, with cellular partitions. Seeds roundish, surrounded by a circularly linear hilum.—Twining herbs or shrubs. Leaves pinnately trifoliate. Racemes axillary. Legumes usually hispid and stinging, by the innumerable very brittle hairs which readily penetrate the skin (De Cand.)

Sp. Char.—Flowers in racemes. Legumes stinging, with somewhat keeled valves. Leaflets hairy beneath, acuminate; the middle one

* Hist. Plant. vol. i. p. 887.
rhomboidal, the lateral ones dilated externally (De Cand.)—Root perennial. Stem herbaceous. Flowers with a disagreeable alliaceous odour; vexillum flesh-coloured; alae purple or violet; keel greenish-white.  
Hab.—West Indies.  

Mucuna pruriens, Hooker—A native of the East Indies; has been usually confounded with the American M. pruriens; but is distinguished by its smaller leaves, its more obtuse (not acuminated) leaflets, the middle one being more truly rhomboidal; its flowers more constantly in threes, and by its legumes being greatly broader, compressed, free from any raised line on the back of the valve; whilst in the American M. pruriens the pods are much narrower, terete, and keeled on the valves.  

Description.—Cowhage or Cow-itch (siliqua hirsuta) is the legume of the Mucuna pruriens (legumen mucuna, stizolobii, vel dolichos pruri-entis). It is of a brownish colour, is shaped like the letter /, about four or five inches long, contains from four to six seeds, and is clothed with strong, brown, bristly, stinging hairs (pubes leguminis; setae siliquae hirsutae), which, examined by the microscope, appear like porcupines' quills, but are slightly notched or serrated towards the point.  

Composition.—The hairs contain tannin.  

Physiological Effects.—A decoction of the root or of the legumes is said to be diuretic, and was formerly used in dropsy. The setæ applied to the skin produce intolerable itching, and, in some persons, pain, redness, swelling, and even an eruption. These effects, which are increased by rubbing, but diminished by the application of oil, are referrible to the mechanical properties of the setæ.  

Uses.—The setæ have been celebrated for their anthelmintic properties. Their action is supposed to be mechanical; that is, they are supposed to pierce and torment intestinal worms, and thereby to oblige them to let go their hold. In support of this explanation, Mr. Chamberlaine tells us he sprinkled some of the hairs in a calabash full of very large round worms (Ascaris lumbricoides), and that in a little time the animals began to writhe and twist about, evincing thereby extreme torture. On examining them with a magnifying glass, the hairs were found sticking loosely in various parts of their bodies. Their usual want of action on the internal coat of the intestines is ascribed to the mucous secretion which defends the subjacent membrane from injury. In one case diarrhœa followed the use of a very large dose of the electuary, and in another instance enteritis came on, after taking this preparation once; but it is not certain that these were the consequences of the operation of the hairs.  

Cowhage has been principally celebrated for expelling the large round worm (Ascaris lumbricoides), and the small thread-worm (A.
vermicularis). It has not proved equally serviceable against the tape-worm (Tænia Solium).

Administration.—The best mode of exhibiting the setae is in treacle, syrup, or honey. The quantity of hairs should be sufficient to give the syrup, or treacle, the consistence of honey, or of an electuary; and of this mixture a tea-spoonful may be given to children, and a table-spoonful to adults: this dose should be taken twice a day—namely, at going to bed, and in the morning an hour before breakfast. Chamberlaine says it usually operates more effectually where a gentle emetic has been premised. After continuing the electuary for three or four days, a brisk purgative of jalap, or senna, should be taken, which will in general bring away the worms.

7. PTEROCARPUS SANTALINUS, Linn. L. E. D.—THREE-LEAVED PTEROCARPUS.

Sex. Syst. Diadelphia, Decandria.
(Lignum, L. D.—Wood, E.)

History.—Avicenna mentions red sandal wood (sandalus rubens). García thinks the term sandal is a corruption of chandama, the name by which the wood is known in Timor.

Botany. Gen. Char.—Sepals five, cohering to form a five-toothed calyx. Petals five, forming a papilionaceous corolla. Stamens ten; the filaments variously combined. Legume indehiscent, irregular, somewhat orbicular, surrounded by a wing, often varicose, one-seeded. Cotyledons thick, incurved; radicle somewhat inflected at the base of the embryo.—Unarmed trees or shrubs. Leaves unequally pinnated (De Cand.)

Sp. Char.—Arboreous. Leaflets three (rarely four or five?), roundish, retuse, glabrous. Racemes axillary, simple or branched. Petals long-clawed, all waved or curled on the margins. Stamens combined into a sheath, split down to the base on the upper side, and halfway down on the lower. Legume long-stalked, surrounded by a broad, membranous wing, obtuse at the base, one- or rarely two-seeded (Wight and Arnot).

A lofty tree. Flowers yellow with red veins,

Hab.—Mountains of Coromandel and Ceylon.

Description.—Red Sandal or red Sander’s wood (lignum santali rubri; lignum santalinum rubrum) is imported in roundish or somewhat angular billets, which are blackish externally, but of a blood-red internally. It is compact, heavy, of a fibrous texture, but is capable of taking a fine polish; almost tasteless, and inodorous, except when rubbed, when it emits a feeble smell. It scarcely communicates colour to water. Alcohol, as well as alkaline solutions, readily extract the colouring matter. The alkaline solution is violet-red, and

---

*a Canon, lib. ii. tract. ii. cap. 656.
*b Clusius, Exot. 173.
HEDGEHOG PTEROCARPUS.

form a precipitate (santalin) on the addition of acids. The alcoholic solution produces precipitates with several metallic solutions: thus, violet with solutions of lead, scarlet with bichloride of mercury, and deep violet with sulphate of iron.

Composition. — Red sandal wood was analysed by Pelletier, who found in it a peculiar colouring matter, which he called santalin (about 16·75 per cent.), extractive, gallic acid, and woody fibre.

Santalin is dark red, with a resinous appearance; almost insoluble in water, but soluble in alcohol, alkaline solutions, ether, acetic acid, and slightly so in some of the volatile oils (as the oils of lavender and rosemary). The effects produced on its alcoholic and alkaline solutions by salts, &c. are similar to those above mentioned on the tincture of the wood. The composition of santalin is, carbon 75·03, hydrogen 6·37, oxygen 18·6; or $\text{C}_{16}\text{H}_{8}\text{O}_{3}$.

Uses. — It is employed in medicine as a colouring agent. (See Tinctura Lavandulae composita.)

S. PTEROCARPUS ERINACEUS, Lamarck, L. E.—THE HEDGEHOG PTEROCARPUS.

Sex. St/st. Diadelphia, Decandria.

(Extractum, L.— Kino. Concrete exudation of this and other undetermined genera and species, E.— Kino [plant yielding it unnamed], D.)

History. — In 1757 Dr. Fothergill described an astringent gum, which he supposed (though on very loose evidence) to have been brought from the river Gambia; and hence he termed it gummi rubrum astringens gambiense. In 1774 it was introduced into the Edinburgh Pharmacopoeia as gummi kino; and in 1787 into the London Pharmacopoeia as resina kino. It was described under this designation in the 3rd edition of Lewis’s Exp. Hist. of the Mat. Med., by Dr. Aikin, in 1784. In 1794 Schenck published an inaugural dissertation on it. I have not been able to ascertain why it was called kino; nor can the precise nature of the substance referred to be now ascertained. Several years since I accidentally met with, in the warehouse of an old drug firm in London, a substance marked gummi rubrum astringens, which I was told had formerly fetched a very high price. It has subsequently proved to be Butea gum. I was at first inclined to believe that it was the original astringent gum of Fothergill, and it has been described by Professor Guibourt as gomme astringente de Gambie. But a more attentive perusal of Fothergill’s paper has led me to doubt their identity (see Butea gum). It is somewhat remarkable, however, that the Hindu name for Butea gum is kueni or kuenee. Is this the source of the European term kino?

Sp. Char.—Leaflets alternate, elliptical, obtuse, smooth above, rus-
fous-pubescent beneath. Fruit with a very short, lateral, straight
point (De Cand.)
Middling-sized tree. Leaves deciduous. Flowers papilionaceous,
numerous, yellow.

Hab.—Woods of the Gambia; Senegal.

Extraction of the Juice of Pterocarpus erinaceus.—"When
an incision is made" in the trunk and branches of the tree, "the
juice flows out, at first of an extremely pale-red colour, and in a very
liquid state; but it soon coagulates, becoming of a deep blood-red
hue, and so remarkably brittle, that its collection is attended with
some difficulty".

Commerce of Kino.—Two substances are met with in English
commerce under the name of kino,—one called Botany Bay Kino,
which is the inspissated juice of the Eucalyptus resinifera (before
described), the other, apparently an extract, imported from Bombay
and Tellicherry, and which may be termed East Indian Kino. The
latter is presumed to be the substance referred to in the British phar-
macopoeias, as it is always regarded in commerce as genuine gum
kino. It is imported in boxes.

In my museum I have several other substances, apparently extracts, which I
have received as kino, mostly from Professor Guibourt, who has described several
of them in his Hist. des Drog. ii. 425. One of these is, perhaps, Jamaica kino.
A second I received as Colombian kino. A third I believe to be foreign extract
of rhetany. I have never met them in English commerce, and therefore think it
needless to describe them.

Description.—East Indian kino (kino indicum seu ostindicum),
sometimes called Amboyna kino (kino amboinense), and usually known
in the shops as gum kino (kino, Ph. L. E. D.) occurs in small, angular,
glistening fragments, the larger of which appear almost black, the
smaller being reddish. When entire they are opaque, but in thin
laminae are transparent and ruby-red. They are brittle between the
fingers, soft in the mouth, stick to the teeth, and colour the saliva
red. They are inodorous, but have a very astringent taste. Both
water and alcohol acquire, by digestion on kino, a deep red
colour. The aqueous decoction becomes turbid on cooling. The
mineral acids and solutions of gelatine, emetic tartar, acetate of lead,
sesquichloride of iron, nitrate of silver, &c. produce precipitates with
the watery infusion.

The tree yielding East Indian kino is as yet unascertained. It is
probably a native of the Malabar coast, for all the importations of
East Indian kino which I can trace were from Bombay or Tellic-
cherry; and an experienced East India broker assures me it is the
produce of the Malabar coast. As Pterocarpus erinaceus is not
known to grow in India, there is no ground for ascribing East Indian
kino to that species. Is it the produce of Pterocarpus marsupium,
which Dr. Roxburgh says yields an astringent inspissated juice exceedingly like Butea gum? I am indebted to Mr. Edward Solly for a sample of extract of Pterocarpus marsupium, which he received from Dr. Gibson. It is a dark red, tenacious, acidulous, moderately astringent substance. It differs, therefore, from the gummy resin which Dr. Roxburgh describes as being the product of this tree. This accurate naturalist describes it as being very brittle, and having a strong, but simply astringent taste; characters which apply to East Indian kino.

**Composition.**—East Indian kino was analyzed by Vauquelin, who found its constituents to be as follows:—tannin and peculiar extractive 75, red gum 24, insoluble matter 1. A. W. Buchner has subsequently shown that catechine is a constituent of kino. To this substance, which has been before noticed, kino owes its power of communicating a green colour to the salts of iron.

**Physiological Effects.**—Astringent (see p. 188). Less effective, and less readily dissolved in the alimentary juices, than catechu, to which in its operation it is otherwise closely allied.

**Uses.**—Employed in medicine as an astringent only; principally in obstinate chronic diarrhœa. In this disease it is usually given in combination with chalk, and frequently with opium. In pyrosis the compound powder of kino (i.e. opium and kino) has been found serviceable. Dr. Pemberton ascribes to kino a power of restraining the discharge of the mucous glands of the intestinal canal when they are secreting too much, and of contracting vessels already too much relaxed, without exerting any such power over the glands and vessels when they are acting naturally. It has been administered as an astringent in leucorrhœa and sanguineous exhalations, and as a tonic in intermittents. As a topical astringent it has been applied to flabby ulcers, and used as a gargle, injection, and wash.

**Administration.**—The dose of the powder is grs. x. to ss.

1. **Tinctura Kino, L. E. D.; Tincture of Kino.** (Kino, bruised, 5ijss. [3ij. D.]; Rectified Spirit, Oij. [Proof Spirit, Oij. wine-measure, D.]) Digest for seven days [fourteen, L.], and strain. “This tincture cannot be conveniently prepared by the process of percolation,” E.—Astringent. Used in diarrhœa and hemorrhages, generally as an adjunct to the chalk mixture.—Dose, f3ij. to f5ij.—It is said that by keeping this tincture has in some instances become gelatinous, and lost its astringency. Where this occurred probably the Botany Bay kino (inspissated juice of the Eucalyptus resinifera) had been employed.

2. **Pulvis Kino Compositus, L. D.; Compound Powder of Kino.** (Kino, 5xv.; Cinnamon, 3ss.; Hard Opium, 5j. Rub them separately to a very fine powder; then mix them.)—Twenty grains of this pow-
der contain one grain of opium.—This powder is employed as an astringent in chronic diarrhoea, pyrosis, &c.—The dose of it is grs. v. to 9j.

SUB-ORDER II.—MIMOSEÆ.

9. ACA'CIA, De Candolle—VARIOUS SPECIES YIELDING GUM, E.

Aca'cia ve'ra, L.—Aca'cia arab'ica et A. ve'ra, D.

Sex. Syst. Polygamy, Monococia.

(Gummi, L. D.—Gum, E.)

History.—The Shittah tree, whose wood is mentioned in several parts of the Old Testament, is supposed to have been an Acacia. By some it has been thought to have been the A. vera, by others the A. horrida.

Hippocrates speaks of the Acacia, which he sometimes calls the Egyptian Acacia, at other times the White Acacia. He is usually supposed to refer to Acacia vera; but Dierbach is of opinion that A. Senegal is meant; which, he observes, is distinguished by its white bark, white wood, and white flowers, and therefore the term white could apply to it only. Furthermore, the white fragrant ointment was probably prepared from the flowers of the A. Senegal, and not of A. vera, whose flowers would yield a yellow ointment, and have not such an agreeable odour as those of the former species. Hippocrates also mentions gum (κόμμα), which he used in medicine. Delile considers the Acacia ci̇p̄s (Thirsty Thorn) of Theophrastus to be Acacia Seyal, which Pliny calls Spina siliens.

Botany. Gen. char:—Flowers polygamous. Calyx four- to five-toothed. Petals four to five, either free or cohering to form a four- to five-cleft corolla. Stamens varying in number, ten to two hundred. Legume continuous, juiceless, two-valved.—Shrubs or trees. Thorns stipular, scattered, or none. Flowers yellow, white, or rarely red, capitate or spiked (De Cand.)


1 Isaiah, xli. 19.
2 As Exod. xxv. 5.
4 Picture Bible.
5 Κάκωδα o Thȯr̄n, p. 558, ed. Fenz.
6 A. alyvTia, p. 631.
7 "A. alyvTia, p. 632.
8 Arzneim. d. Hippok.
9 Μόρον λευκον αγιο̇ν, p. 265.
10 Pages 667 and 666.
11 Flore d'Egypte, p. 286, fol.
ACACIA.

and Senegal bablah (bablah d'Egypte et du Sénégal, Guibourl), has been employed in tanning and dyeing. The succus acacice vera is the inspissated juice of the unripe fruit, and was formerly used as an astringent. Acacia vera yields gum Arabic, and also a portion of the gum Senegal.

2. A. Arab'ica, Willd. D. Acacia nilotica, Delile. Mimosa arabi-bica, Roxburgh.—Spines in pairs. Branches and petioles pubescent. Pinnae four to six pairs; leaflets ten to twenty pairs, oblong-linear, with a gland beneath the inferior and often between the last pinnae. Flowers in globose, stalked, axillary, subternate heads. Legume moniliform (De Cand.)—A small tree. Flower-heads yellow.—Considered by Ehrenberg to be a variety of the preceding species.—A native of Senegal, Egypt, Arabia, and India.—Its fruit, termed Indian bablah (bablah de l'Inde, Guibourl), is used for tanning and dyeing. Probably yields part of the gum Arabic and East Indian gum.

3. A. Karoo, Hayne, Nees and Ebermaier.—Cape of Good Hope. Said to yield Cape gum.

4. A. Gummi'fera, Willdenow.—Arabia; Africa, near Mogadore. Said by Forskål x to yield a gum, which is collected by the Arabs. Probably furnishes, in part at least, Barbary gum.

5. A. Sey'al, Delile.—Egypt and Senegambia. Yields a gum which forms part of gum Senegal. The tears are white, hard, vitreous, and vermiciform.

6. A. Tortilis, Forskål, Nees and Ebermaier.—Arabia. Its gum is collected by the Bedouins of the desert.

7. A. Ehrenber'gif, Hayne, Nees and Ebermaier.—Arabia. Its gum is collected by the Bedouins of the desert.

8. A. Sen'egal, Willdenow; A. Verek, Adanson. —Arabia and Africa, from Senegal to the Cape of Good Hope. Abundant in the forest of Sahel, near Senegal. Yields gum Senegal in vermiciform, ovoidal, or spheroidal tears, which are wrinkled externally, but are transparent internally.

PRODUCTION OF GUM.—The gum of the Acacia trees flows, in the liquid state, from the trunk and branches, and hardens by exposure to the air. It usually exudes spontaneously (see some remarks on the cause of the exudation of gum, p. 1570). In some instances, however, the discharge is facilitated by incisions. In Barbary the largest quantity of gum is procured during the hot and parching months of July and August. "The more sickly the tree appears, the more gum it yields; and the hotter the weather, the more prolific it is. A wet winter and a cool or mild summer are unfavourable to the

* Fl. Egypt. Arab. cxxiv.
production of gum ⁷." In Senegal the gum begins to flow when the tree first opens its flowers ⁸; and it continues during the rainy season till the month of December, when it is collected for the first time. Another collection of the gum is made in the month of March, from incisions in the bark, which the extreme dryness of the air at that time is said to render necessary ⁹.

Commerce.—Acacia gum is the produce of Africa principally, and of Asia. It is imported from the Levant and other parts of the Mediterranean, from Barbary, Senegal, the East Indies, the Cape, &c. It comes over in chests, casks, skins, serons, bags, &c. The duty on it is 6s. per cwt. The following are the quantities on which duty was paid in 1839 ¹⁰:

<table>
<thead>
<tr>
<th>Gum from the East Indies</th>
<th>7,869 cwts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senegal Gum</td>
<td>24,698</td>
</tr>
<tr>
<td>Other sorts of Gum</td>
<td>7,759</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>40,326 cwts.</strong></td>
</tr>
</tbody>
</table>

Description.—Acacia gum (gummi acacia) occurs in variable-sized tears, which are inodorous, more or less coloured, have a slightly sweetish taste, and a greater or less degree of transparency. Ehrenberg asserts that the characters of gum of the same species of plant are liable to considerable variation. Thus the same tree may yield a transparent or an opaque,—a light or a dark coloured, gum. The following are the most important varieties of Acacia gum:—

1. Turkey or Arabic Gum (Gummi turcicum seu arabicum; Gummi Mimose verum, Martius; Gomme arabique vraie, Guibour.)—This is imported from Leghorn, Malta, Trieste, Gibraltar, Smyrna, Alexandria, Beyrout, Constantinople, &c. It is the produce of Acacia vera, and probably of other species, especially A. arabica. It occurs in rounded tears, or amorphous or angular pieces, varying in size from a pea to that of a walnut, or even larger than this; some of the pieces being transparent, others more or less opaque, from innumerable cracks extending through them. It has a glassy lustre, is white, yellow, or wine-yellow, and has no odour, or, if any, an acid one. Its specific gravity varies from 1.316 to 1.482. It may be readily broken into small fragments. It is entirely soluble in water, the solution having the property of reddening litmus, and being feebly opalescent. The latter property is said, by Guerin, to be owing to a small quantity of insoluble nitrogenous matter present. The white pieces constitute the gummi electum of our druggists. On the continent they are called gum Turic (gomme Turique), from Tor, the name of a seaport of Arabia, near the isthmus of Suez; while the red pieces are sometimes said to constitute the gum Gedda (gomme JeddA, or Gedda), so called after another port. Gum Gedda

⁷ Jackson, Account of the Empire of Morocco, p. 137, 3rd ed.
¹⁰ Trade List.
is occasionally imported into this country unmixed with other kinds of gum. In all the entries of it which I have been able to trace, it came from Alexandria in barrels.

2. Barbary or Morocco Gum (Gummi Barbaricum).—This is imported from Mogadore and Mazagan. In 1830, there were imported from Tripoli, Barbary, and Morocco, 2063 cwts. of gum. Barbary gum is probably the produce of *Acacia gummiifera*. Jackson says, it is obtained from a high thorny tree, called *Attaleh*. The best kind is procured from the trees of Morocco, Ras-el-wed, in the province of Suse, and Bled-hummer, in the province of Abda:—the second qualities are the produce of Shedma, Duguella, and other provinces. I have two varieties of Barbary gum: one (the *Gomme de Barbarie* of Guibourt) is in roundish or irregular tears, mixed with many impurities, imperfectly transparent, and of a dull yellowish colour, with a faint tint of green.—It is imperfectly soluble in water, and has some analogy to Senegal gum. The other kind (called *Mogadore gum*) is in small, angular, broken, mostly yellow, pieces, which resemble fragments of Turkey gum.

3. Gum Senegal (Gummi Senegalense).—This gum is imported from St. Louis, St. Mary’s, the river Gambia, Senegal, and Bathurst. In 1839, duty (6s. per cwt.) was paid on 24,698 cwt. Gum Senegal is probably obtained from several species of *Acacia*; but especially *A. Senegal, A. vera, A. Seyal*, and *A. Adansonii*, are said to produce it in part. It occurs in larger tears than those of Turkey or Arabic gum. On breaking them we frequently find large air-cavities in their centres. Occasionally we meet with whitish pieces, but for the most part they are yellow, reddish yellow, or brownish red. More difficulty is experienced in breaking or pulverizing this gum than gum Arabic, and its fracture is more conchoidal. The taste of this gum is similar to that of the last.

Guibourt distinguishes two varieties of this gum, one of which he terms *Gomme du Bas du Fleuve*, or *gum Senegal, properly so called*; the other the *Gomme du Haut du Fleuve*, or *Gomme de Galam*. The first is probably the produce of *Acacia Senegal*, while the second is procured from *A. vera*. There is but little difference between them: yet gum Galam has a greater resemblance to Turkey gum than Senegal gum has; the pieces are more broken, and therefore more brilliant, than those of gum Senegal, properly so called.

Those pieces of gum which have on some part of them a yellowish opaque skin or pellicle, constitute the *Gomme pelliculée* of Guibourt. The *Marrons de Gomme*, or *Gomme lignirode*, of the same pharmacologist, is also found in the Senegal gum of commerce: it consists of yellowish or dark brownish pieces, which are difficult to break, opaque and rough. Treated with water it partially dissolves, leaving, says Guibourt, a residue of gnawed wood (*bois rongé*). Guibourt states, that in most of the *marrons* he has found a large ovoid cell, which had been the habitation of the larvae of some insect;
from whence he concludes that this substance is the work of an insect.

4. East India Gum (Gummi indicum ostindicum).—This variety is imported principally from Bombay. In 1839, duty (6s. per cwt.) was paid on 7,869 cwt. It is probably the produce of various species. Many pieces agree in their physical and chemical characters with Turkey and Arabic gum, and are probably the produce of Acacia arabica, or some allied species (yellow E. I. Gum). Others, however, are larger, red or brown, and more difficult to pulverize than Turkey or Arabic gum (brown E. I. Gum). Are these the produce of Feronia Elephantum?

I have received from Bombay three varieties of gum: one marked Maculla best gum Arabic, very similar to gum Galam; a second, marked Mocha and Barbary gum, in large reddish coloured, rough tears; and a third, denominated Surat inferior gum Arabic, in smaller dark-coloured tears.

5. Cape Gum. (Gummi Capense.)—This is imported from the Cape of Good Hope. In 1829 there was exported from the Cape 16,943 lbs. and two cases of gum. In 1830 the quantity imported into the United Kingdom was only 1 cwt. 3 qrs. 14 lbs. but since then the importation has greatly increased. Mr. Burchell says, Cape gum is obtained from a species of Acacia (which he has figured in vol. i. pp. 189 and 325) closely resembling A. vera, and which he calls A. capensis (A. Karoo, Hayne?). It is most abundant on the banks of the Gariep, and between the Cape and the Gariep. Notwithstanding that he asserts the quality of Cape gum as in no way inferior to that of A. vera, it is considered by our dealers as a very inferior kind. It is pale yellow; and its appearance resembles Mogadore gum (see p. 1581), or small fragments of Turkey gum. It is collected by the Caffres.

Besides the preceding gums, there are several others described by continental pharmacologists, but which are almost unknown in English commerce. Such are the following:

a. Gum Bassora. Gummi Toridonnense.—This gum occurs in variable-sized pieces, which are whitish or yellowish, and opaque. When put into water it swells up, but dissolves only in part. The insoluble portion has been called bassorin. Its origin is unknown. Virey thinks that it is produced by a Mesembryanthemum; Desvaux and Damart, by a Cactus.

b. Gum Kuteera.—Considered by Guibourt as identical with the preceding; but the sample given me by Professor Royle is very distinct. It has considerable resemblance to the flaky tragacanth (p. 1570), for which it has been attempted to be substituted. It is, probably, the produce of Sterculia urens, a plant belonging to the family Hydnangiaceae.

c. Under the name of Hog Gum I have met with, in commerce, an unsaleable gum, which greatly resembles a sample sent me by Professor Guibourt, as gomme pseudo-adraganthe, or gomme de Sassa. It is in reddish yellow, somewhat transparent masses, many of which are twisted like a snail's shell or an ammonites.
The *Rhus Metopium* yields a substance called Hog gum\(^k\), but I know not whether it be identical with the gum above referred to.

**Adulteration.**—The inferior and cheaper kinds of gum (as the Barbary, East Indian, and Senegal gums) are not unfrequently substituted for the Turkey or Arabic gum, especially in the form of powder. Flour (or starch) is sometimes mixed with powdered gum; the adulteration is readily recognized by the blue colour produced on the addition of a solution of iodine to the cold mucilage of suspected gum.

**Composition.**—Several ultimate analyses of gum have been made. The most important are those of Berzelius\(^1\), Prout\(^m\), Guerin\(^n\), and Mulder\(^o\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BERZELIUS.</td>
<td>PROUT.</td>
</tr>
<tr>
<td>Carbon</td>
<td>41.905</td>
<td>41.4</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>6.788</td>
<td>6.5</td>
</tr>
<tr>
<td>Oxygen</td>
<td>51.306</td>
<td>52.1</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>a trace</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The formula \(C_{13}H_{13}O_{12}\) agrees with the analyses of Berzelius and Prout. Mulder gives, as the formula for gum Arabic, \(C_{12}H_{10}O_{10}\). According to the first formula the atomic weight will be \(= 186\); according to the second, \(= 162\).

The proximate analysis of gum has been made by Guerin\(^p\):—

<table>
<thead>
<tr>
<th>Gum Arabic.</th>
<th>Gum Senegal.</th>
<th>Gum Bassora.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble gum (Arabin)</td>
<td>79.40</td>
<td>81.10</td>
</tr>
<tr>
<td>Insoluble gum (Bassorin)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Water</td>
<td>17.60</td>
<td>16.10</td>
</tr>
<tr>
<td>Ashes</td>
<td>3.00</td>
<td>2.60</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1. **Soluble Gum or Arabin.**—Is a colourless, inodorous, insipid, uncrystallizable solid, soluble in both hot and cold water, but insoluble in alcohol, ether, and oils. It combines with alkalis. Sulphuric acid converts it into a saccharine substance. 100 parts of arabin treated with 400 parts of nitric acid, yielded Guerin 16'88 of mucic acid, with a little oxalic acid. From cerasin or prunin, it is distinguished by its solubility in cold water. The characters by which it is distinguished from tragacanthin, carrageenin, and cydonin, have been already pointed out. According to Guerin, arabin consists of carbon 43'81, hydrogen 6'20, oxygen 49'85, and nitrogen 0'14.

2. **Insoluble Gum or Bassorin.**—Is distinguished by its insolubility in water, both hot and cold. It absorbs water, and swells up. It is insoluble in alcohol. 100 parts treated by 1000 of nitric acid furnished 22'61 of mucic acid, with a

---

\(^k\) See Brown's *Nat. Hist. of Jamaica*, p. 177.
\(^1\) *Ann. de Chim*. xxv. 77.
\(^m\) *Phil. Trans.* for 1827.
\(^o\) *Pharm. Central-Blatt für* 1839, S. 137.
\(^p\) *Op. supra cit.*
little oxalic acid. It consists, according to Guerin, of carbon 37.28, hydrogen 55.87, oxygen 6.85.

3. Salts.—The ashes of gums Arabic and Senegal consist of carbonates of potash and lime, with minute portions of chloride of potassium, oxide of iron, alumina, silica, and magnesia. The carbonate of lime is formed by the decomposition of the malate of lime contained in the gum, while the carbonate of potash results from the decomposition of acetate of potash.

Chemical Characteristics.—Gum Arabic is soluble both in hot and cold water, forming mucilage. Alcohol precipitates the gum from its solution. Diacetic of lead causes a white precipitate (gum-mate of lead) with the solution. A solution of silicate of potash (prepared by fusing three parts of carbonate of potash with one part of silver sand) causes a white flaky precipitate. Oxalate of ammonia gives a white precipitate (oxalate of lime). When a concentrated solution of sesquichloride of iron is dropped into strong mucilage, the whole becomes, after some hours, a brown semi-transparent jelly. Nitrate of mercury produces a precipitate with a solution of gum.

Physiological Effects. a. On Animals generally.—The effects of injecting solutions of gum into the veins of animals (horses and dogs) have been examined by Viborg, Scheele, and Hertwitch. From their experiments it appears that small quantities only can be thrown into the circulation with impunity. From half a drachm to one or two drachms of gum, dissolved in one or two ounces of water, disorder the respiration and circulation of horses; while five or six drachms of gum give rise to an affection of the nervous system, manifested by stupor and paralysis, or convulsions. Some of these effects (namely those on the pulmonary and vascular system) may arise from the non-miscibility of mucilage with the blood, and its consequent mechanical influence in obstructing the capillary circulation of the lungs. The effects of a diet of gum on animals have been already pointed out (see p. 49).

β. On Man.—Regnandot injected three drachms of gum, dissolved in three ounces of water, into the veins of a man aged twenty years. In half an hour the patient was very chilly, his pulse was small and quick, and he had three liquid stools. The chilliness was succeeded by great heat, and after fifteen hours an eruption appeared on the skin.

The local action of a solution of gum is that of an emollient, and (by its sheathing properties) demulcent. It is not known to possess any action over remote parts, though some have supposed it to have the power of diminishing irritation in the urinary organs.

The dietetical properties of gum have been before noticed (see p. 49).

Uses.—Gum is employed in medicine as an emollient and demulcent, but more frequently as a vehicle for the exhibition of other medicines. It is sometimes slowly dissolved in the mouth, to allay

---

β Ibid. op. supra cit. S. 6.
troublesome cough, and to diminish irritation of the fauces, by diluting the acrid secretions, and sheathing the parts from the action of the atmosphere. In inflammatory affections of the intestinal tube, as well as of the respiratory and urinary organs, gum is used as an emollient and demulcent. As a sheathing substance, a solution of gum may be employed in acrid poisoning; but of course its efficacy is mechanical merely. Powdered gum is occasionally applied to check hemorrhage from leech bites.

As a vehicle for the exhibition of other medicines, it is employed in the form either of powder or mucilage. The former is used to give bulk to active and heavy powders; as calomel, emetic tartar, &c., and in the preparation of lozenges. The latter is employed to suspend insoluble powders (as oxide of zinc, musk, &c.) in water, or to diffuse oily and resinous substances through aqueous fluids, and to give form and tenacity to pills. Furthermore, the adhesive qualities of mucilage renders it exceedingly useful for various other pharmaceutical purposes.

**Administration.** — The dose of powdered gum is from 3ss. to 3j., or ad libitum.

1. **MUCILAGO, E.; Mistura Acaciae, L.; Mucilago Gummi Arabici, D.; Mucilage.** — (Acacia, powdered, 5x.; Boiling Water, Oj. Rub the Acacia with the water gradually poured in, and dissolve it, L.—The Edinburgh College uses only 5ix. of gum to Oj. of Cold Water, and directs the gum to be dissolved without heat, but with occasional stirring, and the solution to be strained through linen or calico.—The Dublin College employs 3iv. of coarsely-powdered Gum to f3iv. of Hot Water, and directs the mucilage to be strained through linen). — The process of the Edinburgh College is to be preferred, as being sufficiently strong, and made without heat (which causes gum to become somewhat acid, and thereby renders it somewhat acrid). The Dublin process yields a mucilage too thick to be strained. By keeping, mucilage readily becomes sour by the development of acetic acid. The pharmaceutical uses of mucilage have been above referred to. To render different substances miscible with aqueous vehicles, different proportions of mucilage are required. "Oils will require about three-fourths of their weight, balsams and spermaceti equal parts, resins two parts, and musk five times its weight."

2. **MISTURA ACACIL, E.; Acacia Mixture.** — (Mucilage, f3ij.; Sweet Almonds, 5j. and 5ij.; Pure Sugar, 5v.; Water, Oij. Steep the almonds in hot water, and peel them; beat them to a smooth pulp in an earthenware or marble mortar, first with the sugar, and then with the mucilage; add the water gradually, stirring constantly; then strain through linen or calico.) — Demulcent and emollient. Applicable to the same purposes as Mistura Amygdale, already mentioned. — Dose, f3ij. to f3ij.

---


3. Trochisci Acaciæ, E.; Gum Lozenges.—(Gum Arabic, 5iv.; Starch, 5j.; Pure Sugar, lby. Mix and pulverize them, and make them into a proper mass with rose-water for forming lozenges.)—An agreeable pectoral. Employed to allay the tickling in the throat, which provokes coughing.

10. Acacia Cat'echu, Willdenow, L. E. D.—The Catechu Acacia.

Mimo'sa Cat'echu, Linn.

Sex. Syst. Polygamia, Monoeia.

(Ligni extractum, L.—Extract of the Wood, E.—Extractum ex ligno, D.)

History.—It is somewhat uncertain who first described Catechu. Garciás ab Orto was of opinion that it was the Λόκην Ιέκινον of Dioscorides; but Dr. Royle, in a very elaborate and learned paper on this subject, has apparently proved that the preparation referred to by the latter author is the produce of Berberis Lycium, Royle.

Botany. Gen. Char.—See Acacia (p. 1578).

Sp. Char.—Arboreous. Branches armed with stipulary thorns, or occasionally unarmed. Young shoots, petioles, and peduncles, more or less pubescent. Leaves bipinnated; pinnae ten to thirty pairs; leaflets thirty to fifty pairs; petiole sometimes armed on the under side with a row of prickles, with one large gland below the lowest pair of pinnae, and between the extreme one to six pairs. Spikes axillary, one to four together, shorter than the leaves. Flowers numerous. Petals united. Stamens distinct, numerous. Legumes flat, thin, straight, linear, glabrous, four- to eight-seeded (Wight and Arnott).

Tree from fifteen to twenty feet high. Bark brown and scabrous. Wood hard and heavy; the interior (duramen) brown, dark red, or blackish; the exterior (alburnum) white, one or two inches thick. Flowers whitish or pale yellow.

Hab.—Various parts of the East Indies; now common in Jamaica.

Manufacture of Catechu.—The manufacture of Catechu from the Acacia Catechu, as practised in Canara and Behar, has been described by Mr. Kerr and Dr. F. Buchanan Hamilton, while Dr. Royle has explained the process followed in Northern India. According to the last-mentioned gentleman, "the Kutt manufacturers move to different parts of the country in different seasons, erect temporary huts in the jungles, and selecting trees fit for their purpose, cut the inner wood into small chips. These they put into small earthen pots, which are arranged in a double row along a fire-place built of mud (choola); water is then poured in until the whole are

---

* Chisii Exot. lib. i. cap. x. p. 163.
* Lib. i. cap. 132.
* Illust. p. 182.
covered: after a considerable portion has boiled away, the clear liquor is strained into one of the neighbouring pots, and a fresh supply of material is put into the first, and the operation repeated until the extract in the general receiver is of sufficient consistence to be poured into clay moulds, which, in the Kharee Pass and Doon, where I have seen the process, are generally of a quadrangular form. This Catechu is usually of a pale-red colour, and is considered there to be of the best quality. By the manufacturers it is conveyed to Saharumpore and Moradabad, whence it follows the course of commerce down the Ganges, and meets that from Nepal, so that both may be exported from Calcutta.”

Description.—The term Catechu (from cate a tree, and chu juice) is applied to various astringent extracts (sixteen of which I have in my collection) imported from India and the neighbouring countries. A few years ago the terms Catechu, Terra japonica, and Cutch, were employed synonymously; they are now, however, for the most part, used in trade somewhat distinctively, though not uniformly in the same sense. In the Edinburgh Pharmacopeia catechu is correctly stated to be the “extract of the wood of Acacia Catechu, of the kernels of Areca Catechu, and of the leaves of Uncaria Gambier; probably, too, from other plants.”

In 1837 I attempted to classify the varieties of catechu which I had met with, according to the plants from which they were procured; as far, at least, as I could ascertain this. But in the first edition of this work I did not adopt this classification, in consequence of some doubts which I entertained respecting its accuracy. Having, however, obtained further information on the subject, I shall now adopt it, with some modifications.

1. Gambir Catechu; Catechu from Uncaria Gambir.—The method of preparing Gambir, and the properties of the different commercial varieties of this extract, have been already described (see pp. 1433-36). I may further observe, however, that the origin of these varieties of catechu I consider to be satisfactorily made out. They are imported under the name of Gambir from Singapore (where the Uncaria Gambir is cultivated, and an extract prepared from it), they agree with the published descriptions of gambir, and lastly, I find them to be identical with the gambir brought by Mr. Bennett from Singapore, and deposited in the Museum of the Medico-Botanical Society.

2. Betel-nut Catechu; Catechu of the Areca Catechu.—The mode of preparing Betel-nut Catechu, as described by Heyne, has been already stated (see p. 937). Two kinds of astringent extract are said by him to be prepared from these seeds: one called Kassu, which is black and mixed with paddy-husks; the other termed Coury, which is yellowish brown, has an earthy fracture, and is free from the admixture of foreign bodies. I have been able to identify Kassu

---

among the extracts of commerce; but have not satisfactorily made out Coury.

**Kassu:** Dark-brown Catechu in circular flat cakes; Colombo or Ceylon Catechu or Cutch (Cachou brun, orbiculaire et plat, Guibourt). Imported from Ceylon. Cakes round, flat, covered on one side with paddy husks (shumes of rice), from two to three inches in diameter, scarcely one inch thick, and weighing from two to three ounces. Internally they are dark, blackish brown and shiny, exactly resembling Pegu Catechu. Examined by the microscope it is found to contain numerous large crystals. Common. Quality excellent.—A decoction of this catechu becomes turbid on cooling, and frequently produces a blue colour with a solution of iodine, owing to the presence of the rice starch.

That this extract is Kassu, and is obtained from Areca Catechu, is proved by two facts:

1. It agrees with the Kassu of Heyne in its dark colour, and in being intermixed with paddy husks.
2. It is imported from Ceylon, in which island catechu is obtained from Areca Catechu. For this information I am indebted to a letter (in my possession) addressed by Mr. Lear, acting superintendent of the Botanic Garden in Ceylon, to my late friend Mr. F. Saner, assistant-surgeon in Her Majesty's 61st regiment, then stationed at Colombo. The letter is dated November 17, 1838, and contains the following passage: “Of kino and gambir I am quite unacquainted, and also of the trees which produce them. I should be glad [of] any information on the subject. An extract from Areca Catechu (specimens of which I will procure you) has been supposed to be the Terra Japonica of the shops; but it is generally supposed to be produced from Areca Catechu, a plant not in Ceylon.”

3. **Cutch; Catechu of the Acacia Catechu.**—It is probable that a considerable number of the astringent extracts brought from India as catechu are the produce of the Acacia Catechu. Hitherto, however, a small number only have been positively identified.

1. Pale, dull Catechu in Square Cakes; Cachou terne et parallélépipide, Guibourt; Cachou en manière d’écorce d’arbre, A. Jussieu. This perhaps is the Bengal Catechu of Davy.

It occurs in square cakes, usually about two inches long, two inches broad, and one in thickness. Usually these cakes are irregularly broken, so that it is difficult to trace their angular character. They are heavier than water. Externally their colour is dark brown or blackish; internally we observe darker and lighter layers, disposed in a schistose manner, like the bark of a tree. The darker layers are brown and somewhat shiny, the lighter ones are dull reddish white. Examined by the microscope it is found to consist principally of small crystals. A decoction of one part of this catechu and twelve parts of water lets fall, on cooling, a copious whitish precipitate of catechine.

I find this kind of catechu to be identical with the specimens brought by Dr. Royle from India, and which he saw prepared from Acacia Catechu (see his description of the process at p. 1586). Moreover it probably is the kind, the manufacture of which Mr. Kerr described; for he says it is in square pieces, the finest being whitish. So that it is manufactured in Bahar, as well as in the more northern parts of India.

2. Dark shiny Pegu massive Catechu; Pegu Catechu; Cutch; Cachou en masse, Cachou lucide, Cachou du Butea frondosa, Guibourt. It is imported from Pegu in large masses weighing sometimes a cwt. each. These masses are made up of layers composed of prismatic pieces, each from six to ten inches long, and two or three inches broad and deep. Each piece is enveloped in the leaves of Nauclea Brunonis, a native of Tavoy, Wallich. Cat. (not of Butea frondosa, as formerly supposed). When fractured, these pieces present a dark blackish-brown shiny surface, free from all impurities; some of the pieces, however, having a more reddish tint than the others. Their taste is bitter and astringent. Fée
CATECHU ACACIA.

states, though I know not on what authority, that this variety contains 57 per cent. of tannic acid. Pegu catechu is largely employed, I am informed, for dyeing. The greater part of that brought to this country is exported for continental use.

According to Herbert de Jæger the catechu of Pegu is obtained from the Acacia Catechu; and, he adds, that it is celebrated throughout India.

γ. Dark Catechu in balls.—I have two varieties of dark-coloured catechu in balls:

aa. Enveloped in leaves.—This agrees in its appearance with the Pegu Catechu above mentioned, and like the latter is enveloped in leaves, apparently of the Nauclea Brunonis. The balls are round and about the size of small oranges (Pegu Cutch in balls?).

bb. Covered with Paddy Husks.—Balls more or less flattened, not exceeding the size of a small orange, and covered with paddy husks (glumes of rice). In other respects identical with the preceding. It agrees with the kind referred to by Dr. B. Hamilton, as being procured from Acacia Catechu. When the extract, he says, has acquired the thickness of tar, it is allowed to harden for two days, so that it will not run. "Some husks of rice are then spread on the ground, and the inspissated juice is formed into balls about the size of oranges, which are placed on the husks or on leaves."

4. Catechu of unknown origin.—The origin of the larger proportion of the catechus which I have met with, I have not been able to ascertain.

a. Brown Catechu in conical masses from Siam.—This variety has recently been imported from Siam in bags. It is in masses shaped like a betel-nut, or rather that of a mullar or truncated olive, each weighing about a pound and a half. The flattened base is marked with the impression of the leaf of Nauclea Brunonis. Internally this catechu is shiny and liver-coloured, strongly resembling hepatic aloes. In its other qualities it agrees with Pegu Catechu.

β. Catechu in flat cakes.—Under the name of Cutch I have received a catechu in flat cakes like the Colombo Catechu but unmixed with rice glumes. The cakes have a rusty appearance externally.

γ. Black mucilaginous Catechu. Cachou noir et mucilagineux, Guibourt.—In parallelopipeds of eighteen lines on the side, and an inch high. Internally black and shiny, somewhat similar to extract of liquorice. Quality bad.

δ. Dark-brown siliceous Catechu in flattened, circular, or quadrangular cakes. Cachou brun siliceux, Guibourt.—Formerly called by druggists Terra japonica. Perhaps the Bombay Catechu of Sir H. Davy. It is in round or flattened masses, varying in weight from two or three ounces to several pounds; externally it is of a dull dark-brown or rusty colour, internally being shiny and blackish brown. It is very heavy, and contains a large quantity of fine sand. Guibourt says, 100 parts of this catechu yielded him 26 parts of earthy matter. But some of the specimens contain a much less portion of earthy matter. Quality bad.

ε. Dull reddish Catechu in balls. Cachou en boules, terne et rougedtre, Guibourt.—In the collection of the Medico-Botanical Society of London, it is marked American Catechu. Balls flattened, weighing three or four ounces, covered on one side with glumes of rice. Its fracture is dull, reddish, wavy, and often marbled. Quality good.

ζ. Pale or whitish Catechu in irregular lumps. Cachou blanc, Guibourt.—I received this from Bombay, under the name of Katha suffaid (i.e. pale or white catechu). It is in lumps, which vary in size from that of a walnut to that of a small apple. The general form is rounded or oval, and somewhat flattened, the surface being very uneven, and of a dark or blackish brown colour. Internally

---

this variety is dull, and of a very pale colour. Guibourt says, it is almost white; but it has a pale-yellowish or brownish-red tint. Its taste is bitter, astringent, and sweetish, with a smoky flavour. Hence, perhaps, the dark colour externally is derived from the masses being dried, or exposed to the smoke of a fire.

**Composition.**—Two kinds of Catechu were analyzed by Sir H. Davy. In 1833, Buchner discovered in catechu a peculiar substance which has been denominated *Catechine*.

<table>
<thead>
<tr>
<th></th>
<th>Bombay</th>
<th>Bengal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>54.5</td>
<td>48.5</td>
</tr>
<tr>
<td>Peculiar extractive</td>
<td>34.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Mucilage</td>
<td>6.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Insoluble matter (chiefly sand and lime)</td>
<td>5.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Davy's Analyses.

1. Catechine.—This has been already noticed (see *Uncaria Gambir*).

2. Tannic Acid.—The general properties of this acid have also been before described (see p. 1080). It is this substance which renders catechu so valuable to the tanner. The peculiarities of the tannic acid of catechu have been studied by Berzelius, but in consequence of the subsequent discovery of catechuic acid they require re-examination. The tannic acid of catechu is easily soluble in water and alcohol, but very slightly so in ether. The aqueous solution becomes coloured by exposure to the air. Its combinations with acids are very soluble. Alkalis do not precipitate it.

**Chemical Characteristics.**—The brown, filtered decoction of catechu reddens litmus, yields a blackish-green colour and precipitate (catechuate and tannate of iron) with the ferruginous salts, and a brownish-white one with acetate of lead. A solution of gelatine renders the cooled decoction turbid (tannate of gelatine). Alkalis deepen the colour of the decoction, but cause no precipitate. Sulphuric acid renders the decoction slightly turbid.

The filtered decoction of several kinds of catechu (especially *pale catechu in broken square cakes*) deposits, on cooling, catechine.

The decoction of dark-brown catechu, in circular flat cakes, when cold becomes blue (*iodide of starch*) on the addition of a solution of iodine.

**Purity.**—The Edinburgh College states that "the finest qualities [of catechu] yield to sulphuric ether 53, and the lowest qualities 28 per cent. of tannin dried at 280°." This proceeding, however, is not to be relied on as a test of the astringency of catechu, which can only be determined in the usual way by gelatine. This College errs in supposing that the etherial extract is necessarily either wholly or in great part tannin; for catechuic acid, which constitutes a large portion of some kinds of catechu, is soluble in ether.

**Physiological Effects.**—Catechu produces the local and general effects of the astringents before described (see p. 188). When of good quality it is more powerful than kino. In its operation it is closely allied to rhatany root (*Krameria triandra*).
Uses.—Employed as an astringent in the following cases:—

1. In affections of the mouth and throat.—In various affections of the mouth and throat I have frequently employed catechu, and found it a convenient and efficacious astringent. Thus, in relaxed uvula, and in that slight chronic inflammatory affection of the throat usually denominated the relaxed sore throat, and which is especially observed in delicate females, catechu, chewed or sucked, is a most useful remedy. The purer kinds of catechu should be selected, especially avoiding those that are gritty. Or catechu lozenges may be employed. The pale kinds of catechu (as gambir, before described,) are usually sweeter and more agreeable than the dark varieties. For public speakers or singers also it is a useful remedy; it prevents or diminishes hoarseness consequent on frequent use of the vocal organs. In slight ulcerations of the mouth also it is useful.

2. As a stomachic in dyspeptic complaints.—I have known catechu chewed with advantage in dyspeptic complaints. It should be used just before taking food: it promotes the appetite, and assists digestion.

3. As an alvine astringent it may be employed in old-standing diarrhoeas and dysenteries, when there are no inflammatory symptoms present. It is often conjoined with the chalk mixture, and not unusually with opiates.

4. As an astringent in hemorrhages of an atonic character. A scruple of catechu, with grs. xij. of confection of opium, and a sufficient quantity of aromatic confection to make a bolus, was a favourite prescription of Dr. Babington, sen. in immoderate flow of menses.

5. In lead colic it was recommended by Grashius.

6. In mucous discharges, as gleets, fluor albus, chronic old-standing cystirrhœa, &c.

7. As a topical application to ulcers.—"An ointment composed of 3iv. of catechu, 6ix. of alum, 3iv. of white resin, and f3x. of olive oil, with a sufficient quantity of water, is in great repute in India as an application to ulcers."

Administration.—Dose, grs. x. to 5j. It may be administered in the form of bolus, or of mixture with sugar and gum Arabic. For gradual solution in the mouth, I have found a lump of the purer kinds of commercial catechu more agreeable than catechu lozenges, which I requested a manufacturer of lozenges to prepare for me.

4. INFUSUM CATECHU COMPOSITUM, L. D. Infusum Catechu, E.; Infusion of Catechu. Catechu, powdered, 3vij. [5iis. D.]; Cinnamon, bruised, 3j. [3ss. D.]; [Syrup, f3iij. E.]; Boiling [distilled, L.]; Water, Oij. [f3xvij. E. Oss. wine-measure, D.]; Macerate the Catechu and Cinnamon in the Water, in a lightly-covered vessel, for an hour [two hours, E.], then strain [through linen or calico, and add the syrup, E.];—Astringent. Adapted to diarrhoea. Dose, f3j. or f3ij. three or four times a day. Frequently given in conjunction with opiates. Sometimes used in the form of enema.

f Ainslie, Mat. Hud. i. 590.
g De Colica Pictorum, Amsterdam. 1752.
h Thomson, London Dispens.
2. TINCTURA CATECHU, L. E. D.  Tincture of Catechu. (Catechu, [in moderately fine powder, E.], 3ijss. [3ijj. D.]; Cinnamon, bruised [in fine powder, E.], 3ijss. [3ij. D.]; Proof Spirit, 0ij. [0ij. wine-measure, D.]  Macerate for fourteen [seven, E. D.] days, and strain [and strongly express the residuum; filter the liquors, E.] “This tincture may be also prepared by the process of percolation, the mixed powders being put into the percolator without being previously moistened with the spirit,” E.)—Astringent. Usually employed as an adjunct to chalk mixture in chronic diarrhoeas and dysentery; or occasionally to Port wine, with some aromatic (nutmeg or cinnamon). —Dose, f3j. to f3ij.

3. ELECTUARIUM CATECHU, E.  Electuarium Catechu compositum, D.  (Catechu, 5iv.; Kino, 5iv. [5ijj. D.]; Cinnamon, 3ij. [3ij. D.]; [Nutmeg, 3ij. E.]; Opium, diffused in a little Sherry, 5iss.; Syrup of Red Roses [Syrup of Ginger, D.], boiled to the consistence of honey, 0jss. [lb. 1/2. D.] Pulverize the solids; mix the Opium and Syrup, then the powders, and beat them thoroughly into a uniform mass).—Astringent. Employed in chronic diarrhoea, dysentery, and hemorrhages. Dose, 9j. to 5ij. One ounce of this electuary, prepared according to the Dublin Pharmacopoeia, contains two grs. and a half of opium.

11. ANDIRA INERMIS, Kunth.—THE CABBAGE-BARK TREE.

Geoffroy’a inermis, Swartz, D.
(Cortex, D.)

History.—The medicinal properties of the bark of this tree were first pointed out by Mr. Duguid. The first botanical description of the tree was published by Dr. Wright.

Botany.  Gen. Char.—Calyx turbinate-campanulate, five-toothed; teeth almost equal, acute, erect. Corolla papilionaceous; the vexillum roundish, emarginate, larger than the keel. Stamens diadelphous (nine and one). Ovary containing three ovules. Legume stalked, somewhat orbicular, rather hard, one-celled, one-seeded; when ripe divisible into two valves, according to Swartz (De Cand.)

Sp. Char. — Leaflets thirteen to fifteen, ovate-lanceolate, acute, smooth on both sides. Flowers paniculate, with very short pedicels. Calyx urceolate, ferruginous-pubescent (De Cand.)

Tree of considerable height. Leaves pinnate. Flowers reddish-lilac.

Hab.—West Indies.

Description.—Cabbage bark or Worm bark (cortex andire inermis, seu geoffroyae jamaicensis) occurs in long, thick, fibrous pieces, having

2 Phil. Trans. vol. lxxvii. pl. ii. p. 207.
a brownish-ash colour, a resinous fracture, a disagreeable smell, and a sweetish, mucilaginous, bitter taste.

**Surinam Bark (cortex geoffroyae Surinamensis)** is the bark of *Andira retusa*, var. *B. Surinamensis*, De Candolle. Huttenschmidt found in it a white crystalline substance, which he called *Surinamin*. Surinam bark has been used as a vermifuge, but I am totally unaequainted with it.

**Composition.**—Cabbage-bark was analysed in 1824 by Huttenschmidt, who found in it the following substances:—Jamaicina, yellow colouring matter, gum, much starch, wax, brown resin, a small quantity of mouldy matter, a nitrogenous substance soluble in carbonate of soda, oxalate of lime, and woody fibre.—The ashes contained carbonate, phosphate, and sulphate of potash, chloride of potassium, carbonate and phosphate of lime, with magnesia, silica, and oxide of iron.

Jamaicina is a brownish-yellow crystalline, fusible, very bitter substance, composed of carbon, hydrogen, nitrogen, and oxygen. It is soluble in water and alcohol, and possesses alkaline properties. Its watery solution forms, with tincture of nutgalls, a yellow precipitate. Two grains of the acetate of jamaicina, given to pigeons and sparrows, caused restlessness and trembling, and in half an hour violent purging.

**Physiological Effects.**—Cathartic, emetic, and narcotic. In doses of thirty or forty grains the powder of this bark purges briskly, like jalap. In larger quantities it causes vomiting, fever, and delirium. Fatal accidents are said to have resulted from its imprudent use.

**Uses.**—Formerly employed as an anthelmintic, especially against the large round worm (*Ascaris lumbricoides*), but its use is now obsolete.

**Administration.**—Dose of the powder, 3j. to 5ss. As an anthelmintic the bark is usually given in the form of decoction.

**Decoctum Geoffroye. D. Decoction of Cabbage-tree Bark.** (Bark of the Cabbage-tree, bruised, 3j.; Water, Oij. [wine-measure]. Boil down to a pint, and to the strained liquor add 3ij. of Syrup of Orange Peel).—Cathartic and narcotic. Employed as an anthelmintic.—Dose, f3ss. to f3ij. for an adult.

**Antidotes.**—In the event of an overdose, wash out the stomach, administer vegetable acids, and evacuate with castor oil.

---

9. Giesel, Pharm. Waarenk. i. 201; Murray, App. Med. ii. 492.
11. For further particulars respecting the uses of Cabbage-bark, consult Dr. Wright’s paper above referred to.
12. HÆMATOXYLYON CAMPECHIANUM, L. E. D.—THE COMMON LOGWOOD.

Sex. Syst. Decandria, Monogynia.

(Lignum, L. D.—Wood, E.)

History.—Monardes \(^6\) calls the wood of this plant *lignum ad renem affectiones et urinae incommoda*. Hernandez \(^7\) terms the wood *lignum nefriticum* ; and describes the plant under the name of coatli.

Botany. Gen. char. — Sepals five, united at the base into a somewhat persistent tube; the lobes deciduous, oblong-obtuse. Petals five, scarcely longer than the sepals. Stamens ten; filaments hairy at the base; anthers without glands. Style capillary. Legume compressed, flat, lanceolate, acuminate at both ends, one-celled, two-seeded; the sutures indehiscent; the valves bursting in the middle longitudinally. Seeds transversely oblong; cotyledons two-lobed.—Tree, with branches unarmed or spinous below the leaves. Flowers racemose, hermaphrodite (De Candolle).

Sp. Char.—The only species.

Tree forty or fifty feet high. Leaves pinnate or somewhat bipinnate by the conversion of the lowest pair of leaflets into two pair of pinnæ; leaflets obovate or obcordate. Flowers yellow.

Hab.—Campeachy. Introduced into Jamaica, where it now grows in great abundance, wild.

Commerce.—The stems of the Logwood-trees are cut into logs or junks of about three feet long, the bark and white sap (alburnum) of which are chipped off, and the red part or heart (duramen) sent to England \(^8\). It is imported from Campeachy, Honduras, and Jamaica. In 1839 duty (3s. if from British possessions, 4s. 6d. if from other places) was paid on 15,867 tons \(^7\).

Description.—Logwood (*lignum hæmatoxyli seu campechianum*), as imported, consists only of the heartwood or duramen. The logs are externally of a dark colour; internally they are red. The wood is dense, has a sp. gr. of 1.057; admits of a fine polish, has a sweetish taste and a pleasant odour. Large crystals of hæmatin are sometimes found in the wood. \(^8\)

Composition.—Logwood was analyzed in 1811 by Chevreul \(^1\), who found its constituents to be volatile oil, hæmatin, fatty or resinous matter, brown substance containing tannin, glutinous matter, acetic acid, woody fibre, various salts (phosphate, sulphate, and acetate of

\(^6\) Clusii Exot. cap. xxvii. p. 324.
\(^8\) Wright, Med. Plants of Jamaica.
\(^7\) Trade List.
\(^1\) Thomson, Org. Chem. 407.
lime, acetate of potash, and chloride of potassium) and the oxides of aluminum, silicium, manganese, and iron.

Hæmatin or Hæmatoxylin is a red crystalline substance, of a slightly bitter, acrid, and astringent taste. It is soluble in alcohol and ether, and slightly so in water. Acids render the solution yellowish or red; alkalies give it a purple or violet colour. Alum causes a violet precipitate, and several metallic solutions (as of tin and lead) a blue one. Gelatine produces a flocculent reddish precipitate.

Chemical Characteristics.—The decoction of logwood is deep red. Acids render it paler and brighter coloured. The alkalies give it a purplish or violet-blue colour. Acetate of lead causes a blue, alum a violet, precipitate. The salts of iron make it dark violet-blue. Gelatine forms a reddish precipitate with it.

Physiological Effects.—Logwood is a mild astringent (see the effects of astringents, p. 188). It does not constipate nor so readily disorder the digestive organs as some other astringents, and hence its use may be continued for a longer period. Its colouring matter becomes absorbed, and may be detected in the urine. Dr. Percival states, that under the use of extract of logwood the urine of a female suddenly acquired a purplish-red colour, which was deepened by the sulphate of iron. After some hours the secretion returned to its natural colour. The stools sometimes acquire a purplish-red colour from the use of logwood.

Uses.—In medicine logwood is employed as an astringent in old diarrhœas and dysenteries, in hemorrhages (from the uterus, lungs, and bowels), and leucorrhœa. It is well adapted to the diarrhœas of children. Dr. Percival employed it to restrain profuse sweating in phthisis.

1. Decoction of Hæmatoxylin, L. E. D. Decoction of Logwood (Logwood, in chips, 3 j. [3 jss. D.]; Water, 0 j. [Oij. wine-measure, D.]; Cinnamon, in powder, 3 j. Boil the logwood in the water down to ten fluidounces [Oij. wine-measure, D.], adding the cinnamon towards the end, and strain.)—Employed as an astringent in diarrhœa. — Dose, for adults, f 3 j. to f 5 j.; for children, f 5 ij. to f 3 ss.

2. Extract of Hæmatoxylin, L. E. D. Extract of Logwood.—(Logwood, powdered [in chips, E.; raspings, D.], lb. ijss. [lb. j. E.]; Boiling [distilled, L.] Water, Cong. ij. [a gallon, E.]) Macerate for twenty-four hours; then boil down to a gallon [Oiv. E.], and strain the liquor while hot; lastly, evaporate [in the vapour-bath, E.] to a proper consistence.) — “For preparing this extract the logwood should not be powdered, but rasped, and it should be so far evaporated as to become brittle and pulverulent when cold. One cwt. of the wood yields about twenty lbs. of extract.”—Astringent. Employed in old diarrhœas, dysenteries, &c. Dose, grs. x. to 5 ss. By keeping, extract of logwood becomes exceedingly hard, and pills
made of it are said to have passed through the bowels undissolved. It is employed, I am informed, to colour snuff.

13. TAMARINDUS INDICA, Linn. L. E.—COMMON TAMARIND-TREE.

Tamarindus indicus, D.
(Leguminis pulpa, L. D.—Pulp of the pods, E.)

History.—The tamarind does not appear to have been known to the ancient Greeks; at least no mention is made of it in their writings. We are indebted for its introduction to the Arabians, who probably derived their knowledge of it from the Hindus. Mesue, Avicenna, and Serapion, are the earliest writers who mention it. It is said to have derived its name from Tamar (which, in Arabic, signifies dates or fruit), and Indus, in reference to its Indian origin.

Botany. Gen. Char. — Calyx tubular at the base; limb bilabiate, reflexed; upper lip three-partite; lower broad, two-toothed. Petals three, alternating with the segments of the upper lip of the calyx; two of them ovate, the middle one cucullate. Stamens nine or ten; seven very short and sterile, the others (two or three) longer, monadelphous, bearing anthers. Style subulate. Legume stalked, linear, more or less curved, slightly compressed, one-celled, three to twelve-seeded, the sarcocarp pulpy. Seeds compressed, bluntly four-angled, obliquely truncated at the hilum.—Trees. Leaves racemose (Wright and Arnott).

Sp. Char.—The only species. — Tree, thirty to forty feet high. Branches spreading. Leaves alternate; leaflets twelve to fifteen pair, small, oblong, obtuse, entire, smooth. Petals deciduous, yellow, veined with red.

There are two varieties, which are considered by Gaertner, Roxburgh, and De Candolle, as distinct species. The only difference between them is in the pod.

a. Orientalis. T. indica, De Candolle. East Indian Tamarind.—Legume elongated, six or more times longer than broad, six- to twelve-seeded.

b. Occidentalis. T. occidentalis, De Candolle. West Indian Tamarind.—Legume abbreviated, scarcely three times longer than broad, one- to four-seeded.

Hab.—East and West Indies.

Preservation of the Fruit. — The usual mode of preserving tamarinds in the West Indies is, to remove the shell or epicarp from the ripe fruit, and to place layers of the shelled fruit in a cask, and pour boiling water over them. But Dr. Wright* says, a better method is, to put alternate layers of tamarinds and powdered sugar in a stone jar. The drier and dark-coloured East Indian tamarinds are said to be preserved without sugar.

DESCRIPTION.—Tamarinds are imported both raw and preserved. Tamarind pods are from three to six inches long, more or less curved. Composed of a dry, brittle, brown, external shell (epicarp), within which is the acidulous, sweet, reddish-brown pulp (sarcocarp) penetrated by strong fibres. Still more internal is a thin membranous coat (endocarp) inclosing the oval brown seeds. Preserved tamarinds (tamarindi conditi) consist of the same parts, the shell (epicarp) excepted. The pulp (pulpa tamarindi) is the officinal part.

COMPOSITION.—Tamarind pulp was analysed, in 1790, by Vanquelin, who obtained the following products:—Citric acid 9.40, tartaric acid 1.55, malic acid 0.45, bitartrate of potash 3.25, sugar 12.0, gum 4.7, vegetable jelly (pectin) 6.25, parenchyma 34.35, and water 27.55.

PHYSIOLOGICAL EFFECTS.—Tamarind pulp allays thirst, is nutritive and refrigerant, and, in full doses, laxative. From this combination of refrigerant and laxative properties it is commonly denominated a cooling laxative.

USES.—Tamarinds are adapted for febrile and inflammatory cases; in the former it is often taken with the double purpose of operating as a refrigerant and acting gently on the bowels. An infusion of tamarinds forms a very pleasant, cooling drink, as does also tamarind whey. Tamarinds are a constituent of several mild purgative preparations. It is frequently given in conjunction with senna (as in the confection of senna and the infusion of senna with tamarinds, Ph. D.) It is said, though I know not with what truth, that the addition of tamarinds to senna and resinous cathartics diminishes the operation of the latter.

ADMINISTRATION.—The dose of tamarinds is from 3ij. to 5ij. or more. Tamarind whey (serum lactis tamarindatum) is prepared by boiling 3ij. of tamarind pulp with 0ij. of milk.

14. CAS'SIA, Linn.—SEVERAL SPECIES YIELDING SENNA.

Cassia lanceolata, De Cand. and C. obovata, De Cand. L.

Various Species of Cassia, probably C. lanceolata, Forskal, C. acutifolia, Delile, and C. obovata, Colladon, E. Cassia elongata, Letnaire-Lisancourt, E.

C. Senna, Linn. D.

Sex. Syst. Decandria, Monogynia.

(Folia, L. D.—Leaves, E.)

HISTORY.—Reiske states, on the authority of an oriental work, that senna was employed by Mahomet. If this be correct (and we may reasonably entertain some doubt, since the Arabic word which he translates senna has been by other linguists, as Golius and Warner, rendered cumin), this purgative was in use some centuries before any mention of it is made in the works of pharmacological writers. Among the Arabians I may quote Mesue, Serapion, and Avicenna, who notice

---

1 Ann. Chim. v. 92.
2 Diss. inanip. exhib. miscell. aliquot observ. Medic. ex Arabum Monumentis, Lvgd. 1716.
3 De Medicina Prophetæ Arabici.
senna (sene), but they refer to the fruit, and not to the leaves. Mesue, in speaking of the decoction of senna, quotes Galen, and from this, as well as from other circumstances, it has been imagined that Dioscorides and Galen, and probably even Theophrastus, were acquainted with senna; but their known writings do not warrant this opinion, and hence the quotation is presumed to be erroneous. The earliest Greek writer, in whose works senna is mentioned, is Actuarius; but he, like the Arabsians, referred to the fruit.

**Botany.** Gen. Char.—Sepals five, scarcely united at the base, more or less unequal. Petals five, unequal. Stamens ten, free, unequal; the three lower ones longer, the four middle ones short and straight, the three upper ones with abortive anthers. Anthers dehiscing at the apex. Ovary stalked, frequently arched. Legumes various.—Trees, shrubs, or herbs. Leaves simply and abruptly pinnate. Petioles frequently glanduliferous. Leaflets opposite.

**Species.**—Some confusion still exists as to the species yielding the senna leaves of commerce. Linnaeus made but one species, which he termed *Cassia Senna*, and considered the acute and obtuse-leaved plants as mere varieties. This error has been adopted by the Dublin College. The usually-accurate Woodville has published a plate representing the leaflets of the acute-leaved Cassia, and the fruit of the blunt-leaved species. The following perhaps are distinct species, but their specific characters are not in all cases accurately ascertained.

1. C. obovata, Colladon. C. Senna var. b. C. obtusa, Roxb. Sena belledy (Wild Senna) Egyptians and Nubians. Séné de la Thébaide; Cassia Senna, Nectoux.—Leaflets six to seven pairs, obovate, obtuse; petiole glandless. Legumes plano-compressed, curved, tumid by the crests on the middle of each valve (De Cand.)—Perennial herb, one or two feet high. Leaves smooth; leaflets mucronate, unequal at the base. Stipules lanceolate, linear, spreading. Flowers yellow in racemes. Legumes oblong, falcate, smooth, rounded at each end, with an equally interrupted ridge along the middle of each valve.—Egypt (Bassâ-Tine at the entrance of the valley of Egaremont, two leagues from Cairo; Karnak; Thebes; on the eastern bank of the Nile opposite Hermouthis; Esneh; Edfou; Daraou; Assouau) Nubia; Desert of Suez; Syria; India. Cultivated in Italy, Spain, Jamaica, &c.—Its leaflets form Aleppo, Senegal, and Italic Senna, and one of the constituents of Alexandria Senna.

Nees and Ebermaier follow Hayne in admitting two species of blunt senna, viz. C. obovata, Hayne, with obovate, very shortly pointed leaflets, and C. obtusata, Hayne, with more remote, obovate, truncated-emarginate leaflets. I think, with Th. Marius, that the latter are merely older leaflets than the former.

2. C. acutifolia, Delile.—Stem suffruticosse. Leaves pinnate;
petiole glandless; leaflets five to seven pairs, lanceolate, acute. Legumes flat, elliptical, naked on both sides, somewhat bent on the upper margin (Delile).—An undershrub, about two feet high. Leaves when young slightly silky or pubescent. Flowers yellow, in axillary racemes, at the top of the branches. Petals obovate. Legumes somewhat swollen by the seeds. Seeds six or seven in each legume. —Egypt, in the valleys of the desert to the south and east of Assouan. —Collected by the Arabs, and sold by them to merchants who convey it to Cairo.

3. C. elongata, Lemaire-Lisancourt; C. lanceolata Royle. Perhaps identical with the preceding species. Dr. Royle’s specimens were raised from seeds picked out of Mecca Senna. Dr. Lindley thus describes the plant. “An annual, but, with care, it may be made to live through the year, and to assume a suffruticose habit. Stem erect, smooth. Leaves narrow, equal pinnated; leaflets four to eight pairs, lanceolate, nearly sessile, slightly mucronulate, smooth above, rather downy beneath, with the veins turning inwards, and forming a flexuose intramarginal line; petioles without glands; stipules softly spinescent, semihastate, spreading, minute. Racemes axillary and terminal, erect, stalked, rather longer than the leaves; pedicels without bracts. Sepals linear, obtuse. Petals bright yellow. Of the stamens the five lowest sterile and small, the two next large, curved, and perfect, the three uppermost minute and gland like. Ovary linear, downy, falcate, with a smooth recurved style. Legumes pendulous oblong, membranous, about an inch and half long, and five-eighths broad, quite straight, tapering abruptly to the base, and rounded at the apex, deep-brown, many-seeded.”—Grows in India, but probably only naturalized.—Yields Tinnevelly and Mecca Senna.

4. C. ethiopica, Guibourt; C. ovata, Merat; C. lanceolata, Nectoux; C. Senna, Stevenson and Churchill. —Leaves of three to five pair of leaflets; petioles with a gland at their base, and another between each pair of leaflets; leaflets oval-lanceolate, pubescent. Legumes flat, smooth, not reniform, rounded, naked on both sides, containing from three to five seeds. —About eighteen inches high. Leaflets from seven to nine lines long, and from three to four broad, consequently less elongated and less acute than those of the two preceding species. Legumes from eleven to fifteen lines long, of a pale or fawn colour.—Nubia, Fezzan, to the south of Tripoli, and probably to Ethiopia. Yields Tripoli Senna. I think I have detected the leaflets in Alexandrian Senna.

5. C. lanceolata, Forskal; Lindley.—Dr. Lindley, who met with this species in a collection of Arabian plants made by Dr. S. Fischer, says, “th

---

h Journ. de Pharm. v. 315.  
j Illustr. t. 37.  
k Hist. des Drog. 3rd ed. ii. 219.  
l Diet. Mat. Méd. vi. 311.  
m Voy. dans la Haute Egypte, t. ii.  
n Med. Bot. i. fig. 30.  
o Fl. Egypt. Arab. 85.  
p Fl. Med. 259.
leaflets are in four or five pairs, never more; oblong, and either acute or obtuse, not at all ovate or lanceolate, and perfectly free from downiness even when young; the petioles have constantly a small round brown gland a little above the base. The pods are erect, oblong, tapering to the base, obtuse, turgid, mucronate, rather falcate, especially when young, at which time they are sparingly covered with coarse scattered hairs." — This species is therefore distinct from both C. acutifolia, Delile, and C. elongata, Lemaire. Forskal says it grows about Surdud, Mor, and Abuarish; and that it is the true Mecca Senna.

6. C. marilandica, Linn.—Leaflets eight to nine pairs, ovate-oblong, mucronate, equal, with an ovate gland at the base of the petiole. Racemes axillary, many-flowered, shorter than the leaves. Legumes compressed, linear, hispid, subsequently smoothish (De Cand.) — From three to six feet high. Flowers golden yellow.— United States; common in all parts south of New York.—Yields the American Senna.

COMMERCE.—Senna is imported from the Mediterranean (either directly from Egypt, or at second hand from Italy), and from the East Indies (Madras and Bombay), usually in bales. The duty is 6d. per lb. The quantities on which duty was paid, during the two last years, are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>From East Indies</th>
<th>From other places</th>
<th>Total imported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1838</td>
<td>72,576 lbs.</td>
<td>69,538 lbs.</td>
<td>142,114 lbs.</td>
</tr>
<tr>
<td>1839</td>
<td>110,409 lbs.</td>
<td>63,766 lbs.</td>
<td>174,175 lbs.</td>
</tr>
</tbody>
</table>

DESCRIPTION.—Senna (folio sennce) has a peculiar, agreeable, tea-like odour, and a nauseous, bitter taste. Its colour should be bright and fresh. If largely mixed with extraneous matter, if it be much broken or very dusty it should be rejected. Boiling water extracts about a third of its weight. Proof spirit yields a brown—alcohol or ether a green tincture.

1. Alexandrian Senna. Senna Alexandrina; Folia Senne Alexandrina.—Called by the French Séné de la Patthe (i.e. Tribute Senna) because it is obliged to be sold to the Egyptian government, who resell it to Europeans. It is imported in bales from Alexandria and other Mediterranean ports. It consists of the leaflets of two or more species of Cassia (C. acutifolia, C. obovata, and, I think, sometimes C. ethiopica) mixed always with the leaves of Cynanchum Argel (see p. 1602), and sometimes with those of Tephrosia Apollinea. The flowers and fruits of these plants are usually present in greater or less quantity. Alexandrian senna is collected in Nubia and Upper Egypt, and is conveyed down the Nile to the great depot at Boulak.

For the following particulars I am indebted to the writings of Delile, Rouilure, Nectoux, and Burckhardt.

Senna is collected by the Arabs of the tribe of Abaddeh. They make two crops annually,—the most productive one is that after the rain in August and September; the second takes place about the middle of March. When cut the plants are spread out on the rocks, and dried in the sun (Nectoux).
Assouan is the first entrepot for senna. It receives all that is gathered in the neighbourhood. Esneh is another entrepot. It receives the acute-leaved senna from Abyssinia, Nubia, and Sennaar, from whence it arrives by the caravans which convey negroes to Egypt, and blunt-leaved senna, gathered in Upper Egypt (Rouillure). Daraou, between Assouan and Esneh, is also an entrepot; but the great depot is at Boulak, the port of Cairo. Here the monopoly of senna is farmed out by Mahommed Ali to Rosetti, an Italian, for about £3,500 per annum (Burckhardt). The senna arrives at Boulak from Assouan, not only by the Nile, but also by the way of Cossier, the Red Sea, and Suez. As, however, the latter is a more expensive route, it is not so frequently followed (Nectoux). Lastly, some senna is carried to Boual by the caravans from Mount Sinai. The following are said by Rouillure to be the quantities brought from these places:—

<table>
<thead>
<tr>
<th>Quintals.</th>
<th>Acute-leaved Senna</th>
<th>Obovate ditto</th>
<th>Ethiopic ditto</th>
<th>Argel leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Assouan</td>
<td>7,000 to 8,000</td>
<td>500 to 600</td>
<td>1,200 to 1,500</td>
<td>2,000 to 2,400</td>
</tr>
<tr>
<td>From Esneh</td>
<td></td>
<td>800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Suez and Mount Sinai</td>
<td></td>
<td>2,000</td>
<td>2,000</td>
<td>2,000 to 2,400</td>
</tr>
<tr>
<td>Total of each kind</td>
<td>7,000 to 8,000</td>
<td>2,500 to 2,900</td>
<td>2,000</td>
<td></td>
</tr>
</tbody>
</table>

So that the total amount of all kinds is, according to this statement, 13,500 to 15,300 quintals.

The mixture of the different leaves takes place at the entrepôts. Nectoux mentions those of Kénch, Esneh, Daraou, Assouan, where it is effected. Rouillure says that at Boulak, 500 parts of acute leaves are mixed with 300 of obtuse leaves and 200 of Argel leaves.

From Boulak the senna is sent to Alexandria, and from thence is shipped to Europe.

Alexandrian senna has a greyish-green colour, an odour which somewhat resembles that of tea, and a viscid taste. It presents a broken appearance, and on examination is found to consist of the leaves, flowers, and fruits of the above-mentioned plants mixed with various extraneous matters (as seeds, date-stones, rabbit-dung, stones, &c.) The latter are in great part separated by hand-picking, sifting, &c. before the senna is fitted for use. It then constitutes picked Alexandrian senna (folia sennæ alexandrinae electæ).

a. Cassia leaflets, flowers, and legumes.—The leaflets of Cassia are readily distinguished from those of other genera found in senna, by being unequal-sided; that is, by two sides of the leaflet being unequal in size, shape, or length, and by the veins or nerves of their under surface being very conspicuous. The acute-leaved are very readily distinguished from the blunt-leaved species, by their shape. The dried flowers of Cassia may be easily detected; they are dull yellow. I have not been able
to make out their species. The *legumes* of the obovate and acute-leaved Cassia are also found; they are distinguished by the botanical characters before described.

6. Argel leaves, flowers, and fruit.—The Argel plants are collected by the Arabs, in the valleys of the Desert to the east and south of Assouan (Delile). The *leaves* found in Alexandrian senna are distinguished from the senna leaflets by their being equal-sided,—by the absence, or imperfect development of the lateral nerves,—by their paler colour, thicker and more coriaceous texture,—by a yellowish exudation frequently found on them,—and generally, though not invariably, by their greater length. Under the name of *heavy senna* I have met with argel leaves, which were sold at a higher price than ordinary senna. These leaves were left in the fanning process, by which the real senna leaves were separated. By careful picking the *flowers* may be detected: they are white, and in small corymbs. In some recently-imported bales, argel flowers constituted nearly a fourth part. The *fruit*, as found in Alexandrian senna, seldom exceeds in size that of a good-sized orange-pip. It is an ovoid follicle, tapering superiorly, brown, shrivelled, and contains several seeds.

7. Tephrosia leaflets and legumes.—The Tephrosia Apollinea (*Galega Apollinea*, Delile, pl. 53) grows in cultivated fields near the Nile, at Hermonthis, at Edfou, and in the Elephantine Island, opposite Assouan. The *leaflets* have a silky or silvery aspect; they are obovate-oblong, somewhat cuneiform, emarginate, equal-sided, tapering towards the base; lateral veins parallel, regular, and oblique to the midrib. These leaflets are usually found folded longitudinally, and are very apt to be overlooked. The *legume* is from an inch to an inch and a half long, not exceeding two lines broad, linear, slightly ensiform, and contains six or seven brownish seeds.

2. Tripoli Senna. *Senna Tripolitana*; *Folia Senae Tripolitanae*.—It is carried to Tripoli in caravans, which go from Fezzan. In general appearance it resembles Alexandrian senna; but the leaflets are more broken, smaller, less acute than the acute-leaved Alexandrian senna, thinner, greener, and of a less herbaceous odour. They are the produce of *C. Ethiope*ica, usually unmixed with any other species. But I have a sample which contains also the leaflets of *C. obovata* and argel leaves. *Tunis senna* agrees with that of Tripoli.

3. Aleppo Senna.—Consists of the leaflets of *C. obovata*.

4. Senegal Senna. *Senna Senegalensis*.—Is a blunt-leaved senna, having a rougher and more glaucous appearance than the leaflets of *C. obovata*. Some years since a small bale of it was sent by the French *Ministre de la Marine* to M. Henry for examination*. I am indebted to the kindness of Professor Guibourt for a sample of it.

---

*Journ. de Pharm. xiv. 70.*
5. Smyrna Senna.—Very similar to Tripoli senna, but some of the leaflets resemble the acute-leaved Alexandrian senna.

6. Mecca Senna. *Senna Meccensis*; *Inferior or Second East Indian Senna*; *Séné Moka*, Guibourt; *Séné de la Pique*, or *Pike Senna*; *Suna Mukkee*, Royle.—Imported into England from India. It is the produce of Arabia, and finds its way into the interior of India by the ports of Surat and Bombay. Dr. Royle was informed that it was grown somewhere in the Agra and Muttra district, but was never able to prove the fact. It occurs in long narrow leaflets, of from one inch to an inch and a half long, narrower than those of Tinnevelly senna, and of a yellowish colour; some of the leaflets being brownish, or even blackish. This change of colour is probably the result of the action of a moist atmosphere. Legumes are occasionally intermixed: they are from one and a half to three inches long, and from seven to eight lines broad; slightly curved, greenish in their circumference, blackish in their centre, with a smooth surface. Recently this senna in good condition has been imported from Turkey in casks. It appears to be fresh and fine, and approximates to Tinnevelly senna in colour; but contains stalks and dust, with a few stones.

7. Tinnevelly Senna. *Finest East Indian Senna*; *Séné de l’Inde*, Guibourt.—Cultivated at Tinnevelly, in the southern part of India, by Mr. G. Hughes. It is a very fine unmixed senna, which is extensively employed, and fetches a good price. It consists of large, thin, unbroken leaflets, of a fine green colour, from one to two inches, or more, long, and sometimes half an inch broad at their widest part. When exposed to a damp atmosphere they are very apt to change colour, and to become yellow or even blackish.

8. American Senna. *Senna Americana*.—Is the produce of *Cassia Marilandica*, but never reaches this country as an article of commerce. That which I have received was prepared by the Shakers of the United States, and has been compressed into an oblong cake. The leaflets are oblong, lanceolate, from one and a half to two inches long, and from a quarter to half an inch broad, thin, pliable, and of a pale green colour. They have a feeble odour and a nauseous taste, like the other sennas.

Adulteration.—Senna is not, to the best of my belief, adulterated in this country. The leaflets of *Colonate arborescens* or *Bladder Senna* have, on the continent, been occasionally intermixed. They are elliptical, regular, and obtuse. Their regularity at the base would at once distinguish them from the leaflets of *Cassia obovata*.

*Illus. 187.*
Argel leaves, mixed with a few leaflets of *C. acutifolia*, I have known to be recently sold as *picked or heavy senna* at a higher price. It was done rather from ignorance than fraud.

A serious adulteration has been sometimes practised on the continent, by the substitution of the leaves of *Coriaria myrtifolia* for those of senna. They are ovate-lanceolate, grayish-green with a bluish tinge, three-nerved, with a strongly marked midrib; the two lateral nerves disappear towards the summit of the leaves. Chemically these leaves are distinguished by their infusion yielding, with gelatine, a whitish precipitate (*tannate of gelatine*); and, with sulphate of iron, a very abundant blue precipitate (*tannate of iron*). Furthermore, it forms precipitates with bichloride of mercury, emetic tartar, and chloride of barium.

**Composition.**—Three analyses of senna have been made; viz. one in 1797, by Bouillon La Grange; a second by Braconnot; and a third, in 1821, by Lassaigne and Fenuelle:

**Senna Leaves.**

<table>
<thead>
<tr>
<th></th>
<th>Braconnot.</th>
<th>Lassaigne and Fenuelle.</th>
<th>Fenuelle.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter matter of senna</td>
<td>53.7%</td>
<td>Cathartin.</td>
<td>Cathartin.</td>
</tr>
<tr>
<td>Reddish-brown gum</td>
<td>31.9%</td>
<td>Yellow colouring matter.</td>
<td>Yellow colouring matter.</td>
</tr>
<tr>
<td>Matter similar to animal mucus, precipitable by acids</td>
<td>6.2%</td>
<td>Volatile oil.</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Acetate of lime</td>
<td>8.7%</td>
<td>Mucous.</td>
<td>Fixed oil.</td>
</tr>
<tr>
<td>Malate (or some other vegetable salt) of lime</td>
<td>3.7%</td>
<td>Malic acid.</td>
<td>Albumen.</td>
</tr>
<tr>
<td>Acetate of potash</td>
<td>6.7%</td>
<td>Malate and tartrate of lime.</td>
<td>Alumnum.</td>
</tr>
<tr>
<td>Chloride of sodium</td>
<td>traces</td>
<td>Acetate of potash.</td>
<td>Gum.</td>
</tr>
<tr>
<td>Watery extract of Alexandrian senna</td>
<td>104.2%</td>
<td>Mineral salts.</td>
<td>Malic acid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Insoluble matter (lignin, &amp;c.)]</td>
<td>Mineral salts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicic acid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lignin.</td>
</tr>
</tbody>
</table>

1. **Odorous Principle; Volatile Oil of Senna.**—Obtained by submitting the leaves, with water, to distillation. It has a nauseous odour and taste. The distilled water of senna, which contains some oil in solution, acts as a mild purgative only.

2. **Cathartine; Purgative Principle of Senna.**—Yellowish red, uncrystallizable, with a peculiar odour, and a bitter, nauseous taste; very soluble both in water and alcohol, but insoluble in ether; it attracts water from the air. Its aqueous solution is precipitated by infusion of galls and diacetate of lead. The sesquisulphate of iron and alkalis deepen the colour of the infusion: chlorine decolorizes it: iodine, acetate of lead, gelatine, and emetic tartar, cause no precipitates with it. It appears to consist of carbon, hydrogen, and oxygen only. Three grains caused nausea, griping, and purging.

**Chemical Characteristics.**—By boiling senna in water, — by the exposure of infusion of senna to the air, as well as by the action of the mineral acids and of chlorine on the infusion,—a precipitate

---

is procured. Bouillon La Grange regarded this as a species of resin, formed by the union of oxygen with a peculiar kind of extractive found in senna. This extractive, he says, is inert, but becomes active when converted into resin; and hence, the cold infusion, according to this chemist, causes colic, but rarely purges. The carbonated alkalis, lime water, nitrate of silver, the acetates of lead, sulphate of iron, &c. form precipitates with the infusion of senna.

**Physiological Effects. a. On Animals.**—In doses of five or six ounces it purges horses. Courten injected an infusion into the veins of a dog; it quickened the respiration, and caused vomiting. The animal appeared weak, was dull, and had no inclination to eat.

**On Man.**—Regnandot injected half a spoonful of weak lukewarm infusion of senna into the left median vein of a young man affected with an herpetic eruption. The only effect produced was a slight temporary headache. Some days afterwards a spoonful was injected: in half an hour violent shivering and vomiting came on, which were followed by heat and purging. The febrile symptoms continued for several hours. Taken by the stomach senna acts as a sure and safe purgative. Its ill effects are nausea, griping, flatulence, and, at first, depression, afterwards excitement of the pulse. It appears to stimulate the abdominal and pelvic vessels, thereby having a tendency to promote the hemorrhoidal and menstrual discharges. It is one of the mildest of the drastic purgatives. Unlike scammony, gamboge, jalap, and most other drastics, it does not rank among poisons, even when given in large doses. It is distinguished from the saline purgatives by its stronger and more irritant operation, by the heat, gripings, and increased frequency of pulse, which attend its purgative action. From rhubarb it differs in being more powerful and irritant in its operation, in being nearly or quite devoid of any tonic operation. It acts more speedily and powerfully than aloes, and in a less marked manner on the large intestines. In its operation it appears to rank between jalap and aloes.

The petioles and stalks possess similar properties to the leaflets. Formerly the griping quality of senna was ascribed to the stalks, but both Bergius and Schwilgué have proved the error of this notion. The legumes are much milder in their operation than the leaflets.

Good East Indian Senna is almost, if not quite, as active as the Alexandrian. Mr. Twining, after extensively trying it, declared it equal to the best he had ever seen. The obovate senna appears to be milder than the acute-leaved. The Senegal senna, before referred to, was found to possess less activity than ordinary senna. Part of the acrid and griping qualities of Alexandrian senna are referrible to the argel leaves, which, according to the observations of Rouillure, Delile, Nectoux, and Pugnet (quoted by Delile), possess greater activity.
than the true senna leaves. Rouillurc says they purge and gripe, and are used by the Arabs of Upper Egypt, without the addition of senna. These effects might be expected from the known properties of the Asclepiadaceae (before referred to). "American senna is an efficient and safe cathartic, closely resembling the imported senna in its action, and capable of being substituted for it in all cases in which the latter is employed."

If infusion of senna be given to the nurse, the suckling infant becomes purged,—a satisfactory proof that the cathartic principle of senna becomes absorbed, and is thrown out of the system by the excretories. Furthermore, as purging results from the injection of infusion of senna into the veins, this cathartic would appear to exercise a specific influence over the bowels, independent of its local action on these when it is swallowed.

Uses.—Senna is well adapted for those cases which require an active and certain purgative, with a moderate stimulus to the abdominal and pelvic viscera. Thus, in constipation and inactivity of the alimentary canal, requiring the continued or frequent use of purgatives; in worms; in determination of blood to the head, and many other cases which readily suggest themselves, senna answers very well. The circumstances contra-indicating its use are,—an inflammatory condition of the alimentary canal, a tendency to hemorrhoids or menorrhagia, threatening abortion, prolapsus of the uterus or rectum, &c. The objections to its use are,—the large dose required, the nauseous and disgusting flavour, the tendency to gripe, and the irritating and stimulant operation. Thus, in inflammation of the mucous membrane of the bowels, the irritant action of senna makes it an objectionable purgative; while its tendency to increase the frequency of the pulse renders it less fit for exhibition in febrile disorder than the saline purgatives. It is a very safe purgative, and may be given to children, females, and elderly persons, with great security. Though it is not the most appropriate purgative to be employed after delivery, and operations about the abdomen or pelvis (as hernia and lithotomy), yet I have repeatedly seen it used, and rarely with any unpleasant consequences.

Administration.—Powder of senna may be given in doses of from 3ss. to 3ij. for adults. There are two objections to its use,—the great bulk of the necessary dose, and the uncertainty of its operation, arising from its liability to decompose by keeping. To cover the unpleasant flavour of senna, Dr. Paris recommends the addition of hohea (black) tea: coffee has been advised by others. Aromatics (especially coriander and ginger) are frequently added to prevent griping, and to improve the flavour.

1. INFUSUM SENNAE, E.; Infusum Senna compositum, L. D. Infusion of Senna; Senna Tea.—(Senna, 3xv. [3ss. E., 3j. D.]; Ginger
bruised, 3iv. [3j. D.]; Boiling [distilled, L.] Water, Oj. [wine measure, D.]. Macerate for an hour in a vessel lightly covered, and strain [through linen or calico, E.].—An ordinarily used purgative, employed frequently in the maladies of children as well as of adults. A saline purgative (sulphate of magnesia or of soda, or potash-tartrate of soda, or tartrate of potash) is usually given in conjunction with it; manna and tincture of senna being frequently added. A compound of this kind is called the black draught.—The dose of infusion of senna is from fSij. to fSiv. for adults.

2. INFUSUM SENNAE COMPOSITUM, E.; Infusum Sennae cum Tamarindis, D. Infusion of Senna with Tamarinds.—(Senna, 3j.; Tamarinds, 3j.; Coriander, bruised, 3j.; Muscovado, 3ss. [Brown Sugar, 3j. D.]; Boiling Water, fSviij. Infuse for four hours, with occasional stirring, in a covered vessel, not glazed with lead; and then strain through linen or calico. This infusion may be likewise made with twice or thrice the prescribed quantity of senna, E.)—A vessel not glazed with lead is directed, lest the acid of the tamarinds should dissolve the metal of the glazing, and thereby give a noxious impregnation. This cathartic somewhat resembles Sydenham's potio cathartica lenitiva. The unpleasant flavour of the senna is agreeably covered by the tamarinds and sugar. This preparation is cathartic and refrigerant. It is employed as a cathartic in febrile disorders.—Dose, fSij. to fSiv.

3. ENEMA CATHARTICUM, E. D. Cathartic Enema.—(Olive Oil, 3j.; Sulphate of Magnesia, 3ss.; Sugar, 3j.; Senna, 3ss.; Boiling Water, fSxv.) Infuse the senna for an hour in the water, then dissolve the salt and sugar; add the oil, and mix them by agitation, E. The Dublin College employs, of Manna, 3j.; dissolve it in f|x. of compound decoction of Chamomile, and add Olive Oil, 3j.; Sulphate of Magnesia, 3ss.)—Employed as a laxative. It is a constituent of the fetid clyster.

4. TINCTURA SENNE COMPOSITA, L. E. D.; Tincture of Senna. Elixir Salutis.—(Senna, 3ijss.; Caraway, bruised, 3ijss.; Cardamoms, bruised, 5j.; Raisins [stoned], 5v.; Proof Spirit, Oij. Macerate for fourteen days, and strain, L.—Senna, lb. j.; Caraway, bruised, 5jss.; Cardamom seeds, bruised, 3ss.; Proof Spirit, Comp. j. [wine measure]. Macerate for fourteen days, and filter, D.—Sugar, 5jss.; Coriander, bruised, 5j.; Jalap, in moderately-fine powder, 5vj.; Senna, 5iv.; Caraway, bruised; Cardamom seeds, bruised, of each 5v.; Raisins, bruised, 5iv.; Proof Spirit, Oij. Digest for seven days, strain the liquor, express strongly the liquor, and filter the liquids. This tincture may be more conveniently and expeditiously prepared by percolation, as directed for the compound tincture of cardamom [1032].—If Alexandrian Senna be used for this preparation, it must be freed from Cynanchum [Argel] leaves by picking, E.)—Carminative, cordial, stomachic, and purgative. Usually employed as an adjunct to the infusion of senna. If given alone as a purgative, the
dose should be f3ss. to f3j. It is useful in costiveness attended with flatulence.

5. SYRUPUS SENAE, L. E. Syrup of Senna.—(Senna, 5jss.; Fennel, bruised, 5x.; Manna, 3iij.; Sugar, 3xv.; Boiling Water, Oj. Macerate the Senna and Fennel in the Water, with a gentle heat, for an hour. Mix the Manna and Sugar with the strained liquor; then boil down to a proper consistence, L.—Senna, 5iv.; Boiling Water, Oj. and f5iv.; Treacle, 5xlvij. Infuse the senna in the water for twelve hours; strain, and express strongly through calico, so as to obtain a pint and two fluidounces at least of liquid. Concentrate the treacle in the vapour-bath as far as possible, or till a little taken out upon a rod becomes nearly concrete on cooling; and, while the liquor is still hot, add the infusion, stirring carefully, and removing the vessel from the vapour-bath as soon as the mixture is complete.—If Alexandrian Senna be used for this preparation, it must be carefully freed of Cynanchum [Argel] leaves by picking it, E.)—Cathartic. Given to children in doses of f5j to f3iij.

6. CONFECTIO SENAE, L.; Electuarium Sennae, E. D. Electuarium Lenitivum; Confection of Senna; Lenitive Electuary.—(Senna, 3viij.; Figs, lb. j.; Tamarind pulp; Cassia pulp; Prune pulp, of each lb. ss.; Coriander, 3iv.; Liquorice, 3iij.; Sugar, lb. ijjss.; Water, Oij. Rub the Senna with the Coriander, and by a sieve separate ten ounces of the mixed powder. Then boil down the Water, with the Figs and Liquorice added, to half. Evaporate the strained liquor in a water bath, until of the whole twenty-four fluidounces remain; then the sugar being added, let a syrup be made. Lastly, gradually rub the Pulps with the Syrup, and having thrown in the sifted powder, mix them all, L.—The Edinburgh College omits the Tamarind and Cassia pulps, but employs lb. j. of Prune pulp, and Oiij3 of Water.—The Dublin College employs Senna leaves, in a very fine powder, 3iv.; Pulp of Prunes, lb. j.; Pulp of Tamarinds, 3ij.; Treacle, Oiss. [wine-measure]; Essential Oil of Caraway, 3ij. Boil the pulps in the syrup to the thickness of honey, then add the powder, and when the mixture has grown cold, add the oil; lastly, mix them all together, D.)—The preparation of this compound being troublesome and expensive, and sophistications of it not being readily detectable, it is rarely prepared, in commerce, as directed by the London and Edinburgh Colleges. Jalap is frequently substituted, partially or wholly, for the senna and cassia pulp. Dr. Paris mentions walnut liquor as a colouring ingredient in use; and adds, that a considerable quantity of this confection is made in Staffordshire, in which unsound and spoilt apples enter as a principal ingredient. When properly prepared, it is a pleasant, mild, and very effectual purgative, and is frequently employed by pregnant women, persons afflicted with hemorrhoids or diseases of the rectum. When given alone in a full dose it is apt to gripe.—Dose, 5j. to 3vj. It is frequently employed as a vehicle for the exhibition of other cathartics; for example, bitartrate of potash.
Purging Cassia. 1G09

Cas'sia Fis'tula, Linn. L. E. D. — The Pudding-Pipe Tree or Purging Cassia.

Cathartocar pus Fist'ula, Per'soon.

Sex. Syst. Decandria, Monogynia.

(Leguminum Pulpa, L.—Pulp of the Pods, E.—Pulpa Leguminis, D.)

History.—The earliest writers in whose works we find the fruit of Cassia Fistula mentioned, are the Arabians, Mesne, Serapiun, and Avicenna. The first Greek writer who notices it is Actuarius, who terms it κασσία μελανα, or black cassia.¹


Sp. Char.—Leaflets four to six pairs, ovate, somewhat acuminate, smooth; petioles glandless. Racemes lax, without bracts. Legumes terete, straight, somewhat obtuse, smooth (De Cand.)

Tree from twenty to thirty feet high. Leaves alternate, pinnate, from twelve to eighteen inches long; leaflets from two to six inches long, and from one and a half to three inches broad. Stipules minute. Racemes one to two feet long. Flowers large, bright-yellow, fragrant, on long footstalks. Legume cylindrical, ligneous, one to two feet long, externally blackish-brown; with three longitudinal bands or seams extending the whole length, two of which by their contiguity appear to form a single one, the third being on the opposite side of the legume; internally divided into numerous cells by thin transverse partitions or phragmata, formed by the distension of the placenta, and therefore called spurious dissepiments. Seed one in each cell, surrounded by a soft blackish pulp, which appears to be a secretion of the endocarp or inner coat of the pod.

Hab.—East Indies, Egypt. Introduced into the West Indies.

Description.—The pods of Cassia Fistula (cassia fistula; legumen cassiae fistula) are imported from the East Indies (Madras and Ceylon), from the West Indies (Barbadoes), and from South America (Carthagena and Savanilla). Their botanical description has been above given. Their pulp (pulpa cassiae fistula; pulpa leguminis cassiae fistula) is reddish-black, with a sweetish taste. By exposure to the air it becomes acid, in consequence of undergoing the acetous fermentation. Those pods yield the most pulp which are heavy, and do not rattle when shaken.

Cassia pulp is directed by the London College to be prepared as follows:—"Pour boiling water upon the bruised Pods of Cassia, that the pulp may be washed out, which press through a coarse sieve, and afterwards through a hair one; then evaporate the water in a water-bath, until the pulp acquire a proper consistence."

Small American Cassia Fistula. Petite Casse d'Amérique, Guibourt.—Pods twelve to eighteen inches long, and six lines in diameter, pointed at the extre-

¹ Lib. v.
mities. Pericarp thinner than the ordinary Cassia fistula. Pulp reddish-brown, acerb, astringent, sweet. Is this pod the fruit of Cathartocarpus bacillaris, a native of the Caribbean Islands, depicted in Jacquin's *Fragm. Bot. Tab. 85*?

The pulp of *Cassia brasiliiana* has been employed in America. The pods are from 18 to 24 inches long, ligneous, and rough, with very prominent sutures.

**Composition.**—Vauquelin\(^j\) and N. E. Henry\(^k\) have analyzed Cassia pulp.

<table>
<thead>
<tr>
<th>Vauquelin's Analysis</th>
<th>N. E. Henry's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pericarp ............. 33.15</td>
<td>Sugar .................... 61.00</td>
</tr>
<tr>
<td>Phragmata ............ 7.93</td>
<td>Gum ..................... 6.75</td>
</tr>
<tr>
<td>Seeds ................ 13.28</td>
<td>Matter possessing many properties (\frac{1}{2})</td>
</tr>
<tr>
<td>Pericarp ............. 33.15</td>
<td>Gum ..................... 6.75</td>
</tr>
<tr>
<td>Phragmata ............ 7.93</td>
<td>Extractive ............ 0.51</td>
</tr>
<tr>
<td>Seeds ................ 13.28</td>
<td>Sugar .................... 14.85</td>
</tr>
<tr>
<td>Pulp ................ 20.00</td>
<td>Gum ..................... 6.75</td>
</tr>
<tr>
<td>Vegetable jelly ...... 0.13</td>
<td>Extractive ............ 0.51</td>
</tr>
<tr>
<td>Glutinous matter ..... 0.79</td>
<td>Sugar .................... 14.85</td>
</tr>
<tr>
<td>Woody fibre .......... 2.35</td>
<td>Gum ..................... 6.75</td>
</tr>
<tr>
<td>Water ................ 21.35</td>
<td>Extractive ............ 0.51</td>
</tr>
<tr>
<td>Cassia pods ......... 97.00</td>
<td>Matter possessing many properties (\frac{1}{2})</td>
</tr>
</tbody>
</table>

**Physiological Effects.**—Cassia pulp in small doses is a mild laxative, in larger ones a purgative; but it is apt to occasion nausea, flatulence, and griping. Manna is said singularly to exalt the purgative effect of Cassia pulp.\(^1\) Thus Valisnieri states, that twelve drachms of this pulp are about equivalent in purgative strength to four ounces of manna; but that if we give eight drachms of Cassia pulp, in combination with four drachms of manna, we obtain double the effect! But the correctness of such an incredible statement is not to be admitted on any evidence yet adduced in support of it.

**Uses.**—It is rarely or never given alone; but the cases for which it is well adapted are febrile and inflammatory affections. On account of its pleasant taste it would be a convenient purgative for children.

**Administration.**—Dose, for an adult, of the pulp, as a mild laxative, \(\frac{3}{4}\) to \(\frac{5}{4}\); as a purgative, \(\frac{5}{4}\) to \(\frac{9}{4}\).

**CONFECTIO CASSIAE, L. ; Confection of Cassia ; Electuarium Cassiae, D.**—(Cassia pulp \[recently expressed, D.\] lb. ss.; Manna, \(\frac{3}{4}\); Tamarind pulp, \(\frac{3}{4}\); Syrup of Rose, \(\frac{5}{4}\). \[Syrup of Orange Peel, lb. ss. D.\]) Bruise the Manna, then dissolve it in the Syrup; afterwards mix in the Cassia and Tamarind pulps, and evaporate the moisture until a proper consistence is attained).—Laxative. Occasionally used for children, as a vehicle for some more active substance. —Dose, \(\frac{3}{4}\) to \(\frac{3}{4}\) for adults.

\(^1\) See Paris, *Pharm.* i. 271, 6th ed.
16. COPAIF'ERA, Linn.—VARIOUS SPECIES, E.

Copaif'era Langsdorifi, De Candolle, L.—Copaif'era officinalis, Linn. D.

Sex. Syst. Decandria, Monogynia.

(Resina liquida, L. D.—Fluid resinous exudation, E.)

History.—The first notice of Copaiva balsam, as well as of the tree yielding it, was given by Piso. Hayne is of opinion that the Copaifera bijuga is the species observed by Piso.

Botany. Gen. Char.—Calyx ebracteolate, of four spreading, small, equal sepals united at the base. Petals none. Stamens ten distinct, nearly equal; anthers oblong. Style filiform. Legume stalked, obliquely elliptical, coriaceous, somewhat compressed, two-valved, with two ovules, one-seeded. Seed elliptical, inclosed in a baccate aril. Embryo straight; radicle somewhat lateral.—Trees. Leaves abruptly pinnate. Leaflets coriaceous, somewhat unequal, ovate. Flowers paniculate (De Cand.)

Species.—1. C. multiju'ga, Hayne.—Leaflets six to ten pairs, ovate-lanceolate, acuminate, mucronate, with pellucid dots. Petiole slightly hairy.—In the province of Para the greatest quantity of the balsam is furnished by this species (Hayne).

2. C. Langsdor'fii, Desf. L.—Leaflets three to five pairs, ovate or oval, blunt, equal-sided, with pellucid dots. Petioles and peduncles slightly downy.—This and the following species furnish the balsam collected by the natives of Santa Paulo.

3. C. coria'cea, Mart.—Leaflets two to three pairs, elliptical, equal-sided, emarginate, coriaceous, not dotted, reticulated, smooth on both sides, somewhat glaucous beneath. Petioles and peduncles almost smooth.—Bahia. It yields balsam of copaiva in Santa Paulo.

4. C. officina'lis, Linn. D.; C. Jacquinii, Desf.—Leaflets two to five pairs, incurved, ovate, unequal-sided, obtusely acuminate, with pellucid dots.—Venezuela, near Calaboso, West Indies.—An inferior kind of balsam is said to be obtained from this species.

The following are species of Copaifera described by Hayne:

5. C. Beyrichii, Hayne.—Mandiocca, in the Brazils.
7. C. Martii, Hayne.—Para.
8. C. Bluga, Wild.—Brazils.
10. C. nitida, Mart.—Brazils (Minas Geraes).
11. C. Laxa, Hayne.—Brazils.
12. C. cordifolia, Hayne.—Brazils.
14. C. oblongifolia, Mart.—Brazils (Minas Geraes).

Extraction of the Balsam.—The balsam is obtained by making incisions into the stems of the trees. It exudes so abundantly that, at the proper season, twelve pounds are sometimes obtained in the


Duncan, Suppl. to the Edinb. New Disp. p. 45.
space of three hours. If, however, no balsam should flow, the wound is immediately closed with wax or clay, and re-opened in a fortnight, when an abundant discharge takes place. Old trees sometimes furnish balsam two or three times in the year.

Langsdorff* in his account of Santa Catherina observes that "the tree which yields copaiva balsam, or balsam of Tolu, *Copaifera officinalis*, is here called *oleo breto*, or black olive. It abounds in the forests, but very little use is made of it. I was assured, that when the incision is made in the tree to procure the balsam, which is done only in the very hot summer months, a strong sound is heard, and the sap or balsam rushes out in a stream, as when a vein is opened in the human arm."

**COMMERCE.**—Balsam of Copaiva is principally obtained from Para and Maranham. This probably is yielded, for the most part, by *C. multijuga*. Carthagena, Maracaibo, and Savanilla, also furnish some. Is this from *C. officinalis*? Occasionally it is brought from Rio Janeiro, and is there probably procured from *C. Langsdorfi* and *coriacea*. Now and then some comes from the West Indies. But a considerable quantity is imported, at second hand, from New York. It is usually brought over in casks holding one cwt. or one and a half cwt. In 1839 duty (4s. per cwt.) was paid on 643 cwt.

**DESCRIPTION.**—Balsam of Copaiva (*balsamum copaiva seu copaiæ*) is a clear, transparent liquid, having for the most part the consistence of olive oil. It has a pale yellowish colour, a peculiar, not disagreeable odour, and a bitter somewhat acrid and nauseous taste. Its sp. gr. is less than that of water, but is not constant. It is 0.95 according to Schönberg, while Stoltze says it is 0.966. By keeping it becomes considerably denser. Balsam of copaiva is insoluble in water, but is completely soluble in alcohol, ether, and the oils, both fixed and volatile. When acted on by alkalis it yields a kind of soap, which is insoluble in water.

Considerable variation exists in the colour, consistence, and sp. gr. of, as well as in the relative quantities of volatile oil and resin yielded by, balsam of copaiva. Even the odour and taste vary somewhat. The differences doubtless depend in great part upon the balsam being procured from different species. The smaller species, which grow in the interior of the Brazils, as in Bahia and Minas, yield, as we are told, less balsam, but it is more resinous and sharper. *Brazilian Copaiva* is thin, clear, and pale-coloured. *West Indian Copaiva* (produced probably by *C. officinalis*) is thick, golden-yellow, not transparent, and has a less agreeable smell, which is somewhat like that of turpentine.

**ADULTERATION.**—There is no reason to suppose that balsam of copaiva is adulterated in this country now; though the following fact, mentioned by Dr. Paris*, proves that formerly it was. "A curious trial took place some time since, between the owners of certain premises that were burnt down, and the Governors of the Sun Fire-Office, in consequence of the latter refusing to indemnify the proprietor for his loss, because the fire had been occasioned by his making Balsam of

* Piso, op. supra cit. p. 55.

**Voyages and Travels in various Parts of the World, during the Years 1803, 1804, 1806, and 1807, p. 43. Lond. 1813.**

Pharmacologia, n. 183, 6th ed.
Copaiba. — Gray has published formulae for making a balsamum copaiba reducunt, as well as copaiba factitia. — The Edinburgh College gives the following characters of its purity:

"Transparent: free of turpentine odour when heated: soluble in two parts of alcohol: it dissolves a fourth of its weight of carbonate of magnesia, with the aid of a gentle heat, and continues translucent."

The turpentine odour may be recognized by dropping the suspected balsam on a heated iron (as a spatula). — The mixture of magnesia and copaiva here referred to, acquires, in several hours, the translucency, aspect, and consistency of very thick mucilage of gum arabic. This test was proposed by Blondeau. If one or two drops of suspected balsam be placed on unsized paper, and carefully heated over a lamp to expel the volatile oil, an homogeneous translucent spot is left, if the balsam be pure, but if it have been mixed with castor oil, the spot of resin is surrounded by an oily areola. Planche has recommended ammonia as a test. If pure balsam be shaken with liquor ammoniae (sp. gr. 0.965) it becomes clear and transparent in a few instants; not so when castor oil is present. Ebulition with water (to expel the volatile oil and obtain the hard resin); — and the action of potash, and of sulphuric acid, have also been proposed as tests.

Composition. — F. Hoffmann submitted copaiva to a chemical examination. Afterwards Schönberg analysed it. In 1826, Stoltze, and, in 1829, Gerber submitted it to analysis.

<table>
<thead>
<tr>
<th>Stoltze’s Analysis</th>
<th>Gerber’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balsam of Copaiva</td>
<td>Fresh Balsam.</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>38.00</td>
</tr>
<tr>
<td>Yellow dard resin (copaivic acid)</td>
<td>52.75</td>
</tr>
<tr>
<td>Brown soft resin</td>
<td>1.66</td>
</tr>
<tr>
<td>Water and loss</td>
<td>7.59</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100.00</strong></td>
</tr>
</tbody>
</table>

1. Volatile Oil (see p. 1619).
2. Resin of Copaiva (Resina Copaiba). — After the balsam has been deprived of its volatile oil by distillation, a brownish resinous mass is left behind. This, when gently heated to expel the residual water, is sold as resin of copaiva. It consists of two resins — one called copaivic acid, the other the viscid resin of copaiva. They are separated by rectified spirit, which dissolves the acid resin, but leaves the viscid one.

a. Copaivic Acid: Yellow Brittle Resin of Copaiva. — One hundred parts of balsam yield, on an average, fifty parts of this acid. Copaivic acid is an amber-coloured, brittle, crystallizable resin, soluble in alcohol, rectified spirit, ether, and the volatile and fixed oils. It is decomposed by sulphuric and nitric acids. Its acid properties are proved by its alcoholic solution reddening litmus, and by the definite compounds (copaiwates) which it forms with bases. Thus, if an alcoholic solution of nitrate of silver be dropped into the alcoholic solution of this resin, we obtain, on the addition of a little ammonia, a white crystalline pre-
cipitate (copaivate of silver), slightly soluble in alcohol, and composed of one atom copaivic acid, and one atom oxide of silver. In the same way we may form the analogous copaivates of lead and lime. The copaivates of potash and soda are soluble, and have a bitter taste and a disagreeable odour: they are easily decomposed by acids. The copaivate of ammonia is soluble in ether and alcohol, but not in water. The copaivate of magnesia is prepared by adding copaivate of potash to sulphate of magnesia.

Copaivic acid is isomeric with pinic acid (see p. 1058); that is, its composition is \( \text{C}_{40} \text{H}_{32} \text{O}_{4} \).

β. Viscid Resin of Copaiva; Brown Soft Resin of Copaiva.—When a hot alcoholic solution of copaiva cools, it retains in solution the acid resin already described, but deposits a brown viscid substance, which is termed the viscid resin of copaiva. As it is more abundant in old than in recent balsam, Gerber regards it as produced by some alteration of the acid resin. It is soluble in anhydrous alcohol and ether, and in the volatile and fixed oils. It has very little affinity for basic substances. One hundred parts of balsam contain from 1.65 to 2.13 per cent. of this resin.

Physiological Effects.—Copaiva produces the general and topical stimulant effects of the oleo-resins, already described (see p. 182). Taken in moderate doses it creates a sensation of warmth in the stomach, gives rise to eructations having the odour of the balsam, and not unfrequently occasions nausea, or even actual vomiting. The continued use of it often impairs the appetite, and disorders the digestive functions. These may be regarded as the local effects on the stomach. The constitutional effects, or those which result from the absorption of the balsam, or of its active constituent, the oil, are those of a stimulant whose influence is principally directed to the secreting organs, more especially to the mucous membranes and to the urino-genital apparatus. The oil passes out of the system in part by the lungs, and the odour of its vapour is readily detectable in the breath of persons taking it. The urine is increased in quantity, and altered in quality: thus its colour is heightened, its odour becomes balsamic, and its taste bitter; moreover, not unfrequently it is turbid, as if containing mucus. The influence of copaiva over the mucous membrane lining the urethra, is shown, even in the healthy state, by the warmth and tickling sometimes experienced in this part, both before and after evacuating the urine, as observed by König, a medical student, in his experiments with this medicine; and also by the marked influence which the balsam has in mucous discharges from this membrane—an influence familiar to every tyro in medicine. Furthermore, it is said occasionally to have produced unpleasant irritation of the testicles, though I have never observed this. It also acts as a stimulant, but in a less marked manner, to other mucous membranes; namely, the bronchial and gastro-intestinal membranes. The greater influence of copaiva over the urethral than over other mucous membranes is by some explained thus:—Besides the influence which this receives in common with the other membranes of the same class, by the general circulation, it is exposed to the local action of copaiva contained in the urine as this fluid is expelled from the bladder. If this hypothesis were correct, the influence of

---

8 Pract. Treat. on Urethritis and Syphilis. Lond. 1836.
Copaiva over the mucous lining of the bladder would be greater than that over the urethral membrane. Not unfrequently it gives rise to an eruption, usually of a scarlet colour, referrible to either urticaria or erythema, though some describe it as being miliary. Vesicular eruptions are also spoken of, but I have never seen them. Mr. Judd has depicted two eruptions caused by the balsam:—one he calls small puniceous patch eruptions; the other was a papular eruption. Rheumatism has also been ascribed to the use of the balsam.

Large doses of copaiva irritate the gastro-intestinal canal, and occasion a sensation of heat at the pit of the stomach, nausea, vomiting, loss of appetite, and purging, with, not unfrequently, griping pains of the bowels. The whole system becomes powerfully stimulated, the pulse is fuller and more frequent, the skin hotter, and thirst and headache are produced. Occasionally, haematuria and dangerous ischuria are brought on. “I saw,” says Kraus, “a very dangerous case, of thirty-six hours’ standing, almost instantaneously relieved by the application of a warm poultice (made of four ounces of the hyoscyamus plant) over the genital organs.” The same author also says that the repeated use of large doses occasions, “in young marriageable subjects, a measles-like eruption over the whole body, which I have many times seen treated by pretended great diagnosticians (‘Diagnostikern’) as true measles.”

In one case pain at the stomach, general uneasiness, and epileptic convulsions, followed, and were ascribed to, the use of copaiva. But the correctness of ascribing the convulsions to the use of the copaiva appears very doubtful.

When we compare the operation of copaiva with that of other agents possessing powers of a somewhat similar kind, we observe that both in local and constitutional effects it is more powerful than the balsams properly so called (that is, the native oleo-resins which contain benzoic acid), while its operation on the urino-genital organs is much more marked (see pp. 182 and 1330). It forms an intermediate substance between the balsams and the turpentines, being less powerful, but more aromatic, than the latter: yet, observes Ribes, the turpentines are less successful in gonorrhoea. The same author considers it to be less powerful than balsam of Mecca, but more so than balsam of Canada.

Uses.—The principal employment of copaiva is in mucous discharges from the urino-genital organs, more especially in gonorrhoea. There are two methods of treating this disease by copaiva: one is, not to exhibit the balsam until the inflammatory symptoms have subsided,—the other is to give it at the very outset, in order to cut short or suppress the disease.

The first method is that followed by the best English and German surgeons. It consists in employing, during the violence of the inflammatory stage, antiphlogistic and soothing measures; and when the inflammation has quite or nearly subsided, or is of a very mild

---

* Heilmittelkunde, 621, Gött. 1831.
* Quoted by Bayle, Bibl. Therap. i. 365.
character, giving copaiva with the view of diminishing or stopping the discharge. This is the plan recommended by Hunter, and the same practice is recommended in the published lectures of Sir Astley Cooper and Mr. Lawrence. It is undoubtedly the safest method of treatment; for although copaiva may sometimes, or even frequently, be exhibited during the acute or inflammatory stage of gonorrhoea, not only with impunity, but even with advantage, there is no denying the fact that it has, occasionally at least, exasperated the symptoms. This, indeed, is admitted by Ansiaux, one of the principal supporters of the other plan of treatment. Many practitioners judge of the propriety of exhibiting the balsam by the quality of the discharge only, and refrain from administering this medicine until the discharge has acquired what is called a gleety character. I believe most prudent surgeons consider the existence of much pain or scalding in passing the water, an irritable condition of bladder, or violent chordee, as contra-indicating the use of copaiva; while the absence of these symptoms may be regarded as permitting or indicating it.

The second method of treating gonorrhoea by copaiva consists in exhibiting this medicine in large doses at the commencement of the disease; that is, in its acute stage, usually without adopting any preliminary antiphlogistic or soothing measures. In America the practice is not new; but in Europe it has been recommended or adopted to any extent only since the commencement of the present century, and principally by the recommendations of Ansiaux, Ribes, and Delpech.

Ansiaux candidly admits that in some cases the practice has been injurious; in one instance he saw it produce acute pain, irritable bladder, and discharge of blood by the urethra. The second of these writers seems to regard copaiva as a specific for gonorrhoea and all its consequences, including swelled testicle, dysury, ischury, cystitis, nephritis, &c. Delpech speaks of its use in a much more guarded manner: he employs leeches and the usual antiphlogistic measures, when the inflammatory symptoms are very severe; but when the inflammation is not excessive, he commences at once with the balsam. In fact, his practice approximates very much with that usually followed in this country and Germany. The partisans of this second method of treating gonorrhoea say, that both copaiva and cubebs cure more easily and promptly, and with less chance of relapse, the sooner they are exhibited after the commencement of the disease; in other words, old claps are less readily cured by them than recent ones.

It has been stated by Delpech and Ricord, and I believe the experience of most practitioners bears out their statement, that copaiva is less successful in the gonorrhoea of females than in that of males. Trousseau and Pidoux have endeavoured to account for this by saying, that in the female, gonorrhoea is not confined to the mucous

---

*a* Treat. on the Vener. Dis.
*d* Mem. sur le Traitem. de la Blotnorrh., quoted by Bayle, op. supra cit. p. 348.
*e* Bayle, op. supra cit.
*f* Traite de Therapeu. t. i. p. 494.
lining of the urethra (on which the influence of copaiva is principally exercised), but extends to that of the vagina.

Velpeau employs lavements of the balsam in gonorrhoea. By this mode of exhibition the nausea and vomiting which copaiva is apt to occasion, when taken by the mouth, are entirely obviated. Velpeau asserts, that by this mode of administration, blennorrhagic discharges of both males and females are almost always diminished, and frequently completely stopped. He found the same practice useful in non-venereal puriform discharges from other mucous membranes. Indeed, he asserts that copaiva lavements may in all cases be substituted for the administration of this liquid by the mouth.

In chronic inflammation of the bladder (commonly termed cystitis, or catarrhus vesicae) copaiva has at times been found beneficial. Delpech relates a case of acute vesical catarrh cured by it. But catarrhus vesicae is for the most accompanied with considerable irritation, which is in general greatly increased by stimulants like copaiva.

In leucorrhoea copaiva has been employed with some advantage. Favourable reports of this practice have been published by Cuttet and Lacombe, Armstrong, and others.

In chronic pulmonary catarrh its employment has been spoken favourably of. Armstrong, Hallé, Bretonneau, and La Roche (quoted by Bayle), have borne testimony to its good effects. It is only adapted for chronic, old-standing cases, and for torpid habits. Its stimulant influence is calculated to be very injurious where there is inflammation or febrile disorder. Dr. Fothergill has very properly reprobated the practice of administering it in pulmonary consumption, as recommended by Fuller and others.

In chronic inflammation of the mucous membrane of the bowels, especially of the colon and rectum, copaiva has been used. Dr. Cullen spoke favourably of its use in hemorrhoids. "I have learned from an empirical practitioner," he says, "that it gives relief in hemorrhoidal affections; and I have frequently employed it with success. For this purpose it is to be given [in doses of] from 20 to 40 drops, properly mixed with powdered sugar, once or twice a day."

It was formerly employed as a topical application to wounds and ulcers.

Administration.—Dose, from gtt. xx. to f3j., or even more. It is sometimes taken on sugar, and this is said to be the most efficacious method of giving it, in affections of the urinary organs; but its nauseous taste is a great objection to its employment in this way. Some take it swimming on half a wine-glassful of water, to which a few drops of some bitter tincture have been added. Many persons

1 Rech. sur l’Emploi du Baume de Copahu.
3 Bayle, op. supra cit.
4 Prat. Illustr. of the Scarlet Fever, &c. 1818.
5 Op. supra cit.
6 Med. Obs. and Inv. vol. iv. 231.
7 La Roche, Lond. Med. Gaz. vol. ii. p. 31, N. S.
8 Mat. Med.
employ it in the form of _emulsion_ (made with mucilage, yolk of egg, or alkalis). If mucilage be employed, it should not be very thick, otherwise it will not mix well. Spirit of nitric ether is frequently added to cover the unpleasant flavour. Opium is sometimes conjoined to counteract purging, and acids (especially the sulphuric) to check nausea. _Syrup of Copaiva_ (prepared by rubbing 5iv. of balsam with 32 grs. of calcined magnesia, and then adding 64 drops of oil of peppermint and 62 ozs. of simple syrup) has been recommended. Balsam of copaiva has also been taken in the form of _pills_; various powders (starch, gum, rhubarb, magnesia, &c.) being employed to give it a proper consistence. If magnesia be employed (as recommended by Mialhe), the copaivic acid unites with it, and thereby forms copaivate of magnesia, which has considerable consistence, and absorbs the volatile oil. In some cases the balsam acquires, by magnesia, a pilular consistence, but frequently it does not become thicker than honey. Bordeaux turpentine also possesses this property of solidifying with magnesia (see p. 1045). The following is a formula for _copaiva pills_:

\[\text{Balsam of Copaiva, 5j.} ; \text{Calcined Magnesia, 5vj. or 5vij. (or common Carbonate of Magnesia, 5j.) Several hours are frequently required to effect the solidification of the balsam.} \]

_Velpeau's copaiva lavement_ is thus prepared:

\[\text{Balsam of Copaiva, 5ij. ; Yolk of one Egg; Distilled Water, f3vij. Make an emulsion, and to which add Tincture of Opium, gtt. xx. or gtt. xxx.}\]

_The resin of copaiva_, which was much extolled a few years since, is the least active part of the balm.

1. **OLEUM COPAIVAE, E. Essential Oil of Copaiva.**—(Copaiva, 5j.; Water, Ojss. Distil, preserving the water; when most of the water has passed over, heat it, return it into the still, and resume the distillation; repeat this process so long as a sensible quantity of oil passes over with the water.)—The directions of the _Edinburgh College_ make the process of obtaining the oil appear a more operose one than it really is. Mr. Whipple informs me, that from 249lbs. of balsam he obtained 128 lbs. of volatile oil and 120lbs of resin. Ader has published a method for procuring the oil without distillation; but the process is more expensive, while the oil obtained by it is impure, owing to the presence of a little resinous soap.

When oil of copaiva has been rectified, and afterwards freed from water by digesting it on chloride of calcium, it has a specific gravity of 0·878. It is colourless, and has an acrid taste, and an aromatic peculiar odour. Sulphuret of carbon and sulphuric ether dissolve it in all proportions; absolute alcohol dissolves two-fifths its weight of it; ordinary rectified spirit takes up less than this. Potassium may

---


'Soubeiran, *Traité de Pharm.* i. 523.

*Thorn, Observ. on the Treatm. of Gonorrh. by a new Prep. from the Bals. of Copaiba. 1827.*

*Journ. de Pharm. xv. 95.*
be preserved in it unchanged, showing the absence of oxygen. It
dissolves sulphur, phosphorus, and iodine (by the latter it is coloured),
and absorbs chlorine, with which it becomes turbid and viscid.
When dropped on iodine, heat and hydrobromic acid are suddenly
produced.

Sulphuric and nitric acids convert it into a resinous substance.
When hydrochloric acid gas is passed into this oil, crystals of the
hydrochlorate of the oil of copaiva (or artificial camphor of the oil of
copaiva) are deposited, while a fuming oily product, saturated with
acid, remains. Hence, therefore, it is probable that oil of copaiva,
like the oil of turpentine (see p. 1050), consists of at least two isomeric
oils; one, which forms the crystallizable compound with hydrochloric
acid; the other, which does not form this crystalline matter.

Oil of copaiva is isomeric with oil of turpentine,—that is, it con-
sists of C\textsuperscript{10} H\textsuperscript{8}.

For medicinal use I prefer the oil of copaiva to any other prepara-
tion of the balsam. The usual dose is from ten to twenty drops,
which may be gradually increased; but I have known \textit{f5ij.} taken at
one dose without any ill effects. It may be taken on a lump of
sugar.

2. GELATINE CAPSULES OF COPAIVA, \textit{Baccae Copaifere factitiae}.  
Pharm. Castrensis Ruthenica.—(Prepared by dipping the bulbous
ex remity of a metallic rod into a concentrated solution of gelatine.
When the rod is withdrawn it is to be rotated in order to diffuse the
gelatine equally over the bulb. As soon as the gelatinous film has
hardened, it is to be removed from the bulb and placed on pins fur-
nished with heads, and fixed on a cork table. When dried, the
capsules are placed in little cells in the cork table, the balsam is in-
cluded into them by means of a glass tube, and they are then closed
by dropping some concentrated solution of gelatine on the orifices").

Desfontenelles\textsuperscript{x} has described another method of making the cap-
sules. Gelatine capsules are the invention of a Frenchman of the name
of Mothe. They have been introduced with the view of avoiding the
nauseous odour and taste of various medicines (as balsam or oil of
copaiva, oil of cubebs, creasote, Dippel’s oil, &c). When swallowed
the gelatinous capsule dissolves in the gastro-intestinal juices, and the
liquid medicine escapes. The capsules found in the shops are olive
shaped, and contain about ten grains of balsam. Ratier\textsuperscript{y} has pro-
posed to introduce them into the rectum. For this purpose they
are to be conveniently greased.

\textsuperscript{x} For further details consult Sir James Wylie’s \textit{Pharmacopoeia Castrensis Ruthenica}, p. 681.
Petropoli, 1840.
\textsuperscript{y} \textit{Dict. prat. de Méd.}, t. xv. 298.
OTHER MEDICINAL LEGUMINOSÆ.

1. Spartium Juncæum, or Spanish broom, the çaption of Dioscorides, is occasionally employed in medicine. The seeds, in large doses, are emetic and purgative; in small quantities, diuretic. They have been employed by Dr. Eccles in dropsical affections. Their advantage over other diuretics is their tonic operation, in consequence of which they may be persisted in for an indefinite length of time (Pearson). They may be taken, in the form of powder, in doses from grs. x. to grs. xv., three times a-day, in cold ginger-tea or mint-water; but the tincture (prepared by digesting 3ij. of the bruised seeds in fviij. of proof spirit) is the best form of exhibition. Its dose is f\textfrac{1}{2}j. to f\textfrac{3}{2}ij.

Spartium Juncæum.

2. The Butea Frondosæ is a middling-sized tree, common in Bengal and in the mountainous parts of India. “From natural fissures and wounds made in the bark of this tree, during the hot season, there issues a most beautiful red juice, which soon hardens into a ruby-coloured, brittle, astringent gum.” This is gum butea. It has been recently brought over by Mr. Beckett, by whom samples were given to Dr. Royle. On examination I found this gum to be identical with a substance which I had previously met with in an old drug firm of this city, marked gummi rubrum astringens, and samples of which I had sent to Professor Guibourt, who has described it under the name of gomme astringente de Gambie, believing it to be the kind described by Fothergill. But I have already expressed my opinion that it is not Fothergill’s gum (see p. 1575). Butea gum (called Kuenee in Northern India, and Kinsuka in Sanscrit) is in small elongated tears, which are blackish externally, and have pieces of bark adhering to them. Small fragments examined by transmitted light, are observed to be ruby-red. Its taste is astringent. It contains from 15 to 25 per cent. of impurities (wood, bark, small pebbles, and sand). According to Mr. E. Solly, the gum, when purified by simple solution of water, so as to separate the impurities, consists of tannin 73\textfrac{26}{4}, difficulty soluble extractive 5\textfrac{05}{4}, gum (with gallic acid and other soluble substances) 21\textfrac{67}{4}. It is used by the natives of North-Western India for precipitating their indigo, and in tanning. English tanners, however, object to its use on account of the colour which it communicates to the leather.
3. **Indigo** (*pigmentum indicum*; *νυκω*, Dioscorides; *indicum*, Pliny) is a blue pigment obtainable from various plants by fermentation. The ancients also applied the term *νυκω*, or *indicum*, to some other substances. The indigo of commerce is procured from the genus *Indigofera*. In India, *I. tinctoria* is commonly cultivated for this purpose. During the fermentation, the indigo deposits as a feculent matter. Lime-water promotes its separation. Blue indigo does not exist in the plants previous to fermentation; it is, therefore, a product, not an educt, of them. Commercial indigo is principally brought from the East Indies, but a considerable quantity is imported from Guatemala, and other places. It usually occurs in cubical cakes of an intense blue colour. Rubbed with a smooth hard body (as the nail), it assumes a coppery or bronze hue. This distinguishes it from Prussian blue, the coppery hue of which is removed by friction with the nail. It is insoluble in water, cold alcohol, ether, diluted sulphuric or hydrochloric acids, weak alkaline solutions, and cold oils (both fixed and volatile). When heated to about 550° F. it evolves a reddish, violet vapour (vapour of indigotin), which condenses in minute crystals. Deoxidising agents (as protosulphate of iron, sesquisulphuret of arsenicum, the process of fermentation, &c.) destroy its blue colour by abstracting oxygen from the indigotin, and converting it into *indigogen*, or *white indigo*; which, by exposure to the air, attracts oxygen, and becomes blue. Chlorine and the hypochlorites destroy the blue colour of indigo. Rubbed with oil of vitriol it yields a deep blue liquid, commonly termed *sulphate of indigo*, *Saxon blue*, or *liquid blue*. Commercial indigo consists of *indigo-blue* (indigotin), *indigo-brown*, *indigo-red*, and a glutinous substance. Indigotin consists, according to Dumas, of \( \text{C}_16 \text{H}_5 \text{NiO}_2 \). Indigo has, of late years, been employed as a medicine. Its physiological effects, according to Dr. Roth, are as follows:—Shortly after taking it the patient experiences a sense of constriction at the fauces, and the impression of a metallic taste on the tongue. These are followed by nausea, and frequently by actual vomiting. The intensity of these symptoms varies in different cases. In some the vomiting is so violent as to preclude the further use of the remedy. The matter vomited presents no peculiarity except in its blue colour. When the vomiting has subsided, diarrhoea usually occurs: the stools are more frequent, liquid, and of a blue or blackish colour. The vomiting and diarrhoea are frequently accompanied by cardialgia and colic. Occasionally these symptoms increase, and the use of the remedy is in consequence obliged to be omitted. Dyspepsia and giddiness sometimes succeed. The urine has a brown, dark, violet colour; but Dr. Roth never found the respiratory matter tinged with it. After the use of indigo for a few weeks, twitchings of the muscles were sometimes observed, as after the use of strychnia. It has been employed principally in spasmodic affections—viz. epilepsy, convulsions of children, chorea, and hysteria. In epilepsy it has been tried by Von Stahly, Lenhossek, Grossheim, Ideler, Wolf, Leinenweber, Döpp, and Noble, with good effect. Some of the successful cases were of very long standing. Roth says, that at the commencement of the treatment, the frequency of the paroxysms was invariably increased. Idiopathic epilepsy is said to have been more benefitted by it than the symptomatic epilepsy. I have tried it in a considerable number of epileptic cases at the London Hospital, but without deriving the least benefit from it. The dose of indigo should be as large as the stomach can bear. At the beginning it may be a few grains; afterwards this quantity should be increased to draehms, or even an ounce or more in the day. Some of the patients above referred to,
took from \( \frac{3}{8} \) ss. to \( \frac{3}{4} \) ss. daily, for three or more months. The best mode of exhibiting it is in the form of an elenctary, composed of one part of indigo and two parts of syrup, with a small portion of water. The powder is apt to cause spasm of the fauces. Aromatics, mild tonics, astringents, and opiates (as the compound powder of ipecacuanha), may be conjoined, according to circumstances.

**Order LXII. — Terebinthaceæ, Jussieu. — The Terebinth Tree.**

**Burseraceæ, Xanthoxylaceæ, Cannaraceæ, Amyridaceæ, and Anacardiaceæ, Lindley.**

**Essential Characters.** — Flowers hermaphrodite, polygamous, or dioecious, **Sepals** three to five, more or less united at the base, imbricated in aestivation, very rarely adherent to the ovary. **Petals** rarely none, generally distinct, as many as, and alternate with, the sepals, very seldom united at the base; imbricated in aestivation. **Stamens**, as well as the petals, arising from the lower part of the calyx, or from the calycine disk, rarely from the torus surrounding the ovary; either equal in number to, and alternate with, the petals, or double (very rarely quadruple) the number of the petals, and then placed alternately before and between the petals. **Carpels**, in some, numerous, distinct, with one style,—in others many, united by the ovaries; in either case some of them are frequently abortive, and hence the carpels in many appear solitary, one-celled, but the number of the styles and stigmas then usually indicates abortion. **Fruit** capsular or drupaceous. **Seeds** few, usually solitary, commonly exalbuminous. **Embryo** straight, curved, arched, or folded back; **cotyledons** various; **radicle** usually superior (De Cand.)

**Properties.** — The principles common to all the Terebinthaceaæ, are: — 1st, **Fixed oil** in the seeds; 2ndly, **Volatile oil combined with resin** in the turpentine of the pistacias; 3rdly, **Resin** which flows either naturally or from artificial openings in the stems of many of the species; 4thly, **Gum usually combined with resin**—as in olibanum, myrrh, tacamahaca, &c.3


**Sex. Syst.** Dioecia, Pentandria.

*(Resina liquida, L.—Liquid resinous exudation, E.)*

**History.** — This tree is the Τερπινθες or Τερπιθθος of the Greeks. Hippocrates employed the fruits, the buds, and the resin, medicinally.

**Botany.** **Gen. Char.** — Flowers dioecious, apetalous. **Males**: **Račemæs** amentaceous, with one-flowered scales [bracts]. **Calyx** five-cleft. **Stamens** five; **anthers** almost sessile, four-cornered. **Females**: **Račemæs** more lax. **Calyx** three- or four-cleft. **Ovary** one- to three celled. **Stigmas** three, rather thick. **Drupe** dry, ovate, with a somewhat osseous nut, usually one-celled, one-seeded, sometimes bearing two abortive cells at the side. **Seeds** solitary in the cells, affixed to the side of the cell, exalbuminous. **Cotyledons** thick, fleshy, oily, with a superior lateral radicle. — **Trees** with pinnate leaves (De Cand.)

3 Fée, Cours d’Hist. Nat. i. 619.
Sp. Char.—*Leaves* pinnate, with an odd one; *leaflets* about seven, ovate-lanceolate, rounded at the base, acute, mucronate (De Cand.)


**Hab.**—Syria and the Greek Archipelago.

**Extraction.**—Tournefort says, that the turpentine harvest in Scio is made, from the end of July to October, by cutting crosswise with a hatchet the trunks of the largest turpentine trees. The turpentine runs down on flat stones placed under the trees, where it hardens. The quantity yielded by each tree is small, not exceeding eight or ten ounces.

**Properties.**—Chian or Cyprus turpentine (*Terebinthina Chia seu Cypria*) has the general properties of the coniferous turpentines already described (see p. 1043). Its consistency is that of honey, but more glutinous. Its colour is greenish-yellow. It has an agreeable turpentine-like odour, combined with the odour of fennel, or, according to some, of citron and jasmine. Its taste is very mild. By keeping it resinifies, and acquires a somewhat less agreeable odour. Genuine Chian turpentine is scarce; the coniferous turpentines being usually sold for it.

**Composition.**—I am unacquainted with any analysis of it; but its composition is doubtless similar to the coniferous turpentines.

**Physiological Effects, Uses, and Administration.**—Exactly similar to the other coniferous turpentines (see pp. 182 and 1047).

**2. PISTACIA LENTIS'CUS, Linn. L. E. D.—THE MASTIC OR LENTISK TREE.**

*Sex. Syst.* Diocia, Pentandria.

(Resina, L. D.—Concrete resinous exudation, Δ.)

**History.**—This tree is the *Σχίος* of the Greeks. Hippocrates employed the leaves, resin (*mastice*), and the oil prepared from the fruit, in medicine.

**Botany.** *Gen. Char.*—See *Pistacia Terebinthus*.

*Sp. Char.*—*Leaves* abruptly pinnate; *leaflets* about eight, lanceolate. *Petiole* winged (De Cand.)

---

Fig. 302.

**Pistacia Lentiscus.**

*Fig. 302.*

---

A mere bush. Leaves evergreen. Flowers very small. In var. ß. angustifolia the leaflets are somewhat linear: in var. γ. Chia they are ovate.

**Hab.** — South of Europe, North of Africa, Levant.

**Extraction.** — Tournefort says, that in Scio the extraction of mastic commences on the first of August. The bark is cut crosswise with huge knives. The mastic exudes and hardens partly on the stem, partly on the ground. The same incisions furnish mastic towards the end of September, but in lesser quantities. The mastic which concretes on the stem is called mastic in the tear, while that which falls to the earth constitutes common mastic.

**Properties.** — Mastic (mastiche) occurs in small spherical, flattened, or irregular, pale-yellow tears, which are externally farinaceous, owing to their mutual attrition. Their fracture is vitreous. They have a mild, agreeable odour, and an aromatic taste.

**Composition.** — Mastic consists of a minute portion of volatile oil, about 90 per cent. of resin soluble in alcohol, and 10 per cent. of a resinous substance (masticine) insoluble in alcohol.

1. **Soluble Acid Mastic Resin; Resin a.; Masticic Acid.** — This resin is soluble in alcohol. It possesses the properties of an acid, and combines with bases to form four series of salts. Its formula, according to Johnstone, is $C^{10}H^{31}O^{4}$.

2. **Insoluble Non-Acid Mastic Resin; Resin β.; Masticine.** — This resin is insoluble in alcohol. It is white, elastic, tenacious, soluble in an alcoholic solution of resin $a.$, as well as in ether and oil of turpentine. Its formula, according to Johnstone, is $C^{40}H^{31}O^{4}$. To this resin mastic owes its toughness.

**Physiological Effects.** — Analogous to rosin and the turpentines (see pp. 1047 and 1058).

**Uses.** — Mastic is rarely employed as a medicine. It has been used to check excessive discharges from the mucous membranes, as leukorrhæa, gleet, chronic pulmonary catarrh, old diarrhœas, &c. Dentists occasionally employ it for filling up the cavities of carious teeth. The Turkish ladies chew it to sweeten the breath, and preserve the teeth and gums. Dissolved in alcohol it forms a very useful cement and varnish. A solution of it in oil of turpentine is a common varnish.

**Administration.** — It is exhibited as an adjunct only to other medicines. It is a constituent of the dinner pills (composed of aloes, $5\ell$.; mastic and red roses, $3\ell$.; syrup of wormwood, q. s.), in which it serves to divide the particles of the aloes. It is a consti-
tuent of the *tinctura ammoniei composita*, Ph. L.; formerly called *eau de luce* or *spiritus ammoniei succinatus*, which I have before described (see p. 305).

3. **Rhus Toxicodendron**, Linn. L. D.—TRAILING POISON-OAK OR SUMACH.

*Ser. Syst.* Pentandria, Trigynia.

*Folia, L. D."

**History.**—The attention of medical practitioners of this country was first drawn to the medical properties of this plant in 1793, by Dr. Alderson, of Hull "a. It was first described by Cornutus, in his *Plant. Canad. Hist. Paris, 1635* o.

**Botany.** *Gen. Char.*—Calyx small, five-partite, persistent. Petals five, ovate, spreading. Stamina five, all fertile in the male and hermaphrodite flowers. Ovary one, somewhat globose, one-celled, Styles short, three, or stigmas three sessile. Drupe almost juiceless. one-celled; nut bony, perhaps by abortion one-seeded, and sometimes two- or three-seeded. Seed exalbominous, invested by the funiculus arising from the base of the nut; cotyledons folicaceous; radicle incumbent on the upper edge of the cotyledons (De Cand.)

*Sp. Char.*—Leaves pinnate with an odd leaflet, trifoliate; leaflets angularly incised, pubescent (De Cand.)

Shrub, one to three feet high. Stems many, branching, covered with a brown bark. Flowers greenish-white. Fruit a round drupe, about as large as a pea.—Juice acrid, milky, becoming black by exposure to the air, and forming an indelible ink when applied to cotton or linen.

*Rhus Toxicodendron* is considered by some botanists as a variety only of *Rhus radicans*. I have followed Nuttall and De Candolle in considering it a distinct species.

**Hab.**—United States of America.

**Composition.**—I am not acquainted with any detailed analysis of this plant. There are at least two substances in it worthy of investigation:—viz. the volatile, acrid (narcotico-acrid?) principle, and the substance which blackens by exposure to the air. Tannic and gallic acids are said to be constituents of it.

**Physiological Effects.** 1. **Of the Emanations.**—When not exposed to the sun's rays, as when it grows in shady places, and during the night, this plant evolves a hydrocarburetted gas, mixed with an acrid vapour, which acts most powerfully on certain individuals exposed to its influence, and produces violent itching, redness, and erysipelatous swelling of the face, hands, or other parts, which have been subjected to its operation; these effects are followed by vesications, and desquamation of the cuticle. In some cases the swelling of the face has been so great as to have almost obliterated the features; but all persons are not equally susceptible of its poisonous

---

"Essay on Rhus Toxicodendron. 3rd ed. 1804.
operation; so that some peculiar condition of the cutaneous organ seems necessary for the effect to be produced.

2. Of the Plant. a. On Animals.—Orfila made several experiments with the watery extract of the _Rhus radicans_ (whose operation is probably quite similar to that of _R. Toxicodendron_), and concludes that "internally administered, or applied to the cellular texture, it produces a local irritation, followed by an inflammation more or less intense, and that it exerts a stupefying action on the nervous system after being absorbed." Lavina gave a few drops of the milky juice of _Rhus Toxicodendron_ to guinea-pigs and birds, who were at first stupefied by it, but gradually recovered without any other deleterious effect.

b. On Man.—In the human subject _small doses_ of the leaves increase the secretions of the skin and kidneys, act slightly on the bowels, and, in paralysed persons, are said to have produced a return of sensibility and of mobility, with a feeling of burning and pricking, with twitchings, in the paralysed parts. _Large doses_ occasion pain in the stomach, nausea, vomiting, giddiness, stupification, and an inflammatory swelling of the paralysed parts. These effects shew that the poison-oak possesses a two-fold operation, of an acrid and narcotic.

Uses.—It has been employed in old paralytic cases depending on a torpid condition of the nerves. It has also been given in chronic rheumatism, obstinate eruptive disorders, in some cases of amaurosis, and other nervous affections of the eyes.

Administration.—The _powder_ of the leaves is given in doses of from half a grain to a grain, gradually increased until some obvious effect is produced.

4. _Boswellia Thurifera_, Colebrooke.—_Olibanum Tree._

_Boswellia serrata_, _L._ _D._

Sex. _Syst._ Decandria, _Monogynia._

(Gummi-resina, _L._ _D._)

History.—Olibanum was the frankincense used by the ancients in their religious ceremonies. It is the _Lebonah_ of the Hebrews, the _Lubân_ of the Arabs; from either of which terms the Greeks, probably, derived their names for it, Άτσαρος, Άτσανωρος. The earliest notice of it is by Moses⁷. Dioscorides⁸ calls it Άτσαρος.

Botany. _Gen. Char._—_Flowers_ bisexual. _Calyx_ small, five-toothed, persistent. _Petals_ five, obovate-oblung, very patent, acute at the base, inserted under the margin of the disk; _aestivation_ very slightly imbricative. _Stamens_ ten, inserted under the disk, alternately shorter; _filaments_ subulate, persistent; _anthers_ caducous. _Torus_ a cup-shaped disk, fleshy, larger than the _calyx_, crenulated on the margin. _Ovary_ oblong, sessile; _style_ one, the length of the _stamens_, caducous; _stigma_ capitate, three-lobed. _Fruit_ capsular, three-angled.

---

⁷ Orfila, _Toxical. Gén._
⁸ Colebrooke, _Asiat. Research._ ix. 377.
⁹ Exod. XXX. 34.
¹ Lib. i. cap. 81.
OLIBANUM TREE.

three-celled, three-valved, septicidal: valves hard. Seeds solitary in each cell, surrounded by a broad membranaceous wing. Cotyledons intricately folded, multifid. — Trees producing balsam and resin. Leaves deciduous, alternate towards the top of the branches, unequally pinnated; leaflets opposite, serrated. Stipules none. Racemes terminal or axillary. Flowers on short pedicels, white (Wight and Arnott).

Sp. Char.—Leaflets oblong, obtuse, serrated, pubescent. Racemes axillary, single, shorter than the leaves (Wight and Arnott).

Hab.—Mountainous parts of Coromandel.

Description.—Olibanum, Indian Olibanum, or Olibanum of the Boswellia serrata (gummi-resina Olibanum; gummi Olibanum; Olibanum indicum sen ostindicum) is imported from India in chests. It consists of round, oblong, or ovate pale-yellowish, semi-opaque, fragile tears, having a balsamic resinous odour.

Mr. Johnstone states that it is a mixture of at least two gum-resins:—

1. One variety of gum-resin consists of opaque, dull, hard, and brittle pieces, which, when introduced into alcohol, become almost immediately white and opaque, from a white powdery coating or crust left on their surface as the soluble portion is taken up. This variety constitutes the larger portion of the olibanum of commerce, and is the more fragrant when burned. It contains an acid resin and a volatile oil.

2. The second variety is in clearer, yellower, less brittle, and opaque pieces, generally in long tears (stalactitic?) as they have flowed from the tree. When introduced into alcohol, they become clear and transparent. They contain less gum. Their resin resembles colophony.

On the above statement I may remark, that all the tears of olibanum which I have tried became opaque when immersed in alcohol.

The substance called on the continent African or Arabian Olibanum (Olibanum arabicum) is rarely met with in this country. It consists of smaller tears than those of the Indian variety. They are yellowish or reddish, and intermixed with crystals of carbonate of lime. Some have supposed it to be the produce of Juniperus,—some of an Amyris,—others of Boswellia glabra, which Roxburgh says yields a substance used as an incense and a pitch in India.

Composition.—Olibanum (Indian?) was analysed by Braconnot, who found the constituents to be as follows:—volatile oil 8, resin 56, gum 30, matter like gum, insoluble in water and alcohol 52; loss 0.8.

1. Volatile Oil.—By distillation with water, olibanum yielded Stenhouse's colourless volatile oil, similar to oil of turpentine, but smelling more agreeably. Its formula is C_{35}H_{28}O, which is identical with that for oil of spearmint.

2. Resin.—According to Johnston, olibanum contains two kinds of resin.
   a. Acid Resin.—This is found in the rounded, opaque, dull, hard, and brittle pieces, which become covered with a white crust. Its formula is C_{46}H_{32}O_{6}.
   b. Resin resembling Colophony.—This is found in the clearer, yellower, less brittle and opaque long tears (stalactitic?). Its formula is C_{40}H_{22}O_{4}.

Physiological Effects.—Olibanum is regarded as a stimulant of the same kind as the resins or oleo-resins (p. 182).

Uses.—It is rarely employed internally. Formerly it was used to

1 Ann. de Chim. Ixviii. 60.
2 Pharmaceutisches Central-Blatt für 1840, p. 828.
3 Phil. Trans. for 1839, p. 304-5.
restrain excessive discharges from the mucous membranes. Thus it was given in chronic diarrhoea, old catarrhs, but more especially in leucorrhoea and gleet. It was also administered in affections of the chest; as hemoptysis. It has been used as an ingredient of stimulating plasters. As a fumigating agent it is employed to overpower unpleasant odours, and to destroy noxious vapours.

**Administration.**—Dose, 5ss. to 5j., formed into an emulsion by the aid of the yolk of an egg.

5. **BALSAMODENDRON MYrrha, Nees, L.—THE MYRRH TREE.**

Balsamodendron (Protium?) Myrrha, E.

*Sex. Syst. Octandria, Monogynia.*

(Gummi-resina, L.—Gummy-resinous exudation, E.—Myrrha, D.)

**History.**—The earliest notice of myrrh occurs in the Old Testament, from which it appears that this gum-resin was an object of trade with the Eastern nations more than 3,500 years ago. In the Hebrew language it is termed Mur, in allusion to its bitterness. The Greeks, who were well acquainted with it, called it ζυκόννα; or, in the Eolic dialect, Μύρκα. Hippocrates employed it in medicine in several diseases; and Dioscorides describes several kinds of it, the most esteemed being the **Troglophyta**. Some of the ancient poets tell us that the name of this gum-resin was derived from Myrrha, the daughter of Cinyras, King of Cyprus, who fell in love with her own father, and after having had criminal intercourse with him, fled to Arabia, where she was changed into a tree which still bears her name.

Notwithstanding the early knowledge of, and acquaintance with, the uses of myrrh, we had no accurate account of the tree which yields it until the return of Ehrenberg from his travels with Hemp- rich, during 1820-25, in various parts of Africa and Asia, and who brought with him a specimen of the tree, which has been described and figured by Nees von Esenbeck under the name of Balsamodendron Myrrha. The first notice of this discovery of these travellers which I have met with, is in Alex. Humboldt’s “Bericht über die naturhistorischen Reisen der Herren Ehrenberg und Hemprich,” &c. published at Berlin in 1826.

**Botany.** *Gen. Char.—Flowers irregular. Calyx four-toothed, persistent. Petals four, linear-oblong; aestivation induplicate-valvate. Stamens eight, inserted under the annular disk; elevated warts between the stamens. Ovary one. Style one, short, obtuse. Berry or drupe ovate, acute, with four sutures, one- to two-celled; cells one-seeded.—Oriental trees giving out balsam. Leaves pinnated; leaflets three to five, sessile, without dots (De Cand.)*

*Sp. Char.—Stem shrubby, arborescent; branches squarrose, spinescent. Leaves ternate; leaflets obovate, obtuse, obtusely toothed at the apex, the lateral smooth. Fruit acuminate (Nees).*
MYRRH TREE.

Bark pale ash-grey, approaching white. Wood yellowish white; both it and the bark have a peculiar odour. Leaves on short stalks. Flowers unknown. Fruit ovate, smooth, brown, somewhat larger than a pea; surrounded at the base by a four-toothed calyx, and supported on a very short stalk.

Hab.—Gison, on the borders of Arabia Felix.

This species is considered by Lindley to be identical with the Amyris Kataf of Forskal, the Balsamodendron Kataf, Nees; Protium Kataf, Lindley. But the identity of the two plants is by no means satisfactorily demonstrated. A. Kataf is distinguished, 1st, by the absence of thorns; 2dly, by the leaves being four times larger, and the lateral leaflets agreeing both in form and size with the terminal ones; 3dly, the fruit (according to Forskal) is round, with a depressed umbilicus at the point.

Exudation of Myrrh.—Myrrh, according to Ehrenberg, exudes like cherry-tree gum, from the bark of the tree. It is at first soft oily, and of a pale yellow colour; but, by drying, becomes darker and redder.

Description.—Myrrh (gummi-resina myrrha; gummi myrrha) is imported from the East Indies in chests, each containing from one to two hundred weight. Formerly the finest kind was brought from Turkey (Turkey myrrh), and an inferior one from the East Indies (East India myrrh); but at the present time nearly the whole is brought from India. In 1839, duty (6s. per cwt.) was paid on 216 cwt. Sometimes the same chest contains myrrh of all qualities, which is then termed myrrh in sorts (myrrha naturalis seu myrrha in sortis): but commonly it is brought over more or less sorted.

Myrrh is only partially soluble in water, alcohol, or ether: the first of those liquids takes up the gum principally, the two latter the resin and oil. Water takes up more of the myrrh than alcohol does. Alkaline solutions are good solvents for myrrh. A few drops of nitric acid dropped on a small fragment of myrrh, or on a concentrated tincture, develops a red colour.

1. Myrrh of first quality; Turkey myrrh (Myrrha turcica; M. vera seu rubra vel pinguis).—It occurs in pieces, of irregular forms and of variable sizes, and which consist of tears (either distinct or agglomerated), usually covered with a fine powder or dust. In a chest of it a few pieces of fine quality may sometimes be met with, nearly as large as a man’s fist. The colour varies, being pale reddish-yellow, red, or reddish-brown. The pieces are fragile, semi-transparent, with a dull, in part splintery, fatty kind of fracture. In consequence of imperfect desiccation the largest and finest pieces often present inter-

b Fl. Med. 170.

c Fl. Egypt. Arab. 80.
nally, opaque, whitish or yellow striae, or veins, which have been compared by Dioscorides, Pliny, and many others, to the white marks on the nails. The odour of myrrh is aromatic and balsamic, peculiar, but to most persons pleasant; the taste is bitter, acrid, and aromatic. The purest, palest, and most odorous pieces are sold as picked myrrh (myrrha electa seu selecta).

2. Myrrh of second quality; Myrrh in distinct small tears or grains.—Imported from the East Indies in chests. It consists of distinct tears or grains, which are rounded or irregular, and vary in size from that of a pin’s head to a pepper-corn, none of them in my specimens being so large as a small pea. They are somewhat shiny, more or less transparent, and vary in colour from pale or whitish yellow to reddish brown. It consists of tears of myrrh intermixed with fragments of gum-arabic, and of some resin very like mastic, or juniper. Many druggists in this country regard it as merely the siftings of the finest kind, but I cannot agree with them in this opinion.

3. Myrrh of third quality; East India Myrrh (Myrrha indica seu ostindica).—Formerly this was the only kind imported from the East Indies. It occurs in pieces, which are darker coloured than those of the so-called Turkey myrrh, and whose average size does not exceed that of a walnut. It is often mixed with other substances, particularly with Indian Bdellium (the produce of Amyris Commiphora), and with a substance of similar appearance to dark red-coloured Senegal gum (Opocalpasum f). Composition.—Myrrh was analyzed, in 1816, by Pelletier d, and in 1819 by Braconnot e and by Brandes f.

<table>
<thead>
<tr>
<th></th>
<th>Brandes</th>
<th>Braconnot</th>
<th>Pelletier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>2-60</td>
<td>2-5</td>
<td>3-4</td>
</tr>
<tr>
<td>Resin</td>
<td>22-24</td>
<td>23-0</td>
<td>25-6</td>
</tr>
<tr>
<td>Gum</td>
<td>5-36</td>
<td>46-0</td>
<td>5-56</td>
</tr>
<tr>
<td>Salt</td>
<td>54-38</td>
<td>66</td>
<td>9-32</td>
</tr>
<tr>
<td>Impurities</td>
<td>9-32</td>
<td>12-0</td>
<td>5-6</td>
</tr>
<tr>
<td>Loss</td>
<td>2-94</td>
<td>16-3</td>
<td>2-94</td>
</tr>
</tbody>
</table>

1. Volatile Oil.—Colourless, though by age it becomes yellowish. It is a thin fluid, heavier than water, having the odour and taste of myrrh, and being soluble in alcohol, ether, and the fixed oils. It partially evaporates in the air, the residue being a glutinous varnish-like substance. It readily distils over with water, but not with spirit. With sulphuric, nitric, and hydrochloric acids, it forms red solutions.

2. Resin.—According to Brandes, this is of two kinds, both of which are soluble in alcohol.

---

4 Ann. de Chim. lxx. 45.
5 Ibid. lxvii. 52.
a. Soft resin.—Odorous, soft at ordinary temperatures, and soluble in ther. Unverdorben regards it as a mixture of hard resin and volatile oil.

b. Hard resin (Myrrhic acid?)—Inodorous, hard, insoluble in ether, soluble in caustic alkalis, forming resinates (myrrhates?). The resinate of baryta is soluble in water, but not in alcohol.

g. Gum.—Is also of two kinds: a. Soluble in water; the solution forming precipitates with alcohol and the salts of lead, silver, the protosalts of tin, and of mercury. b. Insoluble in water.

**Physiological Effects.**—In small or moderate doses, myrrh, promotes the appetite, creates an agreeable warmth in the stomach, and occasions slight constipation. Its continued employment in these quantities assists the assimilative functions, increases the muscular activity, gives greater firmness to the solids, and diminishes excessive secretion from the mucous membranes.

In large doses (as from half a drachm to a drachm) it excites a disagreeable sensation of heat in the stomach, and in irritable conditions of this viscus may even bring on a slight inflammatory state; it accelerates the frequency and increases the fulness of the pulse, gives rise to a febrile condition of the body, and creates a feeling of warmth in the mucous membrane (especially in the membrane lining the air-passages). It has been supposed to have a specific stimulant operation on the uterus, and has, in consequence, been termed emmenagogue; but it does not appear to have any title to this appellation.

The local operation of myrrh is that of a mild astringent and a moderate stimulant. Kraus says it is very similar to that of cinchona. In its remote effects myrrh partakes of both the tonic and stimulant characters, and hence some have denominated it a tonico-stimulant; and as its stimulant powers are analogous to those of the balsams, it has also been called a tonico-balsamic.

Myrrh differs from the fetid gum-resins (asafoetida, galbanum, &c.) in not possessing that influence over the nervous system which has led to the use of the latter in various spasmodic diseases, and to their denomination of antispasmodics. From the balsamic substances it is distinguished by its tonic influence. It has some relation to cascarailla, but is more stimulant.

**Uses.**—The employment of myrrh is indicated in diseases characterized by feebleness of the vascular action, by weakness of the muscular fibre, and by excessive secretion from the mucous membranes. Relaxed and leucophlegmatic constitutions best admit of its use. It is frequently associated with tonics, especially the chalybeates, or with aloes. Indeed it is rarely used alone. It is contraindicated in inflammatory diseases, and in plethoric individuals. It is used in the following cases:

1. In disordered conditions of the digestive organs arising from or connected with an atonic condition of the alimentary canal, as in some forms of dyspepsia, apepsia, flatulence, &c.

2. In disordered states of the menstrual functions characterized by

---

Heilmittellehre.
a lax and debilitated state of the system, as in many cases of amenorrhæa and chlorosis.

3. In excessive secretion from the mucous membranes unconnected with inflammatory symptoms, and accompanied by marks of debility. In chronic pulmonary catarrh, for example, it is sometimes admissible and useful. It has also been used to check puriform expectoration in phthisis pulmonalis, though it is now rarely employed for this purpose, as in most cases it proves either useless or injurious. In mucous discharges from the urino-genital organs, as well as from the alimentary canal, it has also been administered.

4. As an external application, myrrh is employed for various purposes. Thus it is used as a dentifrice, either alone or mixed with other substances; and in caries of the teeth, and in a spongy or ulcerated condition of the gums, is very serviceable. As a gargle in ulcerations of the throat, tincture of myrrh, diluted with water, is frequently employed. In foul ulcers, myrrh has been used to destroy unpleasant odour, to promote granulations, and to improve the quality and diminish the quantity of the secreted matters: for these purposes it has been applied in a pulverulent form, as an ointment, or as a wash.

Administration.—Dose, gr. x. to 5ss. It is given in the form of powder, pill, or emulsion. The aqueous infusion and extract, which have been recommended for their mildness, are seldom employed, and very rightly so as I conceive. Myrrh is a constituent of several pharmacopoeial preparations; as mistura ferri composita (p. 862), pilulae ferri compositae (p. 863), pilulae aloes cum myrrhâ (p. 977), decoctum aloes compositum (p. 978), pilulae rhei compositae (p. 1189), and pilulae galbani compositae (p. 1462).

TINCTURA MYRRHÆ, L. E. D.; Tincture of Myrrh (Myrrh, bruised [in moderately, fine powder, E.], 3ij. [5ijss. E.]; Rectified Spirit, Oij. [Oss. and Proof Spirit, Ojss. wine-measure, D.]) Macerate for fourteen days [seven, D.], and filter, L. D. “Pack the myrrh very gently, without any spirit, in a percolator; then pour on the spirit; and when thirty-three fluidounces have passed through, agitate well, to dissolve the oleo-resinous matter which first passes, and which lies at the bottom. This tincture is much less conveniently obtained by the process of digestion for seven days,” E.)—Tonic and stimulant. Seldom employed internally, and then usually as an adjunct.—Dose, 3ss. to 5j. It is applied as a stimulant to foul and indolent ulcers. Diluted with water (which renders it slightly milky by the separation of the resin, without any precipitate being formed), it is used as a wash for the mouth in ulceration and sponginess of the gums, and as a gargle in affections of the throat.

OTHER MEDICINAL TEREBINTHACEÆ.

1. Elemi.—The history and origin of Elemi is involved in great obscurity. It appears that the resinous products of various terebinthaceæous trees have been described under this name. The Edinburgh College correctly, as I conceive, declare
elemi to be the "concrete resinous exudation from one or more unascertained plants." The London and Dublin Colleges, on the other hand, call it the resin of Amyris elemifera of Linnaeus. But this distinguished botanist has confounded, under one name, two distinct plants; viz. Icita Icicariba, de Candolle (Iicariba, Pison), a Brazilian tree (yielding, according to Pison, a resin similar to the so-called gum elemi), and Amyris Plumieri, de Candolle, a native of the Antilles, which also yields a resin. To assist in determining the origin of elemi, I have taken much pains to ascertain its commercial route; and I find that all the importations of it, which I can trace, were from Amsterdam or Hamburg. Pomet also states, that true elemi was brought from Holland: whence I conclude that it is the produce of a Dutch settlement. But one of the importers expressed to me his belief (in which I do not coincide), that the elemi brought from Holland was spurious, being made of common frankincense (p. 1047). It would appear that formerly it came from Ethiopia by way of the Levant. It is possible that it may be the produce of the Canarium Zephyrinum sive sylvestre primum Canari Barat of Rumphius,1 which he says yields a resin so like elemi that it may be taken for it, and he puts a query, whether this tree may not be the source of it. I have received from Dr. Christison a specimen of the resin of Canarium balsamiferum of Ceylon, which in odour and general appearance strongly resembles elemi. I have met with three kinds of elemi:—1st. Elemi in flag leaves; Resine elemi en pains, Guibourt; Resina Elemi orientalis, Martins. This is imported from Holland in triangular masses, weighing from one to two pounds each, enveloped in a palm-leaf. It agrees in most of its properties with the next variety. Martins ascribes it to Amyris zeylanica (Balsamodendron zeylanicum, Kunth). But if this were correct, it would doubtless be imported direct from Ceylon to England, which it is not. —2nd. Elemi in the lump. This differs from the following kind only in its much paler yellow colour. —3rd. Brazilian Elemi; Resine elemi du Brésil, Guibourt. This variety I received from Professor Guibourt. If it be really brought from the Brazils, it is doubtless obtained from Icita Icicariba (De Candolle) by incisions into the stem, and is gathered twenty-four hours afterwards. 1 It is imported in cases containing two or three hundred pounds each. It is soft and unctuous, but becomes hard and brittle by cold and age. It is semi-transparent, of a yellowish white, mixed with greenish points; its odour is strong, agreeable, analogous to that of fennel, and owing to a volatile oil which may be obtained from it by distillation; 2 as it owes its properties to this oil, it should be selected recent, not too dry, and strongly odorous2 (Guibourt). It is soluble in alcohol, with the exception of its impurities, and a white, opaque, insipid, inodorous, crystallizable substance, called elemine, which is soluble in boiling alcohol. Martin describes African Elemi (the genuine elemi of the ancients) as being in small pieces like scammony, and having an acrid taste. Bonastre analyzed elemi, and found its constituents to be, volatile oil 12·5, resin soluble in both hot and cold alcohol 60·0, resin soluble in hot but not in cold alcohol (elemine) 24·0, bitter extractive 2·0, impurities 1·5. The resin a, (readily soluble in cold alcohol) consists, according to Johnston, of C\(^{40}\) H\(^{32}\) O\(^{4}\); while the resin b, (sparingly soluble in cold alcohol) is composed of C\(^{40}\) H\(^{38}\) O.

The physiological effects of elemi are similar to those of the terebinthines. It is, however, never employed internally. Its principal or sole use is as a constituent of the Unguentum Elemi, L. D., which is composed, according to the London College, of Elemi, lb. j.; Common Turpentine, 3\(^{\circ}\); Suet, lb. i.; Olive Oil, f\(^{3}\)ij. The Elemi and Suet are melted together and then removed from the fire, and the turpentine and oil immediately added: the mixture is then expressed through linen. The Dublin College employs lb. j. of Elemi, lb. ss. of White Wax, and lb. iv. of Prepared Hogslard.—Elemi ointment is stimulant and digestive. It is applied as a stimulant to old and indolent ulcers, and to promote the discharge from issues and setons. It is an imitation of the ointment recommended by Arcaeus, in 1574.1

---

2. Balm of Gilead (Balsamum gileadense; B. de Mecca; Opopolbassamum; Balm of the Old Testament; Βαλκαμα of Theophrastus and Dioscorides) is procured from Balsamodendron gileadense, a middling-sized tree growing in Arabia. Mr. Bruce says it is obtained by cutting the bark of the tree with an axe, and receiving the juice in a small earthen bottle. The quantity obtained in this way is, however, very small; and none of it, it is said, reaches this country, that which occasionally comes here being obtained by boiling the branches and leaves in water. It is a whitish, turbid, thick, very odorous liquid, which resinifies, and becomes yellow by keeping. Trommsdorf analyzed it, and found it to consist of volatile oil 30.0, soft resin insoluble in alcohol 4.0, hard resin soluble in alcohol 64.0, extractive 0.4, loss 1.6. Bonastre also analyzed it. Its physiological effects are believed to be similar to balsam of copaiva and the liquid turpentines. The most wonderful properties were formerly ascribed to it. It is rarely or never employed by Europeans, but is adapted to the same cases as the terebinthines (see p. 1048). The Asiatics use it for its odoriferous as well as its medicinal qualities.

3. The term Bdellium is applied to two gummy-resinous substances. One of these is Indian Bdellium, or false Myrrh (the Bdellium of Scripture), which is obtained from Amyris (Balsamodendron ?) Commiphora. Dr. Roxburgh says, that the trunk of this tree is covered with a light-coloured pellicle, as in the common birch, which peels off from time to time, exposing to view a smooth green coat, which in succession supplies other similar exfoliations. This tree diffuses a grateful fragrance, like that of the finest myrrh, to a considerable distance around. Dr. Royle was informed that this species yielded bdellium; and in confirmation of his statement I may add, that many of the pieces of this bdellium in my museum have a yellow pellicle adhering to them precisely like that procured from the common birch, and some of the pieces are perforated by spiny branches—another character serving to recognize the origin of this bdellium. Indian bdellium has considerable resemblance to myrrh. Many of the pieces have hairs (of the goat?) adhering to them. The other kind of bdellium is called African Bdellium, and is obtained from Heudolotia africana. It is a native of Senegal, and is called on the natives, who make toothpicks of its spines, Niotont. It consists of rounded or oval tears, from one to two inches in diameter, of a dull and waxy fracture. By age they become opaque, and covered, externally, by a white or yellowish dust. It has a feeble but peculiar odour, and a bitter taste. Pelletier found it to consist of resin 59.0, soluble gum 9.2, bassorin 30.6, volatile oil and loss 1.2. Resin of bdellium [African bdellium?] consists, according to Johnstone, of C_{40} H_{31} O_{5}.

Order LXIII.—Rhamnaceae, Lindley.—The Buckthorn Tribe.

Rhamnus, Jussieu.—Rhamnee, De Candolle.

Essential Character.—Tube of the calyx adherent to the ovary, lobes valvate in aestivation, definite in number, four or five. Petals as many as (rarely none), and alternate with, the lobes of the calyx; often squamiform with a concave limb. Stamens as many as the petals, and opposite to them; anthers two-celled.
Ovary either adnate to the whole of the calyx, or adherent at the lower part or middle, two or four-celled; cells with one ovule each. Style two to four. Pericarp usually indehiscent, baccate, drupaceous, or samaroideous, rarely capsular. Seeds erect, distinct from aril; albumen none, or usually fleshy; embryO straight in the axis of the seed, with an inferior radicle and somewhat foliaceous cotyledons. - Shrubs or trees. Leaves simple, alternate, rarely opposite, often with stipules. Flowers small, often greenish (De Cand.)

**Properties.** — Require further examination. The fruit of Rhamnus contains purgative and colouring matters: that of Zizyphus is acidulous, saccharine, and alimentary.

**Rhamnus Catharticus, Linn. L. E. D. — Common Buckthorn.**

Sex. Syst. Pentandria, Monogynia.

(Baccar, L. D.—Fruit, E.)

History. — According to Dr. Sibthorp\(^3\), the ὑμνός of Dioscorides is Lycium europæum. The earliest notice of Rhamnus catharticus is in Tragus\(^4\).

Botany. Gen. Char. — Calyx four- to five-cleft, often circumscissile in the middle after flowering; the base persistent under, and adherent with, the fruit. Petals alternate with the lobes of the calyx, or none. Stamens inserted opposite the petals. Style two- to four-cleft. Fruit almost juiceless, or baccate, two- to four-celled; cells in the juiceless fruit, separable, one-seeded (rarely two-seeded), dehiscing inwards by a longitudinal chink. Seeds oblong, marked at the external side by a deep groove, which is broader towards the base (De Cand.)


A spreading shrub with terminal spines. Leaves with four or six strong lateral nerves parallel with the margin or rib. Stipules linear. Flowers yellowish green: the males with broader petals, four stamens and one short style, without either ovary or stigma: the females smaller, with four stigmas projecting beyond the calyx, and rudimentary stamens. Fruit black, four-celled.

Hab. — Indigenous; in hedges, groves, and thickets. — Flowers in May. The fruit is ripe in September.

Composition. — The expressed juice of buckthorn berries has been examined, chemically, by Vogel\(^8\), and by Hubert\(^6\).

<table>
<thead>
<tr>
<th>Vogel's Analysis</th>
<th>Hubert's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peculiar colouring matter.</td>
<td>Green colouring matter.</td>
</tr>
<tr>
<td>Acetic acid.</td>
<td>Acetic and malic acids.</td>
</tr>
<tr>
<td>Sugar.</td>
<td>Sugar.</td>
</tr>
<tr>
<td>Nitrogenous matter.</td>
<td>Bitter substance (cathartine ?)</td>
</tr>
<tr>
<td><strong>Buckthorn juice</strong></td>
<td><strong>Buckthorn juice</strong></td>
</tr>
</tbody>
</table>

---

\(^3\) Prodr. Fl. Græcæ, i. 155.


\(^6\) Bull. de Pharm. iv. 64.

1. Purgative Principle.—The nature of the purgative principle of buckthorn requires further elucidation. Hubert asserts that it possesses the properties of cathartine before described (see p. 1604); but his experiments are not conclusive. As from 25 to 30 berries are sufficient to purge, while an ounce of the juice is required to produce the same effect, it is probable that the greater part of the purgative principle resides in the marc left after the expression of the juice.

2. Colouring Matter.—It is soluble in water, less so in alcohol, and insoluble in ether and oils. Acids redden it; whereas alkalis render it green. Vogel thinks its proper colour is green, and that it only becomes purple by the action of the acetic acid, which is developed in the ripe fruit. When the juice is evaporated to dryness with lime, it constitutes sap-green, or the vert de vessie of the French.

3. Mucilage.—The mucilage of buckthorn is of a peculiar nature. It disappears by fermentation. It is abundant in the recent juice, to which it gives consistence.

Physiological Effects.—The berries, as well as their expressed juice, are powerful hydragogue cathartics; usually griping and causing great thirst, and sometimes operating with considerable violence. "Syrup of buckthorn," says Sydenham", "purges in a manner only water, and evacuates a great quantity of it, and does not disturb the blood, nor render the urine high coloured, as other purges usually do: and this syrup has but one ill property—viz. that whilst it is working, it makes the sick very thirsty. But if you give the greatest dose of it to those that are difficulty purged, it will not give many stools, nor bring away so much water from them as it ought."

Uses.—Buckthorn berries were formerly employed as cathartics, but their violent operation, and the sickness, griping, and thirst occasioned by them, have led to their disuse. "They be not meete to be ministered," says Dodoens', "but to young and lustic people of the countrey, which doe set more store of their money than their lives." The syrup is the only preparation now in use.

Administration.—Dose of the recent berries, 3j.; of the dried ones, 5j.; of the expressed juice, f3ss. to f5j.

Syrupus Rharnii, L. E. D.; Syrup of Buckthorn.—(Fresh Juice of Buckthorn Berries, Oiv. [Oijss, wine-measure, D.]; Ginger sliced, Allspice bruised, of each, 5vj. [3iij. D.]; Pure Sugar, lb. iv. [3xxix. D.]. Set by the juice for three days, that the dregs may subside, and strain. To a pint of the clear juice add the Ginger and Allspice; then macerate for four hours with a gentle heat, and strain; boil down the residue to a pint and a half; mix the liquors; add the sugar, and dissolve).—Cathartic. It is employed as an adjunct to purgative and occasionally to diuretic mixtures. Sydenham found it, in one case, most beneficial in dropsy; and "with the juvenile confidence of an inexperienced man, verily believed," as he tells us, that he "had got a medicine that would cure any manner of dropsy;" but he found his "mistake in a few weeks."—Dose, 3ss. to 5j.

* Works, by Dr. Pechey, p. 391, 4th ed.
Order LXIV.—Simarubaceæ, Lindley.—The Quassia Tribe.

Simarubeæ, Richard.

Essential Character. — Flowers hermaphrodite, or rarely by abortion unisexual. Calyx four- or five-partite, persistent. Petals four or five, hypogynous, erect, deciduous. Stamens equal in number, or twice as many as, the petals, inserted on an hypogynous disk, free. Ovary with lobes as numerous as the petals; style one, filiform, enlarged at the base. Carpels as many as the petals, articulated on the axis, capsular, bivalved, dehiscing inwardly, monosperous. Seeds exalbuminous, pendulous; cotyledons two, thick; radicle short, superior.—Trees or shrubs with a very bitter bark and milky juice. Leaves alternate, pinnate, without stipules (De Cand.)

Properties.—Bitterness is the prevailing quality of the order (see Quassia).

1. Simaruba amara, Aublet, E.—Bitter Simaruba or Mountain Damson.

Simaruba officinalis, De Candolle, L.—Quassia Simaruba, Linn. D.

Sex. Syst. Decandria, Monogynia.

(Radicis cortex, L.—Root, E.—Cortex radicis, D.

History.—Simaruba bark was first known to Europeans in 1713, when some of it was sent to Paris from Guiana, as the bark of a tree called by the natives Simarouba, which they employed with great success in dysentery. The first authentic botanical account of the tree was given by Dr. Wright.*

Botany. Gen. Char.—Flowers unisexual. Calyx small, cup-shaped, five-toothed or parted. Petals five, longer, spreading. Males: stamens nearly equal to the petals, arranged around a receptacle bearing at its apex five very minute lobes (rudiments of ovaries), or sometimes none. Females: ovaries five, placed on an even disk, surrounded at the base by ten short hairy scales (rudiments of stamens). Styles the same number, short, distinct at the base; there united into one, crowned by a broader five-lobed stigma. Fruit five drupes (Lindley).

Sp. Char.—Male flowers decandrous. Stigma five-partite. Leaves abruptly pinnate; leaflets alternate, somewhat stalked, pubescent beneath (De Cand.)

A very tall tree. Roots long and creeping. Stem thick; bark bitter, internally white, fibrous and tough, externally blackish and furrowed in the old trees, but smooth and gray, with yellow spots, in the young ones. Leaves alternate; leaflets alternate, two to nine on each side, oval, firm, mucronate. Flowers small, yellowish white, some male, others female, mixed, in panicles. Fruit of five, ovate, black, smooth capsules, placed on a fleshy disk.

* Trans. Royal Soc. of Edinb. vol. ii. part ii. p. 73.
Hab.—Guayana, Cayenne, Jamaica.

Description.—The simaruba bark (cortex simarubae) of the shops, is the bark of the root (cortex radicis simarubae), and is brought from Jamaica in bales. It is odourless, but bitter, and occurs in broad, folded, very fibrous pieces, several feet long, which are externally rough, warty, and marked with transverse ridges. The epidermis is of a grayish or whitish yellow colour: beneath it the bark is darker, and yellowish brown. On the inner surface the bark is pale yellowish white.

Composition.—Simaruba bark was analyzed by Morin, who found in it the following substances:—Quassite, a brittle resin, an aromatic volatile oil having the odour of benzoin, woody fibre, umin, an ammoniacal salt, malic acid, traces of gallic acid, malate and oxalate of lime, oxide of iron, and silica. No notice is taken of the mucilage, which, according to Pfaff, constitutes nearly one-fourth part of the bark.

Physiological Effects.—In small doses simaruba acts like the simple bitter tonics, whose effects have been already described (p. 188). In full doses, however, it causes vomiting and purging, and is said also to promote perspiration and urine. Dr. Wright states, that negroes are less affected by it than whites.

Desbois de Rochefort classed it among emetics; and Bichat proposed it as a substitute for ipecacuanha. It is, however, usually arranged with the tonics.

Uses.—Simaruba may be employed in the same cases as other vegetable bitters (see p. 188). It has been principally celebrated in dysentery (whence the Germans call it Ruhrrinde, or dysentery-bark) by Dr. Wright and others. It is, of course, only applicable in the latter stages of the acute and the asthenic and chronic forms of the disease. More recently, Dr. O'Brien has borne testimony to its good effects, when given in conjunction with opium, in epidemic dysentery. It has also been employed in the advanced stages of diarrhoea. Like other vegetable tonics, it may be administered in dyspepsia, anorexia, and intermittents. It is a remedy, however, which is seldom used.

Infusum Simaruba, L. E. D. Infusion of Simaruba Bark.—Simaruba bark, bruised, 3ij. [5ss. D.]; Boiling [distilled, L.] Water, Oj. [Oss. wine-measure, D.] Macerate for two hours in a lightly-covered vessel, and strain [through linen or calico, E.].—Tonic; in large doses emetic.—Dose, as a tonic, f5j. to f3ij.

1 Journ. de Pharm. viii. 57.
2 Syst. d. Mat. Med. ii. 74.
3 Cours Elément. de Mat. Méd. i. 337.
4 Account of Quassia Simaruba.
5 Trans. of the King and Queen’s College of Phys. vol. v. p. 237. Dublin.
2. PICRÆ'NA EXCELS'Ä, Lindley, E.—THE LOFTY BITTER-WOOD TREE.

Quassia excelsa, Swartz, L. D.—Picrania excelsa, Lindley.—Quassia polygama, Lindsay.

Sex. Syst. Decandria, Monogynia.

(Lignum, L. D.—Wood chiefly of Picrania excelsa, seldom of Quassia amara, E.)

History.—The wood of this tree has been introduced as a substitute for that of Quassia amara, with which it has often been confounded.

Botany. Gen. Char.—Flowers polygamous. Sepals five, minute. Petals five, longer than the sepals. Stamens five, about as long as the petals, rather shaggy; anthers roundish. Ovaries three, seated on a round, tumid receptacle. Style three-cornered, bifid: stigmas simple, spreading. Fruit three, globose, one-celled, bivalved drupes, which are distant from each other, and placed on a broad hemispherical receptacle (Lindley).

Sp. Char.—The only species.

A tall, beautiful timber tree, sometimes 100 feet high. Leaves pinnate with an odd one; leaflets four to eight pairs, opposite, stalked, oblong, acuminate, unequal at the base. Racemes towards the ends of the branchlets, axillary, very compound. Flowers small, pale yellowish green. Drupe size of a pea, black, shining, round.

Hab.—Jamaica.

Description.—Quassia wood (lignum quassiae),—sometimes called Jamaica quassia wood (lignum quassiae jamaicensis) in order to distinguish it from the wood of Quassia amara,—is imported from Jamaica in billets of various sizes (sometimes a foot in diameter, and several feet in length), covered externally with a smooth brittle bark. The wood is white, but by exposure to the air becomes yellowish; it has no odour, but a most intensely bitter taste. Floors made of quassia wood retain for many years their bitterness. An efflorescence of nitrate of potash is frequently observed on it.

Adulteration.—Quassia wood has recently been somewhat scarce, and, in consequence, its chips have been adulterated with the chips of other woods; but the intense bitterness of the genuine wood readily distinguishes it.

Composition.—Though quassia wood has been the subject of repeated chemical investigation, I am unacquainted with any complete analysis of it. But from the experiments of Pfaff'a and others, the following appear to me to be the principal constituents of it:—volatile oil a minute trace, a bitter principle (quassite), gummy extractive, pectin, woody fibre, and various salts (as oxalate, tartrate, and sulphate of lime, chlorides of calcium and sodium, an ammoniacal salt, and nitrate of potash).

---

*a* Lindsay, Trans. Roy. Soc. Edin. iii. 205.
*a* Planche, Journ. de Pharm. xxiii. 542.
Quassite; Bitter Principle of Quassia; Quassin.—Obtained by adding lime water to a concentrated aqueous decoction of quassia (to separate the pectin and other substances), evaporating and treating the residue with alcohol, which takes up the quassite, a brown colouring matter, and some salts. By repeated solution and evaporation in alcohol, with a little ether, the quassite is obtained pure. Quassite occurs in small, white, prismatic crystals, which are fusible, odourless, intensely bitter, readily soluble in alcohol, but very slightly so in water or ether. Its solubility in water is increased by several salts and vegetable principles. Its watery solution is precipitated (white) by tannin, but not by iodine, chlorine, corrosive sublimate, salts of iron, acetate, or diacetate of lead. It is a neutral body, though soluble in sulphuric and nitric acids. It consists of carbon 66.912, hydrogen 6.827, and oxygen 26.261; or $\text{C}_{10} \text{H}_6 \text{O}_3$.

Physiological Effects. a. On Animals.—From recent experiments it appears that quassia wood acts on animals as a narcotic poison. Dr. Wright tells us that no insect will live near cabinet work made of it. It has been long known that an aqueous infusion of this substance was an excellent fly-poison; but Hartl, one of Buchner’s pupils, has lately shown that it also possesses poisonous properties with respect to the larger animals. Thus he found that a rabbit, into a wound of whose thigh a grain of the alcoholic extract of quassia had been introduced, lost his strength and liveliness, and died on the third day. A second experiment made on an older and stronger animal was attended with the same results. No pain appeared to be experienced, nor were there any marks of irritation or inflammation observable after death. Kurz mentions that complete paralysis of the hind extremities of a dog affected with the mange (Feltründe) was brought on by washing the ulcers with decoction of quassia: in seven hours, however, it disappeared.

These experiments seem to show that the bitter principle of quassia possesses properties somewhat like those of the Amer of Welter.

b. On Man.—In the usual medicinal doses, quassia operates as a stomachic and tonic—that is, it is bitter to the taste, promotes the appetite, and assists the digestive functions. It is devoid of all irritable, stimulant, and astringent properties; and has been, therefore, sometimes taken as a type of the simple or pure bitters. It is more powerful than, but in other respects analogous to, gentian in its operation. “We can find nothing in this wood,” says Dr. Cullen, “but a pure and simple bitter;”—and he goes on to observe that he believes it to be an excellent substance, capable of doing all that any pure and simple bitter can do, but no more.

Does it act as a narcotic on man, as on other animals? I have employed, and seen others administer quassia most extensively, but never had grounds for suspecting any effect of the kind alluded to. Yet some have observed effects which certainly seem to favour the notion that quassia possesses a specific influence over the cerebrospinal system. In females endowed with extreme susceptibility, I

---

2 Med. Plants of Jamaica.
3 Buchner, Toxicol. S. 266.
5 Mat. Med.
have seen, says Barbier\textsuperscript{k}, involuntary movements of the arms and legs, produced by the aqueous infusion of quassia. Kraus\textsuperscript{1} says that the continued use of quassia brings on amblyopia (dimness of sight); and Kurtz asserts that the long-continued use of quassia has brought on amaurosis.

Like many other substances, quassia mixed with dead animal matter checks putrefaction; and hence it is termed antiseptic. Ebeling\textsuperscript{m}, many years ago, performed some experiments to determine its power in this respect, compared with other bitters, and found it much superior to several of them.

Uses.—Quassia is employed in the same cases as several other simple bitters, some of which have been already noticed (see pp. 188 and 1279). Though I am not disposed to place much confidence in the above quoted statements of Barbier, Kraus, and Kurtz, yet a cautious practitioner would avoid employing it in amaurosis and cerebral affections. Quassia is principally employed in dyspepsia, anorexia, and other stomach disorders of a functional kind of an atomic character, more especially when occurring in a gouty subject. Though it has been beneficially employed in intermittents, few practitioners will, I suspect, use it, when they can procure cinchona, quina, or arsenic.

Kraus suggests that it may be useful in intolerance of light, and other diseases of the eye, accompanied with great sensibility without fever or congestion; yet only (he adds) as an adjuvant to hyoscyamus and belladonna.

An infusion of quassia has been proposed as a wash in compound fractures, wounds, and ulcers, to keep off insects. In its use, however, we should bear in mind the effect which Kurtz states was produced on the dog by a wash of this kind.

1. **INFUSUM QUASSIA**, L. E. D.; Infusion of Quassia. (Quassia wood, in chips, \(3\frac{1}{2}\)j. \(3\frac{1}{2}\)j. E.; \(3\frac{1}{2}\)j. D.; Boiling [distilled, L.] Water, \(1\frac{1}{2}\)j. [Oss. wine-measure, D.] Macerate for two hours in a lightly covered vessel, and strain [through linen or calico, E.].)—Tonic. Generally employed in dyspeptic and other stomach affections. It has an advantage over some other vegetable bitter infusions, that chalybeates can be combined with it, without changing its colour.—Dose, \(\frac{1}{2}\)j. to \(\frac{3}{4}\)j. It is in common use as a fly-poison.

2. **TINCTURA QUASSIAE**, E. D.; Tincture of Quassia. (Quassia in chips, 5x. \([3\frac{1}{2}]\)j. D.; Proof Spirit, \(1\frac{1}{2}\)j. [wine-measure, D.] Digest for seven days, and filter).—Dose, \(3\frac{1}{2}\)ss. to \(5\frac{1}{2}\)j. This tincture possesses all the bitterness of the wood.

3. **TINCTURA QUASSIAE COMPOSITA**, E.; Compound Tincture of Quassia. (Cardamom-seeds bruised, Cochineal bruised, of each \(3\frac{1}{2}\)ss.; Cinnamon, in moderately fine powder; Quassia in chips, of each \(3\frac{1}{2}\)vi.;
Raisins, 3 vij.; Proof Spirit, Oij. Digest for seven days, strain the liquor, express strongly the residuum, and filter. This tincture may also be obtained by percolation, as directed for the Compound Tincture of Cardamom [see p. 1032], provided the quassia be rasped or in powder.—An aromatic tonic.—Dose, 1/3j. to 1/3ij.

OTHER MEDICINAL SIMARUBACEÆ.

The wood of Quassia amara (Linn. E.) has been employed in medicine under the name of Surinam quassia wood (lignum quassiae surinamense). Fermín mentions that about the year 1714 the flowers of this shrub were highly valued at Surinam on account of their stomachic properties. In 1730, the root is said to have been found in the collection of Seba, a celebrated spice-dealer of Amsterdam. Haller tells us that a relative of his took quassia for an epidemic fever in 1742, and that it was then a well-known medicine. In 1763 Linnaeus published a dissertation on this medicine, in which he states that he received specimens of the tree from one of his pupils, C. D. Dahlberg, a military officer and counsellor at Surinam, who had become acquainted with the medical properties of the root through a black slave named Quassia, who employed it as a secret remedy in the cure of endemic malignant fevers of that place. From this circumstance Linnaeus named the tree in honour of the slave, Quassia. Rolander, who returned from Surinam in 1756, tells us he saw and conversed with this black, who was almost worshipped by some, and suspected of magic by others. Rolander found him to be a simple man, better skilled in old women’s tales than in magic. All parts of the plant are intensely bitter. The wood, as I have received it, is in cylindrical pieces (covered by a thin, greyish-white, and bitter bark), not exceeding two inches in diameter, very light, without odour, but having an extremely bitter taste. The chemical and medical properties are similar to the wood of Simaruba amara.

Order LXV.—RutaceÆ, De Candolle.—THE RUE TRIBE.

Essential Character.—Sepals three, four, or five; more or less adherent at the base, so that the calyx is crenate, cleft, or partite. Petals very rarely none, usually as many as the sepals, frequently unguiculate, distinct. Disk fleshy-glandular, surrounding the ovary, arising from the receptacle external to the petals, and bearing the stamens on the upper part. Stamens usually twice as many as the petals, and then either all fertile or the alternate ones barren. Carpels as many as the sepals, sometimes fewer by abortion, either distinct or united at the base, or perfectly connate. Style arising from the centre of the ovary, single, divided into as many stigmas as there are ovaries. Carpels, when ripe, generally distinct, one-celled, dehiscent, bivalved, cocculose within. Seeds affixed to the inner angle, inverse; embryo straight, compressed; radicle superior.—Herbs or shrubs, with opposite or alternate stipulate leaves (Condensed from De Candolle).

Properties.—Volatile oil and bitter matter are the predominating constituents of this order. These confer stimulant, tonic, and, in some cases, narcotic qualities.

Murray, App. Med. iii. 433.
1. RU'TA GRAVE'OLENS, Linn. L. E. D.—COMMON OR GARDEN RUE.

Sex. Syst. Decandria, Monogynia.

(Folia, L. D.—Leaves and unripe fruit, E.)

History.—This plant was highly esteemed by the ancients; and is frequently mentioned by Hippocrates under the name of Ηύγαρος. Pliny * says that Pythagoras (who died in the year 489 before Christ) fancied that rue was hurtful to the eyes: but, adds Pliny, he was in error, since engravers and painters eat it with bread or cresses to benefit their eyes. The ancients had a curious idea that stolen rue flourished the best; just as, says Pliny, it is said that stolen bees thrive the worst.

Botany. Gen. Char. — Calyx persistent, four-, rarely three- to five-partite. Petals as many as the segments of the calyx, unguiculate, somewhat cochleate. Stamens twice as many as the petals. Nectariferous pores at the base of the ovary, as many as the stamina. Ovary on a short, thick stalk. Style one. Capsule somewhat globose, divided into as many cells as there are petals. Seeds affixed by the internal angle; albumen fleshy; embryo curved; radicle long; cotyledons linear.—Perennial or suffruticose, fetid herbs, of a sea-green colour. Leaves alternate. Flowers corymbose, yellow, central, often five-cleft (De Cand.)

Sp. Char.—Leaves supradecompound; lobes oblong, the terminal one obovate. Petals entire or somewhat toothed (De Cand.)

A small, branching, hairless undershrub, with the lower part only of the stem woody. Leaves dotted, glaucous or bluish green. Flowers in umbellate racemes. Petals four or five, unguiculate, concave, yellow. The first flower has usually ten stamina, the others eight. It is remarkable that the anthers move in turns to the pistillum, and, after having shed their pollen, retire. Fruit roundish, warty, four-lobed, each lobe opening into two valves.

Hab.—South of Europe. Commonly cultivated in gardens.

Description.—The herb (herba rute; herba rute hortensis) is readily recognised by its strong disagreeable odour, which it owes to volatile oil. Its taste is bitter and nauseous. 100 lbs. yield by drying about 22 lbs. The dried herb is greyish green, and has a less powerful odour. The unripe fruit (fructus immaturus rute) is also officinal in the Edinburgh Pharmacopoeia.

Composition.—Rue was analysed, in 1811, by Mühl p, who found in it the following constituents:—Volatile oil, bitter extractive, chlorophylle, peculiar vegeto-animal matter precipitable by tincture of nutgalls, malic acid, gum, albumen, starch, and woody fibre.

1. Volatile Oil.—(See p. 1645.)
2. Bitter Extractive.—Very bitter, insoluble in alcohol and ether.

---

Physiological Effects. a. On Animals generally.—Orfila found that eighteen grains of oil of rue injected into the veins of a dog, acted as a narcotic, and caused staggering and feebleness of the posterior extremities; but in a few hours the animal had recovered. Six ounces of the juice of rue introduced into the stomach of a dog, killed him within twenty-four hours. The mucous membrane of the stomach was found inflamed.

b. On Man.—The topical action of rue is that of an acrid. When much handled it is apt to cause redness, swelling, and vesication of the skin. The following is an illustrative case from Buchner:—

After some very hot days in June 1823, Roth, an apothecary at Aschaffenburg, cut down a considerable quantity of rue while in full bloom, and separated the leaves from the stalks. The next morning both his hands were very red and hot, and, on the third day, appeared as if they had been exposed to hot aqueous vapour. They were besmeared with oil. Towards evening vesication commenced, and was most copious at the points of the fingers. On the fourth day the parts were still much swollen; and, between the blisters, the skin had assumed a dark red or purplish hue. On the fifth and sixth days the swelling extended up the back part of the arms as far as the elbow. Poultices (of chamomile and elder flowers) were applied, and the blisters cut. Within four weeks the skin had gradually peeled off. His children, who had played with the rue, suffered with swelling of the face and hands.

The constitutional effects of rue are those of a stimulant and narcotic. It has long been celebrated as an antispasmodic in epilepsy, hysteria, and flatulent colic. It is a very popular emmenagogue, especially in hysterical cases, and is sometimes resorted to for the purpose of procuring abortion. Its narcotic and reputed uterine influence seems to be proved by three cases of poisoning with it, taken for the purpose of causing miscarriage, published by Helie.

In these cases the rue produced the effects of an acro-narcotic poison—viz. epigastric pain, violent and continued vomiting, inflammation and swelling of the tongue, salivation, colic, fever, thirst, disorder of the muscular system (manifested by tottering gait, and irregular and convulsive movements of the body and limbs), giddiness, confused vision, contracted pupil, delirium, or rather reverie, somnolency, and, after some days, miscarriage. During the stupor the pulse was feeble, very small, and slow (in one case beating only thirty times in the minute); there were great debility, faintness, and coldness of the skin. The general appearance was that of an intoxicated person. The ill effects lasted several days. In one case a decoction of three fresh sliced roots, as big as the finger, had been taken; in the second, a decoction of the leaves; in the third, a large dose of the expressed juice of the fresh leaves.

---

1 Toxicol. Gen.
2 Toxikologie, 265.
GARDEN RUE.  1645

USES.—Rue is comparatively but little employed by the medical practitioner. It formerly enjoyed great celebrity as an antispasmodic and emmenagogue; a celebrity which it still retains among the public. The observations above made on the effects of rue prove that it is a much more active agent than is commonly supposed, and its remedial powers deserve to be more carefully examined than they have hitherto been. In the flatulent colic, especially of children, it is an exceedingly valuable remedy, and may be administered either by the stomach or, in infants, by the rectum, in the form of oyster. It may also be employed with benefit in some cases of infantile convulsions. It has been employed in hysteria, amenorrhœa, and epilepsy. In the two first of these maladies it will probably at times prove serviceable, and in them it deserves further trials. It has likewise been used as an anthelmintic. In former times it was eaten as a condiment, and was regarded as an universal antidote to poisons. It has been employed topically as an antiseptic in gangrene and foul ulcers, and likewise as a local stimulant, rubefacient, and discutient, in cold swellings, contusions, &c.

ADMINISTRATION.—Dose of the powder from 3/4. to 5/8.; but this is not an eligible mode of preparation, as rue loses part of its activity (by the volatilization of its essential oil) by drying. An infusion prepared by digesting an ounce of the fresh herb in 0.75. of boiling water, called rue tea, is a popular remedy. It is given in doses of f3/4. to f5/4. Rue water (aqua ruteæ) may be prepared with the oil, as mint water (see p. 1197); its dose is f3/4. to f5/4.

1. CONFECTION RUTEÆ. L. Conserva Ruteæ, D. Confection of Rue. (Rue, dried; Caraway; Bay Berries, of each, 3/4; Sagapenum, 5/8; Black Pepper, 5/16; Clarified Honey, f5/16. Rub the dry ingredients into a very fine powder. The London College directs the honey not to be added until the confection is to be used: the Dublin College, however, mixes it with the dry ingredients at once.)—Carminative and antispasmodic. Employed in flatulent colic and infantile convulsions. Objectionable in inflammation of the intestinal mucous membrane. Dose, f1/2. to 1. Sometimes employed in the maladies of children in the form of enema, composed of gruel and a scruple of the confection.

2. OLEUM RUTEÆ, D. E. Oil of Rue. (Obtained by submitting the herb, with water, to distillation). From 12 lbs. of the leaves, gathered before the plant had flowered, Lewis * obtained only about 5/4 of oil; but the same quantity of herb, with the seeds almost ripe, yielded above 5/4. It is pale yellow, has a bitterish acrid taste, and a sp. gr. of 0·911. It is somewhat more soluble in water than the other volatile oils. It is stimulant, antispasmodic, and emmenagogue. Used in spasmodic and convulsive diseases, and in amenorrhœa.—Dose, gtt. ij. to vj., rubbed down with sugar and water.

3. SYRUPUS RUTEÆ. Syrup of Rue.—Though syrup of rue is not contained in any of the British pharmacopoeias, it is a useful prepara-

* Mat. Med.
tion, and is always kept in the shops. It is usually prepared extemporaneously by adding eight or ten drops of the oil to a pint of simple syrup. It is used by nurses to relieve the flatulent colic of children.—Dose, one or two teaspoonfuls.

4. EXTRACTUM RUTE. D. Extract of Rue. (A watery extract).—A very useless preparation. The volatile oil, on which the stimulant and antispasmodic properties of the herb depends, is driven off in the process, leaving the bitter extractive. It is tonic, but inferior to extract of chamomile.—Dose, grs. x. to 3j.

2. BAROS'MA, Willdenow.—VARIOUS SPECIES, E.

     Diosma crenata, De Cand. L. D.
     Sex. Syst. Pentandria, Monogynia.
     (Folia, L. D.—Leaves, E.)

**History.**—The natives of the Cape of Good Hope employ several species of Barosma, on account of their odoriferous and medicinal properties. The Hottentots employ a powder, composed of the leaves of various odoriferous plants (principally Barosmas), under the name of Bookoo or Bukv, for anointing their bodies. Barosma crenata was introduced into the botanical gardens of this country in 1774, but it was not employed in medicine till 1823.

**Botany.** Gen. Char.—Calyx five-cleft or parted; dotted. Disk lining the bottom of the calyx generally with a short, scarcely prominent, rim. Petals five, with short claws. Filaments ten; the five opposite the petals sterile, petaloid, sessile, ciliate, obscurely glandular at the apex; the other five longer, smooth or hispid, subulate, with the anthers usually furnished with a minute gland at the apex. Style as long as the petals. Stigma minute, five-lobed; ovaries auriculate at the apex, usually glandular and tuberculated. Fruit composed of five cocci covered with glandular dots at the back (Lindley).—Shrubs. Leaves opposite, flat, smooth, dotted. Flowers stalked, axillary.

**Species.**—The leaves of several species of Barosma constitute Buchu or Bucku.

1. Baros'ma crenulata, Willd.; Diosma crenulata, Linn.; D. odorata, De Cand.; D. latifolia, Loddiges; D. serratifolia, Burchell.—Leaves ovate-oblong, crenate, smooth, glandular. Pedicels solitary, with two bracts immediately under the flower (De Cand.)—Upright shrub, between two and three feet in height; branches brownish-purple. Leaves about an inch long, oval-lanceolate, on very short petioles, very obtuse, delicately and minutely crenated, quite glabrous, rigid, darkish-green, and quite smooth above, with a few very obscure oblique nerves; beneath paler, dotted with glands which are scarcely pellucid, while at every crenature is a conspicuous pellucid gland; there is also a narrow pellucid margin round the whole leaf. Peduncles about as long as the leaf. Calyx

of five ovate-acuminate leaflets, green, tinged with purple. 

Corolla of five ovate petals, purple in bud, bluish-coloured when fully expanded (Condensed from Hooker ²).—Cape of Good Hope.

2. Baros'ma crena'ta, Ecklon and Zeyher ²; Dios'ma crena'ta, De Candolle, Loddiges, L. D.—Leaves ovate [or obovate] acute, dotted, glandulose-serrate at the margin. Pedicels solitary, somewhat leafy (De Cand.)—Flowers pink, terminal, on short leafy branches.—Cape of Good Hope.

3. Baros'ma serratifo'lia, Willd., De Candolle, Loddiges.—Leaves linear-lanceolate, serrulate, smooth, glandular. Pedicels solitary, bearing two leaflets above the middle (De Cand.) Leaves acuminate, three-nerved. Flowers lateral, white.—Cape of Good Hope.

Description.—The leaves of several species of Barosma are known in the shops as Buchu (Buchi, E.; Folia Barosmæ seu Diosmæ). They are intermixed with stalks and fruit. They are smooth, somewhat shining, sharply or bluntly serrated or crenated, and beset both on the edges, especially between the teeth, and on the under surface, with glands filled with essential oil. Their consistence is coriaceous: their colour pale or yellowish-green; their odour strong and rue-like (though some compare it to rosemary, others to cumin, or cat's urine), and their taste is warm and mint-like. They present considerable variety in shape. The most common are the following:

a. Ovate or obovate Buchu. Leaves of Barosma crenata, Eckl. and Zeyher.—Leaves ovate, oval, oblong, or obovate.

b. Ovate-oblong Buchu. Leaves of Barosma crenulata, Willd.—Leaves ovate-oblong or obovate-oblong or oval-lanceolate, obtuse.

c. Linear-lanceolate Buchu. Leaves of Barosma serratifolia, Willd.—Leaves linear-lanceolate or lanceolate, acuminate.

Composition—Two analyses of buchu have been made: one, in 1827, by Brandes ³; the other, in the same year, by Cadet de Gassicourt ⁴.

Brandes's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pale yellow volatile oil</td>
<td>0.88</td>
</tr>
<tr>
<td>Resin</td>
<td>2.34</td>
</tr>
<tr>
<td>Bitter extractive (Diosmin)</td>
<td>3.78</td>
</tr>
<tr>
<td>Chlorophyllé</td>
<td>4.77</td>
</tr>
<tr>
<td>Gum</td>
<td>12.71</td>
</tr>
<tr>
<td>Lignin</td>
<td>45.00</td>
</tr>
<tr>
<td>Brown substance extracted by potash</td>
<td>1.56</td>
</tr>
<tr>
<td>Nitrogenous matter extracted by potash</td>
<td>2.42</td>
</tr>
<tr>
<td>Albumen</td>
<td>0.58</td>
</tr>
<tr>
<td>Malic acid, and matter precipitable by tannin</td>
<td>1.56</td>
</tr>
<tr>
<td>Bassorin, with oxalate and phosphate of lime</td>
<td>4.53</td>
</tr>
<tr>
<td>Various salts of potash and lime</td>
<td>3.07</td>
</tr>
<tr>
<td>Water</td>
<td>12.94</td>
</tr>
<tr>
<td>Acetic acid and loss</td>
<td>3.86</td>
</tr>
</tbody>
</table>

Leaves of Diosma crenata 100.00

Cadet's Analysis.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>0.665</td>
</tr>
<tr>
<td>Gum</td>
<td>21.170</td>
</tr>
<tr>
<td>Extractive</td>
<td>5.170</td>
</tr>
<tr>
<td>Chlorophyllé</td>
<td>1.100</td>
</tr>
<tr>
<td>Resin</td>
<td>2.131</td>
</tr>
<tr>
<td>[Lignin, &amp;c]</td>
<td>69.744</td>
</tr>
</tbody>
</table>

Leaves of Diosma crenata 100.00

³ Bot. Mag. t. 3113.
⁴ Enun. Pl. Afr. austr. i. 102. 1805.
⁵ Gmelin, Handb. d. Chem. ii. 1258.
⁶ Journ. de Chim. Méd. iii. 44.
1. Volatile Oil of Buchu (Oleum Barosmei seu Diosmei).—Yellowish-brown, lighter than water; odour that of the leaves.

2. Bitter Extractive; Diosmin. — Brownish-yellow, bitter and somewhat pungent. Soluble in water, but neither in alcohol or ether.

Physiological Effects. — Buchu is an aromatic stimulant and tonic. Taken in moderate doses it promotes the appetite, relieves nausea and flatulence, and acts as a diuretic and diaphoretic. Its constitutional effects appear referrible — first, to its action on the stomach; and, secondly, to the absorption of the volatile oil, which is subsequently thrown out of the system by the secreting organs, on which it appears to act topically in its passage through them. Buchu seems to have a specific influence over the urinary organs.

Uses. — The natives of the Cape of Good Hope prepare a spirit of buchu (which they term buchu brandy), by distilling the leaves with the dregs of wine, which they employ in chronic diseases of the stomach and bladder.

In this country buchu has been principally employed in chronic maladies of the urino-genital organs. Dr. Reece first drew the attention of practitioners and the public in this country to it in these cases; and in 1823, Dr. McDowell gave a most favourable account of its good effects. It has since been employed by a considerable number of practitioners, and its remedial powers fairly tried. It seems to be principally adapted to chronic cases attended with copious secretion. In chronic inflammation of the mucous membrane of the bladder, attended with a copious discharge of mucus, it frequently checks the secretion, and diminishes the irritable condition of the bladder, thereby enabling the patient to retain his urine for a longer period; but I have several times seen it fail to give the least relief, and in some cases it appeared rather to add to the patient's sufferings. In irritable conditions of the urethra, as spasmodic stricture, and in gleet, it has occasionally proved serviceable. In lithiasis, attended with increased secretion of uric acid, it has been given with considerable benefit by Dr. Carter, and others, and has appeared to check the formation of this acid. For the most part it should be given in these cases in combination with alkalis (as liquor potassae). In prostatic affections, in rheumatism, and even in skin diseases, it has also been employed; and, it is said, with good effect. In dyspepsia Dr. Hulton has found it serviceable.

Administration. — The dose of buchu, in powder, is 3s. or 5s. It is usually taken in wine. But the infusion and tincture are more eligible preparations.


---

* Gazette of Health, for 1821, 1822, 1823, and 1824.
* Trans. of the King and Queen's College of Physicians, vol. iv. p. 131. Dublin, 1821.
* McDowell, op. cit.
2. TINCTURA BUCHU, D. Tinctura Buchu, E. Tincture of Buchu.—
(Buchu, 3v.; Proof Spirit, Oij. Digest for seven days, pour off the clear liquor, and filter. This tincture may be conveniently and quickly made also by the process of percolation, E.—The proportions used by the Dublin College are essentially the same, and the tincture is directed to be prepared by maceration.)—Dose, f 3j. to f 3iv.

3. GALIP'EA OFFICINALIS, Hancock, E.; and G. CUSPA'RIA, De Candolle, L.

(Cortex, L. D.—Bark, E.)

History.—Mutis is said to have employed angostura bark in 1759; but it did not come to England until 1788, and was first publicly noticed in the London Medical Journal for 1789. Mr. A. E. Brande says, that, in 1791, 40,000 lbs. or upwards had been imported. It was called Cortex Angusture, from Angostura, a place in South America, whence the Spaniards first brought it.

Botany. Gen. Char.—Calyx short, five-toothed. Petals five, united into a salver-shaped corolla; or closely approximating; tube short, pentagonal; lobes spreading, acute. Stamens four to seven, hypogynous, somewhat adherent to the petals, unequal, sometimes all fertile, commonly two antheriferous, two to five shorter, sterile. Nectary cupuliform. Styles five, afterwards combined into one, and forming a four- or five-grooved stigma. Carpella five, or by abortion fewer, containing two ovules, obtuse, cocculiform, sessile, with a separable endocarp. Seeds solitary by abortion; cotyledons large, corrugated, biauriculate.—Smooth shrubs. Leaves alternate, simple, or plurifoliate; leaflets oblong, acuminate. Peduncles axillary, many flowered (De Cand.)

Species.—Humboldt and Bonpland state that Galipea Cusparia, De Cand. yields Angostura bark; whereas Dr. Hancock asserts that it is a species which he calls Galipea officinalis. But it appears to me not improbable that both species may yield a febrifuge bark.

1. Galip'ea Cuspa'ria, De Cand. L. Bonplandia trifoliata, Willd. D. Cusparia febrifuga, Humb. and Bonpl.—Leaves trifoliate. Racemes stalked, almost terminal. Calyx five-toothed. Sterile stamens three (De Cand.)—A majestic forest tree, sixty or eighty feet high. Leaves two feet long, gratefully fragrant; petioles one foot long, or nearly so; leaflets sessile, unequal, ovate-lanceolate, acute. Flowers white, with fascicles of hairs seated on glandular bodies on the outside. Stamens monadelphous (Kunth); fertile ones, two; sterile ones, three, according to Roemer—four according to Kunth; anthers with two short appendages. Stigmas five. Seed solitary.—Forests of tropical America. Yields Angostura bark (Humboldt and Bonpland).

2. Galip'ea officinalis, Hancock, E.—Leaves trifoliate. Racemes stalked, axillary, terminal. Stamens two. Nectaries (sterile stamens?) five (Hancock).—A tree, usually twelve or fifteen feet high, never exceeding twenty feet. Leaves, when fresh, having the odour of tobacco; leaflets oblong, pointed at both extremities, from six to ten inches long, on very short stalks: petioles as long as the leaflets.
Flowers white, hairy. Stamens distinct; fertile ones, two; sterile ones, five; anthers without appendages. Stigma simple, capitate. Seeds two in each capsule; one usually abortive. Neighbourhood of the Orinoko (Carony, Alta Gracia, &c.) Yields Angostura or Carony bark (Hancock).

Description.—Angostura or Cusparia bark (cortex angostura seu cuspariae) is imported directly or indirectly from South America. "The most of what I have seen," says Mr. A. E. Brande, "has been put into casks in the West Indies; but where the original package remains it is very curious, and formed carefully of the large leaves of a species of palm, surrounded by a kind of net-work made of flexible sticks." It occurs in flat pieces and quills, of various sizes, the longest pieces being from six to ten inches in length, covered with a yellowish-grey or greyish-white spongy epidermis, easily scraped off by the nail. The internal surface is brownish, not quite smooth, somewhat fibrous or splintery, easily separable into laminae; the fracture is short and resinous; the odour strong but peculiar, and somewhat animal; the taste bitter, aromatic, and slightly acrid.

Substitution.—I have already (see p. 1292) noticed the serious accidents which have resulted in consequence of the bark of the nux-vomica tree being substituted, either from ignorance or commercial cupidity, for angostura bark. Hence arose the distinction into true or West India angostura, and false, spurious, or East India angostura. Though the characters of the latter have been fully described (see p. 1291), it may be as well to place them in contrast with those of the genuine angostura. In drawing up the following table of characteristics, I have been greatly assisted by the tables of Guibourt and Fée.

<table>
<thead>
<tr>
<th>Angostura Bark</th>
<th>Nux Vomica (False Angostura) Bark</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Form</strong></td>
<td>Quills or flat pieces, straight or slightly bent.</td>
</tr>
<tr>
<td><strong>Odour</strong></td>
<td>Disagreeable.</td>
</tr>
<tr>
<td><strong>Taste</strong></td>
<td>Intensely bitter, very persistent.</td>
</tr>
<tr>
<td><strong>Hardness and Density</strong></td>
<td>Bark fragile when dry, easily cut, light, tissue not very dense.</td>
</tr>
<tr>
<td><strong>Fracture</strong></td>
<td>Dull and blackish.</td>
</tr>
<tr>
<td><strong>Epidermoid crust</strong></td>
<td>Whitish or yellowish, insipid, unchanged, or rendered slightly orange-red by nitric acid.</td>
</tr>
<tr>
<td><strong>Inner surface</strong></td>
<td>Separable into laminae; deepened by nitric acid.</td>
</tr>
<tr>
<td><strong>Tint of Litmus</strong></td>
<td>Blue colour destroyed.</td>
</tr>
<tr>
<td><strong>Sesquichl. Iron</strong></td>
<td>Floculent dark greyish-brown precipitate.</td>
</tr>
<tr>
<td><strong>Ferrocyanide of Potassium</strong></td>
<td>No change: hydrochloric acid caused a yellow precipitate.</td>
</tr>
<tr>
<td><strong>Nitric Acid...</strong></td>
<td>A small quantity makes the liquor cloudy; a large quantity genders it transparent deep red.</td>
</tr>
</tbody>
</table>

\[Hist. des Drog. ii. 6. 3^e éd.\]
\[Cours d'Hist. Nat. Pharm. i. 588.\]
COMPOSITION.—Angostura bark has been the subject of repeated chemical investigation. Notices of the earlier attempts to analyse it are given by Meyer and by Pfaff. The analyses which deserve quoting are those of Pfaff and Fischer.

<table>
<thead>
<tr>
<th>Pfaff's Analysis</th>
<th>Fischer's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>Volatile oil</td>
</tr>
<tr>
<td>Bitter extractive</td>
<td>Peculiar bitter principle</td>
</tr>
<tr>
<td>Bitter resin</td>
<td>Bitter hard resin</td>
</tr>
<tr>
<td>Acrid oily resin</td>
<td>Balsamic soft resin</td>
</tr>
<tr>
<td>Tartaric acid (free), Salts (sulphate and tartrate of potash, chloride of potassium, and sulphate of lime).</td>
<td>Elastic resin</td>
</tr>
<tr>
<td>Lignin</td>
<td>Gum</td>
</tr>
<tr>
<td></td>
<td>Lignin</td>
</tr>
</tbody>
</table>

Angostura bark.

1. Volatile Oil; Odorous Principle of Angostura.—Obtained by submitting the bark to distillation with water. It is yellowish white, lighter than water, has the peculiar odour of the bark, and an acrid taste. To this, as well as to the resin, the bark owes its acrid, aromatic taste.

2. Angosturin; Cusparin, Saladin; Bitter extractive, Pfaff; Peculiar Bitter Principle.—A neutral principle obtained by Saladin in the form of tetrahedral crystals, by submitting the alcoholic tincture of the bark (prepared without heat) to spontaneous evaporation. When heated it fuses, loses 23.09 per cent. of its weight, and subsequently inflames, without giving any evidence of its being volatile or nitrogenous. It is insoluble in the volatile oils and in ether; but dissolves slightly in water, more so in alcohol. Alkaline solutions also dissolve it. Nitric acid renders it greenish-yellow; sulphuric acid reddish brown. Tincture of nutgalls precipitates it from its aqueous and alcoholic solutions.

3. Resin.—The hard resin is brown, bitter, soluble in potash, alcohol, and acetic ether; but insoluble in sulphuric ether and oil of turpentine. The soft resin is acrid, greenish yellow, soluble in alcohol, ether, oil of turpentine, and almond oil; but insoluble in a solution of potash. It is coloured red by nitric acid.

Physiological Effects.—A powerful aromatic or stimulant tonic (see the effects of the aromatic bitters, p. 189). Its aromatic or stimulant properties depend on the volatile oil and resin; its tonic operation on the bitter principle. In its tonic and febrifuge powers it approximates to cinchona bark, but is devoid of astringency. It is less likely to irritate the stomach or to cause constipation than cinchona; but usually keeps the bowels gently open. In full doses it is capable of nauseating and purging. Dr. Hancock says the warm infusion causes sweating and diuresis. In its combination of tonic and aromatic properties, it is most allied to cascarilla. In its stomachic qualities it approaches calumba.

Uses.—Angostura bark is but little employed by practitioners of this country. We may fairly ascribe this in part to the serious consequences which have resulted from the use of the false angostura, and in part to the belief that we have other remedies of equal, if not of superior, efficacy to it. In some of the continental states, its employment has been prohibited (see p. 1292). It may be administered

---

2 Syll. der Mat. Med. ii. 55.
3 Ibid.
5 Pfaff, op. supra cit. Bd. ii. 61 and 69; Bd. vi. 191.
7 Pfaff, op. supra cit. vi. 191.
as a febrifuge in intermittent and remittent fever, especially in the worst forms of the bilious remittents of tropical climates. Drs. Williams, Wilkinson, Winterbottom, and more recently, Dr. Hancock, have spoken in the highest terms of its efficacy. In some of these cases it is said to have proved greatly superior to cinchona. It sits more readily on the stomach, and does not cause constipation like the latter, but keeps the bowels gently open. In adynamic continued fever, especially when complicated with great disorder of the digestive organs manifested by vomiting or purging, it has been used with good effect. As an aromatic tonic and stomachic, in general relaxation and muscular debility, and in atonic conditions of the stomach and intestinal tube (as some forms of dyspepsia, anorexia, &c.), it has been employed with great success. It has also been administered to check profuse mucous discharges. Thus in the latter stages and chronic forms of dysentery and diarrhoea, and in chronic bronchial affections attended with excessive secretion of mucus. In fine, angostura is applicable to any of the purposes for which other vegetable tonics, (especially cascara, calumba, and cinchona) are commonly employed.

**Administration.**—It may be given in powder in doses of from grs. x. to 5ss. But the infusion and tincture are more elegant preparations.

1. **Infusum Cuspariae, L. E. Infusum Angustureae, D.** Infusion of Cusparia. (Cusparia, bruised, 3v. [3ij. D.]; Boiling [distilled, L.]) Water, Oij. [Oss. wine-measure, D.] Macerate for two hours in a lightly covered vessel, and strain [through linen or calico, E.].—Tonic, stomachic, and stimulant. Used in low fever, bilious diarrhoeas and dysenteries, muscular debility, dyspepsia, &c.—Dose, 15j. to 3ij. Tincture of cinnamon is an agreeable addition to it.

2. **Tinctura Cuspariae, E. Tinctura Angustureae, D.** Tincture of Cusparia. (Cusparia, in moderately fine powder, 5ivs. [3ij. D.]; Proof Spirit, Oij. [wine-measure, D.] Macerate for fourteen days and filter, D.—This tincture is to be made like the tincture of cinchona, and most expeditiously by the process of percolation, E.)—Tonic, stimulant, and stomachic. Generally employed as an adjunct to bitter infusions.—Dose, 15j. to 3ij.

**Other Medicinal Rutaceae.**

The root of Dictamnus Fraxinell, or Bistard Dittany, was formerly employed in medicine, but of late years has fallen into almost total disuse. There are two varieties of this plant: a. purpurea with purple flowers; and b. alba with white flowers. It is a native of the South of Europe. The root contains volatile oil, resin, bitter extractive, and probably gum. It is an aromatic tonic, and is reputed to possess antispasmodic, diuretic, and emmenagogue properties. It was formerly employed in intermittents, epilepsy, hysteria, amenorr-

---

* Winterbottom; also Lettsom, Mem. of the Med. Soc. of Lond. vol. iv. p. 191.
OFFICINAL GUIACUM.  1653

hæa, chlorosis, and worms. The dose of it is from 3j. to 5j. Attention has been recently drawn to it by Dr. Aldis, who states that it has been employed, during forty years, with great success, in the cure of epilepsy, by Baron A. Sloet van Olduynenborgh and family. I am acquainted with one patient (a young lady) who took it for six months without receiving any ultimate benefit from it.

ORDER LXVI.—ZYGOPHYLLACEÆ, Lindley.—THE BEAN CAPER TRIBE.

ZYGOPHYLLEÆ.—R. Brown.

Essential Character.—Sepals five, distinct, or scarcely coherent at the base. Petals five, alternate with the sepals, inserted on the receptacle. Stamens ten, distinct, hypogynous, five opposite to the sepals, and five to the petals. Ovary single, five-celled; styles five united into one, sometimes rather distinct at the apex. Capsule of five carpels, which are more or less adnate to each other and to the central axis; cells dehiscent at the superior angle, usually many-seeded, or one-seeded, neither cocculiferous nor arilliferous. Seeds albuminous, or commonly exalbuminous; embryo straight; radicle superior; cotyledons foliaceous.

—Herbs, shrubs, or trees. Leaves with stipules at the base, usually compound (De Cand.)

Properties.—The Guaiacums are resinous, and possess stimulant properties.

GUAIACUM OFFICINALE, Linn. L. E. D.—OFFICINAL GUIACUM.

Sex. Syst. Decandria, Monogynia.

(Lignum. Resina, L. D.—Wood. Resin obtained by heat from the wood, E.)

History.—The Spaniards derived their knowledge of the medical uses of Guaiacum from the natives of St. Domingo, and introduced this remedy into Europe in the early part of the sixteenth century (about 1508). The first importer of it was Gonsalvo Ferrand, who, being infected with the venereal disease, and not obtaining any cure for it in Europe, went to the West Indies, to ascertain how the natives in that part of the world treated themselves, as the disease was as common with them as small-pox with Europeans. Having ascertained that Guaiacum was employed, he returned to Spain, and commenced practitioner himself. "I suppose," says Freind, "he might make a monopoly of it; for it appears that some time after it was sold for seven gold crowns a pound."

Botany. Gen. Char. — Calyx five-partite, obtuse. Petals five. Stamens ten; filaments naked, or somewhat appendiculate. Style and stigma one. Capsule somewhat stalked, five-celled, five-angled, or by abortion two- or three-celled. Seeds solitary in the cells, affixed to the axis, pendulous; albumen cartilaginous, with small chinks; cotyledons somewhat thick.—Trees with a hard wood. Leaves abruptly pinnate. Peduncles axillary, one-flowered (De Cand.)

Sp. Char.—Leaves bijugate: leaflets obovate or oval, obtuse (De Cand.)

3 Hist. of Physick, part ii. p. 365, 2nd ed.
A tree rising thirty or forty feet high. Stem commonly crooked; bark furrowed; wood very hard and heavy. Leaves evergreen. Flowers six to ten in the axillae of the upper leaves. Peduncles an inch and a half long, unifloral. Sepals five, oval. Petals five, oblong or somewhat wedge-shaped, pale blue. Stamens somewhat shorter than the petals. Ovary compressed, two-celled; style short, pointed. Capsule obovate, coriaceous, yellow.

Hab. — St. Domingo and Jamaica.

Description and Composition. — In this country the wood and the resin only are officinal; but on the continent the bark also is used. They are imported from St. Domingo.

1. Guaiacum Wood (Lignum Guaiaci). This is commonly termed lignum vitae. — It is imported in large logs or billets, and is extensively used for making pestles, rulers, skittle-balls, and various other articles of turnery ware. On examining the transverse sections of these stems, hardly any traces of medulla or pith are observable, while the annual or concentric layers or zones are extremely indistinct. The wood is remarkable, says Dr. Lindley, "for the direction of its fibres, each layer of which crosses the preceding diagonally; a circumstance first pointed out to me by Professor Voigt." This fact, however, was noticed by Brown above fifty years ago. The distinction between the young and the old wood is remarkable. The young wood (called alburnum or sapwood) is of a pale yellow colour; while the old wood (called duramen or heartwood) which forms the central and principal part of the stem is of a greenish brown colour, in consequence of the deposition of resinous matter, first in the ducts and subsequently in all parts of the tissue. By boiling a thin shaving of the wood in nitric acid, the whole of the deposited matter is destroyed, and the tissue restored to its original colourless character.

Shavings, turnings, or raslings of guaiacum (lignum guaiaci raspatum seu rasum; rasura vel scobs guaiaci) are prepared by turners for the use of druggists and apothecaries. They are distinguished from the raslings of other woods by nitric acid, which communicates to them a temporary bluish-green colour. A decoction of the shavings is yellowish, and does not change colour in the air, and very little even by nitric acid, though after some time it becomes turbid. Neither a solution of emetic tartar nor the tincture of nutgalls causes any precipitate. The ferruginous salts deepen its colour.

Trommsdorff analysed the wood, and found it to consist of resin 26.0, bitter, piquant extractive 0.8, mucous extractive with a vegetable salt of lime 2.8, colouring matter (?) similar to that of the bark 1.0, and woody fibre 69.4.

Guaiacum bark (Cortex Guaiaci) is gray, compact, very hard, heavy, and resinous. Its internal surface sometimes presents numerous, small, brilliant, apparently crystalline points, which Guibourt supposes to be benzoic acid. Tromms-
dorff analysed this bark, and found it to consist of the following substances:

peculiar resin different from that of the wood 2.3, peculiar, bitter, piquant extractive precipitable by acid 48, gum 0.8, brownish yellow colouring matter 4.1, mucous extractive with sulphate of lime 12.0, and lignin 76.0.

2. Guaiacum Resin (Resina Guaiaci). — This is commonly, though very erroneously, denominated gum guaiacum. It is obtained from the stem of the tree by the following methods:

a. By natural exudation.—It exudes naturally from the stem, and may be seen on it at all seasons of the year. β. By jagging.—If the tree be wounded in different parts, a copious exudation takes place from the wounds, which hardens by exposure to the sun. This operation is performed in May. γ. By heat.—Another method of obtaining it is the following:—"The trunk and larger limbs being sawn into billets of about three feet long, an auger hole is bored lengthwise in each, and one end of the billet so placed on a fire that a calabash may receive the melted resin which runs through the hole as the wood burns." δ. By boiling.—It is also obtained in small quantities by boiling chips or sawings of the wood in water with common salt. The resin swims at the top, and may be skimmed off. The salt is used to raise the boiling point of the water.

Guaiacum occurs in tears and in masses. Guaiacum in tears (Guaiacum in lachrymis) occurs in rounded or oval tears, of varying size, some being larger than a walnut. Externally they are covered by a grayish dust. They are said to be produced by Guaiacum sanctum. Lump Guaiacum (Guaiacum in massis) is the ordinary kind met with in the shops. These masses are of considerable size, and are ordinarily mixed with pieces of bark, wood, and other impurities: they are of a brownish or greenish brown colour, and have a brilliant, shiny, resinous fracture. Thin laminae are nearly transparent, and have a yellowish green colour. The odour is balsamic, but very slight, though becoming more sensible by pulverization. When chewed, guaiacum softens under the teeth, but has scarcely any taste, though it leaves a burning sensation in the throat. Its specific gravity is 1.2289. When heated guaiacum melts and evolves a fragrant odour. The products of the destructive distillation of guaiacum have been examined both by Mr. Brande and Unverdorben. Among the new substances obtained by the latter are two empyreumatic oils of guaiacum (one volatile, the other fixed,) and pyro-guaiac acid.

The characters of guaiacum resin, according to the Edinburgh Pharmacopoeia are as follows:——"Fresh fracture red, slowly passing to green: the tincture slowly strikes a lively blue colour on the inner surface of a thin paring of a raw potato."

In 1805, Mr. Brande analysed guaiacum. In 1806 it was examined by Bucholz, and in 1828 by Buchner. Dr. Ure has made an ultimate analysis of it.

---

\[\text{Ibid. vii. 429.}\]
\[\text{Brown, op. supra cit. p. 226.}\]
\[\text{Wright, Med. Plants of Jamaica.}\]
\[\text{Wright, op. supra cit.}\]
\[\text{Journ. de Pharm. xx. 520.}\]
\[\text{Phil. Trans. for 1806, p. 89.}\]
\[\text{Quoted by Schwartz, Pharm, Tabell 293, 2\textsuperscript{a} Ausg.}\]
\[\text{Gmelin, Handb. d. Chem. ii. 571.}\]
\[\text{Dict. of Chem.}\]
1. Guaiacic Acid; Guaiacin.—Is insoluble in water, but is readily dissolved by alcohol, and is precipitated from its alcoholic solution by water, sulphuric and nitric acids, and chlorine. Ether dissolves the resin, but not so readily as alcohol. Solutions of the caustic alkalis (potash and soda) dissolve it, forming alkaline guaiacates (guaiacum soaps; sapones guaiacini). The mineral acids precipitate it from its alkaline solution. Various salts (as acetate of baryta, acetate of lime, acetate of lead, nitrate of silver, and chloride of gold) occasion precipitates (guaiacates) with the alkaline solution. Guaiacic acid is remarkable for the changes of colour it undergoes by the influence of various agents. Thus, its powder, and paper moistened with its tincture, become green in air or oxygen gas, but not in carbonic acid gas. This change, which seems connected with the absorption of oxygen, is influenced by the intensity and colour of the light. Various substances give a blue tint to guaiacum when in contact with air: thus gluten, but not starch. Hence powdered guaiacum has been proposed as a test of the goodness of wheaten flour (which contains gluten), and of the purity of starch. Gum arabic, dissolved in cold water, has the same effect as gluten, but tragacanth gum has not. Milk, and various fresh roots and underground stems (for example, those of the horseradish, potato, carrot, colchicum, &c.), also possess this property. Certain agents change the colour of guaiacum successively to green, blue, and brown: thus, nitric acid and chlorine. Nitric acid colours the tincture of guaiacum green, then blue, and afterwards brown. If a piece of paper moistened with the tincture be exposed to the fumes of the acid, its colour is immediately changed to blue. Spirit of nitric ether usually gives a blue colour to tincture of guaiacum (see p. 384). Mr. Brande has conjectured, and I think with great probability, that these different-coloured compounds are combinations of oxygen with guaiacum,—the green compound containing the least, the brown the most, while the blue is intermediate. Mr. Johnston says guaiacum resin consists of \( \text{C}^{10} \text{H}^{19} \text{O}^{10} \); its equivalent, therefore, is 343. According to Unverdorben the resin of guaiacum is of two kinds: one readily soluble in a solution of ammonia,—and another which forms with ammonia a tarry compound. Pagenstecher has shown that tincture of guaiacum with hydrocyanic acid and sulphate of copper produces an intensely blue colour (see p. 436).

2. Extractive.—This is obtained from guaiacum by the agency of water. The quantity obtained is liable to variation. It is a brown acrid substance.

These observations, then, show that guaiacum is essentially a peculiar resin, mechanically mixed with variable but small quantities of extractive and other impurities.

Adulteration.—Various adulterations are described as being practised on guaiacum. Though I have found this substance in the shops of this country of unequal degrees of impurity, I have never had reason to suspect that sophistication had been practised on it. The presence of turpentine resin might be detected by the peculiar odour evolved when the suspected resin is heated. Another mode of detecting this fraud is to add water to the alcoholic solution of the suspected guaiacum, and to the milky liquid thus formed a solution of caustic potash is to be added until the liquor becomes clear. If now an excess of potash cause no precipitate, no resin is present; for

---

while *guaiacate of potash* is soluble in water, the salt produced by the union of potash and rosin is not completely so.

**Physiological Effects. 1. Of the Resin.—** Guaiacum resin is an acrid stimulant. Its acridity depends in a great measure on the extractive with which the resin is mixed, or which resides in the fragments of bark contained in the resin.

Under the use of *small* and *repeated doses* of guaiacum, various constitutional diseases sometimes gradually subside, and a healthy condition of system is brought about with no other sensible effect of the remedy than perhaps the production of some dyspeptic symptoms, and a slight tendency to increased secretion. We designate this inexplicable, though not less certain, influence over the system, by the term *alterative*.

When we give guaiacum in *moderately large doses*, or to plethoric easily-excited individuals, we observe the combined operation of an acrid and stimulant. The local symptoms are, the dryness of the mouth, the sensation of heat at the stomach, nausea, loss of appetite, and a relaxed condition of bowels. The stimulant operation is observed partly in the vascular system, but principally in the exhaling and secreting organs, especially the skin and kidneys. Dr. Cullen justly observes that it seems to stimulate the exhalants more in proportion than it does the heart and great arteries. If diluents be exhibited, and the skin kept warm, guaiacum acts as a powerful sudorific; whereas, when the surface is kept cool, perspiration is checked, and diuresis promoted. By continued use it has caused a mild salivation.

The stimulant influence of guaiacum is extended to the pelvic vessels, and thus the hemorrhoidal and menstrual discharges are somewhat promoted by it. But there is no reason for supposing that the pelvic organs are specifically affected by it. In *very large doses* guaiacum causes heat and burning in the throat and stomach, vomiting, purging, pyrexia, and headache.

In its operation on the system guaiacum is allied to the balsams (see p. 183). Dr. Cullen considered its resinous part to be very analogous to the balsams and turpentines.

2. Of the Wood.—The operation of the wood is similar to, though milder than, that of the resin. Any activity which the wood communicates to boiling water must depend on the extractive, as the resin is not soluble in this fluid.

Pearson* says, that the decoction excites a sensation of warmth in the stomach, produces dryness of the mouth, with thirst, increases the natural temperature of the skin, renders the pulse more frequent, and, if the patient lie in bed and take the decoction warm, it proves moderately sudorific; but if he be exposed freely to the air, it acts as a diuretic. Continued use occasions heartburn, flatulence, and costiveness. Kraus** mentions a measle-like eruption over the whole body, as being produced by large doses of the wood.

---

* Heilmittelkunde, 612.
3. Of the Bark.—The bark acts in a similar way to the wood. Regnandot injected, at eight in the morning, three ounces of an aqueous infusion of it into the veins of a young man of twenty years of age. In half an hour a shivering fit came on, with colicky pains, followed by two stools: this shivering remained till five o'clock in the evening.

Uses.—In the employment of guaiacum the acrid and stimulant properties of this resin are to be remembered. The first unfit it for use in cases of impaired digestion, where there is irritation or great susceptibility of, or inflammatory tendency in, the alimentary canal: the second renders it improper in plethoric individuals, in all states of excitement or acute inflammation, and in persons whose vascular system is easily excited, and who are disposed to hemorrhages. It is admissible and useful, on the other hand, in atonic or chronic forms of disease, with retained secretions, especially in relaxed and phlegmatic constitutions.

The following are some of the diseases in which it has been employed:

1. In chronic rheumatism, especially when occurring in scrofulous subjects, or in persons affected with venereal disease, guaiacum may be administered with considerable advantage under the conditions before mentioned. In cases of great debility, with coldness of surface, and in old persons, the ammoniated tincture may be employed.

2. In gout.—As a preventive of gout it was introduced by Mr. Emerigon, of Martinico. His remedy (the specificum antipodagricum Emerigonis, as our German brethren term it) consisted of two ounces of guaiacum digested for eight days in three pints avoirdupois of rum. The dose was a tablespoonful, taken every morning fasting for a twelvemonth. Its stimulant qualities render it inadmissible during a paroxysm of gout; and with regard to its use in the interval, it is, of course, adapted for chronic atonic conditions only.

3. In chronic skin diseases, where sudorifics and stimulants are indicated, guaiacum may be serviceable, especially in scrofulous and syphilitic subjects.

4. In obstructed and painful menstruation not arising from any plethoric, inflammatory, or congested state of system, the volatile tincture of guaiacum has been employed with advantage. Dr. Dewees states he has long been in the habit of employing it in painful menstruation with good effect. Drs. Macleod and Jewell have also borne testimony to its emmenagogue qualities.

5. As a remedy for venereal diseases, guaiacum wood was at one time in the greatest repute. Nicholas Poll tells us, that within nine years from the time of its introduction into Europe, more than three thousand persons had derived permanent benefit from its use. Experience, however, has taught us the true value of this remedy, and we now know that it has no specific powers of curing or alleviating syphilis. It is applicable, as an alterative and sudorific, for the

---

* Treat. on the Diseases of Females, p. 81, 2nd ed. 1828.
* Quoted by Pearson, op. supra cit.
relief of secondary symptoms, especially venereal rheumatism and cutaneous eruptions, more particularly of scrofulous subjects. Mr. Pearson found it serviceable after the patient had been subjected to a mercurial course. Under its use, thickening of the ligaments or periosteum subsided, and foul indolent sores healed. During its administration the patient should adhere to a sudorific regimen.

6. In scrofula, especially that form called cutaneous, guaiacum is used with occasional advantage.

7. In chronic pulmonary catarrh, especially of gouty subjects, it has also been used.

Administration.—The powder of guaiacum resin may be given in doses of from grs. x. to 5ss. It may be administered in the form of pill, bolus, or mixture (see Mistura Guaiaci). The resin is a constituent of the pilulae hydrargyri chloridi compositae, Ph. L., commonly termed Plummer's Pills (see p. 745), and of the pulvis aloès compositus (see p. 977). The resin is also given in the form of alcoholic and ammoniated tincture. The wood is exhibited in decoction only. It is a constituent of the decoctum sarzce compositum, L. (p. 1001).

1. MSTURA GUAICAI, L. E. Guaiacum Mixture.—(Guaiacum, 3ij. ; Sugar, 5ss. ; Mucilage of Gum Arabic, f3ss. ; Cinnamon Water, f3xix. [f3xixss. E.] Rub the Guaiacum with Sugar, then with the Mucilage, and to these, while rubbing, add gradually the Cinnamon Water.)—Dose, f3ss. to f3ij. twice or thrice a-day.

2. TINCTURA GUAICAI, L. E. D. Tincture of Guaiacum.—(Guaiacum in coarse powder, 3vij. [3iv. D.]; Rectified Spirit, Oij. [wine-measure, D.]) Digest for fourteen [seven, E. D.] days, and then filter.)—Stimulant, sudorific, and laxative. Dose, f3ij. to f5ij. As it is decomposed by water, it should be administered in mucilage, sweetened water, or milk, to hold the precipitated resin in suspension.


4. DECOCTUM GUAICAI, E. D. Decoction of Guaiacum.—(Guaiacum turnings, 3ij. ; [Raisins, 3ij. E.]; Sassafras, rasped, 3j. [3x. D.]; Liquorice Root, bruised, 3j. [3jiss. D.]; Water, Ovij. [Ox. wine-measure, D.] Boil the Guaiacum [and Raisins, E.] with the Water, gently down to Ov., adding the Liquorice and Sassafras towards the end. Strain the decoction.)—This is the old Decoction of the Woods. The resin of guaiacum being insoluble in water, the extractive alone dissolves in this menstruum. The sassafras can confer but little activity to the preparation. Taken in doses of f3iv., four times daily, and continued with a sudorific regimen, it acts on the skin, and
has been thought to be useful as an alterative in old venereal, rheumatic, and cutaneous diseases.

Order LXVII.—OXALIDACEÆ, Lindley.—The wood-sorrel tribe.

Oxalideæ, De Candolle.

Essential Character.—Sepals five, sometimes slightly cohering at the base, persistent, equal. Petals five, hypogynous, equal, unguiculate, with a spirally-twisted aestivation. Stamens ten, usually more or less monadelphous, those opposite the petals forming an inner series, and longer than the others; anthers two-celled, innate. Ovary with five angles and five cells; styles five, filiform; stigmas capitata or somewhat bifid. Fruit capsular, membranous, with five cells, and from five to ten valves. Seeds few, fixed to the axis, enclosed within a fleshy integument, which curls back at the maturity of the fruit, and expels the seeds with elasticity. Albumen between cartilaginous and fleshy. Embryo the length of the albumen, with a long radicle pointing to the hilum, and foliaceous cotyledons.—Herbaceous plants, undershrubs, or trees. Leaves alternate, compound, sometimes simple by abortion, very seldom opposite or somewhat whorled (Lindley).

Properties.—Acidulous and refrigerant.

Oxalis acetosella, Linn. L.—Common wood-sorrel.

Sex. Syst. Decandria, Pentagynia.

History.—Mr. Bicheno declares this to be the genuine shamrock.

Botany. Gen. Char.—Sepals five, free or united at the base. Petals five. Stamens ten; filaments slightly monadelphous at the base, the five external alternate ones shorter. Styles five, pencilled at the apex or capitata. Capsule pentagonal, oblong, or cylindrical (De Cand.)—Perennial herbs. Leaves never abruptly pinnate.


Hab.—Indigenous; woody and shady places. Flowers in May.

Description.—Wood-sorrel (herba acetosellæ) is odourless. Its taste is agreeably acidulous.

Composition.—I am unacquainted with any analysis of this plant. Its expressed juice yields by evaporation binoxalate of potash. Payen analyzed Oxalis crenata. From its stems he obtained water, lignin, oxalate of potash, albumen, soluble nitrogenous matter, chlorophyll, oxalate of ammonia, free oxalic acid, oxides, salts, gum, an aromatic substance, and sugar. The quantity of oxalate of potash was from 1.06 to 1.23 per cent.

*Phil. Mag. vol. vii. p. 288, N. S.
* Journ. de Chim. Med. t. i. p. 260, N. S.
Binoxalate of Potash; Salt of Woodsorrel.—In Switzerland and some parts of Germany this salt is obtained on the large scale from woodsorrel, by evaporating the expressed juice, redissolving the residue, and crystallizing. 500 parts of the plant yield four parts of the crystallized salt. It crystallizes in white rhombic prisms. It consists of—

<table>
<thead>
<tr>
<th></th>
<th>Atoms</th>
<th>Eq. Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalic Acid</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>Potash</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>

Crystallized binoxalate potash: 1 unit, 138 units.

In commerce the quadroxalate of potash is substituted for it (see p. 344).

Physiological Effects and Uses.—Woodsorrel is refrigerant. Taken as a salad, it is considered a good antiscorbutic. Infused in milk, to form whey, or in water, it furnishes a grateful drink in fevers. A solution of the binoxalate of potash has been employed as a substitute for lemonade.

Order LXVIII.—VITACEÆ, Lindley.—The Vine Tribe.

Ampelideæ, Kunth, De Candolle.

Essential Character.—Calyx small, nearly entire at the edge. Petals four or five, inserted on the outside of the disk surrounding the ovary; in aestivation turned inwards at the edge, in a valvate manner, and often inflected at the point. Stamens equal in number to the petals, and opposite them, inserted upon the disk, sometimes sterile by abortion; filaments distinct, or slightly cohering at the base; anthers ovate, versatile. Ovary superior, two-celled; style one, very short; stigma simple; ovules erect, definite. Berry round, often by abortion one-celled, pulpy. Seeds four or five, or fewer by abortion, bony, erect; albumen hard; embryo erect, about one-half the length of the albumen; radicle taper; cotyledons lanceolate, plano-convex.—Scrambling, climbing shrubs, with tumbid separable joints. Leaves with stipules at the base, the lower opposite, the upper alternate, simple or compound. Peduncles racemose, sometimes by abortion changing to tendrils often opposite the leaves. Flowers small, green (Lindley).

Properties.—Acid leaves, and a fruit like that of the common grape, is the usual character of the order (Lindley).

VITIS VINIF'ERA, Linn. L. E. D.—Common Grape-Vine.

Sex. Syst. Pentandria, Monogynia.

(Baccae exsiccateae demptis acinis, L.—Dried fruit, E.—Fructus siccatus, D.)

History.—The grape-vine has been known and cultivated from the most remote periods of antiquity. The Sacred Historian tells us that Noah planted a vineyard and made wine. This was more than 2000 years before Christ. Among the most ancient of the profane writers, Homer, Hippocrates, and Herodotus, may be referred to as speaking of the vine.

1 Gen. ix. 20.
2 Od. vii. 121, and xxiv. 342.
3 Euterpe, lxxvii.
Fig. 305.

**BOTANY.**

**Gen. Char.** — Calyx somewhat five-toothed. Petals five, cohering at the point, separating at the base, and dropping off like a calyptra. Stamens five. Style none. Berry two-celled, four-seeded; the cells or seeds often abortive (De Cand.)

**Sp. Char.** — Leaves lobed, sinuated, toothed, smooth or downy (De Cand.)

A hardy, exceedingly variable shrub. Leaves more or less lobed, smooth, pubescent or downy, flat or crisp, pale or intensely green. [Tendrils opposite to each footstalk, solitary, spiral.] Branches prostrate, climbing or erect, tender or hard. Racemes loose or compact, ovate or cylindrical. Fruit red, pale, or white, watery or fleshy, globose, ovate or oblong, sweet, musky or austere. Seeds variable in number, or sometimes the whole of them abortive (De Cand.)—No less than 1400 varieties are cultivated at the Luxembourg gardens.

**Description.**—Grapes (Uva), considered with respect to their shape and colour, may be thus arranged:

1. **Round, dark-red, purple, or black grapes.**—The most remarkable variety of this division is the black Corinthian grape, which, when dried, constitutes the currant of the grocer.
2. **Oval, dark-red, purple, or black grapes.**—To this division belongs the favourite black Hamburg grape.
3. **Round and white grapes.**
4. **Oval and white grapes.**—The Portugal grape comes under this division. It is imported, packed in saw-dust and contained in earthen jars, from Portugal and Spain. The berries are large, fleshy, sweet, and slightly acidulous. They keep a long time after they have ripened. In 1822, the ad valorem duty of 20 per cent. on these grapes produced £1720. The white Corinichon grape is remarkable for its elongated elliptical berry.
5. **Red, rose-coloured, grayish, or striped grapes.**

Various parts of the vine, some of which were formerly employed in medicine, are distinguished by peculiar names; thus, the leaves are termed pampini; the cirrhi or tendrils, capreoli; the tender shoots, palmites; the juice or sap, lachryma; and the juice of unripe grapes, emphacium, or commonly agresta. The twigs or cuttings of the vine are used for flavouring vinegar (see p. 389).

**Composition.**—The juice of unripe and ripe grapes has been

---

*Thompson, in Loudon’s Encycl. of Gardening.*
*M'Culloch, Dict. of Commerce.*
*Murray, App. Med. i. 444.*
examined by several chemists. The following are the most important results:

<table>
<thead>
<tr>
<th>Juice of the Unripe Grape</th>
<th>Juice of the Ripe Grape</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Proust.</strong></td>
<td><strong>Bérard.</strong></td>
</tr>
<tr>
<td>Extractive.</td>
<td>Odorous matter.</td>
</tr>
<tr>
<td>Malic acid, a little.</td>
<td>Sugar.</td>
</tr>
<tr>
<td>Citric acid, much.</td>
<td>Gum.</td>
</tr>
<tr>
<td>Bitartrate of potash.</td>
<td>Glutinous matter.</td>
</tr>
<tr>
<td>Sulphate of potash.</td>
<td>Citric acid, a little.</td>
</tr>
<tr>
<td>Sulphate of lime.</td>
<td>Bitartrate of potash.</td>
</tr>
<tr>
<td>Unripe Grape juice.</td>
<td>Supertartrate of lime.</td>
</tr>
<tr>
<td>1. Deposit from the juice.</td>
<td></td>
</tr>
<tr>
<td>Wax.</td>
<td></td>
</tr>
<tr>
<td>Chlorophylle.</td>
<td></td>
</tr>
<tr>
<td>Tannin.</td>
<td></td>
</tr>
<tr>
<td>Glutinous matter.</td>
<td></td>
</tr>
<tr>
<td>Tannin.</td>
<td></td>
</tr>
<tr>
<td>Extractive.</td>
<td></td>
</tr>
<tr>
<td>Sugar (uncrystallizable).</td>
<td></td>
</tr>
<tr>
<td>Gallic acid.</td>
<td></td>
</tr>
<tr>
<td>Tartaric acid (free) about 1.12 per cent.</td>
<td></td>
</tr>
<tr>
<td>Malic acid (free) about 2.19 per cent.</td>
<td></td>
</tr>
<tr>
<td>Bitartrate of potash.</td>
<td></td>
</tr>
<tr>
<td>Malate, phosphate, sulpha, and muriate of lime.</td>
<td></td>
</tr>
<tr>
<td>2. Filtered juice.</td>
<td></td>
</tr>
</tbody>
</table>

| **Geiger.**               |                         |
| Wax.                      |                         |
| Chlorophylle.             |                         |
| Tannin.                   |                         |
| Glutinous matter.         |                         |
| Tannin.                   |                         |
| Extractive.               |                         |
| Sugar (uncrystallizable). |                         |
| Malic acid, a little.     |                         |
| Citric acid, a little (tartaric, Braconnot). |                         |
| Bitartrate of potash.     |                         |
| Ripe Grape juice.         |                         |

1. **Grape Sugar.**—This is one variety of the granular or crumbling sugars (Krumelzuckers) of the Germans. It agrees with common sugar in its most essential properties (see p. 898), but is less soluble in water and in alcohol than the latter, and does not sweeten so effectually. From its boiling alcoholic solution it is deposited, on cooling, in the form of an irregularly crystalline mass. It consists, according to Saussure, of carbon 36.71, hydrogen 6.78, and oxygen 56.51; or C₆H₂O₇.

2. **Bitartrate of Potash.**—The impure bitartrate of potash, called crude tartar or argol, which is deposited during the fermentation of grape wine, and the purified bitartrate, have been already described (see p. 524).

**Dried Grapes or Raisins.**—Grapes, when properly dried, are denominated Raisins (Uva passæ). Of these there are two principal kinds:

1. **Raisins commonly so called** (Uva passæ majores; Passulæ majores). In Granada the finest kinds of raisins (viz. the Muscatels and the Blooms) are sun-dried; while the Lexias (so called from the liquor in which they are immersed) are dipped in a mixture of water, ashes, and oil, and afterwards sun-dried. By this treatment the juice exudes and candies on the fruit. Dillon states that the sun-dried raisins have their stalk half cut through while the bunch remains on the vine. The raisins of Valentia are prepared by steeping them in boiling water to which a lye of vine stems has been added. Some raisins are said to be dried by the heat of an oven. Raisins are imported in casks, barrels, boxes, and jars. The best come in jars and quarter boxes weighing twenty-five lbs. The varieties known in the market are distinguished partly from their place of growth, as Valentias and Smyrnas; partly from the variety of grape from which they are prepared, as Sultanas, Blooms, and Muscatels; and partly from the mode of curing them, as Raisins of the Sun. Muscatels are the finest. Sultanas are stoneless. The raisins of Malaga are of three kinds: 1st Muscatels; 2nd Sun or Bloom Raisins (obtained from a long grape called Uva larga); and the Lexia Raisins.

2. **Corinthian Raisins or Currants** (Uva passæ minores; Passulæ minores; Passulæ Corinthiacæ). These are obtained from a remarkably small variety of grape called the Black Corinth. They were formerly produced at Corinth (whence...
they received their name), but are now grown in Zante, Cephalonia, Patras, &c. At Zante they are gathered in August, disposed on the ground to dry, cleaned, and laid up in magazines (called seragglos), where they eventually adhere so firmly as to require digging out.\(^d\) They require eight, ten, or fourteen days for drying.\(^e\) For exportation they are trod in barrels.

**Physiological Effects.** — *Fresh grapes*, when ripe, are wholesome, nutritious, refrigerant, and, when taken freely, diuretic and laxative. The skin and the seeds are indigestible, and should be rejected. “I think we may assert, says Dr. Cullen,\(^f\) ‘that grapes which contain a large quantity of sugar are, if taken without their husks, the safest and most nutritive of summer fruits.” *Raisins* are somewhat more nutritious, and less refrigerant; for they abound more in sugar, and less in acid, than the fresh grape; but, if eaten too freely, they are apt to disorder the digestive organs, and cause flatulence. They possess demulcent and emollient qualities.

**Uses.** — Both grapes and raisins are employed at the table as a dessert. They are apt to disagree with dyspeptics and children. Raisins are also used in various articles of pastry. Considered medicinally, *fresh grapes* prove valuable in febrile and inflammatory complaints. They allay thirst, and diminish febrile heat. They have been found serviceable in dysentery\(^g\) and in phthisical complaints\(^h\).

“The subjects of pulmonary affections, who pass the summer in Switzerland,” observes Sir J. Clark,\(^i\), “may try the effects of a course of grapes, ‘Cure de Raisins,’ a remedy in high estimation in several parts of the continent.”

*Raisins* are employed in medicine principally as flavouring agents. They enter into several officinal preparations (as Decoctum Hordei compositum, p. 903; Decoctum Guaiacii, p. 1659; Tinctura Cardamomi composita, p. 1032; Tinctura Sennae composita, p. 1607; and Tinctura Quassie composita, p. 1641), the flavour of which they improve, though they contribute nothing to the efficacy of these compounds.

1. **POTASS. B. BITARTRAS.** See p. 524.

2. **ACIDUM TARARICUM.** See p. 409.

3. **TROCHISCI ACIDI TARARIICI, E;** Acidulated Lemon Lozenges or Acidulated Drops.—(Tartaric Acid, 5ij.; Pure Sugar, 3viij.; Volatile Oil Lemons, m.x. Pulverize the sugar and acid, add the oil, mix them thoroughly, and with mucilage beat them into a proper mass for making lozenges.)—Employed for coughs and sore-throats. More commonly taken on account of their agreeable flavour, as articles of confectionary.

4. **VINUM; Wine.**—The necessarily confined limits of this work, and the great extent to which the preceding subjects have run, compel me to devote a much smaller space to the consideration of wine than its interest and importance otherwise demand.

---

\(^d\) Spon and Wheler, *Voyage d'Italie*, &c. t. i. p. 85-7.

\(^e\) Holland, *Travels in the Ionian Isles*, p. 21; and Williams, *Travel in Italy*, &c. vol. ii. p. 182.

\(^f\) *Mat. Med.* i. 533.

\(^g\) Zimmerman, *Treat. on Dysent.* p. 87, 2nd ed. Lond. 1774.

\(^h\) Moore, *View of Society, &c. in Italy*, vol. ii. p. 254.

\(^i\) *The Sanative Influence of Climate*, p. 256. 3d ed. 1841.
In the British pharmacopoeias the only officinal wine directed to be used is Sherry (Vinum Xericum, L.; Vinum album; Sherry, E.; Vinum album Hispanum, D.) For medicinal purposes, however, other wines are also used; so that it is necessary to take a general view of the properties of wines.

The manufacture of wine deserves a passing notice. Grape juice does not ferment in the grape itself. This is owing, not, as Fabroni supposed, to the gluten being contained in distinct cells to those in which the saccharine juice is lodged, but to the exclusion of atmospheric oxygen, the contact of which, Gay-Lussac has shown, is necessary to effect some change in the gluten, whereby it is enabled to set up the process of fermentation. The expressed juice of the grape, called must (mustum), whose composition has been already stated (see p. 1663), readily undergoes the vinous fermentation when subjected to a temperature of between 60° and 80° F. It becomes thick, muddy, and warm, and evolves carbonic acid gas. After a few days this process ceases, the thick part subsides, the liquid becomes clear, and is then found to have lost its sweet taste, and to have become vinous. I have already explained the theory of the process (see p. 345; also, for some remarks respecting yeast, p. 904). The wine is now drawn off into casks, where it undergoes further changes. It is then racked off into other casks, where it is subjected to the operation of sulphuring (i.e. exposed to sulphurous acid, either by burning sulphur matches in the cask or by the addition of wine impregnated with this acid), to render the glutinous matter incapable of re-exciting fermentation. After this, the wine is usually clarified, or fined (i.e. deprived of those matters which render the wine turbid, and dispose it to undergo deteriorating changes). Isinglass or white of egg (i.e. gelatine or albumen) is commonly employed for this purpose. The first forms with the tannic acid—the second with the alcohol, reticulated coagula, which envelop and carry down the solid particles that endanger the safety of the wine.

The peculiar qualities of the different kinds of wine depend on several circumstances; such as the variety and place of growth of the vine from which the wine is prepared,—the time of year when the vintage is collected,—the preparation of the grapes previously to their being trodden and pressed,—and the various manipulations and processes adopted in their fermentation.

The wines of different countries are distinguished in commerce by various names. The following is a list of the wines most commonly met with, arranged according to the countries producing them:

I. French Wines.—Champagne (of which we have the still, creaming, or slightly sparkling,—the full frothing,—the white—and the pink); Burgundy (red and white); Hermitage; Côte Rôtie; Rousillon; Frontignac; Claret (the most

---

1 De l'Art de faire le Vin. Paris, 1801.
2 Ann. de Chim. lxxvi. 245.
3 For further details consult Fabroni, De l’Art de faire le Vin, traduit de l’italien par F. R. Baud, Par. 1801; Chaptal, L’Art de faire le Vin, 2° éd. Paris, 1819; also Ann. de Chim. t. xxxv, xxxvi. xxxvii.; Dr. Mcculloch, Remarks on the Art of Making Wine, 1816; and Busby’s Journal before quoted.
esteemed being the produce of Lafitte, Latour, Château Margaux, and Haut-Brian; Vin de Grave; Sauterne; and Barsac.

2. Spanish Wines.—Sherry (Xeres); Tent (Rota); Mountain (Malaga); Benicarlo (Alicant).

3. Portuguese Wines.—Port, red and white (Oporto); Bucellas, Lisbon, Calca-vallo, and Colares (Lisbon). An inferior description of red Port Wine is shipped at Figuera and Aveiro.

4. German Wines.—Rhine and Moselle Wines. The term Hock (a corruption of Hochheimer) is usually applied to the first growths of the Rhine. The term Rhenish commonly indicates an inferior Rhine wine.

5. Hungarian Wines.—Tokay.

6. Italian and Sicilian Wines.—Lachryma Christi; Marsala; Syracuse; Lissa.

7. Grecoan and Ionian Wines.—Candian and Cyprus wines.

8. Wines of Madeira and the Canary Islands.—Madeira and Canary (Teneriffe).

9. Wines of the Cape of Good Hope.—Cape Madeira, Pontiac, Constantia red and white (a sweet, luscious wine, much esteemed).


11. English Wines.—Grape, Raisin, Currant, Gooseberry, &c.

Wines are also designated, according to their colour, red or white; according to their taste and other properties, sweet, acidulous, dry, strong or generous, light, rough, sparkling, &c.

The constituents of wine are, according to Gmelin, as follows:—

- Alcohol, an odoriferous principle (volatile oil?), blue colouring matter of the husk (in red wine), tannin, bitter extractive, sugar (especially in the sweet wines), gum, yeast, acetic acid (from the commencement of the acetous fermentation), malic acid, tartaric acid, bitartrate of potash, bitartrate of lime, sulphates and chlorides, phosphate of lime, carbonic acid (especially in the effervescing wines), and water. To these may be added paratartaric or racemic acid.

1. Bouquet of Wine: Odoriferous Principle of Wine.—Every wine has a peculiar odour, which depends, doubtless, on a small quantity of volatile oil. The oil obtained from corn and potato spirit has been already noticed (see p. 348). Liebig and Pelouze have examined the oily liquid procured in the distillation of wine as well as by submitting wine lees to distillation, and found it to be anthemlic ether ($C_8 O_3$) mixed with anthemlic acid ($C_{14} H_{13} O_3$). From 22,000 lbs. (about 2200 imperial gallons) only two lbs. and one-fifth of oily liquid were procured.

2. Alcohol.—Mr. Brande has shewn that alcohol exists ready formed in wine. He also ascertained the quantity of this substance which exists in different wines. The latter point has also been examined by several other chemists; as Geiger, Julia-Fontenelle, Prout, and Ziz, and more recently by Dr. Christison. Buris has ascertained the alcoholic strength of the wines of the Pyrénées-Orientales. Wines which contain a comparatively small quantity of spirit are denominated light wines; while those which have a much larger quantity are denominated strong or generous wines.

---

* Handb. d. Chem. ii. 1255.
* Phil. Trans. for 1811, p. 357; and for 1813, p. 82.
* Journ. de Chim. Méd. iii. 532.
* Henderson, op. cit. p. 363.
* Jameson’s Journal.
* For further details respecting wines the reader is referred to the works of Barry and Henderson already quoted, and to The Topography of all the known Vineyards, Eng. Transl. 1824; Redding’s History of Modern Wines, 1833; and Busby’s Visit to the Vineyards of Spain and France, Lond. 1834.
### Table of the proportion of Alcohol (sp. gr. 0*825 at 60° F.), by measure, contained in 100 parts of Wine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lissa</td>
<td>19:41</td>
<td>15:90</td>
<td>P.</td>
<td>17:43</td>
</tr>
<tr>
<td>Raisin</td>
<td>25:12</td>
<td>18:40</td>
<td>P.</td>
<td>18:13</td>
</tr>
<tr>
<td>Marsala</td>
<td>22:96</td>
<td>20:64</td>
<td>P.</td>
<td>15:10</td>
</tr>
<tr>
<td>Port</td>
<td>22:27</td>
<td>21:20</td>
<td>P.</td>
<td>17:05</td>
</tr>
<tr>
<td>Madeira</td>
<td>20:55</td>
<td>23:80</td>
<td>P.</td>
<td>18:01 F.</td>
</tr>
<tr>
<td>Sherry</td>
<td>21:17</td>
<td>14:50</td>
<td>P.</td>
<td>12:20 F.</td>
</tr>
<tr>
<td>Teneriffe</td>
<td>19:79</td>
<td>19:75</td>
<td>P.</td>
<td>15:90</td>
</tr>
<tr>
<td>Colares</td>
<td>19:70</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Lachryma Christi.</td>
<td>19:70</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Constantia, white</td>
<td>19:73</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Constantia, red</td>
<td>18:92</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Lisbon</td>
<td>18:94</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Malaga</td>
<td>18:94</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Bucellas</td>
<td>18:49</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Red Madeira</td>
<td>20:25</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Cape Muscat</td>
<td>19:75</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Cape Madeira</td>
<td>20:51</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Grape Wine</td>
<td>18:11</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Calcavella</td>
<td>18:65</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Vidonia</td>
<td>19:23</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Alba Flora</td>
<td>17:26</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
<tr>
<td>Malaga</td>
<td>17:26</td>
<td>14:50</td>
<td>P.</td>
<td>13:30</td>
</tr>
</tbody>
</table>

* A. means average, F. Fontenelle, P. Prout.

According to the more recent experiments of Dr. Christison, the quantity of alcohol in wines has been somewhat overrated. The following are his results:

<table>
<thead>
<tr>
<th>Wine</th>
<th>Alcohol (0*79-39) per cent, by weight.</th>
<th>Proof Spirit per cent, by volume.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Mean of 7 wines</td>
<td></td>
</tr>
<tr>
<td>Weakest</td>
<td>14:97</td>
<td>30:56</td>
</tr>
<tr>
<td>Strongest</td>
<td>17:10</td>
<td>33:91</td>
</tr>
<tr>
<td>White</td>
<td>14:97</td>
<td>31:31</td>
</tr>
<tr>
<td>Mean of 13 wines, excluding those very long kept in cask</td>
<td>13:98</td>
<td>30:84</td>
</tr>
<tr>
<td>Sherry</td>
<td>Mean of 9 wines very long kept in cask</td>
<td></td>
</tr>
<tr>
<td>Weakest</td>
<td>15:37</td>
<td>33:59</td>
</tr>
<tr>
<td>Strongest</td>
<td>16:17</td>
<td>35:12</td>
</tr>
<tr>
<td>Mean of 9 wines very long kept in cask in the East Indies</td>
<td>14:73</td>
<td>32:30</td>
</tr>
<tr>
<td>Madeira—All long in cask in East Indies</td>
<td>16:39</td>
<td>37:65</td>
</tr>
<tr>
<td>Teneriffe, long in cask at Calcutta</td>
<td>14:99</td>
<td>30:86</td>
</tr>
<tr>
<td>Cercial</td>
<td>13:84</td>
<td>30:21</td>
</tr>
<tr>
<td>Dry Lisbon</td>
<td>15:45</td>
<td>33:65</td>
</tr>
<tr>
<td>Shiraz</td>
<td>16:14</td>
<td>34:71</td>
</tr>
<tr>
<td>Amontillado</td>
<td>12:95</td>
<td>28:30</td>
</tr>
<tr>
<td>Claret, a first growth of 1811</td>
<td>12:63</td>
<td>27:69</td>
</tr>
<tr>
<td>Chateau-Latour, first growth 1823</td>
<td>7:72</td>
<td>16:95</td>
</tr>
<tr>
<td>Rosan, second growth 1825</td>
<td>7:78</td>
<td>17:06</td>
</tr>
<tr>
<td>Ordinary Claret, a superior &quot;vin ordinaire&quot;</td>
<td>7:61</td>
<td>16:74</td>
</tr>
<tr>
<td>Rivesaltes</td>
<td>8:99</td>
<td>18:96</td>
</tr>
<tr>
<td>Malmsye</td>
<td>9:31</td>
<td>22:55</td>
</tr>
<tr>
<td>Rüdesheimer, superior quality</td>
<td>8:40</td>
<td>28:37</td>
</tr>
<tr>
<td>Ditto inferior quality</td>
<td>6:90</td>
<td>18:44</td>
</tr>
<tr>
<td>Hambacher, superior quality</td>
<td>7:32</td>
<td>15:19</td>
</tr>
</tbody>
</table>

Dr. Christison states that by keeping wines, as Sherry and Madeira, in casks, for a moderate term of years, the quantity of alcohol increases; but after a certain time it decreases; and it is probable that at the period when wines begin to lose alcohol they cease to improve in flavour.

3. **Free Acids.**—All wines are more or less acidulous, as determined by litmus. They owe this property principally to malic acid, but in part also to citric and tartaric acids. The Rhenish and Moselle wines and claret are termed...
The brisk, frothing, sparkling, or effervescent wines (as Champagne), which are bottled before fermentation is complete, owe their peculiar properties to the retention, and subsequent escape when the confining force is removed, of the developed carbonic acid gas. They are apt to become ropey,—a change which is prevented by pure tannic acid or powdered nutgalls. The tannic acid of some wines, especially the red wines (as Port), is derived, in great part, from the husk of the grape, but partly, perhaps, from the seeds. It gives to these wines their astrinacy and power of becoming dark-coloured with the ferruginous salts.

4. Sugar.—This constituent varies considerably in quantity in different wines. Those in which it is abundant are denominated sweet wines, as Tokay, Tent, and Frontignac.

5. Extractive.—Exists in all wines, but diminishes (by deposition) with their age.

6. Colouring matter.—All wines contain more or less colouring matter. When grape juice, without the husks of the fruit, is fermented, the wine is pale, and is denominated white wine; but if the husk be present during fermentation, the wine is deep coloured, and is usually called red wine Except in the tintilla or teinturier grape the purple colouring matter resides in the husk, and is dissolved by the newly-formed alcohol, and is reddened by the free acid. In the exception just mentioned, the colouring matter is diffused through the pulp. According to Nees von Esenbeck, the purple colouring matter of the grape resides on the inner side of the husk (epicarp). By exposure to the sun, as well as by age, the colour of wines is diminished; the colouring matter being precipitated. It may be artificially removed by milk, lime water, or charcoal.

7. Tartar (Bitartrate of Potash).—The most important saline constituent of wine is tartar. It deposits, along with colouring and extractive matters, both in the cask and bottle, constituting aryl (see p. 525) and the crust. The deposition increases with the formation of alcohol. Red wines (especially the youngest, roughest, and most coloured) contain more than white wines.

Adulteration, &c.—Various impositions are said to be practised by dealers on the consumers of wines. These are almost entirely confined to the mixing of wines of various qualities. In some cases, however, the finest wines have been prepared by mixture. “From the gradual mixture of wines of various ages,” observes Mr. Busby, “no wine can be further from what may be called a natural wine than sherry.” In some cases inferior kinds of wine are substituted by fraudulent dealers for finer ones.

To augment the strength of wine, brandy is frequently added. This is done to sherry before it is shipped from Spain. To good wines, however, it is never added in greater quantities than four or five per cent. By recent regulations, ten per cent. of brandy may be added to wines after their arrival in this country, and while in the bonded vaults; the increased quantity only paying the wine duty.

Colouring matters are also employed to deepen or change the tint of wine. In Spain, boiled must (of the consistence of treacle, and having a similar flavour, but with a strong empyreumatic taste) is employed, to deepen the colour of sherry. It is prepared by boiling down must to a fifth part of its original bulk. In this country, caramel (see p. 901) is said to be used for a similar purpose. In Portugal the juice of the elder berry has been employed to augment the colour of Port-wine, the produce of poor vintages. To such an extent was

---

v Op. supra cit. p. 3.
* Ibid. p. 4.
° Ibid. pp. 4 and 11.
this, at one time, practised, that the Wine Company of Portugal rooted out the trees and prohibited their growth in the wine district.

Flavouring substances are also occasionally added to wines. Thus in Spain, *Amontillado* or *Montillado* (a very dry kind of sherry) is added to sherries which are deficient in the nutty flavour. Being very light in colour, it is also used to reduce the colour of sherries which are too high. Kino is said to be used in this country to augment the astringent flavour of Port-wine.

Lead, formerly used to sweeten wine\(^1\), may be occasionally detected, in very minute quantity, in wine (by sulphuretted hydrogen). It is usually to be traced to shot in the bottle, and rarely to fraud\(^2\).

**Effects.**—The *physiological effects* of wine next deserve our attention. Taken in moderate quantities, wine operates as a stimulant to the nervous and vascular systems, and the secreting organs. It quickens the action of the heart and arteries, diffuses an agreeable warmth over the body, promotes the different secretions, communicates a feeling of increased muscular force, excites the mental powers, and banishes unpleasant ideas. In a state of perfect health, its use can be in no way beneficial, but, on the contrary, its habitual employment in many cases proves injurious, by exhausting the vital powers, and inducing disease (see some further remarks on the dietetical properties of wines, at pp. 71 and 72). The actual amount of injury which it may inflict will of course vary with the quantity and quality of the wine taken, and according to the greater or less predisposition to disease which may exist in the system. Maladies of the digestive organs, and of the cerebro-spinal system, gout and dropsy, are those most likely to be induced or aggravated by it. Intoxication in its varied forms is the effect of excessive quantities of wine. It is remarkable, however, that though the effects of wine mainly depend on the alcohol contained in this liquor, yet they differ in several circumstances from those of the latter (described at p. 358 et seq.). In the first place, wine possesses a tonic influence not observed after the use of ardent spirit. Common experience proves to every one, that the stimulant influence communicated by wine is slower in its production and subsidence than that developed by spirit. In the second place, the intoxicating influence of wine is not equal to that of mixtures of ardent spirit and water of corresponding strengths, nor proportionate, in different wines, to the relative quantities of alcohol which they contain. This will be obvious from the following table, drawn up from Mr. Brande's results, before quoted:—

---

**Average quantities of Ardent Spirit and of Wine, containing four fluidounces of Alcohol (sp. gr. 0.825 at 60° F.)**

<table>
<thead>
<tr>
<th></th>
<th>Brandy, about</th>
<th>Port Wine</th>
<th>Claret</th>
<th>Champagne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 fluidounces</td>
<td>16(^1) ditto</td>
<td>26(^1) ditto</td>
<td>32 ditto</td>
</tr>
</tbody>
</table>

---

\(^1\) See Beckmann, *Hist. of Invent.* vol. i. p. 396.

\(^2\) See a case in the *Phil. Mag.* liv. 239.
Now it is obvious from this table that if the intoxicating power of vinous liquids was in proportion to the spirit contained in them, that a pint of Port-wine would be almost equal to half a pint of brandy, and that Claret would exceed Champagne in its influence over the nervous system; all of which we know not to be the case. It is therefore obvious, that the other constituents of the wine possess the power of modifying the influence of the alcohol. Furthermore, it is probable that they are enabled to do this by being in chemical combination with the spirit. For it is asserted by connoisseurs, that a brandied wine (i.e. wine to which brandy has been added) is more intoxicating than a non-brandied wine equally strong in alcohol. Hence dealers endeavour to obviate this by the operation of fretting in, and which, in a scientific point of view, may be regarded as effecting the chemical combination of the foreign spirit with the constituents of the wine, by a second or renewed fermentation. A third distinction between the operation of wine and ardent spirit is the greater tendency of the latter to induce disease of the liver. "It is well known," observes Dr. Macculloch * , "that diseases of the liver are the most common, and the most formidable of those produced by the use of ardent spirits; it is equally certain that no such disorders follow the intemperate use of pure wine, however long indulged in. To the concealed and unwitting consumption of spirit, therefore, as contained in the wines commonly drank in this country, is to be attributed the excessive prevalence of those hepatic affections which are comparatively little known to our continental neighbours."

Uses.—The uses of wines are threefold—dietetical, medicinal, and pharmaceutical. To persons in health, the dietetical employment of wine is either useless or pernicious. The least injurious are the light wines, especially Claret.

As a medicinal agent, wine is employed principally as a cordial, stimulant, and tonic; but some of the wines possess astringent and acid properties, for which they are occasionally resorted to. In the latter stages of fever, when languor and torpor have succeeded to a previous state of violent action, and in the low forms of this disease, wine is at times undoubtedly useful. It supports the vital powers, and often relieves delirium and subsultus tendinum, and promotes sleep. But it is much less frequently and copiously employed than formerly. As a stimulating tonic and invigorating agent, it is given in the state of convalescence from fever, and from various chronic non-febrile diseases. In extensive ulceration, copious suppuration, gangrene of the extremities, and after extensive injuries or severe operations, or profuse hemorrhages, when the powers of life appear to be failing, wine is administered often with the best effects. It has been liberally employed in tetanus, and at times with apparent alleviation of the disease. If in any of the preceding cases it causes dryness of the tongue, thirst, quick pulse, restlessness, or delirium, it

should of course be immediately laid aside. And it is obvious that in acute inflammation, especially of the brain or thoracic organs, in tendency to sanguineous apoplexy, and in the first or acute stage of fever, the employment of wine is objectionable, and calculated to prove highly injurious.

1. Port-wine (Vinum Lusitanicum seu Portugallicum) is applied to most of the purposes above mentioned for which a stimulant and tonic is required, and is the wine ordinarily employed in the public hospitals of this metropolis. On account of its astringency, it is particularly useful in those cases which are attended with a relaxed condition of the bowels; but it is apt to disagree with weak stomachs. A mixture of two-thirds Port-wine and one-third water is used as an injection for the radical cure of hydrocele.

2. Burgundy (Vinum Burgundicum) is a stimulant, and somewhat astringent wine; but is rarely used in this country for medicinal purposes.

3. Sherry (Vinum Xericum, Ph. L.; Vinum Album, Ph. Ed.; Vinum album Hispanum, Ph. D.) is peculiarly valuable, on account of the small quantity of free acid which it contains; and it is, therefore, the wine best adapted for patients troubled with gout, or having acidity of stomach, or a deposition of lithic acid in the urine.

4. Madeira (Vinum Madeiraicum) is a more stimulating wine than Sherry, and is, therefore, better adapted for old persons and debilitated broken-down constitutions, where its slight acidity is not objectionable. It is an excellent wine for invalids.

5. Champagne (Vinum Campanicum) is a diuretic and a speedy intoxicator. It excites lively and agreeable feelings, and, in consequence, is adapted for hypochondriacal cases. On account of the evolution of carbonic acid, it may be occasionally employed to allay vomiting. It is objectionable in gouty subjects.

6. The Rhine wines (Vinum Rhenanum), of which Hock (Vinum Hochheimense) is the most familiar example, and the Moselle wine (Vinum Mosellanum), are refrigerant and light wines. They prove diuretic and slightly aperient. Their acidity adapts them for use where phosphatic sediments are observed in the urine. They are used also in low fever, with at least less likelihood of doing harm than the stronger wines.

7. Claret (Vinum rubellum) has been already mentioned as one of the least injurious of wines. It is adapted for the same cases as the Rhine and Moselle wines. Both are, of course, objectionable in gouty cases and lithic acid deposits, on account of their acidity.

As a pharmaceutical agent, wine is employed for the preparation of the medicated wines (vina medicata). Sherry is the kind employed by the British colleges; but for economy druggists often use Cape wine. Its efficacy resides essentially in the alcohol which it contains. In some cases, however, its acidity may increase its solvent power. But as the quantity of alcohol which it contains is variable, and as it is more liable to undergo decomposition than a tincture containing the same proportion of spirit, the medicated wines are objectionable preparations.

5. SPIRITUS VINI GALLICI, L.—See p. 362.

Order LXIX.—Guttiferae, Jussieu.—The Mangosteen Tribe.

Clusiaceae, Lindley.

Essential Character. — Sepals two or six, usually persistent, round, frequently unequal and coloured; estivation imbricated. Petals hypogynous, four to ten. Stamens hypogynous, indefinite, or rarely definite, distinct or variously united to the base; filaments unequal; anthers adnate, introrse or extrorse, sometimes very small, sometimes unilocular, and sometimes opening by a pore. Torus fleshy, occasionally five-lobed. Ovary solitary, one- or many-celled; ovules solitary, or several in each cell, erect or ascending, or numerous and attached to several placenta; style usually none or very short, seldom conspicuous; stigmas peltate or radiate. Fruit capsular or fleshy, or drupaceous, one- or many-celled, valvular and septicidal, or indehiscent. Seeds definite, in a pulp, arillate; testa thin and membranous; albumen none; embryo straight; radicle small next the hilum; cotyledons large, thick and fleshy, often cohering. — Trees or shrubs, sometimes parasitical. Juice resinous. Leaves exstipulate, always opposite, coriaceous, with a strong midrib, and many oblique lateral parallel veins. Flowers articulated with their peduncle. — (Wight and Arnott.)

Properties. — The species all abound in a viscid, yellow, acrid, and purgative gum-resinous juice resembling Gamboge (Lindley). Several species of Garcinia yield edible fruits. The fruit G. Mangostana (fig. 306) is the most delicious of East Indian fruits, and is "the only fruit which sick people are allowed to eat without scruple."

1. HEBRADENDRON CAMBOGIOIDES, Graham, E.—The Gamboge Hebradendron.

Cambogia Gutta, Linn.—Stalagmitis cambogioides, Moon.

Sex. Syst. Monoeia, Monadelphia.

(Gummy-resinous exudation, E.)

History. — The first notice of gamboge is by Clusius in 1605. He received this gum-resin in 1603 from Peter Garet, of Amsterdam. It had been brought from China by Admiral van Neck and his companions, and its oriental name was said to be Ghittaiemou.

---

As the female flowers have not yet been examined, the true place of this plant in the sexual system must at present be doubtful. Linnaeus puts his genus Cambogia in Polyandria, Monogynia.

Exot. lib. iv. cap. viii. p. 82.
GAMBOGE  HEBRADENDRON.  1673

Males: sepals four, membranous, permanent.  Petals four.  Stamens monadelphous, with a quadrangular column; anthers terminal, with an umbilicated circumscissile operculum.  Females unknown.  Berry many- (four) celled; cells one-seeded; surrounded by a few abortive distinct stamens, and crowned by a sessile-lobed muricated stigma.  Cotyledons thick, consolidated; radicle central filiform.—Trees with entire leaves.

Sp. Char.—Male flowers axillary, fascicled.  Sepals when young nearly equal.  Leaves obovate-elliptical, abruptly subacute (Graham).—A tree of moderate size.  Leaves opposite, stalked.  Male flowers: sepals four, imbricated, concave, yellow on the inside, yellowish-white on the outside.  Petals spathulato-elliptical, crenulate, yellowish-white, red on the inside.  Berry about the size of a cherry, round, with a firm reddish-brown external coat, and sweet pulp.  Seeds large in proportion to the berry, reniform elliptical.  (Condensed from Graham).

Hab.—Ceylon.

Siam Gamboge, the Gamboge of the shops, is a "gum-resin from an unascertained plant, inhabiting Siam, probably a species of Hebradendron," E.  The Stalagmitis Cambogioides, Murray* L.; S. Cambogia, Persoon, D., does not really exist.  The specimen, which has been described as such, is in the Banksian Herbarium, and was found by Mr. Brown* to consist of two plants (Xanthochymus ovalifolius of Roxburgh, and Hebradendron cambogioides of Graham), the union of which had been concealed by sealing-wax.  As it appears, according to Dr. Christie*, that the gamboge of Siam is "as nearly as possible identical in composition and properties" with that of Ceylon, it is probable that both are obtained from the same, or some nearly allied, species.  Indeed it has been suggested, that the plant may have been carried from Siam to Ceylon: for the Buddhist religion is supposed to have passed from the former to the latter country, and with it the practice of painting the temples and holy dresses with gamboge.

Preparation.—The only account which we possess of the method of obtaining Siam gamboge, is that given to König by a Catholic priest residing at Cochin-China.  According to this statement, when the leaves or branchlets are broken, a yellow milky juice issues guttati (hence the origin of the term Gummi Guttae applied to gamboge), and is received either on the leaves of the tree, or in cocoa-nut shells, and from thence is transferred into large flat earthen vessels, where it is allowed to harden during the summer season, and is after-

---

* Graham, Comp. to Bot. Mag. ii. 199.
† Graham, op. supra cit. p. 197.
* Comp. to the Bot. Mag. vol. ii. p. 236.
wards enveloped with leaves. The cylindrical or pipe variety receives its form by being run into the joints of the bamboo while it is in the liquid state. A few years since there was an importation of gamboge in the bamboo cylinders (gamboge in the bamboo). Each cylinder or stem was about twenty-one inches long and one inch and a half in diameter, closed at the lower end by the transverse partition of the nodus, and at the upper by a piece of oil-skin.

In Ceylon, gamboge is obtained by wounding the bark of the tree in various places with a sharp stone, when the flowers begin to appear. The cream-like juice which exudes, hardens in the sun. According to Mrs. Walker, the Cingalese method of collecting it is "by cutting pieces of the bark completely off, about the size of the palm of the hand, early in the morning. The gamboge oozes out from the pore of the bark in a semi-liquid state, but soon thickens, and is scraped off by the collectors next morning, without injury to the tree, the wounds in the bark readily healing, and becoming fit to undergo the operation again."

Description.—Two kinds of gamboge (cambogia; gummi-gutta) are described by pharmacological writers—viz. the Siam and the Ceylon. Of these the first only is known in commerce.

1. Siam Gamboge. (Cambogia Siamensis, Ph. Ed.)—This is the gamboge of the shops. It is brought to this country sometimes direct from Siam, at other times indirectly by way of Singapore, Penang, or Canton. It comes over in boxes, cases, or chests. In 1830, duty (4s. per cwt.) was paid on 15 cwts; in 1838, on 40 cwts. It presents itself in commerce in three forms:—1st, in rolls or solid cylinders; 2dly, in pipes or hollow cylinders; 3dly, in cakes or amorphous masses. Both the solid and hollow cylinders are known in commerce as pipe gamboge. What is called coarse gamboge consists of the commonest pieces of the above.

a. Pipe gamboge consists of cylindrical pieces, varying in size from one to three inches in diameter. Some of them appear to have been formed by rolling, but many of them are striated, from the impression of the bamboo stems into the hollow of which the gamboge juice has been run, and not unfrequently portions of the stems are still adherent; and on one occasion, as above mentioned, the gamboge was imported in the stems (gamboge in the bamboo). The gamboge cylinders are sometimes distinct, and covered externally with a dirty greenish-yellow dust; at others agglutinated, or even folded, so as to form masses of varying sizes and forms. Pipe gamboge occurs in all qualities,—the finest and the worst specimens of gamboge which I ever saw having this form. Fine gamboge is brittle and odourless: it has very little taste at first, but, after some time, it causes a sensation of acridity in the throat. Its fracture is conchoidal: its fractured surface is opaque, reddish yellow, with a glim-

1 White, Voyage to the China Seas, Boston, 1823, p. 250, quoted by Dr. A. T. Thomson, in the London Disp.
2 Murray, op. cit. pp. 108 and 657.
3 Graham, op. supra cit. p. 196.
Gamboge Hebradendron.

...mering lustre. It is completely dissolved by the successive action of ether and water. Mixed with a sufficient quantity of water, it forms a yellow emulsion, the films of which are excellent microscopic objects for observing the active molecules described by Mr. R. Brown. The powder of fine gamboge is bright yellow. The Edinburgh College gives the following characters of pure gamboge:

"Fracture somewhat conchoidal, smooth, and glistening: a decoction of its powder, cooled, is not rendered green by tincture of iodine, but merely somewhat tawny."

The iodine is employed to prove the absence of starch. Inferior qualities of gamboge are harder, more earthy in fracture; the fractured surface is brownish- or grayish-yellow, frequently with black spots, from the presence of foreign bodies which are intermixed. It is not completely dissolved by the successive action of ether and water. Iodine readily detects, in the cooled decoction, starch, by the green colour which it gives rise to.

β. Lump or Cake Gamboge occurs in masses of several pounds weight. Its quality is inferior to the finest pipe kind. Internally we observe fragments of wood, twigs, and air-cells. In most of its characters it agrees with the inferior qualities of pipe gamboge, and like this contains starch.

2. Ceylon or Cingalese Gamboge (Cambogia Zeylanica, Ph. Ed.) — I am unacquainted with this kind of gamboge, which is unknown in English commerce. Dr. Christison says, that, as he has seen it, it "is usually in small irregular fragments, but as originally collected, is in flattish round masses, as if moulded in shallow bowls, weighing about a pound or upwards; and it appears to be composed of aggre-gated irregular tears, with interspaces and cavities, which are lined with a dark powdery matter, or with a powder of an earthy appearance. Altogether it seems a very coarse article." It forms, "with great ease, an emulsion nowise inferior in smoothness, and very little, if at all, in liveliness of tint, to that of the very best Pipe Gamboge of Siam."

Composition.—Gamboge was analysed, in 1808, by Braconnot; m in 1813, by John n; and in 1836, by Dr. Christison o.

<table>
<thead>
<tr>
<th>Siam Gamboge.</th>
<th>Ceylon Gamboge.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin......</td>
<td>74.2</td>
</tr>
<tr>
<td>Soluble gum.</td>
<td>21.8</td>
</tr>
<tr>
<td>Woody fibre.</td>
<td>trace.</td>
</tr>
<tr>
<td>Fecula ....</td>
<td>6.2</td>
</tr>
<tr>
<td>Moisture ....</td>
<td>4.8</td>
</tr>
<tr>
<td>Gamboge   ...</td>
<td>100.8</td>
</tr>
</tbody>
</table>

1 Phil. Mag. for Sept. 1828 and 1829.  
2 Ann. de Chim. lxviii. 33.  
3 Gmelin, Hand. de Chem. ii. 626.  
4 Companion to the Botanical Magazine, ii. 233.
1. Gambogic Acid; Gambodic Acid, Johnston; Resin, Christison.—Obtained by evaporating to dryness the etherial tincture of the pure gum-resin. It is brittle, in thin layers of a deep orange colour, in thicker masses of a cherry-red tint. It is insoluble in water, but soluble in alcohol, and still more so in ether. It communicates an appreciable yellowness to 10,000 times its weight of spirit. It is soluble in the caustic alkalis, forming dark-red solutions (alkaline gambogiates), which yield, with acids, a yellow precipitate (gambogic acid); with acetate of lead, a yellow (gambogiate of lead); with the salts of iron, a dark brown (gambogiate of iron), and with sulphate of copper, a brown one (gambogiate of copper). The composition of gambogic acid, according to Johnston, is \( C_{10}H_{16}O_5 \). When heated to about 400° F. it undergoes partial decomposition, a resin soluble in cold alcohol being formed, and another insoluble in that liquid. The constitution of the latter seems to be represented by \( C_{10}H_{19}O_5 \).—In doses of five grains, gambogic acid occasioned profuse watery discharges without pain or other uneasiness. If the activity of gamboge depended solely on the resin, five, or five and a half, grains of the resin should be equal to seven of gamboge; but, according to Dr. Christison, this is not the case. Hence, either it is not the sole active ingredient, or it becomes somewhat altered in the process for procuring it: the latter supposition is the more probable.

2. Gum (Arabine?)._The gum of gamboge is soluble in water, like gum arabic.

3. Starch or Fecula.—This substance, which is found in common gamboge, is doubtless an adulterating substance.

Chemical Characteristics.—Gamboge emulsion becomes transparent and deep red on the addition of potash, forming gambogiate of potash. Digested in alcohol or ether, gamboge yields orange-red tinctures (solutions of gambogic acid). The etherial tincture dropped on water yields, on the evaporation of the ether, a thin, bright yellow, opaque film or scum (gambogic acid), soluble in caustic potash. The alcoholic tincture dropped into water yields a bright, opaque, yellow emulsion, which becomes clear, deep red, and transparent, on the addition of caustic potash. The gambogiate of potash (obtained by any of the above processes) gives, if the alkali be not in excess, with acids, a yellow precipitate (gambogic acid); with acetate of lead, a yellow precipitate (gambogiate of lead); with sulphate of copper, brown (gambogiate of copper); and with the salts of iron, dark brown (gambogiate of iron).

The detection of gamboge in pills has become, on some occasions, an important object of medico-legal research. Spurious extractum colocynthidis compositum, and the pill cochie of the shops, sometimes contain gamboge (see p. 1498). The mode of detection, in all these cases, is simple:—Digest one portion of the suspected substance in alcohol, and another in ether. Then subject the alcoholic and etherial tinctures to the tests above mentioned. In external appearance the resin of Xanthorrhoea hastile (see p. 987) is the only substance that could, by a remote possibility, be confounded with gamboge. But the above chemical characters readily distinguish gamboge. They would also prevent the yellow colouring matter of saffron (p. 1007), of turmeric (p. 1020), and of rhubarb (p. 1184), from being confounded with that of gamboge.

Physiological Effects. a. On Animals generally.—The animals on which the effects of gamboge have been tried, are dogs, horses, oxen, sheep, and rabbits. From his experiments on dogs, Orfila inferred that it is a powerful local irritant: and that when applied to

\[ \text{Phil. Trans. 1839.} \]
\[ \text{Trial of Joseph Webb, at York Summer Assizes, 1834, taken by Mr. Frazer. Lond. 1834.} \]
\[ \text{Torticol, Genc.} \]
any of the animal tissues, its fatal operation depends, not on its absorption, but on its powerful local action, and on the sympathetic irritation of the nervous system. It appears to be an uncertain and dangerous medicine for herbivorous animals, and is, therefore, never employed by veterinarians. Daubenton states, that two drachms killed a sheep. Two ounces and a half have been found to produce very little effect on a cow; while twice that quantity caused dysentery, which continued seventeen days. On the horse, from six to twelve drachms have merely rendered the stools somewhat softer and more frequent, although shivering, loss of appetite, irregularity of pulse, great anxiety, and other alarming constitutional symptoms, were brought on. On the other hand, Viborg has given an ounce to the horse without any remarkable effect.

\[ \beta \text{. On Man.} \text{—Taken in small doses, gamboge promotes the secretions of the alimentary canal and of the kidneys, and causes more frequent and liquid stools than natural. In larger doses it occasions nausea, oftentimes vomiting, griping pains of the bowels, watery stools, and increased discharge of urine. When the action is very violent, there is great depression of the vascular system. In excessive doses it acts as an acrid poison. A drachm caused horrible vomiting and purging, followed by syncope and death.} \]

The deaths which have occurred from the use of enormous quantities of Morison's pills are mainly ascribable to the gamboge contained in these medicines. In these cases the symptoms were, violent vomiting and purging, abdominal pain and tenderness, cold extremities, and sinking pulse. On post-mortem examination, inflammation, ulceration, and mortification of the intestines, were found.

Gamboge belongs to the active hydragogues and drastic purgatives. Its activity is inferior to elaterium and croton oil. In acridity it exceeds jalap, scammmony, and even colocynth. In its mode of operation it is allied to, though scarcely so acrid as, euphorbium. It is exceedingly apt to irritate the stomach, and to occasion nausea and vomiting. This arises from its ready solubility in the gastric juices. As this action on the stomach is exceedingly objectionable, we sometimes endeavour to lessen it by conjoining aloes, or some other substance which diminishes the solubility of gamboge in aqueous fluids, and by giving the medicine in the form of pill. Sundelin ascribes to gamboge an especial power of exciting the vascular system (arteries and veins) of the pelvic organs, in virtue of which, he says, it readily gives rise to the hemorrhoidal flux and uterine hemorrhage. Furthermore, he regards it as powerfully irritating and exciting to the abdominal nerves, especially the sacral and pelvic divisions.

\[ \text{Uses.} \text{—From the foregoing account of the effects of gamboge, it is very evident that it is a remedy well adapted for acting as a stimulus} \]

---

5. See Loud. Med. Gaz. vol. xiv. 612 and 759; xvii. 337, 415, and 623; xviii. 75 and 297; and xix. 573.
6. Heilmittell. ii. 28, 3rd Aufl.
to the abdominal and pelvic viscera, either to rouse them when in a
torpid state, or to give them preternatural activity, and thereby to
relieve some distant organ, on the principle of counter-irritation. On
the other hand, the use of gamboge is highly objectionable when there
is an irritable or inflammatory condition of the stomach or bowels, a
tendency to abortion, or to uterine hemorrhage, and also when we do
not want to promote or increase the hemorrhoidal discharge. The
following are some of the cases in which we employ it:

1. **In constipation**, where an active cathartic of small bulk is re-
quired, gamboge is employed. It is, however, not given alone, as the
necessary dose would be very apt to create nausea and vomiting. It is,
therefore, usually conjoined with other and milder purgatives, the
operation of which it increases and quickens, while they, by diminish-
ing its solubility in the juices of the stomach, lessen its tendency to
create nausea or vomiting. The *pilulae catharticae composite*, Ph.
U. S. (see p. 746), and the *pilulae gambogiae composite*, L. D. may be
referred to as preparations in which these objects have been kept in
view.

2. **In cerebral affections**, as apoplexy, or a tendency thereto, gam-
boge, usually associated with other purgatives as above stated, is a
highly valuable counter-irritant purgative. By stimulating and rous-
ing the nerves, blood-vessels, and secretory apparatus of the abdomen,
it is often calculated to relieve determinations of blood to other
parts.

3. **In dropsies** gamboge has been employed, on account of its
hydragogue operation, where the use of drastic purgatives is indicated.
To its efficacy numerous practitioners have borne testimony. It is,
however, rarely given alone, but usually in combination with other
and milder remedies (as jalap and bitartrate of potash) of the same
class. If it be desirable to act also on the kidneys, an alkaline solu-
tion of gamboge has been recommended. Gamboge has been thought
more especially serviceable in those forms of dropsy connected with
hepatic obstruction.

4. **As an anthelmintic.**—Gamboge has been frequently employed
as a remedy for tape-worm, and not unfrequently with considerable
success. Several empirical anthelmintic remedies are said to owe
their efficacy to this substance. It is an important constituent of
Madame Nouffer's specific (see p. 892).

**Administration.**—On account of its tendency to occasion vomit-
ing and griping, gamboge is usually given in small doses, as from one
to three or four grains, in the form of pill, and repeated every four or
six hours. In this way it may be given with safety and without
inconvenience. The full dose of it is said to be from ten to fifteen
grains. An alkaline solution of gamboge has been long known on
the continent under the name of *tincture of gamboge* (*tinctura gummi
gutae*), and has been employed as a powerful diuretic in dropsy. It

---

consists of gamboge, in powder, 3ss.; carbonate of potash, 5j. (intimately mixed with the gamboge); and brandy, 3xij. Digest with a gentle heat for four days.—Dose, f5ss. to f5j.

Antidote.—In poisoning by gamboge our chief reliance must be placed on the palliatives already mentioned for poisoning by euphorbium (p. 1130) and elaterium (p. 1509). I am acquainted with no well-ascertained antidote, though the alkalis (carbonate of potash, according to Hahnemann a) have been said to diminish the violence of the topical action of gamboge.

PILULÆ CAMBOGIE COMPOSITÆ, L. D.; PILULÆ CAMBOGIE, E.; Gamboge Pills.—(Gamboge, bruised, 5j. [one part, E.]; Aloes, bruised, 3iss. [East Indian or Barbadoes Aloes, one part, E.]; Hepatic Aloes, 5iss. D.]; Ginger, bruised, 3ss. [Aromatic powder, one part, E.]; Castile Soap, 5ij. [two parts, E.]. Mix the powders together, then add the soap [and then a sufficiency of syrup, E.; treacle, D.] and beat them into one mass).—Cathartic, considerably more active than the pilula aloes composita (p. 977). Employed in obstinate constipation.—Dose, grs. x. to grs. xv.—The aloes, by diminishing the solubility of the gamboge, renders the latter less likely to irritate the stomach. The formula is said to be a simplification of one proposed by Dr. George Fordyce.

2. CANEL'LA AL'BA, Murray, L. E. D.—LAUREL-LEAVED CANELLA OR WILD CINNAMON.

Sex. Syst. Dodecandria, Monogynia.
(Cortex, L. D.—Bark, E.)

History.—The bark of this tree has been frequently confounded with that of Drimys Winteri, hereafter to be described. Clusius b describes both barks, and notices two kinds of canella bark.

Botany. Gen. Char.—Sepals five. Petals five. Somewhat coriaceous, glaucous-blue, contorted in aestivation. Stamens united to form a tube; anthers fifteen, resembling furrows. Stigmas three. Berry three-celled, or by abortion one-celled; cells one- or two-seeded. Embryo (according to Gaertner, but perhaps an error) surrounded by fleshy albumen, curved, with linear cotyledons (De Cand.)

Sp. Char.—The only species.
A tree growing from ten to fifty feet high. Leaves alternate, shining, obovate, cuneate at the base, coriaceous and opaque when old, dotted when young. Flowers small, clustered, purple. Berry the size of a pea, fleshy, smooth, blue or black c.

Hab.—West Indies and continent of America.

Description.—The canella bark of the shops (cortex canelle alba), sometimes termed on the continent costus dulcis, or costus corticosus,

b Exot. lib. iv. cap. i. p. 75, and cap. iii. p. 78.
c Swartz, Trans. Linn. Soc. i. 96.
is the inner bark of the stem and branches. It occurs in quills or broken pieces, which are hard, somewhat twisted, of a yellowish-white or pale orange-colour, somewhat lighter on the internal surface, and have an aromatic clove-like odour, an acrid peppery taste, and a white granular fracture.

J. Bauhin and others have confounded it with Winter's bark; hence it has been denominated spurious Winter's bark (cortex Winteranus spurius). The pale colour of its inner surface is one out of several physical characters by which the two barks may be distinguished. Chemically they may be distinguished by nitrate of baryta and sulphate of iron, both of which cause precipitates in the infusion of Winter's bark, but not in that of canella.

Composition.—Canella bark was analysed, in 1820, by Henry; and, in 1823, by Petroz and Robinet.

### Henry's Analysis.

<table>
<thead>
<tr>
<th>Henry's Analysis</th>
<th>Petroz and Robinet’s Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Volatile oil.</strong></td>
<td>Volatile Oil.</td>
</tr>
<tr>
<td>Aromatic resin.</td>
<td>Resin.</td>
</tr>
<tr>
<td>Brownish yellow colouring matter.</td>
<td>Bitter extractive.</td>
</tr>
<tr>
<td>Extractive.</td>
<td>Canellin.</td>
</tr>
<tr>
<td>Gum.</td>
<td>Gum.</td>
</tr>
<tr>
<td>Starch.</td>
<td>Starch.</td>
</tr>
<tr>
<td>Albumen.</td>
<td>Albumen.</td>
</tr>
<tr>
<td>Lignin.</td>
<td>Lignin.</td>
</tr>
<tr>
<td>Salts.</td>
<td>Salts.</td>
</tr>
<tr>
<td><strong>Canella bark.</strong></td>
<td><strong>Canella bark.</strong></td>
</tr>
</tbody>
</table>

1. **Volatile Oil of Canella Bark.**—According to Carthusian it is dark yellow, fluid, and heavier than water. It has an acrid taste.

2. **Resin.**—Henry found this constituent to be aromatic, but not acrid.

3. **Bitter Extractive.**—Brown, very bitter, not crystallizable. Soluble in alcohol, ether, and slightly in water.

4. **Canellin (Mannite).**—A crystallizable, saccharine substance, incapable of undergoing the vinous fermentation.

**Physiological Effects.**—Canella bark is an aromatic stimulant and tonic. Its aromatic qualities depend on the oil and resin; its tonic properties on its bitter principle. As an aromatic it ranks between cinnamon and cloves.

**Uses.**—In this country it is employed principally as an aromatic addition to purgatives and tonics (see pulvis aloës cum canella, D., and vinum aloës, p. 97*; and tinctura gentianæ composita, E. p. 1281, and vinum gentianæ, E.) ; and is well adapted for debilitated conditions of the digestive organs.

By the Caribs (the ancient natives of the Antilles) and the negroes of the West Indies, it is employed as a condiment. It has been considered useful in scurvy.

**Administration.**—Dose of the powder, grs. x. to 5ss.

**VINUM GENTIANAE, E. ; Wine of Gentian.**—(Gentian, in coarse pow-

---

*Journ. de Pharm. t. v. p. 481.
* Ibid.
CITRON TREE. 1681

der, 3ss.; Yellow Bark, in coarse powder, 5j.; Bitter Orange-peel, dried and sliced, 5ij.; Canella, in coarse powder, 5j.; Proof Spirit, 3ivss.; Sherry, Oj. and 3sxvij. Digest the root and barks for twenty-four hours in the spirit; add the wine, and digest for seven days more; strain and express the residuum strongly, and filter the liquors.) — This formula should have been introduced at p. 1281.—Wine of gentian is an aromatic tonic, useful in dyspepsia and anorexia. It is apt to become acetoous by keeping.—The dose of it is f3ss. to f3j.

ORDER LXX.—AURANTIACEÆ, Corréd.—THE ORANGE TRIBE.

Essential Character.—Calyx urceolate or campanulate, somewhat adhering to the disk, short, three- or five-toothed, withering. Petals three to five, broad at the base, sometimes distinct, sometimes slightly combined, inserted upon the outside of a hypogynous disk, slightly imbricated at the edges. Stamens equal in number to the petals, or twice as many, or some multiple of their number, inserted upon a hypogynous disk; filaments flattened at the base, sometimes distinct, sometimes combined in one or several parcels; anthers terminal, innate. Ovary many-celled; style one, taper; stigma slightly divided, thickish. Fruit pulpy, many-celled, with a leathery rind replete with receptacles of volatile oil, and sometimes separable from the cells; cells often filled with pulp. Seeds attached to the axis, sometimes numerous, sometimes solitary, usually pendulous, occasionally containing more embryos than one; raphe and chalaza usually very distinctly marked; embryo straight; cotyledons thick, fleshy; plumule conspicuous.—Trees or shrubs, almost always smooth, and filled every where with little transparent receptacles of volatile oil. Leaves alternate, often compound, always articulated with the petiole, which is frequently winged. Spines, if present, axillary (Lindley).

Properties.—In the bark, leaves, flowers, and rind of the fruit, are numerous vesicular or rounded reservoirs, which contain a highly fragrant volatile oil. Pulp of the fruit acidulous and refrigerant.

1. CITRUS MED’ICA, Risso, E. &—THE CITRON TREE.

Sex. Syst. Polyadelphia, Polyandria.

History.—The fruit of this species is supposed to be the μηλον μηδοκοβ of Theophrastus h. Pliny i calls it malum citreum. It is probable the citron is referred to in the Old Testament on several occasions j, where, in our translation, the word apple has been employed k.

Botany. Gen. Char.—Flowers usually with a quinary proportion of parts. Calyx urceolate, three- to five-cleft. Petals five to eight. Stamens twenty to sixty; filaments compressed, more or less united at the base, polyadelphous; anthers oblong. Style terete; stigma hemispherical. Fruit baccate, seven- to twelve-celled; cells many-

---

c In the Edinburgh Pharmacopoeia of 1839, and also in that of 1841, Lemons are referred to Citrus medica, Risso (De Cand.) This is an error.

h Hist. Plant. i. 23, and iv. 4.


j Cant., ii., vii., and viii.; Joel, i.

seeded, pulpy. *Spermoderms* (seed coats) membranous; auricles of the *cotyledons* very short (De Cand.)—*Trees or shrubs*, with axillary spines. *Leaves* reduced to one terminal leaflet at the apex of the petiole, often winged. The *rind* of the fruit is regarded by De Candolle as a kind of torus, by Dr. Lindley as the union of the epicarp and sarcocarp. In the external yellow portion (*flavedo* or *zeste*) of it are the rounded or vesicular receptacles containing volatile oil; the inner white portion is spongy. The *cells* of the fruit are filled with small pulpy bags, readily separable from each other, and containing the acid juice. *Seeds* exalbuminous, marked externally with the raphe; inner coat stained at one extremity, indicating the place of the chalaza.


**Hab.**—A native of Asia. Cultivated in the South of Europe.

**Description, &c.**—The fruit of this tree is the *citron* (*malum citreum*). It sometimes attains a weight of more than 20 lbs. Those fruits which preserve their pistilla are called *pilitima*. Risso says they are sought after by the Jews, who suspend them to palms at the feast of the tabernacle. The *flavedo* of the citron abounds in volatile oil, which may be obtained either by expression or distillation. The leaves, as also the flowers, of the citron-tree, yield a volatile oil by distillation. The leaves are interposed between linen, to which they communicate a fragrant odour: moreover they are said to keep away insects.

Two volatile oils, known respectively as the *essence* or *essential oil* of *citron*, and the *essence* or *essential oil* of *cedra*, are employed in perfumery. Both are highly fragrant, almost colourless, and lighter than water. They are distinguished by their odour: that of the essence of *cedra* combining the odours of citron and bergamot. These two oils are usually confounded by pharmacological writers. From their apparent freedom from mucilage I presume both have been procured by distillation. The composition of one of these has been ascertained, by Dumas, to be identical with that of the essential oil of lemons, viz. *C₈O₇H₃₆.

**Physiological Effects and Uses.**—Analogous to those of the orange and lemon. The fruit is seldom brought to the table in the raw state, but it yields some excellent preserves and sweatmeats. The juice is employed to flavour punch and negus. It forms, with sugar

---


2 Raybaud, Journ. de Pharm. Août, 1854, p. 437.

3 Traité de Chimie, v. 672.
LEMON TREE.

and water, a refreshing, refrigerant beverage. The essential oil is used in perfumery, and may be employed in medicine for scenting.

2. CITRUS BERGAMIA, Risso.—THE BERGAMOT CITRUS.

Citrus Limetta Bergamium, L.—Citrus Limetta, E.

Sex. Syst. Polyadelphia, Polyandria.

(Oleum et fructus cortice destillatum, L.—Volatile oil of the rind of the fruit, E.)

BOTANY. Gen. Char.—See Citrus medica.

Sp. Char.—Leaves oblong, more or less elongated, acute or obtuse, under-side somewhat pale. Petiole more or less winged or marginated. Flowers usually small, white. Fruit pale yellow, pyriform or depressed; rind with concave receptacles of oil; pulp more or less acid (Wight and Arnott).

Hab.—Cultivated in the south of Europe.

DESCRIPTION.—The volatile oil or essence of bergamot (oleum bergamii, oleum bergamota), imported from the South of Europe, is procured from the rind of the fruit. It may be obtained either by expression (as the volatile oil of lemons) or by distillation. It is pale greenish yellow, with a remarkable odour, and a sp. gr. of 0.885. Its composition is identical with that of oil of lemons, being C_{10}H_{8}.

Uses.—Oil of bergamot is employed as a perfume only. It is a useful odoriferous adjunct to unguents.

3. CITRUS LIMONUM, Risso, L.E.—THE LEMON TREE.

Citrus medica, D.


HISTORY.—It is supposed that the Greeks and Romans were unacquainted with the Orange and Lemon, which only became known to Europeans at the time of the Crusades. This supposition receives confirmation from the fact, "that the Persian and Arabian authors do not, as is their wont, give any Greek synonyme of either, but of the citron, which is supposed to have been known to the Romans."

BOTANY. Gen. Char.—See Citrus medica.

Sp. Char.—Young branches flexible. Leaves oval or oblong, usually toothed. Petiole simply marginated. Flowers white, tinged with red. Fruit yellow, ovoid or rarely globular; terminated by a more or less elongated knob; rind with convex vesicles of oil; pulp acid (Wight and Arnott).

Hab.—A native of Asia (Himalaya, Royle; Persia, Risso). Cultivated in the south of Europe.

Raybaud, Journ. de Pharm. Août 1834.

£ In the Edinburgh Pharmacopoeia limes are erroneously referred to this species.

Macfadyen, in Hooker's Bot. Miscel. vol. i. p. 299.

Royle, Illstr. p. 130.
Description, Composition, Properties, and Uses.—Lemons (limones) are imported from Spain, Portugal, Italy, and the Azores, packed in chests, each lemon being separately rolled in paper. The Spanish lemons are most esteemed. We employ in medicine both the rind and the juice.

1. Lemon Peel (Cortex Limonum, L. E.)—The flavedo (flavedo corticis limonum) is pale yellow and rough. By drying its colour deepens. Its taste is aromatic and bitter; its odour, which is owing to the volatile oil lodged in appropriate receptacles, is strong and peculiar. The inner portion of the cortex is white, spongy, and almost both odourless and tasteless. The flavedo yields, both by distillation and expression, a volatile oil (essential oil of lemons). A watery infusion of lemon peel becomes greenish-brown on the addition of the sesquichloride of iron.

Lemon peel has not been regularly analysed, though some of its constituents have been examined. It contains volatile oil, hesperidin, a bitter principle, and gallic acid.

1. Volatile Oil.—(See p. 1686.)
2. Hesperidin.—A crystallizable, neutral, resinous (?) principle, which resides in the white portion of the rind of the fruit of the genus Citrus. It has the form of silky needles, which are odourless and tasteless, when pure, though they usually possess slight bitterness, probably from the presence of another principle. It is fusible, slightly soluble in water, but more so in alcohol; insoluble in ether, and the oils both fixed and volatile. Oil of vitriol reddens it.
3. Bitter Matter (Aurantii).—This is referred to the class of substances vaguely denominated extractive. It is the presence of this substance which enables an aqueous solution of impure hesperidin to form a reddish-brown precipitate with the sesquichloride of iron. It frequently contains traces of gallic acid.

Lemon peel is a grateful stomachic and aromatic. It is employed more as a flavouring ingredient than for its own proper effects. It is a constituent of the infusum gentianae compositum, (p. 1280) and of the infusum aurantii compositum. Candied lemon peel (cortex limonum conditus) is an agreeable stomachic, and is employed as a dessert and in confectionary.

2. Lemon Juice (Succus Limonum, L.)—A slightly turbid, very sour liquor, with a grateful flavour, obtained from lemons by expression and straining. Owing to the mucilage and extractive which it contains, it readily undergoes decomposition, though various methods have been proposed of preserving it. On this account an artificial lemon juice has been proposed as a substitute (see p. 409). The juice both of lemons and limes (the fruit of Citrus Lima, Macfadyen, or C. acida, Roxburgh) is extensively imported. In 1839, duty of one halfpenny per gallon was paid on 37,338 gallons of these juices. In the West Indies lime juice is preferred to lemon juice.

According to Proust, lemon juice consists of citric acid, 1.77; malic acid, gum, and bitter extractive, 0.72; and water, 97.51. Lime juice contains the same ingredients, in somewhat different proportions: the
quantity of citric acid in it is larger, while that of mucilage, &c., is less.

Citric Acid.—(See p. 405.)

Lemon juice furnishes a most agreeable and refreshing beverage, and proves refrigerant and antiscorbutic. It is employed for several purposes, as follows:

a. In the preparation of refrigerant drinks.—It may be either added to barley-water or mixed with sugar and water to form lemonade. The latter may be extemporaneously made, by adding two lemons sliced, and two ounces of sugar to two pints of boiling water, and digesting until cold. A similar beverage is called, by Mr. Brande, King’s Cup. These acidulated drinks are exceedingly useful for allaying thirst, and as refrigerants in febrile and inflammatory complaints, and in hemorrhages. In the latter maladies iced lemonade should be preferred. Where there is nausea or a tendency to sickness, effervescent lemonade is useful. “Lemonade, as a beverage in putrid diseases, was first introduced by the French physicians in the beginning of the seventeenth century; and about the year 1660, an Italian from Florence, having learnt a process of freezing confectionary, conceived the happy idea of converting such beverage into ice. This found a ready sale, and was the occasion of so great an increase in the number of sellers of lemonade, that in the year 1676 the Lemonadiers of Paris were formed into a company, and received a patent from the Government”.

b. In the formation of the effervescing draught.—The effervescing draught, made with lemon juice (or citric acid) and bicarbonate of potash, is one of the best remedies we possess for allaying sickness and vomiting (see p. 409). The citrate of potash, which is formed, is a mild diaphoretic and diuretic, and often allays restlessness and watchfulness in fever. It is adapted for lithic acid deposits; but, like other remedies of the same class, is objectionable in phosphatic deposits. When our object is to determine to the skin, an effervescing draught, composed of lemon juice or citric acid and sesquicarbonate of ammonia, is to be preferred. The relative proportions of the alkaline carbonates, and of lemon juice or citric acid (see p. 409) for the formation of effervescent draughts, is as follows:

<table>
<thead>
<tr>
<th>Citric Acid</th>
<th>Lemon Juice</th>
<th>A scruple of the Alkali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grs. 14 or fʒliiss.</td>
<td>Grs. 17 or fʒiv.</td>
<td>Grs. 24 or fʒy.</td>
</tr>
</tbody>
</table>

Effervescent draughts are exceedingly valuable vehicles for the exhibition of other remedies.

γ. As an Antiscorbutic.—Lemon juice has long been regarded as an invaluable antiscorbutic; but on account of the difficulty of pre-
serving it, crystallized citric acid is usually substituted. "Those only," says Sir Gilbert Blane*, "who have made themselves acquainted with the early part of the naval history of this country, or those who have perused the interesting, popular, and eloquent narrative of Commodore Anson's voyage, can duly appreciate the value of this simple remedy." Yet, on hypothetical grounds, Dr. Stevens* ventures to assert that citric acid produces scurvy!

v. As an Antidote.—In poisoning by the alkalis and their carbonates, the vegetable acids are the antidotes, and the most convenient easily procurable acidulous substances are, in general, vinegar and lemon juice.

vi. As an Anti-narcotic.—In poisoning by narcotic substances, as opium, lemon juice may be administered, after the poison has been removed from the stomach, to counteract the effects.

vii. Other uses.—Several of the medicinal uses of lemon juice can only receive a passing notice. Such are the employment of it, with common salt, in dysentery, remittent fever, bellyache, and putrid sore-throat, as recommended by Dr. Wright*;—its use in cardialgia, by Dr. Dewees; and in syphilis, by Dr. Rollo. As a topical remedy for uterine hemorrhage after delivery, Dr. Evratt* recommends that a cut peeled lemon be introduced into the uterus, and the juice there expressed. It causes uterine contractions by which the juice is expelled, and the hemorrhage stopped. In hospital gangrene, Dr. Werneck* applied, with good effect, in the first stage of the disease, either lint soaked in lemon juice, or segments of lemons.

Administration.—The mode of employing lemons will be obvious from the preceding remarks.

1. OLEUM LIMONUM, L. E.; Essential Oil of Lemon Peel; Essence of Lemons.—This oil is usually procured by expression, as follows:

—The flavedo of the lemons is removed by rasping, and is afterwards expressed in hair sacks. The oil which is thus procured is received in flasks, where it deposits some of its impurities, and is then decanted and filtered*. Baumé* says the rasped flavedo is pressed between glass plates. Expressed oil of lemons is somewhat turbid, and liable to undergo change by keeping, owing to the mucilaginous matter which it contains in solution. Oil of lemons may be procured also by distillation; and the oil thus procured is pure, not disposed to undergo change by keeping, and is employed, under the name of scouring drops, for removing grease spots from silks and other textures; but its flavour is less pleasant and sweet. The greater part of the oil of commerce is brought from Portugal and Italy; some, however, is procured from France. When quite pure, it is colourless, limpid, and of a fragrant odour, like that of lemons. Its sp. gr. at 70° F. is 0.847. It is soluble in all proportions in

---

* Select Dissert. p. 8, 1822; see also Observ. on the Diseases incident to Seamen.
* On the Blood.
* Mem. of the late Dr. Wright, p. 322.
* Henry and Guibourt, Pharm. Raison. t. i. p. 284, 2nd éd.
* Elem. de Pharm. t. i. p. 486.
anhydrous alcohol, and it boils at about 145° F. When the commercial oil is exposed to a temperature of —4° F. it deposits white crystals, whose nature is not known: the rectified oil remains perfectly liquid and transparent at this temperature. Oil of lemons is composed of two isomeric oils,—one (citrene, Dumas; citronyle, Blanchet and Sell) capable of forming, with hydrochloric acid, a crystalline compound (composed of $C^{10}H_8 + HCl$); the other (citryle) not forming any crystalline compound with this acid. The composition of oil of lemons is $C^{10}H_8$—i.e. it is identical with that of the oil of turpentine, savin, copaiva, bergamot, and citron.

Oil or essence of lemons possesses the stimulant properties of the milder volatile oils, and is denominated carminative and diaphoretic. In full doses it is said to be apt to occasion headache and giddiness. Its principal use is for communicating an agreeable odour and flavour to other medicines. It may be taken as a carminative, in the dose of a few drops, on sugar ($eleosaccharum limonum$). As a perfume, it is an exceedingly useful adjunct to sulphur ointment, and to evaporating lotions. To this, as to some other volatile oils (see oleum rosmarini), has been ascribed the power of promoting the growth of the hair, and, in consequence, it has been added to pomatum. More recently it has been employed as a stimulant application in various external inflammations of the eye. It was first used in these diseases by Dr. Worlitz, who applied it by squeezing the little drops of oil from the rind of the lemon into the eye. He used it with good effect in rheumatic, catarrhal, and scrofulous inflammations of the eye, in pannus and pterygium, and in opacity and some other consequences of inflammation of the cornea. It has since been tried by Mr. Foote, at the Ophthalmic Hospital, who dropped the oil into the eye in the same way that the vinum opii is applied. In some cases it caused excessive pain. He thinks it preferable to the vinum opii, in all cases where a stimulant is required.

2. SYRUPUS LIMONUM, L. E. D. Syrup of Lemons.—(Lemon juice strained [and freed from impurities by subsidence, E. D.], Oj.; Sugar, lb. ijs. [3lj. D.] Dissolve the sugar in the lemon juice, by the aid of a gentle heat, then set aside for twenty-four hours; afterwards remove the scum, and should there be any dregs, pour off the clear liquor).—Refrigerant. An agreeable adjunct to diluent drinks, as barley-water, in febrile and inflammatory complaints, and to gargles. —Dose, $f\frac{3}{4}$ to $f\frac{3}{4}$.

---

* For some interesting observations on this and some other oils of this order, see Soubeiran and Capitaine, *Journ. de Pharm.* xxvi. 1 and 66.
4. CI'TRUS AURAN'TIUM, Risso, L. E. D.—THE COMMON OR SWEET-ORANGE TREE.

Sex. Syst. Polyadelphus, Polyandra.


History.—It is somewhat uncertain when the sweet orange became known to Europe. The bitter orange, as well as the lemon, was known during the middle ages, but the sweet orange is supposed not to have been introduced until a period after this.

Sp. Char.—Leaves oval, elongated, acute, sometimes slightly toothed; petiole more or less dilated and winged. Flowers white, large. Fruit orange-coloured, roundish or ovoid, usually depressed, rarely terminated by a small knob; rind with convex vesicles of oil; pulp sweet (Wight and Arnott).—A great number of sorts is known to gardeners. The China orange is the common orange of the markets and of the Portuguese. The St. Michael's orange is a small seedless variety. The blood-red orange has a reddish yellow fruit, with a pulp irregularly mottled with crimson.

Hab. — Asia; probably China. Cultivated in the South of Europe, the Azores, and the West Indies.

Description.—Orange leaves (folia aurantii) are feebly bitter. Their watery infusion is greenish and somewhat bitter. They contain a fragrant volatile oil, which is procured by distillation, and is called, in the shops, essence de petit grain. Orange flowers (flores aurantii seu naphae), when fresh, are white. They are sometimes exported from the South of Europe, stratified with common salt, in barrels (Risso). Dried orange flowers are yellowish, and have an agreeable odour, which is less powerful than that of the fresh flowers. By distillation, orange flowers yield a fragrant volatile oil (oleum Neroli; oleum aurantii). The small green fruits (fructus immaturus aurantii) which fall during the great heats of the summer, are carefully collected and dried. They, as well as the unripe fruit of the next species, [citrus vulgaris] form the orange berries (baccae aurantii) of the shops. Their size does not exceed that of a cherry; their colour is dark greyish or greenish brown; they have an aromatic odour and a bitter taste. They are used for flavouring Curacoa. When smoothed

[Figs. 310-312.]

Citrus Aurantium.

Macfadyen, Bot. Miscell. i. 392.
by a lathe, they constitute the issue peas of the shops: they are preferred to ordinary peas for keeping up the discharge of an issue, on account of their pleasant odour. An infusion of orange berries is rendered green by the sesquichloride of iron. By distillation these berries yield a fragrant oil (the original essence de petit grain). The ripe fruit, or the orange (aurantium; poma aurantiorum), is imported in chests and boxes, each orange being separately packed in paper. The best come from the Azores and Spain; very good ones are also brought from Portugal, Italy, and other places. The rind is sometimes employed as a substitute for the rind of the bitter orange. It yields, by distillation, a fragrant volatile oil (essential oil of sweet orange).

**Composition.** — 1. **Orange Flowers** were analyzed by Boullay, and found to contain volatile oil, bitter extractive, gum, acetic acid, and acetate of lime.

2. **Orange Berries** were analyzed, in 1828, by Lebreton, who found their constituents to be as follows: — Volatile oil, sulphur, chlorophylle, fatty matter, hesperidin, bitter astringent matter, with some traces of gallic acid, citric and malic acids, citrates and malates of lime and potash, gum, albumen, lignin, mineral salts, and traces of iron and silica. Widemann obtained a crystalline substance analogous to, but yet different from, hesperidin.

3. **Orange Peel** has not been analyzed; but its composition is, doubtless, analogous to that of lemon peel (p. 1684).

4. **Orange Juice** consists of citric acid, malic acid, mucilage, albumen, sugar, citrate of lime, and water.

1. **Volatile Oils from the Sweet Orange Tree.** — The volatile oils obtained from the leaves, flowers, and fruit rind of the sweet orange tree, agree, in their essential chemical characters, with each other, with the corresponding oils obtained from the bitter orange, and with the volatile oil of lemons (see p. 1686). They differ principally in their odour.

   The oil of sweet orange kept in the perfumers' shops is obtained by distillation with water, from the rind of the fruit.

   The other volatile oils of this species are not distinguished in English commerce from those of the next species (see p. 1690).

2. **Hesperidin**

3. **Bitter principle (Aurantiin)**

4. **Widemann's crystalline matter.** — Obtained from unripe oranges. Is distinguished from Hesperidin by its very distinct prismatic crystallization, by its insolubility in alcohol, by its solubility in water, and by its not forming oxalic acid with nitric acid.

**Physiological Effects and Uses.** — **Sweet Orange Peel** is an aromatic stomachic and tonic analogous to lemon peel, and is occasionally employed as a substitute for the bitter orange peel. "Large quantities of it are sometimes productive of mischief, especially in children, in whom colic, and even convulsions, are sometimes induced by it. We have known the case of a child, in which death resulted from eating the rind of an orange."
Orange Juice is a refreshing and grateful beverage, and is extensively used at the table. In febrile and inflammatory complaints it is a valuable refrigerant;—allaying thirst and diminishing preternatural heat.

5. **CITRUS VULGA'RIS, Risso, L. E.—THE BIGARADE OR BITTER ORANGE TREE.**

*Ser. Syst.* Polyadelphia, Polyandria.

(Fructus cortex exterior, L.—Distilled Water of the flowers, Rind of the fruit, Volatile oil of the flowers, E.)

**History.**—The bitter orange became known to Europe during the middle ages. All the old established orange groves of Spain, as those at Seville, planted by the Moors, are of the bitter orange.

**Botany.** **Gen. Char.** — See Citrus medica.

**Sp. Char.**—Leaves elliptical, acute or acuminated, slightly toothed. Petiole more or less winged. Flowers large, white. Fruit orange-coloured, roundish or slightly elongated or depressed; rind with concave vesicles of oil; pulp acid and bitter (Wight and Arnott).

Numerous varieties of this are cultivated. One of these yields the fruit known in the English market as the Seville Orange.

**Hab.**—Asia. Cultivated in Europe.

**Description.**—The leaves of this species, when rubbed, emit a very agreeable odour. Distilled with water they yield a bitter aromatic water, known in Languedoc as *eau de naphre* (*aqua naphrea*). At the same operation is procured a volatile oil, called the *essence de petit grain*, of finer quality than that obtained from the leaves of the sweet orange. The flowers yield by distillation with water, *orange-flower water* (*aqua aurantii*, Ph. Ed.) and *oil of Neroli* (*oleum aurantii*, Ph. Ed.) of finer quality than the corresponding preparations obtained from the flowers of the sweet orange. The unripe fruits, like those of the sweet orange, are called *orange berries*, and are employed for the purposes before mentioned (p. 1688). The Seville orange is round and dark, and has an uneven, rugged, very bitter rind (*bitter orange peel; cortex aurantii*, Ph. L. and Ed.), which is employed for medical purposes as well as in the preparation of *candied orange peel*, and for flavouring the liqueur called *Curaçoa*.

**Composition.**—The composition of the leaves, flowers, and fruit of the bitter orange is doubtless analogous to that of the corresponding parts of the sweet orange.

---

k Macfadyen, in *Hooker's Bot. Miscel.* i. 302.
1. Oil of Orange-leaf; Essence de petit grain.—The term essence de petit grain was originally applied to the volatile oil of the orange berry, which, however, readily underwent decomposition. It is now used to indicate the volatile oil obtained from the leaves both of the bitter and sweet orange. That procured from the bitter orange is of better quality than that from the sweet.

2. Oil of Orange-flower; Oil of Neroli (Oleum Aurantii).—Procured from the flowers of both the bitter and sweet orange; but that from the former is preferred. It is obtained by submitting the flowers, with water, to distillation; and it is found floating on the water in the receiver. It has an aromatic and fragrant odour, somewhat different from that of the flower. “It appears to me,” says Soubeiran¹, “to be a product of the alteration of the natural essential oil. The latter is more soluble than the neroli oil, and remains in solution in the water. Its presence may be demonstrated by agitating the distilled water with ether deprived of alcohol. By spontaneous evaporation the etherial solution leaves behind an essential oil, which has absolutely the same odour as the flowers, and which dissolves in water.” Oil of neroli, furnished me by one of the most respectable importers as genuine oil, has a reddish colour. I am informed that the essence de petit grain is frequently substituted for it.

3. Oil of the Rind of the Bitter Orange.—This is sold by perfumers as essential oil of bitter orange. It has a considerable resemblance to the oil of the sweet orange.

Physiological Effects and Uses.—The rind of the Seville orange being considerably more bitter than that of the sweet orange, is to be regarded as more stomachic and tonic. Its uses are the same. Its principal value is as a flavouring agent.

1. Infusium Auranti Compositum, L. D.; Infusum Aurantii, D. Compound Infusion of Orange Peel. (Bitter Orange-peel, dried, 5ss. [5ij. D.]; Fresh Lemon-peel, 5ij. [5j. D.]; Cloves, bruised, 5j. [3ss. D.]; Boiling [distilled] Water, Oj. [Oss. Z.].) Digest for a quarter of an hour in a vessel lightly covered, and strain [through linen or calico, &C.]—An agreeable stomachic. It is an excellent vehicle for the exhibition of various other medicines, as saline purgatives, ammonia, bitter tinctures, &c.—Dose, f 3j. to f 5ij.

2. Confection of Orange-Peel (Fresh Orange-peel separated by a rasp, lb. j.; Sugar, lb. iij. Beat the rind in a stone mortar, with a wooden pestle; then, the sugar being added, again beat them until they are thoroughly incorporated, L.—Grate off the rind of bitter oranges, and beat it into a pulp, adding gradually thrice its weight of white sugar, E.)—An agreeable stomachic. Employed as an adjunct to bitter and purgative powders, which are to be formed into electuaries. It is a good vehicle for the exhibition of the sesquioxide of iron.

3. Syrupus Aurantii, L. E. D.; Syrup of Orange-Peel. (Fresh Bitter Orange-peel, 3iiss. [3vij. D.]; Boiling Water, Oj. [Ovj. wine-measure, D.]; Pure Sugar, lb. iij. [lb. xivss. D.].) Macerate the peel in the water for twelve hours, in a vessel lightly covered; then strain the liquor [if necessary, E.] and add the sugar [and dissolve with the aid of heat, E.].—To avoid the volatilization of the

¹ Nouv. Traité de Pharm. i. 454.
essential oil, as little heat as possible should be employed in the process. An equally agreeable and efficacious syrup may be prepared by adding $\frac{1}{3}$ of tincture of orange-peel to $\frac{1}{2}$ of simple syrup. Syrup of orange-peel is stomachic, but its principal use is for flavouring.—Dose, $\frac{1}{3}$ to $\frac{1}{2}$.

4. **TINCTURA AURANTII, L. E.; Tincture of Orange-Peel.** (Bitter Orange-peel, dried, $\frac{3}{4}$; Proof Spirit, $\frac{3}{1}$.) Macerate for fourteen [seven, $E.$] days [and express strongly, $E.$] and filter the liquor. “This tincture may be prepared by percolation, by cutting the peel into small fragments, macerating it in a little of the spirit for twelve hours, and beating the mass into a coarse pulp before putting it into the percolator,” $E.$ — This preparation was accidentally omitted from the Dublin Pharmacopoeia. It is an agreeable stomachic, and is principally employed as a flavouring adjunct to decoctions and infusions (tonic or purgative), effervescing mixtures, &c.—Dose, $\frac{1}{3}$ to $\frac{1}{2}$.

5. **AQUA FLOREUM AURANTII, L.; Aqua Aurantii, E. Orange-flower Water.** (Orange-flowers, lb. x.; Proof Spirit, $\frac{3}{1}$; Water, Cong. $\frac{1}{2}$.) Let a gallon distil, $L.$) — Orange-flower water is usually imported. That prepared from the flowers of the bitter orange possess the most fragrant odour, but it is sometimes prepared from the flowers of the sweet orange. It contains free acetic acid, derived from the flowers; hence, if kept in a vessel of lead or copper, it acquires a metallic impregnation. The presence of lead in it has recently been pointed out by Mr. Squire —. The following are the characters of the pure orange-flower water: —

“Nearly colourless: unaffected by sulphuretted hydrogen.”—Ph. Ed.

Sulphuretted hydrogen produces, with either lead or copper, a dark-coloured precipitate. Orange-flower water is employed in medicine, as well as in perfumery, on account of its agreeable odour.

**Aqua Coloniensis; Eau de Cologne; Cologne Water.** — A much-admired perfume. Two varieties are known in the shops—the French and the German; the latter fetches the highest price. Both profess to be made by Farina. The recipes for making it are numerous. I subjoin one, which is said, by Trommsdorff, to be followed in the Cologne manufactories:—Oil of Neroli; Oil of Citron; Oil of Bergamot; Oil of Orange; Oil of Rosemary; of each twelve drops; Malabar Cardamoms, $\frac{1}{3}$; Rectified Spirit, $Oj.$ Distil.—Eau de Cologne forms an agreeable evaporating lotion in headache, fever, &c. It should be applied by means of a single layer of linen.

**OTHER MEDICINAL AURANTIIACEÆ.**

The *Feronia Elephænûm*, a large tree growing in most parts of India, yields a gum which is used for medicinal purposes by the practitioners of Lower India. It is an exudation of the stem, and closely resembles gum Arabic.
is not improbable, therefore, that part of the East India gum brought to this country (see p. 1582) may be the produce of this tree.

**ORDER LXXI.—TERNSTRÖMIACEÆ, Lindley.—THE TEA TRIBE.**

Though unable to do more than bestow a passing notice on Tea, I could not wholly omit all reference to this important and interesting substance. Two kinds of Tea plant are cultivated in our green-houses; the one called *Thea viridis* or *Green Tea*, the other *Thea Bohea* or *Black Tea*. Great discrepancy of opinion exists as to whether the different varieties of tea of commerce are obtained from one or from two species. The well-known differences between green and black teas lend great support to the assertions of those who contend that these teas are obtained from different plants, growing in different provinces of China. Mr. Reeves's observations on this point\(^3\) appear to me to be exceedingly apposite. In commerce, two principal kinds of tea are distinguished,—the Black and Green: to the first belong *Bohea, Congou, Campot, Souchong, Caper, and Pekoe*; to the latter, *Twankay, Hyson-skin, Hyson, Imperial*, and *Gunpowder*. Frank\(^4\) analyzed both black and green teas, and obtained the following results:

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>40.6</td>
<td>34.6</td>
</tr>
<tr>
<td>Gum</td>
<td>6.3</td>
<td>5.9</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>41.8</td>
<td>51.3</td>
</tr>
<tr>
<td>Glutinous matter</td>
<td>6.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Volatile matter, and loss</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Tea</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Sir H. Davy\(^5\) also found more tannin in black than in green tea, in the proportion of 48 to 41. But these results are opposed to our daily experience, as derived from flavour, which indicates the greater astringency in the green tea, and to the experiments of Mr. Brande\(^6\). The difference in the quantity of tannin in the two kinds of tea is, however, not very great. A few years ago, Oudry\(^7\) announced the existence of tea in a crystalline, salifiable base, to which he gave the name of *theina*; but more recently, Jobst\(^8\) has asserted its identity with *cafein*, already noticed (p. 1440). Dr. R. D. Thomson\(^9\) has described a fixed oil (*Tea Oil*) obtained from the tea plant. It is composed of *elaine 75* and *stearine 25*. Notwithstanding the extensive employment of tea as an article of diet, yet it is no easy matter to ascertain correctly its precise effects on the constitution. Its astringency is proved by its chemical properties: and hence tea may be resorted to as an easily accessible antidote in cases of poisoning by substances containing vegetable alkalis (see p. 179), or by emetic tartar. Another quality possessed, especially by green tea, is that of diminishing the tendency

---

\(^1\) See Royle's *Illustr.* p. 109; and Hooker, *Bot. Mag.* t. 3148.
\(^2\) See Royle, *op. cit.*
\(^3\) For some interesting observations on Assam Tea, see Royle's *Essay on the Productive Resources of India*, Lond. 1840; and Bruce's *Report on the Manufacture of Tea, and on the Extent and Produce of the Tea Plantations in Assam*, in Jameson's *Journal*, vol. xxviii. p. 126. 1840.
\(^5\) Phil. Trans. 1803, p. 266.
\(^6\) *Quart. Journ.* xii. 301.
\(^8\) *Ann. d. Pharm.* xxv. 63. 1828.
to sleep. Hence, like coffee (see p. 1441) tea is often resorted to by those who desire nocturnal study. Moreover, it may be employed as an antisoporific to counteract the effects of opium and intoxicating liquors; and Dr. Clutterbuck\(^7\) has suggested its application to the relief of the stupor of fever, which he considers to be nearly allied to intoxication. Tea appears to possess a sedative influence with regard to the vascular system: and in this, as well as in the watchfulness which it produces, tea somewhat resembles foxglove. On account of its sedative power, Dr. T. Percival\(^\text{a}\) recommends its use in feverish and inflammatory diseases, and I can speak from frequent observation of its good effects in these maladies. To this power should also be referred the relief of headache experienced by the use of tea. In colds, catarrhs, rheumatism, &c. warm infusion of tea is frequently employed as a diluent, diaphoretic, and diuretic. Strong green tea taken in large quantities is capable, in some constitutions, of producing most distressing feelings\(^b\); and of operating as a narcotic. Dr. Lettsom\(^\text{c}\) found that a strong infusion of tea introduced into the abdomen of a frog caused paralysis of the hind extremities of the animal\(^c\).

**Order LXXII.—DIPTERACEÆ. E. Lindley.—THE DIPTEROCARPUS TRIBE.**

**Dipterocarpææ, Blume.**

Dryobalanops aromatica, Gætner (D. Camphora, Colebrooke; Shorea camphorifera, Roxb.) is a large tree growing in Sumatra and Borneo. From its stem are obtained a liquid called Camphor oil, and a crystalline solid denominated Sumatra or Borneo Camphor.

1. **Liquid Camphor. Camphor Oil.**—Is obtained by making deep incisions into the tree with an axe. The oil gushes out, and is received in bamboos or other convenient utensils\(^d\). It is occasionally imported into this country in tin canisters. It is sometimes perfectly limpid, transparent, and colourless; but more usually it is more or less coloured, being yellow or brownish. Its odour is somewhat analogous to that of oil of cajuputi, combined with the odour of camphor and cardamoms. Some samples have a strong odour of turpentine. This oil has been analyzed by Martius\(^e\). The mean of three analyses gave him for its constituents carbon 83.129, hydrogen 11.346, and oxygen 5.525: or C\(_{20}\) H\(_{36}\) O\(_8\). Recently Pelouze\(^f\) has analyzed it. He regards it as a hydrocarbon, whose formula is C\(_{20}\) H\(_{36}\). By exposure to the air it rapidly oxidizes and becomes C\(_{20}\) H\(_{16}\) O\(_4\). Hence, therefore, it would appear that Martius must have analyzed an oxidised oil. Camphor oil has been employed in the preparation of scented soap. Sixty pounds of dark brown oil yielded a distiller forty pounds of colourless liquid oil, and twenty pounds of crystalline camphor.

2. **Sumatra or Borneo Camphor.** By the natives of Sumatra it is termed Kapurbarus (i. e. Beroos Camphor).—It is found in the natural fissures or crevices of the wood, and is obtained by cutting down the tree, dividing it transversely into several blocks, which are split with wedges into small pieces, from the interstices of which the camphor, if there be any, is extracted\(^g\). After being separated from impurities, it is packed in catties. Being much esteemed by the Chinese, it fetches a very high price. According to Mr. Crawford\(^h\) its value is 78 times that of Japan camphor! It rarely comes to this country as a commercial article. For some of the samples in my museum I am indebted to the late

---

\(^a\) *Ing. into the Seat and Nat. of Fever,* 2nd ed. p. 434.
\(^b\) *Essays,* vol. i.
\(^c\) *Dr. E. Percival, Dubl. Hosp. Rep.* vol. i. p. 219.
\(^d\) *Nat. Hist. of the Tea Tree.* 1772.
\(^e\) For some interesting information on Tea, see Dr. Sigmond's work, entitled *Tea, its Effects, Medicinal and Moral.* 1839.
\(^f\) Prince, Roxb. *Fl. Ind.* ii. 616.
\(^g\) *Berlin. Jahrbuch,* Bd. xl. S. 464. 1838.
\(^h\) *Journal de Pharmacie,* t. xxvi. p. 646.
\(^i\) *Marsden, Hist. of Sumatra,* p. 130, 3rd ed.
\(^j\) *Hist. of the Ind. Archip.* vol. iii. p. 418.
Mr. Gibson (of the firm of Howard, Jewell, and Gibson, of Stratford), who stated that "they are part of two very small boxes imported about twenty years ago, which were bought by me at the common price of camphor at the time, but which, it was afterwards discovered, were invoiced at an enormous price. Our firm gave them up to the importers, reserving samples, and they were re-shipped for India. I never on any other occasion, except one, saw a small specimen of what I have named native camphor."

Sumatra or Borneo Camphor occurs in small white fragments of crystals. They are transparent, brittle, and have a camphoraceous odour and a hot taste. According to Pelouze its crystalline form is a prism with six regular faces, and derived from the rhombohedric system (see also p. 1152). It is lighter than water, very slightly soluble only in water; but is very soluble in alcohol and ether. It is fusible and volatile. Its composition according to Pelouze is $\text{C}_{20}\text{H}_{31}\text{O}_2$.

Sumatra Camphor is distinguished from Common or Laurel Camphor by several characters; such as the form of the crystals above mentioned; their greater hardness, so that when shaken in a bottle they produce a ringing sound; they are more brittle, and do not so readily sublime and condense in crystals in the upper parts of the bottle.

Its medicinal properties are probably similar to those of ordinary or laurel camphor. But in the East, especially by the Chinese, the most extravagant virtues are assigned to it, and it is accordingly highly valued. In the Puntsaou it is called Lung Naou Heang, or "Dragon's Brain perfume."

**Order LXXXIII.—Byttneriace.É, De Candolle.—The Cacao Tribe.**

The *Theobroma Cacao* is a native of the West Indies and of Continental America. Its seeds (nuclei cacao) when torrefied, and with various additions (sugar, and usually either cinnamon or vanilla), made into a paste, constitutes chocolate (chocolata), which furnishes a very nourishing beverage, devoid of the ill properties possessed by both tea and coffee, but which, on account of the contained oil, is apt to disagree with dyspeptics. Cocoa is another preparation of these seeds. It is said to be made from the fragments of the seed-coats mixed with portions of the kernels. It is somewhat astringent, and is adapted for persons with relaxed bowels.

**Order LXXXIV.—Malvace.É, R. Brown.—The Mallow Tribe.**

Essential Character.—Calyx of five (rarely three or four) sepals, more or less coherent at the base, valvate in estimation, often with bracts or external sepals forming an involucre or outer calyx. Petals as many as the sepals, and alternate with them; hypogynous, equal; spirally contorted in estimation, generally adnate to (but sometimes distinct from) the lower part of the tube of the stamens. Stamens equal in number, or more commonly a

---

1 For particulars respecting the manufacture of chocolate, see Ure, *Dict. of Arts*, 292; and Soubeiran, *Traité de l'Karm*. 1. 447.
multiple of the petals; generally indefinite (rarely definite), hypogynous. Filaments united into a tube, and unequal in length, the outer ones being shorter. Anthers one-celled, uniform, dehiscing by a transverse chink. Ovary of many carpels, generally verticillated round the axis, and coherent (sometimes free). Styles as many as the carpels, either distinct or united. Stigmas as many as the carpels, more or less distinct. Carpels either one- or two-seeded, and dehiscing inward by a chink, or polyspermy, with a loculicidal dehiscence, or having a septum in the middle which bears the seeds on the inner side; in some cases nearly free, in others united into a many-celled capsule or an anomalous berry. Albumen none. Embryo straight. Radicle terete. Cotyledons twisted like a chrysalis.—Herbs, shrubs, or trees. Leaves alternate, generally petiolate, and with stipules (De Cand.).

Properties.—"The uniform character is to abound in mucilage, and to be totally destitute of all unwholesome qualities" (Lindley).

1. MAL'vA SYLVE'STRIS, Linn. L. E.—COMMON MALLOW.

Sex. Synt. Monadelphia, Polyandria.

Botany. Gen. Char.—Calyx five-cleft, persistent, surrounded by an involucrel of usually three, rarely one or two, or five or six, more or less oblong or setaceous bracteoles. Ovary with many cells each with one ovule. Styles as many as the cells. Carpels several (rarely only five), capsular, indehiscent, one-seeded, circularly arranged around the axis. Radicle inferior (Wight and Arnott).

Sp. Char.—Stem erect. Leaves five- to seven-lobed, acute. Pedicels and petioles hairy (De Cand.)

Root perennial, tapering, branching, whitish. Stem two or three feet or more high, branched. Leaves deep green, soft and downy. Flowers large, three or four together, axillary. Petals obcordate, purplish-rose coloured, with deeper veins, combined by the base of their claws.

Hab.—Indigenous; hedges and road sides. Flowers from June to August.

Description.—Common Mallow (herba malva sylvestris) is odourless, and has merely a mucilaginous herbaceous taste. Its watery infusion is deepened in colour by the sesquichloride of iron, and forms a precipitate with acetate of lead. Dwarf mallow (herba malva rotundifolia) possesses similar properties.

Composition.—I am unacquainted with any analysis of this plant. The constituents are probably similar to those of Althaea officinalis (p. 1697). Mucilage is the prevailing principle. Extractive also is another constituent. The colouring matter of the flower is an exceedingly delicate test of alkalis, which render it green.

Physiological Effects and Uses.—Emollient and demulcent. Employed in the form of decoction, in irritation of the alimentary
canal, and of the pulmonary and urinary organs. In tenesmus the
decocction is used in the form of enema. In external inflammations,
emollient fomentations and cataplasm of mallow are sometimes
employed.

**DECOCTUM MALVÆ COMPOSITUM, L. Compound Decocction of Mallow.**
(Mallow, dried, ½; Chamomiles, dried 5 ss.; Water, Qf. Boil for a
quarter of an hour, and strain).—Employed for fomentations and
enemata as above mentioned.

2. **ALTHÆ'A OFFICINÆLIS, Linn. L. E. D.—COMMON MARSH-
MALLOW.**

*Sex. Syst.* Monadelphia, Polyandria.

(Folia, Radix, L. D.—Leaves. Root, E.)

**History.**—According to Dr. Sibthorp¹ this plant is the Αλθαία of
Dioscorides.²

**Botany. Gen. Char.**—Calyx surrounded by a six- to nine-cleft
involucel. Carpels numerous, capsular, closely and circularly ar-
ranged round the axis (Wight and Arnott).

**Sp. Char.**—Leaves softly tomentose on both sides, cordate or ovate,
toothed, undivided, or somewhat three-lobed. Peduncles axillary,
many-flowered, much shorter than the leaf (De Cand.)

Root perennial, tap-shaped, rather woody. Stem two or three feet
high. Leaves hoary green, peculiarly soft and downy, with a fine
starry pubescence. Flowers three or four together, on axillary stalks,
large pale rose coloured.

**Hab.**—Indigenous; marshes, especially near the sea.

**Description.**—The leaves of Marsh-mallow (folie althææ) are
odourless, and have a mucilaginous taste. The root (radix althææ)
is long, cylindrical, branched, about the thickness of the finger,
plump, mucilaginous, white internally, and covered with a yellowish
epidermis. That which is imported from France has been deprived
of its epidermis, and is white (decorticated root of marsh-mallow).
Its odour is feeble, its taste sweet and mucilaginous. Iodine colours
it dark blue. Sesquichloride of iron forms with the concentrated
decocction a brown semi-transparent gelatinous mass.

**Composition.**—Marsh-mallow root has been analysed by Bacon;³
by L. Meyer⁴; by Wittstock⁵; and by Buchner⁶. The results of
the latter chemist are as follows:—Fatty oil 1·26, glutinous matter
1·81, uncrystallizable sugar and althein 8·29, mucilage 35·64, starch
37·51, phosphate of lime 8·29, vegetable medulla 11·05, and woody
fibre 7·50 [excess 11·35].

¹ *Prod. Fl. Græc. ii. 42.*
² *Lerb. iii. cap. 163.*
⁴ *Gmelin, Handb. d. Chem. ii. 1251.*
⁵ *Pharm. Centrál-Blatt für 1831, S. 277.*
⁶ *Ibid. für 1832, S. 511.*
1608  ELEMENTS  OF  MATERIA  MEDICA.

Asparagin.—Asparamide; Althein.—The substance which has been called *althein* is identical with *asparagin*. It is crystallizable, odourless, and almost tasteless. It is soluble in water and alcohol, sp gr. 0.837; but it is insoluble in absolute alcohol and in ether. It consists of $C_8H_7N_2O_5$. Acted on by the watery solutions of the alkalis, it evolves ammonia, and is converted into aspartic acid ($C_8H_5N_0O_6$); hence it is called asparamide, as it is an aspartite of ammonia ($C_8H_5N_0O_6+H_3N$), minus an atom of water. It has no influence on the therapeutic properties of the root.

Physiological Effects and Uses.—Similar to those of common mallow, already stated (p. 1696). On the continent it is a favourite demulcent. The pastilles and *pate de guimauve* are used as pectorals. The powder of marshmallow root is used in France to envelope pills. "The simple decoction is recommended as an injection, to be thrown into the vagina, in cases of difficult labour, arising from rigidity of the soft parts."

1. MISTURA ALTIIEE, E. Decoctum Althaeæ, D. Marshmallow Mixture. (Root [and herb, D.] of Althaea, 5viij.; Raisins stoned, 3ij.; [Boiling, E.] Water 0viij.; [Ovij., wine measure, D.] Boil down to three [five, D.] pints; strain [through linen or calico, E.], and when the sediment has subsided, pour off the clear liquor for use).—An agreeable diluent and demulcent. Employed in visceral inflammation and irritation; as nephritis, calculous affections, gonorrhoea, strangury, &c. From one to three pints may be taken in the course of the day.

2. SYRUPUS ALTIIEE, L. E. D. Syrup of Marshmallows. (Althæa root, fresh and sliced, 3viij. [lb. ss., D.]; Pure Sugar, lb. iijss. [lb. ij. D.]; Water [boiling, E.], Ovij. [wine-measure, D.] Boil down the water with the root to one half [strain, E.], and express [strongly through calico, E.] the liquor [when cold, L. D.] Set aside for twenty-four hours, that the impurities may subside; then pour off the liquor, and the sugar being added, boil down to a proper consistence).—Demulcent, employed as an adjunct to cough mixtures, and as a pectoral for children. It readily ferments, and becomes ropy.—Dose, f3ij. to f3ss.

3. GOSSYPIUM HERBA'CEUM, Linn. E.—COMMON COTTON.

Sex. Syst. Monadelphia, Polyandria.

(Hairs attached to the seed, E.)

History.—It is somewhat doubtful who first mentioned cotton. There is some reason for supposing that cotton cloth is referred to in the Old Testament*. Cotton (*βόσσος*), is mentioned by Herodotus†; but he or his translators are in error, in stating‡ that the Egyptians, in embalming, wrapped the body in cotton cloth; since all mummy cloths are found, on a microscopic examination, to be linen§. Pliny ‖

---

‡ Thalia, *cv.*
§ Enter, *ex.*** xxvii.†
‖ Dutrochet, in *Jameson’s Journal*, vol. xxiii. p. 220. This author suggests that the *βόσσος* of Herodotus was the filamentous weavable matter which lint [flax] supplied.
COMMON COTTON.

1699

speaks of the cotton plant \((Gossypium)\) and of the cloth \((Xyline)\) made of the woolly substance which envelopes the seeds\(^x\).

BOTANY. Gen. Char. — Calyx cup-shaped, obtusely five-toothed, surrounded by a three-leaved involucel, with the leaves united and cordate at the base, and deeply cut or toothed irregularly. Style simple, marked with three or five furrows towards the apex. Stigmas usually three, sometimes five. Capsules three- to five-celled, three- to five-valved at the apex, loculicidal. Seeds numerous, imbedded in cotton. — Young branches and leaves more or less conspicuously covered with little black dots; nerves below usually with one or more glands \((Wight and Arnott)\).

Sp. Char. — Bi-triennial; young parts hairy. Leaves hoary, palmate, with sub-lanceolate, rather acute lobes. Stipules falcate-lanceolate. Leaves of the exterior calyx dentate. Capsules ovate pointed. Seeds free, clothed with firmly adhering white down under the long white wool \((Roxburgh)\). — Petals of a lively yellow colour, with a purple spot near the claw. Dr. Roxburgh\(^y\) particularly distinguishes three varieties cultivated in India—viz. the Dacca, the Berar, and the China cottons.

Hab. — Asia. Cultivated in India, Syria, Asia Minor, the Mediterranean, and America.

DESCRIPTION.—The filamentous substance, called cotton \((gossypium)\), consists of tubular hairs, which arise from the surface of the seed-coat. By drying, they become flattened; and in this state, if they be immersed in water and examined by the microscope, they appear like distinct, flat, narrow ribands, with only occasional appearances of joints, which are indicated by a line at a right angle, or nearly so, to the side of the tube. Cotton is distinguished \((under the microscope)\) from the vegetable fibre which constitutes linen by the tubes of the latter being in bundles, round, tapering at the extremities, and, when jointed, having oblique articulations. Cotton which has undergone no preparation is denominated raw cotton\(^z\).

COMPOSITION. — Cotton is a modification of lignin, and consists, therefore, of carbon, hydrogen, and oxygen; but the precise relative proportions of its constituents have not been ascertained. In all its essential chemical properties it agrees with ordinary woody fibre. It is completely insoluble in water, alcohol, ether, oils, and vegetable acids. Strong alkaline leys dissolve it. The strong mineral acids decompose it. With nitric acid it yields oxalic acid.

PHYSIOLOGICAL EFFECTS AND USES.—Raw cotton, or cotton-wool, has been employed with apparently good effect in the treatment of

\(^x\) For further historical details see Royle's \textit{Illustr.} p. 84, \textit{et seq.}\n
\(^y\) \textit{Fl. Ind.} iii. 184.

\(^z\) For much interesting information regarding Cotton, but which is unsuited to this work, consult Royle, \textit{op. cit.}; M'Culloch's \textit{Dict. of Comm.}; and Ure's \textit{Dict. of Arts}.  

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{gossypium/herbaceum.png}
\caption{Gossypium herbaceum.}
\end{figure}
burns. It allays pain and irritation, apparently by forming, with the discharges, a substitute for the epidermis, under the protection of which the process for the formation of the new cuticle takes place, undisturbed by external irritation. The exclusion of the air seems to be a most important part of the treatment; and, of course, to effect this, many other agents (as lint) will answer in the place of cotton. The following is the method of employing cotton:—The cotton should be carded in narrow fleeces, thin enough to be translucent, and applied in successive layers, so as completely to protect the injured parts from the effects of motion and pressure. When the skin is severely scorched, a spirituous or turpentine wash may be applied previously to the application of the cotton. As complete repose of the part is necessary, the first dressing should be allowed to remain as long as possible undisturbed. Raw cotton has also been used as a topical application in erysipelas.

Cotton-wool impregnated with nitre or chlorate of potash has been employed as moxa (see p. 1352).

The well-known superiority of linen to cotton, as a dressing for wounds and ulcers, is usually ascribed to the triangular shape of the cotton fibres, the sharp angles of which are supposed to cut and irritate the flesh. But this shape of the fibres exists only in the imagination of those who have never examined them by the microscope. Raspail ascribes the superiority of linen for surgical purposes to the hollow condition of the tubular fibrillae, by which they are enabled to absorb into their interior the blood or purulent secretion. The tubes of cotton, on the other hand, are filled with an organizing substance, and, therefore, can imbibe nothing into their interior.

Order LXXV.—Linaceae, Lindley.—The Flax Tribe.

Essential Character.—Calyx three- or four-lobed, generally five-sepaled. Sepals coherent only at the base, imbricate in aestivation, continuous with the peduncle, and therefore persistent. Petals as many as the sepals; hypogynous, unguiculate at the base, slightly united together, and to the ring of the stamens; alternate with the sepals, twisted in aestivation. Stamens equal in number, and alternate with the petals, cohering into a monadelphous ring at the base, and having an abortive filament, or tooth, between each. Anthers innate, bilocular, bi-rimose. Ovaries subglobose, with as many cells as there are sepals, rarely fewer. Styles as numerous as the cells of the ovary. Capsule globose, crowned by the permanent bases of the styles, composed of carpels having induplicate margins and dehiscing at the apex by two valves, and which are divided into partial cells, by an incomplete dissepiment arising from the centre. Seeds in each cell, two inverted. Alburnum generally none, but in its stead there is a tumid fleshy endopleura. Embryo straight, with the radicle turned towards the hilum.—Herbs or shrubs with entire exstipulate leaves (De Cand.)

Properties.—The fibres of Linaceae have great tenacity. The seeds abound in oil and mucilage, and are in consequence emollient.

*c Chir., Organ.
COMMON FLAX.

1. LINUM USITATISSIMUM, LINN. L. E. D.—COMMON FLAX.

Sex. Syst. Pentandria, Pentagynia.

History.—From time immemorial flax has been employed in the manufacture of cloth; and it appears from our most ancient records, that Egypt was celebrated for its production. Dutrochet asserts that mummy cloth is made of flax.

Botany. Gen. Char.—Sepals five, distinct, quite entire or serrated. Petals five. Stamens five. Styles three to five, distinct from the base, or combined to the middle or apex (Wight and Arnott).

Sp. Char.—Smooth, erect. Leaves lanceolate or linear. Panicle corymbose. Sepals ovate, acute, with membranous margins. Petals somewhat crenate, larger by three times than the calyx (De Cand.)—Annual. One or two feet high. Leaves distant. Flowers large, purplish-blue. Capsule globular, about the size of a small pea.

Hab. — Indigenous; corn fields; not unfrequent. Extensively cultivated in this, as well as in other European countries, both for its fibre for making thread, and for its oil obtained from the seeds.

Description.—The seed of the flax, commonly termed linseed or lintseed (semina lini) is small (about a line long), oval, oblong, flattened on the sides with acute edges, pointed at one extremity, smooth, glossy, brown externally, yellowish white internally, odourless, and has an oily mucilaginous taste. The seed coat is mucilaginous; the nucleus oily. The cake (placenta lini) left after the expression of the oil, is usually denominated oil cake; it forms, when ground to a fine powder, linseed meal (farina lini). The best oil cake for the preparation of linseed meal is the English fresh made. Foreign cake is of inferior quality. The colour of linseed meal is greyish brown. It abounds in mucilage. The meal prepared by grinding the unpressed seeds, yields a considerable quantity of oil.

The substance termed flax is prepared from the fibrous portions of the bark of the plant. The short fibres which are removed in heckling constitute tow (stupa), which is employed both in pharmacy and surgery. Of flax is made linen (linteum), which, when scraped, constitutes lint (linteum carptum; linamentum), an important agent to the surgeon.

Composition.—Linseed has been analyzed by L. Meyer. Its

---

4 Exod. ix. 31; Herodotus, Enterpe, ev.
6 See Ure’s Dict. of Arts, p. 482.
7 Gmelin, Handb. d. Chem. ii. 1221.
constituents he found to be as follows:—fat oil (in the nucleus) 11.265, wax (in the husk principally) 0:146, acrid soft resin (in the husk principally) 2:488, resinous colouring matter 0:550, yellow extractive with tannin and salts (nitre and the chlorides of potassium and calcium) 1:917, sweet extractive with malic acid and some salts 10:884, gum (in the nucleus) 6:154, nitrogenous mucilage with acetic acid and salts (in the husk principally) 15:120, starch with salts (in the husk) 1:480, albumen (in the nucleus) 2:782, gluten (in the nucleus) 2:932, husk and emulsion (?) 44:382. The ashes contained oxide of copper.

1. Fixed Oil.—(See p. 1702)

2. Mucilage of Linseed. — Has been examined by Bostock; by Vauquelin, and by Guerin-Varry. Resides in the seed coats. Is extracted by hot water. When the solution is mixed with alcohol, white mucilaginous flocks are precipitated. Diacetate of lead forms a precipitate in it. Neither infusion of nutgalls nor chlorine have any effect on it. It is not coloured blue by iodine. It reddens litmus (owing to the free acetic acid). It consists of two parts: one soluble, the other insoluble in water. Its ashes contain carbonates of potash and lime, phosphate of lime, chloride of potassium, sulphate of potash, oxide of iron, alumina, and silica.

**Proximate Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soluble part</td>
<td>52.70</td>
</tr>
<tr>
<td>Insoluble part</td>
<td>29.89</td>
</tr>
<tr>
<td>Ashes</td>
<td>7.11</td>
</tr>
<tr>
<td>Water</td>
<td>10.30</td>
</tr>
</tbody>
</table>

**Ultimate Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>34.30</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.69</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7.27</td>
</tr>
<tr>
<td>Oxygen</td>
<td>52.74</td>
</tr>
</tbody>
</table>

a. Soluble part (Arabin?) soluble in cold water. Treated with nitric acid, yields 14.25 per cent. of mucic acid, besides some oxalic acid.

b. Insoluble part. A nitrogenous substance, not soluble in water, and not yielding mucic acid by the action of nitric acid. Properly speaking, therefore, it is not a gummy substance.

**Physiological Effects.**—Linseed is emollient and demulcent. It also possesses nutritive qualities; for, in the form of a thick mucilage (or jelly, as it is termed), it is employed for fattening cattle: Linseed cake is also employed for a similar purpose. Linseed oil is a mild laxative.

**Uses.**—Employed, to allay irritation, in the form of infusion or tea, expressed oil, and meal.


1 Ann. de Chim. lxxx. 314.
the addition of sliced lemon and sugar-candy.—Dose, $\frac{1}{3}$ij. to $\frac{1}{3}$iv. or ad libitum.

2. **OLEUM LINI, L. E. D. Linseed Oil.**—To prepare this oil, the seeds are first bruised or crushed, then ground, and afterwards subjected to pressure in the hydraulic or screw press. **Cold-drawn linseed oil** (oleum lini sine igne) is paler coloured, less odorous, and has less taste, than linseed oil prepared by the aid of a steam heat of about 200° F. (oleum lini, offic.); but, according to Mr. Brande, it “soon becomes rancid and more disagreeable than that expressed at a higher temperature.” The seeds yield by cold expression 18 or 20 per cent. of oil; but by the aid of heat from 22 to 27 per cent. Linseed oil is usually amber-coloured; but it may be rendered quite colourless. For a fine sample of colourless oil I am indebted to Mr. Whipple. Linseed oil has a peculiar odour and taste; it is soluble in alcohol, but more readily so in ether. When exposed to the air it dries into a hard, transparent varnish. This change is greatly accelerated by boiling the oil, either alone or with litharge, with sugar of lead or with common white vitriol. The resulting oil is called **drying oil** or **boiled oil**. The efficacy of the process is ascribed by Liebigm to the elimination of substances which oppose the oxidation of the oil. The ultimate composition of linseed oil, according to Saussure, is carbon 76.014, hydrogen 11.351, and oxygen 12.635. Its proximate constituents are oleic acid (chiefly), margaric acid, and glycerin).—Rarely employed internally. Its most ordinary use is for the preparation of **linimentum calcis**, already (p. 581) described.

3. **FARINA LINI, E.; Linseed Meal.—** (The meal of the seeds deprived of their fixed oil by expression, E.)—Emollient. Employed in the preparation of the *linseed-meal poultice*. It is a constituent of the *pulvis pro cataplasmate*, D. already (p. 906) noticed.—The farina of the unpressed linseed is preferred to the powder of linseed-cake, on account of its oleaginous quality. What is usually sold as such has been prepared from recently pressed English oil cake.

4. **CATAPLASMA LINI, L.; Linseed Meal Poultice.—** (Boiling Water, Oj.; Linseed, powdered, as much as may be sufficient to make it of a proper consistence. Mix.)—A valuable emollient poultice.

2. **LI' NUM CATHARTICUM, Linn. E.—PURGING FLAX.**

**Sex. Syst.** Pentandria, Pentagynia.

**Herb, E.)**

**History.**—First mentioned by Thalius in the sixteenth century n. **Botany. Gen. Char.—See Linum usitatissimum.**

---

n See Ure’s *Dict. of Arts*, p. 899.

m *Dict. of Pharm.*

n *Journ. de Pharm.* xxvi. 193.

m Sprengel, *Hist. Rei Herb.* i. 35.
Sp. Char.—Smooth, erect. Leaves opposite, obovate-lanceolate. Stem above dichotomous (De Cand.)

Annual. Stem slender, two to six inches high. Flowers drooping before expansion, white, small.

Hab.—Indigenous; pastures: common.

Description.—Purging flax (herba lini cathartici) is odourless, but has a very bitter taste.

Composition.—I am unacquainted with any analysis of this plant. Probably its purgative principle is bitter extractive.

Physiological Effects and Uses.—Cathartic and occasionally diuretic; but somewhat uncertain in its operation. Formerly used in rheumatism. Now almost obsolete.—Dose, 5\text{gr}. of the dried plant; or an infusion of a handful of the fresh plant may be employed.

Order LXXVI.—Caryophyllaceae.—The Chickweed Tribe.

Caryophylleae, Jussieu; De Candolle.

Essential Character.—Calyx generally persistent, of four or oftener five sepals, which are continuous with the pedicel, and either free or coherent into a four- or five-dentate tube, imbricate in aestivation. Petals as many as the sepals (very rarely none), inserted on the torus, which is more or less elevated on a pedicel (anthophorus), alternate with the sepals, unguiculate, having the fauces sometimes crowned with petaloid scales. Stamens as many as, or double the number of, the petals, inserted in the torus. Filaments subulate, sometimes submonadelphous at the base. Anthers two-celled. Ovary simple, sometimes to five-valved, inserted at the apex of the torus, and crowned by an equal number of styles. Capsule of two to five valves, united at the base, dehiscing at the apex, generally one-celled, sometimes two- to five celled. Septa protruding from the middle of the valves, incomplete or continuous to the axis. Placenta central. Seeds numerous (very seldom few or definite); albumen farinaceous, generally central; embryo usually peripheral, more or less incurved (seldom central and straight); radicle directed towards the hilum.—Herbs or undershrubs, with opposite entire leaves. Stems jointed (De Cand.)

Properties.—Remarkable, for the most part, for their insipidity and consequent inactivity.

Dianthus Caryophyllus, Linn. D.—Clove Pink; Carnation, or Clove Gillyflower.

Sec. Syst. Decandria, Dizynia.

(Flores, D.)

History.—First noticed by Manfredus de Monte Imperiali.°

Botany. Gen. Char.—Calyx tubular, five-toothed, imbricated at the base with two to four opposite scales. Petals five, with long claws. Stamens ten. Styles two. Capsule one-celled. Seeds com-

° Sprengel, Hist. Rei Herb. i. 298.
pressed, convex on one side, concave on the other; peltate. Embryo scarcely curved (De Cand.)

Sp. Char.—Stem branched. Flowers solitary. Scales of the calyx four, very short, ovate, somewhat mucronate. Petals very broad, beardless. Leaves linear-awl-shaped, channelled, glaucous (De Cand.)

A perennial plant; the origin of the fine carnations of the gardens. Flowers pink, purple, white, or variegated; double, semi-double, or single.

Hab.—Indigenous. Cultivated in gardens.

Description.—The red or deep crimson gillyflowers (flores dianthi caryophylli; flores caryophylli rubri; flores tunicae) were formerly employed in medicine on account of their colour. They have a pleasant aromatic smell, and a bitterish sub-astringent taste. They communicate to water their smell and colour.

Composition.—I am unacquainted with any analysis of them. They obviously contain a volatile oil, colouring matter, and an astringent principle.

Physiological Effects and Uses.—Formerly supposed to have an influence over the nervous system, to raise the spirits, &c. Simon Pauli recommended them in various nervous and spasmodic affections, and in malignant fever. They have also been used as flavouring and colouring agents; and a syrup of them was formerly contained in the British pharmacopoeias. Though still retained in the Dublin Pharmacopoeia, their medical use is obsolete.

Order LXXVII.—POLYGALEÆ, De Candolle.—THE MILKWORT TRIBE.

Polygalaceæ and Krameriacæ, Lindl. 

Essential Character.—Sepals five, imbricate in estivation, the two interior generally petaliform, the three exterior smaller; two of them are interior and sometimes united, the third is posterior. Petals three to five, hypogynous, more or less united by means of the tube of the stamens (rarely distinct). Filaments of stamens adherent to the petals, monadelphous, divided at the apex into two opposite equal phalanges. Anthers eight, one-celled, innate, dehiscing by pores at the apex. Ovary one, free, two-celled, rarely one- or three-celled. Style one. Stigma one. Pericarp capsular or drupaceous, two- or one-celled. Valves septigerous in the middle. Seeds pendulous, solitary, often with a carunculate arillus at the base; embryo straight, generally in the axis of a fleshy albumen, (or rarely) exalbuminous, in which case the endopleura is tumid.—Herbs or shrubs. Leaves entire, generally alternate, articulated on the stem (De Cand.)

Properties.—Leaves and roots for the most part bitter and astringent.

---

Footnotes:
9 For horticultural information respecting them, consult Loudon's Encyc. of Gardening.
8 Lewis, Mat. Med.
1. POLYG'ALA SEN'EGA, Linn. L. E. D. — THE SENEKA.

Sex. Syst. Diadelphia, Octandria.

(Radix, L. D.—Root, E.)

History.—The root of this plant was introduced into medicine as a remedy for the bites of venomous animals, in the early part of the last century, by Dr. Tennant, a Scotch physician, residing in Pennsylvania.

Botany. Gen. Char. — Sepals persistent, the two inner ones wing-like. Petals three to five, adnate to the tube of the stamen; the inferior one keel-shaped (perhaps composed of two united). Capsule compressed, elliptical, or obovate. Seeds pubescent, carunculated at the hilum, destitute of a coma (De Cand.)

Sp. Char. — Stems several, somewhat erect, simple, terete. Leaves ovate-lanceolate, the upper ones acuminate. Racemes somewhat spiked. Wings orbiculate. Capsule elliptical, emarginate (De Cand.)

Root perennial, branching. Stems annual, from nine to twelve inches high, occasionally tinged at their lower part with red or purple. Leaves alternate, sessile, or on very short stalks, paler beneath. Flowers small, white. Alloc of the calyx white, with green veins. Capsule small, containing two blackish seeds.

Hab.—United States of America: most abundant in the southern and western parts.

Description.—Senega or Seneka root (radix senega seu seneka), sometimes called the seneka-snakeroot or the rattlesnake root, is imported from the United States in bales. It varies in size from that of a writing-quill to that of the little finger; it is contorted, presents a number of eminences, and terminates superiorly in an irregular tuberosity, which exhibits traces of numerous stems: a projecting line extends the whole length of the root. The cortical portion is corrugated, transversely cracked, thick, of a grayish yellow colour. The central portion (medullium) is woody and white. The taste of the root is at first sweetish and mucilaginous, afterwards acrid and pungent, exciting cough and a flow of saliva: its odour is peculiar and nauseous.

Composition.—Senega root has been repeatedly made the subject of chemical investigation. In the last century it was examined by Burckhard, by Keilhorn, and by Helmuth. In 1804 it was analysed by Gehlen; and in 1811 by Fougeron. Peschier also published an analysis of it. In 1826 it was analysed by Feneulle, in 1827

---

1. An Epistle to Dr. Mead. 1742.
5. Quoted by Goebel and Kunze, Pharm. Waarenk.
both by Dulong d'Astafort, and by Folchi, in 1832 by Trommsdorff, and in 1836 by Quevénne. I subjoin three of these analyses:

<table>
<thead>
<tr>
<th>Trommsdorff</th>
<th>Dulong</th>
<th>Quevénne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>Volatile oil, traces.</td>
<td>Polygalic acid.</td>
</tr>
<tr>
<td>Acid resin</td>
<td>Acrid extractive.</td>
<td>Virgineic acid.</td>
</tr>
<tr>
<td>Sweetish-bitter resin</td>
<td>Yellow extractive.</td>
<td>Tannic acid.</td>
</tr>
<tr>
<td>Resin</td>
<td>A substance reddened by sulphuric acid.</td>
<td>Pecitic acid.</td>
</tr>
<tr>
<td>Pectic acid</td>
<td>Pecitic acid.</td>
<td>Cerin.</td>
</tr>
<tr>
<td>Wax</td>
<td>Wax.</td>
<td>Fixed oil.</td>
</tr>
<tr>
<td>Soft resin</td>
<td>Resin.</td>
<td>Yellow colouring matter.</td>
</tr>
<tr>
<td>Mucus</td>
<td>Gum.</td>
<td>Gum.</td>
</tr>
<tr>
<td>Malates, potash, and lime</td>
<td>Malates of potash and lime.</td>
<td>Salts, alumina, silica, magnesia, and iron.</td>
</tr>
<tr>
<td></td>
<td>Mineral salts and iron.</td>
<td>Senega root.</td>
</tr>
</tbody>
</table>

Dried Senega root ...... 97.354
Senega root. Senega root.

I. Polygalic Acid, in the impure state, was first procured by Gehlen, who called it Senegin. It is the active principle of the root, and resides in the cortical part of the root. When pure it is a white odourless powder, which is at first tasteless, but afterwards communicates an acrid feeling to the mouth, and a sense of constriction to the fauces. It irritates the nostrils, and excites sneezing. It is volatile, and, when decomposed by heat in a glass tube, evolves no ammonia, and hence contains no nitrogen. It is soluble in water and in alcohol, especially when aided by heat; but is insoluble in ether, acetic acid, and the oils. Its solution forms white precipitates (polygalates) with diacetate of lead and proto-nitrate of mercury. Sulphuric acid has a characteristic effect on polygalic acid: it renders polygalic acid yellow, then rose-red, and afterwards dissolves it, forming a violet-coloured solution, which becomes decolorized in twenty-four hours. The alkaline polygalates are not crystallizable. Polygalic acid consists of carbon 55.704, hydrogen 7.529, and oxygen 36.767; or $C_9^1$ $H_{12}^5$ $O_7^9$. It has considerable resemblance to esculic acid. Given to dogs in doses of six or eight grains, it causes vomiting, embarrassed respiration, and death in three hours. Two grains thrown in the jugular vein caused vomiting, and, in two hours and a half, death.

2. Virgineic Acid.—A volatile fatty acid, analogous to valerianic, phocenic, and butyric acids. It is an oily liquid, of a reddish colour, a strong, penetrating, disagreeable odour, and an acrid taste. It is soluble in alcohol, ether, and caustic potash, but scarcely so in water.

Physiological Effects.—Senega possesses acrid and stimulant properties. In small doses it is diaphoretic, diuretic, and expectorant; in large doses, emetic and purgative. Sundelin took a scruple of powdered senega root every two hours for six hours: it caused irritation of the back part of the tongue and throat, and gave rise to an increased flow of saliva. These effects were soon followed by considerable burning in the stomach, nausea, and vomiting. The skin became warmer and moister; there was gripping pain of the bowels, followed by watery evacuations; the secretion of urine was increased, and a feeling of heat was experienced in the urinary passages. For some days after there was gastric uneasiness, with loss of appetite.

---

7 Journ. de Pharm. xiii. 567.
8 Journ. de Chim. Méd. iii. 600.
9 Pharm. Central-Blatt für 1832, S. 449.
10 Journ. de Pharm. xxii.
11 Journ. de Pharm. xxiii. 270.
**In larger doses** it caused burning pain in the stomach and bowels, violent vomiting, purging, anxiety, and giddiness.

It appears to excite moderately the vascular system, to promote the secretions (at least those of the kidneys, skin, uterus, and bronchial membrane), and to exert a specific influence over the nervous system. It has been principally celebrated for its expectorant effects.

In its operation on the nervous system it has considerable resemblance to Arnica (see 1355). But its influence over the secreting organs is much greater. It is somewhat analogous to Helenium (p. 1345) in its action.

**Uses.**—In this country senega is comparatively but little employed. It is an exceedingly valuable remedy in the latter stages of bronchial or pulmonary inflammation, when this disease occurs in aged, debilitated, and torpid constitutions, and when the use of depletives is no longer admissible. It appears to re-establish a healthy condition of the secreting organs, to promote the resolution of the morbid deposits, and to give strength to the system. I usually administer it in combination with ammonia, which appears to me to promote its beneficial operation. Frequency of pulse, and a febrile condition of the system, are by no means to be regarded as impediments to the use of this medicine.

In chronic catarrh and humoral asthma it has also been used. It has been extravagantly praised by Dr. Archer, of Maryland, as a remedy for croup. He represents it as being capable, without the aid of any other means, of removing this alarming disease. Few practitioners, I suspect, would venture to trust it. Yet it might be a useful addition to emetics. As a stimulant and promoter of the secretions, it has been used with advantage in the latter stage of low fever accompanied with torpidity. It has also been used as an emetic, purgative, and diaphoretic, in rheumatism, as a diuretic in dropsy, and as an emmenagogue in amenorrhea. It was introduced into practice as a remedy against the bite of venomous animals,—as the rattlesnake.

**Administration.**—The dose of the powder is from grs. x. to 3j. But the infusion or decoction is the best form of exhibition.

**Decoction of Senega,** L. E. D. Decoction of Senega.—(Senega root, 5x. [5ij. D.]; Water [distilled, L.], Oij. [Oij. wine measure D.]) Boil down to a pint [3vij. D.], and strain.—Stimulating, expectorant, and diuretic.—Dose, f3j. to f5ij. three or four times daily. Ammonia is often a valuable addition to it.

**Krameria Triandra,** Ruiz and Pavon, L. E. D.—The Rhatany.

**Sex. Syst.** Tetrandria, Monogynia, Willd.

(Radix, L.—Root, E.—Radix et extractum, D.)

**History.**—This plant was discovered by Ruiz and Pavon, in 1779, in South America. It was introduced to notice into this
country, as a medicine, by Dr. Reece, in 1808. In 1813, Ruiz’s dissertation on it appeared in an English dress.

Botany. Gen. Char.—Sepals four or five, irregular, coloured, spreading, deciduous. Petals four or five, irregular, smaller than the calyx, the three inner unguiculate. Stamens one, three, or four, hypogynous, unequal. Ovary one-celled, or incompletley two-celled; style terminal; stigma simple; ovaries in pairs, suspended. Fruit between hairy and leathery, globose, covered with hooked prickles, by abortion one-seeded, indehiscent.—Spreading many-stemmed undershrubs. Leaves alternate, simple, entire or three-foliate, spreading. Racemes simple, spiked (Lindley).

Sp. Char.—Leaves oblong, somewhat acute, villous-silky. Pedicels somewhat longer than the leaf, bitracteate, forming a short raceme (De Cand.)


Hab.—Peru; growing abundantly in Huanuco, Huamalies, and Canta.

Description.—Rhatany root (radix krameriae seu rhataniiæ) is brought from Peru. It consists of numerous, woody, cylindrical, long branches, varying in thickness from that of a writing quill upwards. These pieces consist of a slightly fibrous, reddish-brown bark, having an intensely astringent and slightly bitter taste,—and of a very hard, ligneous meditullium, of a yellowish or pale red colour. The largest quantity of astringent matter resides in the bark, and therefore the smaller branches (which have a larger proportion of bark) are to be preferred.

Foreign or South American extract of rhatany (extractum krameriae seu rhataniiæ americanum) is occasionally imported.

Composition.—Rhatany root has been analysed by Trommsdorff, Vogel, C. G. Gmelin, and Peschier.

<table>
<thead>
<tr>
<th>C. G. Gmelin</th>
<th>Peschier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin</td>
<td>38.3</td>
</tr>
<tr>
<td>Sweet matter</td>
<td>6.7</td>
</tr>
<tr>
<td>Mucilage</td>
<td>8.3</td>
</tr>
<tr>
<td>Nitrogenous ditto</td>
<td>2.5</td>
</tr>
<tr>
<td>Lignin</td>
<td>43.3</td>
</tr>
<tr>
<td>[Loss]</td>
<td>9.9</td>
</tr>
<tr>
<td><strong>Rhatany root</strong></td>
<td><strong>100.0</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Dried watery extract</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Insoluble matters</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Rhatany root</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Tannin</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Gallic acid</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Gum, extractive and colouring matter</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Krameric acid</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Dried watery extract of rhatany root</strong></td>
</tr>
</tbody>
</table>

I. Tannic Acid.—To this, as well as in part to a minute portion of gallic acid, rhatany root owes its astringent qualities. It is this acid which enables an
infusion of rhatany root to form, with a solution of gelatine, a precipitate (tannate of gelatine), and with sesquichloride of iron a brownish grey precipitate (tannate of iron). The properties of tannic acid have been already described (see p. 1080).

2. Krameric Acid.—Peschier ascribes the stypticity of rhatany to this acid, the properties of which are at present imperfectly known.

Physiological Effects.—A powerful astringent, and, like other agents of this class, tonic also. (See the effects of astringents, p. 188).

Uses.—Rhatany root is adapted to all those cases requiring the employment of astringents; such as profuse mucous discharges (as humid catarrh, old diarrhoeas, fluor albus, &c.), passive hemorrhages (especially metrorrhagia) and relaxation and debility of the solids. It is sometimes used as a tooth powder (as with equal parts of orris root and charcoal). Dentists sometimes employ tincture of rhatany diluted with water as an astringent mouth wash.

Administration.—The powder may be given in doses of from grs. x. to 5ss. The infusion or extract is more commonly employed. Compound tincture of rhatany is prepared by digesting 3ij. of bruised rhatany root, and 5ij. of orange peel, in Oj. of proof spirit. Sometimes 2ss. of serpentary root and 3ij. of saffron are added. It is an efficacious astringent and stomachic.—Dose, f3ij. to f5ij.

1. INFUSUM KRAMERII, L. Infusion of Rhatany.—(Krameria, 5j.; Boiling distilled water, Oj. Macerate for four hours in a lightly covered vessel, and strain).—Astringent and tonic. Dose, f3ij. to f5ij.


Order LXXVIII.—VIOLACEÆ, Lindley.—THE VIOLET TRIBE.

VioLARiE, De Candolle.

Essential Character.—Sepals five, persistent, with an imbricate aestivation usually elongated at the base. Petals five, hypogynous, equal or unequal, usually withering, and with an obliquely convolute aestivation. Stamens five, alternate with the petals, usually opposite them, inserted on a hypogynous disk, often unequal; anthers bilocular, bursting inwards, either separate or cohering, and lying close upon the ovary; filaments dilated, elongated beyond the anthers; two, in the regular flowers, generally furnished with an appendage or gland at their base. Ovary one-celled, many-seeded, or rarely one-seeded, with three parietal placentae opposite the three outer sepals; style single, usually declinate, with an oblique hooded stigma. Capsule of three valves, bearing the placentae in their axis. Seeds often with a tumor at their base; embryo straight, erect, in the axis of fleshy albumen.—Herbaceous plants or shrubs. Leaves simple, usually alternate, sometimes opposite, stipulate, entire, with an involute vernation. Inflorescence various. (Lindley.)

Properties.—Roots more or less emetic.
VÍOLA ODORÁTA, LINN. E. D.—THE SWEET VIOLET. *

Sex. Syst. Pentandria, Monogynia.
(Flowers, E.—Flores, D.)

History.—According to Dr. Sibthorp, this is the "Ion πορφυρόεν (purple violet) of Dioscorides. It was employed in medicine by Hippocrates.

Botany. Gen. Char.—Sepals five, unequal, prolonged into appendages at the base. Corolla unequal, two-lipped, of five petals, the lower calcarate. Capsule bursting with elasticity, many-seeded, three-valved.—Herbaceous plants (Lindley).


Perennial. Flowers fragrant, deep purple, often white, occasionally lilac. Bracts inserted above the middle of the scape.

Hab.—Indigenous. Flowers in March and April. Cultivated on account of the odour and colour of the flowers.

Description.—Violets (flores violae odoratae) should be gathered immediately they are expanded, as they subsequently become purplish. Their delightful fragrance is well known. The root of the violet (radix viola odoratae) has been used in medicine.

Composition.—In 1822, Pagenstecher detected the following substances in an infusion of the flowers:—odorous principle, blue colouring matter, sugar both crystallizable and uncrystallizable, gum, albumen, and salts of potash and lime. Boullay obtained from the root, leaves, flowers, and seeds, an acrid principle, which he has termed violine.

1. Odorous Principle.—This has not been isolated. It is supposed, however, to be of the nature of volatile oil. By digesting violets in olive oil, the latter dissolves the odorous matter and acquires the smell of violets: this preparation is the oil of violets,—the huile de violette of perfumers. The eau, or esprit de violette, is nothing more than an alcoholic tincture of the rhizome of the Florentine orris (p. 1008), which has an odour similar to that of the violet.

2. Colouring matter.—It is soluble in water, but not in alcohol. It is changed to red by the strong acids, and to green by the alkalis: hence the expressed juice and syrup are valuable as tests for discovering the existence of either acids or alkalis. An infusion of violets has been said to contain three kinds of colouring matter; namely, a blue colouring matter, not precipitable by the acetate of lead, but which is completely decolorized by sulphuretted hydrogen; secondly, a bright-red acid colouring matter, which causes a bluish green precipitate with the solution of acetate of lead; thirdly, a violet red-colouring matter, which does not precipitate the neutral acetate of lead, but throws down a greenish yellow precipitate with the subacetate of lead.

3. Violine (Emetine indigene).—It was at first mistaken for emetine (p. 1425). Its nature requires further investigation. It is a white powder, of a bitter, acrid taste, slightly soluble in water, soluble in water, and insoluble in ether. It is precipitated from its solution by infusion of nutgalls. Its operation is similar to that of emetine.

---

* Prodr. Fl. Grec. i. 147.
1 Lib. iv. cap. 122.
1 Gmein, Handb. d. Chem. ii. 1249.
1 Journ. de Pharm. x. 23.
Physiological Effects.—The odorous emanations of violets, like those of some other flowers, are said to have occasionally proved dangerous, and in one case were supposed to have brought on apoplexy. Dr. Lindley has known them cause faintness and giddiness. *Taken internally*, violets act as laxatives. The seeds possess similar properties. The root, in doses of from 5ss. to 3j., proves emetic and purgative.

Uses.—Violets are employed in the preparation of the officinal syrup. They are useful as a test for acids and alkalis, and are much sought after for bouquets. The root might be employed as a substitute for ipecacuanha.

SYRUPUS VIOLE, E. D. Syrup of Violets.—(Fresh Violets [the petals, D.] lb. j. [lb. j.] ; Boiling Water, Oijss. [Ov. wine-measure, D. ] ; Pure Sugar, lb. vijss. [lb. xij. and 3j. D. ] Infuse the flowers for twenty-four hours in the water [in a covered glass or earthenware vessel, E.] ; strain [through fine linen, D.] without squeezing, and dissolve the sugar in the filtered liquor).—The colour of this preparation is improved by making it in a tin or pewter vessel. No satisfactory explanation of this has been offered. The Edinburgh College, fearful, I presume, of metallic impregnation, direct glass or earthenware vessels to be employed. —Genuine syrup of violets is readily distinguished from any counterfeit by its being reddened by an acid, and made green by an alkali. Hence it is employed as a test.—As a medicine it is used as a mild laxative for new-born infants. Thus, a mixture of equal parts of oil of almonds and syrup of violets is often administered, in the dose of one or two teaspoonfuls, for the purpose mentioned.

OTHER MEDICINAL VIOLACEÆ.

The roots of several species of Ionidium possess emetic qualities, and have been employed as substitutes for our officinal ipecacuanha (*Cephaelis Ipecacuanha*).

The root of Ionidium Ipecacuanha, a native of the Brazils, is termed false Brazilian ipecacuanha. It yielded Pelletier five per cent. of emetine. The dose of it, as an emetic, is 3ss. to 3j. infused in water.

The root of the Ionidium microphyllum, or the Cuchunchully, a native of Quito, possesses similar properties.

Dr. Bancroft speaks favourably of it in Elephantiasis tuberculata. But the specimens which he sent home as Cuchunchully are said by Sir W. Hooker to be identical with Ionidium parviflorum Vent. Dr. Lindley, however, received from the Hon. W. F. Strangways the “Cuchunchully de Cuença,” which was the I. microphyllum of Humboldt.

---

2 *Fl. Med.*
3 *Comp. to Bot. Mag.* i. 278.
4 *Flora Medica*, p. 98.
Order LXXIX.—CISTACEÆ, Lindley.—THE ROCK-ROSE TRIBE.


The substance called Ladanum is a resinous exudation from the Cistus creticus, growing, as its name implies, in Crete. In the time of Dioscorides it was collected by combing the beards of the goats which browse on the plant. According to Tournefort and Sieber, it is now collected by a kind of whip or rake, with a double row of leathern thongs. With this the countrymen brush the plants, and when the whips are sufficiently laden with the juice, it is scraped off by knives, and made into cakes. Pure ladanum consists of resin and volatile oil 86, wax 7, aqueous extract 1, and earthy matters and hairs 6 (Guibourt). Pelletier found 72 per cent of sand in it. It possesses stimulant properties, and was formerly a constituent of some plasters. Its use is now obsolete.

Order LXXX.—CRUCIFERÆ, Jussieu.—THE CABBAGE OR CRUCIFEROUS TRIBE.

Brassicaceæ, Lindley

Essential Character.—Sepals four, deciduous cruciate. Petals four, cruciate, alternate with the sepals. Stamens six, of which two are shorter, solitary, opposite the lateral sepals, and occasionally toothed; and four larger, in pairs, opposite the anterior and posterior sepals, generally distinct, sometimes connate, or furnished with a tooth on the inside. Disk with various green glands between the petals and the stamens and ovary. Ovary superior, unilocular, with parietal placenta usually meeting in the middle, and forming a spurious dissepiment. Stigmas two, opposite the placenta. Fruit a silique or silicule, one-celled, or spuriously two-celled; one- or many-seeded; dehiscing by two valves separating from the replum; or indehiscent. Seeds attached in a single row by a funiculus to each side of the placenta, generally pendulous. Albumen none. Embryo with the radicle folded upon the cotyledons. Leaves alternate. Flowers usually yellow or white, seldom purple (Lindley).

Properties.—Pungent stimuli. They furnish nutritive condimentary, and antiscorbutic substances. Their pungency depends on an acid volatile oil, composed of carbon, nitrogen, hydrogen, sulphur, and oxygen. This oil becomes absorbed, and in some cases is detectable in the secretions. The nutritive properties of cruciferæ arise from their mucilaginous,
saccharine, and extractive constituents. Cakile maritima is purgative. Cheiranthus lividus is said to be dangerous to goats; while Lepidium piscidium we are told stupefies fish. These statements, however, require further proof. With these doubtful exceptions none of the cruciferae are poisonous.

1. CARDAMINE PRATEN'SIS, Linn. L. D.—CUCKOO-FLOWER.

Sex. Syst. Tetradynamia, Siliquosa.

(Flores, L. D.)

**History.**—Brunfels and Tragus are the earliest writers in whose works an undoubted notice of this plant appears.

**Botany. Gen. Char.**—Siliqua linear, with flat, nerveless valves, which often separate elastically. Seeds ovate, not bordered (O =). Umbilical cords slender (De Cand.)

**Sp. Char.** — Leaves pinnatisect; segments of the radical ones somewhat rounded—of the cauline ones, linear or lanceolate, entire. Style very short, scarcely more slender than the siliqua; stigma capitate (De Cand.)

**Root** perennial. **Stem** about a foot high. **Flowers** light purple, flesh-coloured, or white.

**Hab.**—Indigenous; meadows and moist pastures. **Flowers** in April and May.

**Description.**—The flowers (flores cardamines) are somewhat bitter and pungent, and have a slight odour. By drying they become inodorous and almost insipid. The leaves possess a flavour analogous to, though less agreeable than, the common water-cress.

**Composition.**—I am unacquainted with any analysis of the plant worth quoting. The pungency depends on volatile oil, the bitterness on extractive matter. A few experiments on this plant are mentioned by Gronhert.

**Physiological Effects and Uses.**—The flowers of cardamine are said to be stimulant, diaphoretic, diuretic, and nervine. They were formerly used in epilepsy, especially when it occurred in children, but have now fallen into almost total disuse. They were recommended by Sir George Baker in cholera and spasmodic asthma.—Dose of the dried flowers, 3ij. or 5ij.

2. COCHLEA'RIA ARMORA'CIA, Linn. L. E. D.—HORSE-RADISH.

Sex. Syst. Tetradynamia, Siliculosa.

(Radix recens, L.—Fresh root, E.—Radix, D.)

**History.**—Sprengel considers this plant to be the ῥαφαρίς ἄγρια of Dioscorides; and Dierbach suggests that it was known to Hippocrates. But these opinions are by no means well established.

---

1 Sprengel, Hist. Rei Herb.
3 Med Trans. i. 442.
4 Hist. Rei Herb. i. 182.
5 Lib. ii. 138.
6 Arzneim. d. Hippok 125.
HORSE-RADISH.

BOTANY. Gen. Char.—Silicule sessile, ovate-globose or oblong, with ventricose valves. Seeds many, not bordered. Calyx equal, spreading. Petals entire. Stamens not toothed.—(O =). Flowers white. Leaves often somewhat fleshy (De Cand.)

Sp. Char.—Silicules ellipsoid. Radical leaves oblong, crenate; cauline ones elongated, lanceolate, dentate, or incised. Root fleshy, large (De Cand.)

Root perennial, long, cylindrical white, very pungent. Stems two feet high. Leaves much veined. Flowers white.

Hab.—Indigenous; extensively cultivated. Flowers in May.

Description.—Horse-radish root (radix armoraciae; radix raphani rusticani) evolves, when scraped into shreds, a highly penetrating, acrid vapour. Its taste is very pungent. It is coloured blue by tincture of iodine. An infusion of it is tinged reddish yellow by the sesquisalts of iron.

Composition.—Horse-radish root was analysed by Gutret, who found its constituents to be—acrid volatile oil, bitter resin, extractive, sugar, gum, starch, woody fibre, vegetable albumen, acetic acid, and acetate and sulphate of lime.

Volatile Oil (Oleum Armoracis).—Obtained by distillation without water. It is pale yellow, heavier than water, and very volatile. Its odour is exceedingly powerful, and like that of horse-radish. One drop is sufficient to infect a whole room. Its taste is at first sweetish, then burning and acrid. It causes inflammation and vesication when applied to the skin. It is slightly soluble in water, easily so in alcohol. The watery solution yields, with acetate of lead, a brown precipitate (sulphuret of lead); with nitrate of silver, a black one (sulphuret of silver).

Physiological Effects.—Horse-radish is a well-known pungent, acrid stimulant, capable of producing vesication when applied to the skin, and of causing vomiting, when taken, in the form of infusion, into the stomach. Its odorous emanations readily excite a copious flow of tears. On the general system it operates as a stimulant, and promotes both urine and perspiration.

Uses.—Scraped in shreds, it is used at the table as a condimentary accompaniment to roast beef. It is not much employed as a medicine. Chewed, it serves as an excellent masticatory. Taken in this way, or in the form of syrup, it may be serviceable in some forms of hoarseness. An infusion of it may be taken to excite vomiting, or to promote the operation of other emetics, as in poisoning by narcotic substances. As a general stimulant, diaphoretic, and diuretic, it has been used in palsy, chronic rheumatism, and dropsy. It is one of the remedies deemed antiscorbutic.

Administration.—Dose, 3ss. or more, scraped into shreds.

1. INFUSUM ARMORACIS COMPOSITUM, L. D. Compound Infusion of Horse-radish.—(Horse-radish, sliced; Mustard-seeds, bruised, of each 3/4; Compound Spirit of Horse-radish, f3/4; Boiling [distilled, L] Water, Oj. Macerate the root and seeds in the water for two
[six, D.] hours, in a lightly covered vessel, and strain. Then add the compound Spirit of Horse-radish.)—This preparation soon undergoes decomposition. It is stimulant and diuretic, and has been employed in chronic rheumatism, paralysis, dropsies, and scurvy.—Dose, fʒ. to fʒv.

2. SPIRITUS ARMORACIÆ COMPOSITUS, L. D. Compound Spirit of Horse-radish.—(Horse-radish, sliced; Dried Orange Peel, of each ʒʒx.; Nutmegs, bruised, ʒv.; Proof Spirit, ⋆, i.; Water, Oij. Mix [macerate for twenty-four hours, D.], and let a gallon distil. The proportions of ingredients used by the Dublin College are not essentially different from those of the London College.)—Usually employed as a stimulating adjunct to other medicines, especially to diuretic infusions.—Dose, fʒ to fʒv.

3. COCHLEÀRIA OFFICINALIS, Linn. D.—COMMON SCURVY-GRASS.

Sex. Syst. Tetradynamia, Siliculosa.

(Herba, D.)

History.—This plant does not appear to have been known to the ancients.


Sp. Char.—Silicules ovate-globose, twice as short as their pedicels. Radical leaves stalked, cordate; cauline ones ovate dentate-angular (De Cand.)—Annual. Stem about a foot high. Flowers pure white.

Hab.—Indigenous; on the sea-coast, and in watering places on the Welsh and Scottish mountains. Cultivated in gardens. —Flowers in April and May.

Description. — Scurvy-grass (herba cochleariae) evolves, when rubbed, a somewhat pungent odour. Its taste is penetrating and acrid.

Composition.—The inspissated juice was examined by Braconnot, and the fresh herb by Gutret. The latter obtained the following constituents:—volatile oil, bitter resin, bitter extractive, gum, green fœcula, vegetable albumen, hydrochlorate and sulphate of ammonia, nitrate and sulphate of lime.

Volatile Oil (Oleum Cochleariae).—This is yellow, heavier than water, very volatile, and soluble in alcohol. Its odour is strong, and its taste acrid.

Physiological Effects and Uses.—A gentle stimulant, aperient, and diuretic. It has long been esteemed as an antiscorbutic?. It has also been used in visceral obstructions. It is occasionally eaten with bread and butter, like the water-cress.

* Journ. Phys. lxxxiv. 278.
* See Valentinus, Cochlearia curiosa, by Shirley. 1676.
4. **SINAPIS NI'GRA, Linn. L. E. D.—COMMON OR BLACK MUSTARD.**

**Sex. Syst.** Tetradynamia, Siliquosa.

(Semina, L.—Flour of the seeds, generally mixed with those of Sinapis alba, and deprived of fixed oil by expression, E.—Seminum pulvis, D.)

**History.**—Mustard (vānu) was employed in medicine by Hippocrates.

**Botany. Gen. Char.**—Silique somewhat terete; the valves nervèd. **Style** small, short, acute. **Seeds** in one row, somewhat globose. **Calyx** spreading (De Cand.)

**Sp. Char.**—Siliques smooth, even, somewhat tetragonal, pressed close to the peduncle. **Lower leaves** lyrate; upper ones lanceolate, quite entire, stalkèd.

**Habit.**—Indigenous; hedges and waste places. Cultivated in fields, especially in Durham and Yorkshire.

**Description.**—Black mustard seeds (semina sinapis nigra) are small and roundish. Externally they are beautifully veined, and of a reddish or blackish brown colour, though sometimes whitish. Internally they are yellow. They are inodorous, but have an acrid, bitter, oleaginous taste.

**Manufacture of Mustard.**—The following method of preparing flour of mustard (farina sinapis) was kindly furnished me by a manufacturer:—The seeds of both black and white mustard are first crushed between rollers, and then pounded in mortars. The pounded seeds are then siftèd. The residue in the sieve is called dressings or siftings: what passes through is impure flour of mustard. The latter by a second sifting yields pure flour of mustard, and a second quantity of dressings. The common flour of mustard of the shops is adulteratèd with flour (wheaten), coloured by turmeric, and rendered hot by pod pepper. By pressure the dressings or siftings yield a fixed oil (fixed oil of mustard), which is used for mixing with rape and other oils. The whole seeds are never pressed. Mustard cake is employed as a manure, being too hot for cattle.

**Composition.**—Black mustard seed was analysed by Thibierge; Some of its constituents have subsequently been examined by Henry fils and Garot; by Pelouze; by Robiquet and Boutron; by

---

2. Journ. de Chim. Med. i. 439 and 467; and Journ. de Pharm. xvii. 1.
From their labours we learn that black mustard seed contains myronate of potash, myrosyne, fixed oil, a pearly fatty matter, gymnmy matter, sugar, colouring matter, sinapisin, free acid, peculiar green matter, and some salts.

1. Myronic acid.—So called by Bussy, its discoverer, from μωσευ, an odorous oil. It is an inodorous, non-volatile, bitter, non-crystallizable acid. It is soluble in water and alcohol, but not in ether. It is composed of carbon, sulphur, hydrogen, nitrogen, and oxygen. The alkaline myronates are crystallizable. Myronate of potash yields no precipitate with nitrate of silver, nitrate of baryta, acetate of lead, bichloride of mercury, or chloride of calcium. The characteristic property of myronic acid is, to yield the volatile oil of mustard when mixed with a solution of myrosyne.

2. Myrosyne; Emulsin of black mustard.—Bussy called it myrosyne, from μωσευ, odorous oil, and σω, with, because it yields, with myronic acid, the volatile oil of mustard. It has considerable resemblance to vegetable albumen and emulsin, but as it cannot be replaced by either of these substances, in the development of the volatile oil, it must be regarded as a substance sui generis. It is soluble in water; but is coagulated by heat, alcohol, and acids, and in this state it loses the power of acting on the myronates, and of yielding the volatile oil.

3. Sinapisin.—This term has been given, by Simon, to a substance which he procured from black mustard seeds, and which he states possesses the following properties:—It presents itself in the form of white, brilliant, micaceous, volatile crystals, which are soluble in alcohol, ether, and the oils, but are insoluble in acids and alkalis. When mixed with the albumen of the mustard-seed, it yields the volatile oil of mustard. Bussy ascribes this last property to myronic acid. It is highly improbable that two constituents of mustard should possess it. Analogy would lead us to suppose that the oil is generated by non-acid substances. Simon says sinapisin contains no sulphur.

4. Volatile Oil of Mustard.—This does not pre-exist in the seeds; but is formed when water is added to the farina, by the mutual action of the contained myrosyne and myronate of potash (sinapisin?); just as the volatile oil of bitter almonds is generated by the mutual action of emulsin, amygdalin, and water (see p. 1534). Alcohol extracts from the farina no volatile oil; but by coagulating the myrosine, renders the farina incapable of developing the oil by the subsequent action of water. Sulphuric acid and the other mineral acids, as well also as carbonate of potash, check the formation of the oil. But when the oil is once formed, the acids have no power to prevent its effects. Volatile oil of mustard is colourless or pale yellow; it has a most penetrating odour, and a most acrid burning taste. Its sp. gr. at 68° F. is 1:015. It boils at 290° F. It is slightly soluble in water, but readily so in alcohol and ether. By the action of ammonia on this oil, an odourless, crystallizable substance (an amide?) is produced, which consists of one atom of the oil and two atoms of ammonia. These crystals are decomposed with the greatest facility by binoxide of mercury*. Volatile oil of mustard consists of carbon 49:84, hydrogen 5:09, nitrogen 14:41, oxygen 10:18, and sulphur 20:48; or C₃₂H₂₀N₄O₅S₅. It is powerfully acrid, rubefacient, and vesicant. It has been proposed as a rubefacient in paralysis and as a vesicant. The distilled water of mustard has been employed against the itch.

5. Fixed Oil of Mustard.—Usually procured from the dressings or siftings of mustard, above referred to. It constitutes about 28 per cent. of the seeds. Its
colour is reddish or brownish yellow: it has a faint odour of mustard, and a mild oily taste. It does not readily become rancid. It has been used as a purgative and anthelmintic.

**Physiological Effects.**—Mustard is an acrid stimulant belonging to the group of the volatile pungent stimuli (see p 181). It holds an intermediate rank between horse-radish and pepper. Its topical action is that of a powerful acrid, and depends on the volatile oil developed by the action of water. The irritant operation, on the eyes, of the vapour arising from a mixture of hot water and flour of mustard, is familiarly known. Mustard cataplasms cause redness and burning pain, which, if the application be continued, becomes almost insupportable. A prolonged application causes vesication, with ulceration and gangrene. Compared with those of cantharides, the topical effects of mustard on the skin sooner subside when the application is discontinued. When swallowed, mustard evinces the same stimulant operation on the stomach and bowels. Taken in moderate quantities, with the food, it promotes the appetite, and assists the assimilation of substances which are difficult of digestion. In somewhat larger doses (as one or two tea-spoonfuls) it rouses the gastric susceptibility, and operates as an emetic. In excessive quantities it gives rise to vomiting, purging, and gastro-enteritis. The effects of mustard on the general system are those of a stimulant. It quickens the pulse, and promotes the secretions (especially the urine) and the exhalations.

**Uses.**—The dietetical uses of mustard are well known. It is well adapted for cold, phlegmatic individuals, with a torpid or atonic condition of the digestive organs. It is an excellent condimentary adjunct to heavy and difficultly digestible foods, as fatty matters.

As a medicinal agent, mustard is employed for several purposes. As an emetic it is useful where we want to rouse the gastric sensibility, as in narcotic poisoning, malignant cholera, and some forms of paralysis.

As a stimulant to the digestive organs it is applicable in atonic or torpid conditions of these parts, with dyspepsia, loss of appetite, and hepatic torpor. As a diuretic it has been employed with some benefit in dropsy. As a febrifuge in intermittents, it has been employed either alone or in conjunction with cinchona. But the principal use of mustard is as a rubefacient (see Cataplasma Sinapis). Flour of mustard is sometimes added to pediluvia.

**Administration.**—As an emetic the dose is from a tea-spoonful to a table-spoonful of the flour of mustard in a tumblerful of water. As a diuretic in dropsies, and for some other purposes, mustard whey (serum lactis sinapinum) is a convenient form of exhibition. It is prepared by boiling half an ounce of the bruised seeds or powder in a pint of milk, and straining: the dose is 3iv. twice or thrice a day.

**Cataplasma Sinapis, L. D.; Sinapismus. Mustard Poultice or**
Sinapism.—(Linseed; Mustard-seed, of each, powdered, lb. ss.; Boiling Vinegar as much as may be sufficient to make them of the consistence of a cataplasm [which may be made more stimulating by adding 3ij. of the scrapings of horse-radish root, D.])—Crumb of bread may be often conveniently substituted for linseed meal. Vinegar and other acids check the formation of the acrid oil. Boiling water also has an injurious effect. Hence water, whose temperature does not exceed 100° F., is to be preferred for making the mustard poultice. Actius ⁶ was acquainted with the injurious influence exercised by vinegar on mustard; and he observes,—“Sed et hoc noscendum est: si in aceto maceretur sinapi inefficatus redditur: Acetum enim sinapis vim dissipat.” Several experiments on this subject have been made by Trousseau and Pidoux. They found that a sinapism made with flour of black mustard and water produced as much effect in six minutes as one made with the flour of black mustard and vinegar did in fifty. Curiously enough, however, they state that vinegar did not diminish the activity of English flour of mustard. This, perhaps, is referrible to the fact that common English flour of mustard contains pod pepper, the active principle (capsicin) of which is soluble in vinegar (see p. 1717).—The mustard cataplasm is a powerful local irritant. It readily excites inflammation, and, when allowed to remain applied sufficiently long, causes vesication. It proves, in many cases, a most painful application. In various affections of the brain (as in the stupor and delirium of low fever, in apoplexy, and in poisoning by opium) it is a most valuable application to the feet and ankles. In pulmonary and cardiac diseases it is occasionally applied to the chest with excellent effects. Dr. Blackall speaks in high terms of the mustard cataplasm, quickened with oil of turpentine, in typhoid pneumonia. Of course, in all these cases, it operates on the principle of a blister, over which its speedy effect gives it a great advantage. It is applied spread on linen or calico. Great caution is necessary in its application to persons who are insensible to pain; for if it be continued too long it may occasion ulceration and sloughing, though no pain be manifested. Hence its effects should be examined at short intervals. In one case death had nearly resulted from the neglect of this caution. Four sinapisms were applied to the wrists and insteps of a female lying in a comatose condition following puerperal convulsions. As no manifestation of pain occurred, the application was continued for three hours. Sloughing followed, which had nearly proved fatal.

5. SINA'PIS AL'BA, Linn. E. D.—WHITE MUSTARD.
Sex. Syst. Tetradynamia, Siliquosa.
(Semina, D.—Flour of the seeds of Sinapis nigra, generally mixed with those of Sinapis alba, and deprived of fixed oil by expression, E.)

Sp. Char.—Siliques hispid, spreading, somewhat narrower than the
ensiform beak. Leaves lyrate, and, as well as the stem, nearly smooth (De Cand.)

Annual. Stem one or one-and-a-half foot high. Flowers large, yellow. Beak longer than the pod.

Hab.—Indigenous; in waste places. Cultivated in both fields and gardens. Flowers in June.

Description.—White mustard seeds (semina sinapis alba) are larger and somewhat less acrid to the taste than the black ones. They consist of rounded-elliptical yellow grains, composed of a yellow nucleus enveloped in a thin semi-transparent shell. The hilum is at one extremity of the ellipse.

Composition.—According to the analysis of John, white mustard seeds consist of an acrid volatile oil, yellow fatty oil, brown mild resin, extractive (very small quantity), gum (small quantity), woody fibre, albumen, free phosphoric acid, and salts.

Robiquet and Boutron, however, have proved that white mustard contains neither volatile oil nor any substance capable of producing it; but owes its activity to a non-volatile acrid substance which does not pre-exist in the seeds, but is readily formed in them under certain conditions. Another chemical peculiarity of white mustard seed is, that it contains sulphosinapisin. Hence, while sesquichloride of iron strikes a deep red colour in an infusion of white mustard, it merely communicates an orange tint to the infusion of black mustard. Moreover, the thick mucilaginous liquor obtained by digesting the seeds of white mustard in cold water is peculiar to them. Simon has announced the existence of a new principle, which he calls erucin.

1. Sulphosinapisin.—It was at first supposed to be an acid, and was in consequence called, by Henry and Garot, sulphosinapic acid. But they subsequently established its non-acid properties. It is a white, crystallizable, odourless, bitter substance, soluble in water, alcohol, and ether. Under the influence of various agents (acids, oxides, and salts) it readily yields hydrosulphocyanic acid. To this acid is probably to be ascribed the red colour developed when a persalt of iron is added to an aqueous infusion of black mustard. Its aqueous solution forms, with nitrate of silver, a white precipitate. Boutron and Fremy state that sinapisin [sulphosinapisin] under the influence of emulsin, is converted into an acrid substance and hydrosulphocyanic acid. Sulphosinapisin consists of carbon 57.920, hydrogen 7.7%, nitrogen 4.940, sulphur 9.657, and oxygen 19.688; or C24H22N2S2O7.

2. Non-volatile acrid principle.—This does not pre-exist in white mustard, but is readily developed in it by cold water. As before mentioned, Boutron and Fremy ascribe its formation to the action of the emulsin of the seed on the sulphosinapisin, by which hydrosulphocyanic acid and this acrid matter are produced. The latter substance is an unctuous, reddish, odourless liquid, which has the pungent hot taste of horse-radish. It contains sulphur as one of its constituents.

3. Erucin.—A yellowish white substance, which is very soluble in ether, carburet of sulphur, and turpentine. It dissolves in boiling alcohol, but is insoluble

*S. Gmelin, Handb. d. Chem. ii. 1247.
1 Journ. de Pharm. xvii. p. 279.
* Henry and Garot, Journ. de Chim. Méd. i. 441.
* Cadet, Journ. de Pharm. xiii. 191.
* Journ. de Pharm. xxv. 370.
* Journ. de Chim. Méd. i. 439.
7 Journ. de Pharm. xxvi. 50.
in water and solution of ammonia. It does not redden the salts of iron, and contains no sulphur.

**Physiological Effects.**—Similar to, though milder than, those produced by black mustard. Swallowed whole, the seeds prove stomachic, laxative, and diuretic. But their use, in the large quantities in which they have been recommended, is by no means free from danger. Gastro-enteritic inflammation of a fatal kind has been induced by them. The danger of their accumulation in the appendix ceci is obvious. Mr. J. L. Wheeler\(^\text{a}\) has known them retained in the bowels for seven weeks.

**Uses.**—Dr. Cullen\(^\text{b}\) first mentions the practice of giving half an ounce, or an ordinary table-spoonful, of entire and unbruised mustard-seeds. A few years ago it was again brought forward, as if new\(^\text{c}\). It has been advocated in a long list of diseases attended with torpor or atony of the digestive organs; and at one time it was fashionable and popular. Sir John Sinclair\(^\text{d}\) recommended mustard seeds for the preservation of the health of old people especially. The seed-leaves of white mustard and of *Lepidium sativum* are used at table under the name of mustard and cress or corn salad.

**Administration.**—From two or three large tea-spoonfuls to a tablespoonful of the whole unbruised seed have been recommended to be swallowed three or four times daily.

**Order LXXXI.—PAPAVERACEAE, Jussieu.—THE POPPY TRIBE.**

**Essential Character.**—Sepals two, deciduous. Petals hypogynous, either four or some multiple of that number, placed in a cruciate manner. Stamens hypogynous, either eight, or some multiple of four, generally very numerous, often in four parcels, one of which adjoins to the base of each petal; anthers two-celled, innate. Ovary solitary; style short or none, stigmas alternate with the placentae, two or many; in the latter case stellate upon the flat apex of the ovary. Fruit one-celled, either pod-shaped, with two parietal placentae, or capsular, with several placentae. Seeds numerous; albumen between fleshy and oily; embryo minute, straight at the base of the albumen, with plano-convex cotyledons.—Herbaceous plants or shrubs, with a milky juice. Leaves alternate, more or less divided. Peduncles long, one-flowered; flowers never blue (Lindley).

**Properties.**—The plants of this order possess narcotic and acrid properties. At the head of the narcotic papaveraceae stands the genus *Papaver*, from which opium is procured. The acrid papaveraceae usually possess narcotic properties also. *Sanguinaria canadensis* is one of the best known acro-narcotics of this order\(^\text{e}\). In doses of from ten to twenty grains it operates

---

\(^{a}\) *Cat. Rat. Plant. Med.* Lond. 1830.  
\(^{b}\) *Mat. Med.* ii. 171.  
\(^{c}\) *C. T. Cooke, Obs. on the Efficacy of White Mustard-seed*, 3d. ed. 1826.  
\(^{d}\) *Lancet*, Jan. 25th, 1834, p. 669.  
\(^{e}\) *Bird, An Inaug. Dissert*, *on Sanguin. canad.* New York, 1822.
as an emetic. In larger doses it causes depression of pulse, faintness, dimness of vision, and alarming prostration of strength. Its active principle is an alkali called sanguinarin. Chelidonium majus is another acrid of this order.

1. PAPA'VER RHAGEAS, Linn. L. E. D.—COMMON RED OR CORN POPPY.


History.—Theophrastus⁴ calls the red poppy poiaec. Dr. Sibthorp⁵ considers the ροιαες of Dioscorides⁶ to be the red poppy.

Botany. Gen. Char. — Sepals two, convex, deciduous. Petals four. Stamens numerous. Style none. Stigmas four to twenty, radiating, sessile upon the disk crowning the ovary. Capsule obovate, one-celled, composed of from four to twenty carpels inclosed in a membranous production of the thalamus, dehiscing by short valves under the crown of the stigmas. Placentae between the valves, produced internally, forming complete dissepiments (De Cand.)—Herbs, with a white juice. Peduncles inflexed at the apex before flowering.

Sp. Char. — Capsule smooth, obovate. Sepals hairy. Stem many-flowered, rough, with spreading setae. Leaves pinnatifid, lobes elongated, incised-dentate, acute (De Cand.)

Annual. Petals rich scarlet. This plant is distinguished from Papaver dubium by, 1st, the wide spreading hairs of the flower-stalks: 2ndly, a shorter capsule; 3rdly, its stigma of eight to ten rays.


Description. —The petals of the red poppy (petala rheados seu papaveris erratici) have a rich scarlet colour, a slightly opiate odour, and a bitterish taste. By drying they become violet red and odourless.

Composition. —The flowers of the red poppy have been analysed by Beetz and Ludewig⁷, and by Riffard⁸. The latter chemist obtained yellow fatty matter 12, red-coloured matter 40, gum 20, lignin 28. It is not improbable that this plant may contain morphia in very minute quantity.

Red Colouring Matter. —Riffard obtained it, in the impure state, by first macerating the petals in ether to remove a fatty matter, and then in alcohol. By distilling the alcoholic tincture to dryness, a dark-red colouring matter was obtained, which in thin layers was bright red. It was deliquescent in the air, soluble in alcohol and in water, but insoluble in ether. Acids diminished the intensity of its colour. Chlorine decolorized it. The alkalis blackened it. By the last character it is distinguished from the colouring matter of the red cab-

---

⁵ Prod. Fl. Grec. i. 339.
⁶ Lib. iv. cap. 64.
⁸ Journ. d. Pharm. xii. 412.
bage, &c., which becomes green by alkalis. Sesquichloride of iron gives it a dark violet or brown tinge.

**Physiological Effects and Uses.**—The red poppy is valued medicinally as a colouring ingredient only. It probably possesses a narcotic property in a very slight degree, but which is scarcely sensible in the ordinary doses in which this medicine is employed. Navier\(^1\) says that the continued use of the tincture or syrup by dogs, gave the stomach a bluish red tinge.

**Syrupus Rhæados, L. E. D.** *Syrup of Red Poppies; Syrup of Corn Poppy.*—(Petals of the Red Poppy, lb. j.; Boiling Water, Oj.; Pure Sugar, lb. ijs. [lb. ii. D.] Add the petals of the red poppy gradually to the water heated in a water-bath [vapour-bath, \(E\)], frequently stirring them; then, the vessels being removed, macerate for twelve hours; afterwards [strain and, \(E\)] express the liquor [through calico, \(E\)], and [after the dregs have subsided, \(L\)] add the sugar and dissolve [with the aid of heat, \(E\)]—Employed only as a colouring ingredient, especially in conjunction with acids, which brighten it. It readily ferments and spoils.

2. *Papa'ver somnif'ærum, Linn. L. E. D.*—THE SOMNIFEROUS OR WHITE POPPY.

**Sex. Syst.** Polyandria, Monogynia.

(Capsulae mature. Capsulae immaturae Succus concretus, L.—Capsules not quite ripe. Concrete juice from the unripe capsules, \(E\).—Capsularum succus proprius concretus. Capsulae mature, \(D\)).

**History.**—This is one of the most anciently known and described plants. Homer speaks of the *poppy* (\(μύκων\)) growing in gardens \(^k\); so that it appears to have been in cultivation even in that early period. It was employed in medicine by Hippocrates, and is mentioned by Theophrastus, Dioscorides, and Pliny. Hippocrates\(^1\) speaks of two kinds—the black and white poppy: the former, he says, confines the bowels more than the latter.

It is uncertain at what period *opium* was first known or introduced into medicine. Hippocrates\(^m\) recommends the *μύκων*, or *poppy juice*, in a disease of the uterus; and Dioscorides\(^n\), on the authority of Erasistratus, tells us that Diagoras (who was contemporary, it is supposed, with Hippocrates) condemned the use of opium. These are, I believe, the most ancient Greek authorities who speak of this substance; and it is impossible, I think, to arrive at any accurate conclusion from their remarks, whether opium had or had not been known long before their time, though Alston\(^o\) infers, from the little use made

---

\(^k\) *It.* viii. 306.
\(^1\) De vict. rat. lib. ii. p. 337. ed. Foss.
\(^m\) *De morb. Mid. lib. ii.* p. 670.
\(^n\) *Lib. iv. cap. 65.
\(^o\) Lect. on the Mat. Med. ii. 456.
of it by Hippocrates, as well as from Diagoras condemning its use in diseases of the eyes, that its virtues were not known long before him. Dioscorides and Pliny mention that the expressed juice of the heads and leaves is termed Meconium, and that it is much weaker than opium. Theodore Zwinger, Sprengel, and others, have supposed that the nepentes of Homer was opium. Dr. Royle, however, has suggested that the substance referred to by Homer may have been a preparation of Cannabis sativa (see p. 1096), the remarkable effects of which have been recently pointed out by Dr. O'Shaughnessy.

The word opium is derived from ὀπίως, the juice, and signifies that it is the juice par excellence;—just as the flower of the rosemary has been called anthos, or the flower, and the cortex cinchonae, the bark.

BOTANY. Gen. Char.—See Papaver Rhoeas.

Sp. Char.—Capsules obovate or globose, and, as well as the calyces, smooth. Stem smooth, glaucous. Leaves amplexicaul, cut-repand, dentate, somewhat obtuse (De Cand.)

An annual herb. Root white, tapering. Stem two to six feet high, erect, branched, leafy, glaucous green. Leaves alternate, sessile, ovate-oblong, glaucous beneath. Peduncles terminal, leafless, with bristly hairs. Seeds numerous, small, roundish or reniform, oily, sweet, and edible.

There are two well-marked varieties, which, by some botanists, are considered to be distinct species:—

a. nigrum. P. somniferum, Gmelin.—Capsules globose, opening by foramina under the stigma. Seeds black. Peduncles many. Flowers usually violet or red, of different tints, though sometimes white.

b. album. P. officinale, Gmelin.—Capsules ovate-globose; foramina under the stigma either none or obliterated. Peduncles solitary. Seeds and petals white.

Hab.—Asia and Egypt. Grows apparently wild in some parts of England, but has probably escaped from gardens. Cultivated in Hindostan, Persia, Asia Minor, and Egypt, on account of the opium obtained from it. According to Dr. Royle, var. b. album is cultivated in the plains of India; and var. a. nigrum in the Himalayas. In Europe the poppy is cultivated for the capsules, either as medicinal agents or for the oil (poppy oil) obtained from the seeds, and which is employed in painting. The London market is principally supplied with poppy heads from the neighbourhood of Mitcham, in Surrey.

DESCRIPTION. 1. OF POPPY HEADS.—Poppy heads (Capsulae seu Capita Papaveris) are usually collected when quite ripe, as ordered by the London and Dublin Colleges, but they would be more active as medicinal agents if they were gathered while still green; and the Edinburgh College very properly directs the immature capsule to be

---

* Hist. Rei Herb. i. 25.
† Od. iv. 230.
* Illustr. p. 334.
† On the Prepar. of the Indian Hemp, Calcutta, 1839.
employed. As met with in commerce, poppy heads vary somewhat in size, from that of a hen's egg to that of the fist. Their texture is papyraceous: on the top of them is the star-like stigma. They are yellowish or yellowish brown, and, if they have been collected before they were quite ripe, have a bitterish taste. When fresh, they have a slightly opiate odour, which they lose by drying. A decoction of the dried poppy capsule is rendered, by the sesquichloride of iron, brownish red (meconate of iron). Nitric acid makes it transparent, and communicates a slightly orange-red tinge, indicative of the presence of morphia.

2. Opium. a. Preparation.—The mode of extracting opium is, to a certain extent, similar in all countries, and consists in making incisions into the half-ripe poppy capsules, and collecting the exuded juice. According to Dioscorides, Kämpfer, Kerr, and Texier, this juice is worked up into a homogeneous mass: whereas Bellonius and Olivier speak of the juice concreting on the poppy; and the first of these writers describes opium as consisting of agglomerated granules. Now Guibourt, by examining the opiums of commerce by means of a magnifier, thinks he has discovered that the Smyrna and Persian (or Trebizon) opium is composed of small agglutinated tears (opium with a grain); whereas the Egyptian, and I would add the Indian, opium, is a homogeneous mass, and therefore must have been worked up in the manner described by Dioscorides, Kämpfer, and others (homogeneous opium). One of the latest accounts of the method of obtaining opium is that given by M. Ch. Texier of the process followed in Asia Minor:—"A few days after the flower has fallen, men and women repair to the fields and cut the head of the poppy horizontally, taking care that the incisions do not penetrate the internal cavity of the shell. A white substance immediately flows out, and collects in tears on the edges of the cuts. In this state the field is left for twenty-four hours, and on the following day the opium is collected by large blunt knives. Each head furnishes opium once only, and that to an extent of a few grains. The first sophistication which it receives is that practised by the peasants who collect it, and who lightly scrape the epidermis from the shell to augment the weight. This operation adds about one-twelfth of foreign matters. Thus collected, opium has the form of a glutinous and granular jelly. It is deposited in small earthen vessels, and beat up with saliva. When asked why water was not employed in the place of saliva, the answer was that water caused it to spoil. It is afterwards enveloped in dry leaves, and in this state it is sold. The seeds of those poppies which have yielded opium are equally good for sowing the following year."

Some little variation will be found in the description of other

---

* Lib. iv. cap. 64.
* **Amer. Exot.** p. 643.
* **Observ.** lib. iii. cap. 15.
* **Voy. dans l'Empire Ottoman.**
* **Hist. abrég.** ii. 2nd ed. 1836.
* **Journ. de Pharm.** xxi. 196.
writers of the methods practised in other parts of the East. Kämpfer says that in Persia the incisions are made crosswise by a five-edged knife. Kerr states that in the province of Bahar "two longitudinal double incisions" are made "upon each half-ripe capsule, passing from below upwards"; care being taken that the internal cavity of the capsule is not penetrated.

β. Description.—In commerce, several varieties of opium are known. The principal kind, however, is that brought from Smyrna. But the recent events, which have occurred in China, will probably throw a considerable quantity of Indian opium into European commerce.

1. Smyrna Opium (Opium Smyrnæum).—This is the Turkey or Levant opium of commerce. It occurs in irregular rounded or flattened masses of various sizes, rarely exceeding two lbs. in weight, enveloped in leaves, and usually surrounded with the reddish capsules of some species of *Rumex* (R. orientalis, according to Koch; but R. Patientia, according to Merat). Some of the flat cakes are without these capsules, and somewhat resemble Constantinople opium. When first imported, the masses are soft, and of a reddish brown colour; but, by keeping, they become hard and blackish. Its lustre is waxy; its odour is strong and unpleasant; its taste is bitter, acrid, nauseous, and persistent. M. Guibourt regards the masses as being made up of agglutinated tears, and on this account as being the purest met with. It is, however, frequently met with largely adulterated. In one sample, weighing 10 ounces, I obtained 10 drachms of stone and gravel. Notwithstanding occasional frauds of this kind, Smyrna opium forms the best commercial opium.

Smyrna opium yields more morphia and meconic acid than either Constantinople or Egyptian opium. The quantity of morphia which can be obtained from this kind of opium is, perhaps, on the average, about eight per cent. Pelletier, in an operation on about two ounces of this opium, procured a quantity of morphia equal to 7.08 per cent. From a pound he calculates eight or nine per cent. could be obtained. On an average, 12 per cent. of hydrochlorate of morphia may be procured from it. Dr. Christison obtained two drachms of norectine from half a pound of the best Turkey opium; hence we may estimate the quantity at about four per cent. Hydrochlorate of morphia, prepared by Gregory's process from Turkey opium, contains, according to Dr. Gregory, one-twelfth of codeia. Merck examined five kinds of Smyrna opium: from the worst he procured 3 to 4 per cent. of morphia; from the best 13 to 13.5 per cent. In the latter variety he found 0.25 per cent. of codeia.

2. Constantinople Opium (Opium Byzantinum seu Constantinopolitanum).—I am indebted to Professor Guibourt for an authentic sample of this. His description of it is as follows: "There are two sorts of it: one in very large irregular cakes, which are flattened like the Smyrna opium. This is of very good quality. The other is

---

b T. W. C. Martius's Pharmakogn. S. 322.
c Diet. Mat. Méd. t. v. p. 50.
bb Berthemot, Journ. de Pharm. xxiv. 444.
c Berthemot, Journ. de Pharm. xxvi. 372.
d Ibid. xxi. 246.
e Pharm. Central Blatt für 1836, S. 491.
in small, flattened, regular cakes, of a lenticular form, from two to
two and a half inches in diameter, and covered with a poppy leaf,
the median nerves of which divide the disk into two parts. It has
an odour similar to the preceding kind, but more feeble; it blackens
and dries in the air. It is more mucilaginous than Smyrna opium."
To this account I may add, that the cakes are never covered with the
Rumex capsules, as those of Smyrna opium are. Berthemot de-
scribes two kinds of it; one soft, the other hard and brittle. Con-
stantinople opium is inferior to the Smyrna kind, but superior to
Egyptian opium.

Professor Guibourt says that this kind of opium yields only half the morphia
procurable from the Smyrna opium. Berthemot also states that though it yields
more morphia than the Egyptian opium, it gives less than the Smyrna kind.
This, however, does not agree with the experience of Mr. Duncan, of Edinburgh,
who has never failed to obtain an extraordinary quantity of hydrochlorate of
morphia from it. From an experiment of Dr. Christison's he calculates the
quantity of hydrochlorate of morphia obtainable from it at 14 per cent.\(^1\) Merck\(^2\)
procured 15 per cent. of pure morphia, but scarcely a trace of codeia. It is ob-
vious, therefore, that Constantinople opium is of unequal quality. It is probable
that opium of unequal qualities, and produced in several parts of the Turkish
empire, is carried to the capital, and, being exported from thence, bears the
name of Constantinople opium.

3. Egyptian Opium (Opium Egyptiacum).—It occurs in round flat-
tened cakes of about three inches diameter, covered externally with
the vestiges of some leaf. It is usually very dry. It is distinguished
from the two preceding varieties by its reddish colour, analogous to
that of Socotrine or hepatic aloes. Some very inferior qualities are
sometimes offered for sale, and which appear to the sight and touch
to be largely adulterated. By keeping, it does not blacken like the
other kinds; its odour is less strong, and somewhat musty. Guibourt
says, that by exposure to the air it becomes soft. Egyptian opium
is, for the most part, inferior to either of the preceding kinds; but its
quality is by no means uniform. Some kinds become damp by
keeping.

Guibourt tells us it yields only five-sevenths of the morphia obtained from
Smyrna opium. Berthemot also states that it contains less morphia than either
of the preceding kinds of opium, and that the morphia is more mixed with naro-
cotine. He further adds, that the morphia which it yields is purified with great
difficulty. The watery effusion of Egyptian opium has a distinct odour of acetic
acid. Dr. Christison obtained about 10½ per cent. of pure white hydrochlorate
of morphia from it, which, he says, is about the quantity procured from good
Turkey opium. Merck\(^3\) procured only from 6 to 7 per cent of morphia, but
much meconic acid.

4. Trebizon Opium (Persian Opium).—Some years since a quantity
of opium was imported into this country from Trebizon, in the form
of cylindrical sticks, which, by pressure, have become somewhat an-
gular. Their length is about six inches; their diameter about half

---
\(^{1}\) Journ. de Pharm. xxi. 547.
\(^{2}\) Pharm. Central Blatt für 1836, S. 191.
\(^{3}\) Op. supra cit.
an inch, a little more or less. Each one is enveloped in a smooth shiny paper, and tied with cotton; its colour is similar to that of Socotrine aloes. It has the opiate odour stronger than that of the Egyptian kind, but less than Smyrna opium, and mixed somewhat with a musty odour: its taste is intensely bitter. It is commonly termed in commerce Persian opium, but the specimens I received came from Trebizond. It is a very inferior kind.

Merck could obtain no morphia from it by the ordinary mode of proceeding. He, however, afterwards succeeded in obtaining about 1 per cent. It gave only a trace of narcotina. There must, I suspect, be some error in these statements, as this opium is certainly richer in morphia than is here stated.

5. Indian Opium (Opium Indicum).—Three varieties of Indian opium are known in commerce, viz.:—Mahwa, Benares, and Patna Opium. As the two latter kinds are undistinguishable, I shall include them under one head of Bengal Opium.

a. Bengal Opium (Benares and Patna Opium).—A few chests of this kind have been recently imported. Its preparation is fully described by Dr. Butter. I have been kindly furnished with samples of the Benares and Patna kinds, of the growth of the years 1835-36, and 1837-38, by Mr. Maitland, of the India House.

Bengal opium is imported in balls, each weighing about three lbs. and a half, and packed in chests, each containing about forty balls. The balls are hard, round, like cannon-balls, and about the size of a child’s head. Externally each ball is made of poppy petals, firmly agglutinated by a paste called lewa, to form a firm but laminated envelope weighing about 14 oz. On cutting through this, the opium is found to be quite soft, homogeneous, apparently quite pure, and to have the consistence of a soft extract. Its colour is blackish brown. Its odour and taste are strong and pure opiate. On exposure to the air this opium speedily becomes covered with mouldiness. Both Bahar or Patna and Benares Opium are exported from Calcutta. Bahar and Benares are the only districts of Bengal where opium is produced. Benares is most valued by the Chinese (Butter).

Further experiments are required ere we can speak with confidence as to the per-centage quantity of morphia and narcotina obtainable from Bengal opium. Dr. Smytten procured only 2½ or 3 per cent of morphia. But from some experiments which I have made, I consider this quantity to be considerably below the truth. Mr. Morson informs me that Benares opium contains rather more than half the quantity of morphia contained in good average Turkey opium.

Garden Patna Opium.—For a sample of this opium I am indebted to Dr. Christison. It is imported in square cakes (enclosed in thin plates of mica), about three inches in length and breadth, and one inch thick. It has the appearance, as Professor Guibourt describes it, of a well-prepared, shiny, dry, pharmaceutical extract. Its colour is blackish brown. Its odour is less powerful than that of Smyrna opium.

1 Pharm. Central Blatt für 1836, S. 493.
In the first edition of this work I described this kind of opium as fine Malwa opium. The following extract of a letter, which I have recently received from Dr. Christison, will explain the cause of this error:—“The common ball opium of Patna and Benares (which are all but identical) was long known in India to be inferior in quality. During the inspectorship of Mr. Fleming, of Barrochan, now in this country, he instituted inquiries, along with his assistant Captain Jeremie, as to the causes of its inferiority, and, among other reasons, was led to suppose it owed its softness, tarriness, and general low quality, to the ‘ryots’ storing the juice in bottles till it accumulated to a sufficient extent to be made up, and to fermentation consequently taking place. Means were therefore taken to get this juice before being long kept, and it was made up into square cakes, of which I sent you one under the incorrect name of Malwa opium,—the name by which I got it.” Mr. Fleming subsequently recognised the cakes in Dr. Christison’s laboratory with his official stamp on them. Dr. Christison obtained 9.5 per cent. of muriate of morphia (snow-white) from it, a considerable portion of narcotine, and so large a proportion as one-twelfth or 8 per cent. of codeia.

This I presume is the opium employed by Merck \(^1\) under the name of Bengal opium, and which, he says, was enclosed in plates of mica. In 100 parts he found morphia 8, narcotine 3, codeia 0.5, thebaina 1, meconine traces, and porphyroxin 0.5. Another sample of Indian opium, in round balls of half a pound each, and of the consistence of Calabrian extract of liquorice, yielded him 10 per cent. of morphia.

\(β\). Malwa Opium.—A few years since this ranked among the inferior kinds of Indian opium, but it has been gradually rising in value, and is now highly esteemed. I have received two varieties of opium under this denomination. They were brought me from India by former pupils of mine.

aa. One kind consists of a round flattened cake or ball, weighing ten ounces. It seems to have been packed in a coarse kind of dust, composed of broken poppy petals. Its consistence is about that of moderately firm Smyrna opium. When cut into, it presents a homogeneous texture. Its colour is dark brown; its odour similar to that of Smyrna opium.

\(ββ\). The other kind (described in the first edition of this work as inferior Malwa opium) is in flattened cakes without any exterior covering. It is dull, opaque, blackish brown externally; internally somewhat darker and soft. Its odour is somewhat like that of Smyrna opium, but less powerful, and combined with a slight smoky smell.

Guibourt says it yields as much extract as Levant opium; but its insoluble residue wants the virous odour and glutinous consistence of the latter. It furnishes only one-third the quantity of morphia yielded by Smyrna opium. From common Malwa opium Dr. Smyttan procured only from 3 to 5 per cent. of morphia; but, from fine samples, from 7\(\frac{1}{4}\) to 8 per cent.

Mr. E. Solly \(^2\) states that he found “occasional minute cavities full of a pale yellow oil” in a specimen of Malwa opium. This opium yielded him 80 per cent. of soluble matter.

\(γ\). Cutch Opium.—Under this name I have received from Bombay a small cake of opium, rather more than an inch in diameter, and ap-

---


OPIUM.

1731

parently enveloped by the remnants of leaves. Its odour is much less powerful than that of Smyrna opium.

2. Kandeish Opium.—In round flattened cakes, weighing about half a pound each. It is nearly black, is hard, brittle, and presents a gritty or granular fracture. It yielded Mr. E. Solly° 72 per cent. of soluble matter, and about 7 per cent. of morphia.

6. English Opium (Opium Anglicum).—It is in flat cakes or balls, enveloped with leaves. It resembles fine Egyptian opium more than any other kind; its colour is that of hepatic aloes; it has a moderately strong opiate odour.

Mr. Hennell procured from 700 grains of English opium, prepared by Messrs. Cowley and Staines, 53 grains, or 7-57 per cent., of morphia; while from the same quantity of Turkey opium he obtained only 48 grains, or nearly 7 per cent., of morphia. Mr. Morson, from 20 oz. avoird. of the same British opium, procured only 384 grains, or about 4-4 per cent. of morphia, and 222 grains, or about 2-53 per cent., of narcotina. Probably the morphia obtained by Mr. Hennell was not freed from narcotina. Mr. Young declares British opium to be stronger than the commercial opium; six ounces of the former being equal to eight of the latter.°

7. French Opium (Opium Galliicum).—I have not seen any samples of this. Pelletier† describes it as being deep reddish brown, and brittle when dry. Its taste was somewhat different to that of Smyrna opium. It left a less insoluble residuum than Eastern opium.

Pelletier procured more morphia from it than from Smyrna opium. In an experiment on about two ounces of each he obtained 10-38 per cent. from the former, and only 7-08 per cent. from the latter. It contained no narcotina. He obtained sensible traces of codeia, but none of narceine, meconine, or thebaina, perhaps because the quantity of opium experimented on was too small. The disappearance of one immediate principle (narcotina), and the augmentation of another (morphia), caused by climate, are interesting facts. Petit got from 16 to 18 per cent. of morphia; and Caventou (quoted by Christison) obtained from 22 to 28 per cent. from French opium; but I presume the morphia was very impure.

8. German Opium (Opium Germanicum).—I am unacquainted with this.

Biltz, of Erfurt, got from indigenous German opium 16½ and even 20 per cent. of morphia, where the opium had been procured from the P. somniferum a. nigrum; and between 6½ and 9½ narcotina. But from opium made from P. somniferum a. album he got conversely 6'8 per cent. of morphia, and 33 per cent. of narcotina.

Commerce of Opium.—The quantities of opium on which duty was paid during the last six years, are as follows:—

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>27,253 lbs.</td>
</tr>
<tr>
<td>1835</td>
<td>30,398</td>
</tr>
<tr>
<td>1836</td>
<td>38,538</td>
</tr>
<tr>
<td>1837</td>
<td>30,584</td>
</tr>
</tbody>
</table>

† I must refer those interested in the cultivation of the poppy, and production of British opium, to the papers of Mr. Ball, in Trans. of Soc. of Arts, xiv. 253; of Mr. Jones, Ibid. xviii. 161; of Mr. Young, Ibid. xxxvii. 23; of Messrs. Cowley and Staines, Ibid. xl. 9; and of the Rev. G. Swayne, Quart. Journ. vols. viii. and ix.
‡ Trans. Soc. Arts, xiii. 57.
†† Ibid. i. 26.
§ Duncan, Suppl. to the Ed. Disp. p. 81.
¶ Journ. de Pharm. xxi. 370.
°° Ibid. xiii. 183.
** Trade List.
Since August 13, 1836, the duty has been 1s. per lb.; previous to that and from 1828 it was 4s. per lb. Of the above quantities the greater part was imported from Turkey.

The quantity of opium produced in Hindostan is enormous. In Patna and Benares its cultivation is a monopoly in the hands of government; and a revenue is derived from the Malwa opium, by a system of passes on shipment from Bombay. Of the whole quantity raised in Hindostan, it is calculated that about two-thirds have been sent to Canton, and the remainder to the Eastern Islands. The following table is from Mr. R. Montgomery Martin’s *Statistics of the Colonies of the British Empire*, Lond. 1839 (p. 366) —

**Estimate of Quantity and Total Value of Indian Opium consumed in China during the years ending in 1832-33:**

<table>
<thead>
<tr>
<th>Years</th>
<th>Patna</th>
<th>Benares</th>
<th>Malwa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1827-28</td>
<td>4006</td>
<td>1128</td>
<td>4401</td>
<td>9535</td>
</tr>
<tr>
<td>1828-29</td>
<td>4631</td>
<td>1139</td>
<td>7717</td>
<td>15392</td>
</tr>
<tr>
<td>1829-30</td>
<td>5564</td>
<td>1379</td>
<td>6857</td>
<td>14000</td>
</tr>
<tr>
<td>1830-31</td>
<td>5085</td>
<td>1575</td>
<td>12100</td>
<td>18760</td>
</tr>
<tr>
<td>1831-32</td>
<td>4442</td>
<td>1518</td>
<td>8265</td>
<td>14225</td>
</tr>
<tr>
<td>1832-33</td>
<td>6410</td>
<td>1850</td>
<td>15403½</td>
<td>23693½</td>
</tr>
</tbody>
</table>

Amount in Spanish Dollars.

| 10,425,075  |
| 12,533,215  |
| 12,057,157  |
| 12,904,263  |
| 11,501,584  |
| 15,352,426  |

All the world knows that these enormous quantities of opium were smuggled into China (by the connivance of the local authorities) for the purpose of smoking. The vessels anchored at Lintin, about 70 miles from Canton, and delivered the opium to the boats of the Chinese buyers. “Malwa opium is considered by the Chinese as having a higher touch, but not so mellow nor so pleasant in flavour as the Patna opium. The smokeable extract, which each quantity of opium contains, is thus intimated by the Chinese,—(who use opium as we do wine or spirits):—Patna and Benares opium 45 to 50 touch; average 48; Malwa 70 to 75; average 72½; Turkey 53 to 57; average touch 55 ½.” The smokeable extract here referred to is an aqueous extract of opium prepared by the Chinese. A detail of the important events which have resulted from the active and extraordinary steps taken by this remarkable people to put a stop to the trade in opium, would be out of place in this work. Suffice it to say, that, in 1839, no less than 20,283 chests of opium, valued at nearly £3,000,000 sterling, were delivered up to the Chinese, and by them destroyed by immersing the opium in water with lime and salt, and, when the whole had become a fetid mud, allowing it to escape into the river.

**COMPOSITION.**—Few substances have been so repeatedly submitted to chemical investigation as opium. The mere reference to the different labours, which have been bestowed on it, would occupy more space than I can devote to the subject. I must, therefore, content myself with brief notices of the most important epochs in its chemical history, and a reference to some of the analyses which have been made of it.

---

*Evid. taken before the Committee of the House of Lords on the affairs of the East India Company, No. 646, 1830, p. 25.

* R. M. Martin, op. supra cit. p. 366.

In 1803 Derosne discovered narcotina. In 1804 Sertürner announced the existence of meconic acid and morphia. Seguin appears to have discovered them about the same time. Robiquet confirmed these discoveries in 1814. In 1828 meconine was discovered by Dublanc jeune, and again in 1830 by Couerbe. In 1832 Pelletier discovered narceina; and, in the same year, Robiquet announced the existence of codeia. In 1837 Merck announced the existence, in opium, of a new substance, which he called porphyroxin, but his statement requires confirmation.

### Mulder's Analysis

<table>
<thead>
<tr>
<th>Smyrna Opium</th>
<th>Constantine Opium</th>
<th>Egyptian Opium</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.842</td>
<td>4.166</td>
<td>9.832</td>
</tr>
<tr>
<td>6.908</td>
<td>8.150</td>
<td>9.300</td>
</tr>
<tr>
<td>0.978</td>
<td>0.834</td>
<td>0.818</td>
</tr>
<tr>
<td>6.602</td>
<td>7.506</td>
<td>7.684</td>
</tr>
<tr>
<td>0.904</td>
<td>0.846</td>
<td>0.314</td>
</tr>
<tr>
<td>5.124</td>
<td>3.968</td>
<td>7.630</td>
</tr>
<tr>
<td>2.166</td>
<td>1.330</td>
<td>1.816</td>
</tr>
<tr>
<td>6.012</td>
<td>5.026</td>
<td>3.674</td>
</tr>
<tr>
<td>3.582</td>
<td>2.028</td>
<td>4.112</td>
</tr>
<tr>
<td>25.390</td>
<td>31.470</td>
<td>21.834</td>
</tr>
<tr>
<td>14.942</td>
<td>2.866</td>
<td>0.688</td>
</tr>
<tr>
<td>19.085</td>
<td>17.068</td>
<td>21.068</td>
</tr>
<tr>
<td>9.846</td>
<td>12.226</td>
<td>11.422</td>
</tr>
<tr>
<td>2.148</td>
<td>2.496</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.754</td>
</tr>
<tr>
<td></td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

### Schindler's Analyses

<table>
<thead>
<tr>
<th>Smyrna Opium</th>
<th>Constantine Opium</th>
<th>Egyptian Opium</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.30</td>
<td>4.50</td>
<td>7.00</td>
</tr>
<tr>
<td>1.30</td>
<td>3.47</td>
<td>2.68</td>
</tr>
<tr>
<td>0.25</td>
<td>0.52</td>
<td>0.42</td>
</tr>
<tr>
<td>0.08</td>
<td>0.30</td>
<td>0.08</td>
</tr>
<tr>
<td>4.70</td>
<td>4.38</td>
<td>8.10</td>
</tr>
<tr>
<td>10.93</td>
<td></td>
<td>17.18</td>
</tr>
</tbody>
</table>

### Biltz's Analyses

<table>
<thead>
<tr>
<th>Smyrna Opium</th>
<th>Constantine Opium</th>
<th>Egyptian Opium</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

---

2. Trommsdorff's Journ. 1805, Bd. xiv. 1, S. 47.
4. Ibid. 275.
5. Ibid. 327.
6. Ibid. i. 262.
7. Ibid. ii. 259.
Analyses of opium have been published, in 1800 by Bucholz, in 1804 by Sertürner, in 1814 by Seguin, in 1817 by Braconnot, in 1818 by Buchner, in 1819 by John, in 1823 by Pfendler, in 1824 by Lindbergsson, in 1826 by Merck, in 1826 by Geiger, in 1831 by Biltz, in 1832 by Pelletier, in 1834 by Schindler, and in 1836 by Mulder.

The following substances may be regarded as the constituents of opium:—Morphia, narcotina, codeia, narceia, meconine, thebaina, or paramorphia, pseudomorphia, meconic acid, brown acid extractive, sulphuric acid, resin, fat oil, gummy matter, caoutchouc, albumen, odorous principle (volatile oil?), and lignin.

1. Volatile Odorous Principle (Volatile Oil?).—The distilled water of opium has the peculiar odour of this drug, and by keeping deposits a ropy substance. Hitherto, however, all attempts to isolate the volatile odorous principle of opium have failed, and its nature, therefore, is as yet unknown. Nysten swallowed two ounces of the distilled water without any sensible effect; and Orfila injected a like quantity of it into the jugular vein of a dog without apparently causing any inconvenience to the animal. The volatile principle cannot, therefore, possess much activity; but Nysten concludes that "the distilled water of opium, strongly saturated with the aromatic principle, is capable of producing drunkenness and sleep, when taken in a strong dose."

2. Morphia.—(Will be described hereafter.)

3. Codeia (Codeine).—So called from κόδων, a poppy head. It is a white, crystalline solid, slightly soluble in cold, and still more so in boiling water. It is soluble in ether. It is insoluble in a cold weak solution of potash. If more codeia be added to boiling water than this liquid can dissolve, the excess melts and forms an oily layer at the bottom of the vessel; and, by cooling, a crystalline mass is obtained. It reacts as an alkali on test papers, and unites with acids to form crystalline salts.

From morphia, codeia is distinguished by its not becoming blue on the addition of sesquichloride of iron. It is also said not to reddening niteric acid like morphia. All the specimens of codeia, which I have met with, became orange yellow on the addition of nitric acid. Moreover, ammonia does not precipitate it from its very diluted solution in hydrochloric acid, on account of its solubility in water; and this affords a means of separating morphia from codeia. The separation may be more easily effected by ether, which readily dissolves codeia; or by alkalis (potash or soda), which dissolve morphia, but leave codeia. From meconine it is distinguished by its aqueous solution possessing marked alkaline properties, as manifested by its action on test papers. Tincture of nutgalls produces a copious precipitate (tannate of codeia) in solutions of codeia.

Anhydrous codeia consists of C_{35} H_{20} N_{1} O_{5}. It, therefore, contains an atom less of oxygen than morphia does. Its atomic weight is 284.

Crystallized in ether it contains no water. But crystallized in water it retains two atoms of water of crystallization.

The salts of codeia have not been much studied. The nitrate readily crystallizes. The tannate is insoluble in water. The double hydrochlorate of morphia

---

\(^{h}\) Trommedorff's Journ. viii. S. 24.
\(^{i}\) Journ. de Phys. lxxxiv. 225.
\(^{j}\) Quoted by Schwartzte, Pharm. Tab.
\(^{k}\) Gmelin, Handb. d. Chem. ii. 1244.
\(^{m}\) Gmelin, op. supra cit.
\(^{n}\) Ibid.
\(^{o}\) Ibid.
\(^{p}\) Pharm. Central Blatt für 1831, S. 757.
\(^{r}\) Pharm. Central Blatt für 1834, S. 574.
\(^{s}\) Ibid. für 1837, S. 574.
and codeia is the salt at one time sold as hydrochlorate of morphia, by those who prepared it by Gregory's process. Hence it has been termed by the French pharmacologists sel de Gregory.

The effects of codeia and its salts have been imperfectly examined by Kunkel, Gregory, Barbier, and Magendie, but the results are very contradictory. Kunkel says it is a local irritant, becomes absorbed, excites the circulation, and produces convulsions; but that none of the animals on which the codeia was tried were either stupified or paralyzed. Magendie, however, says it causes sleep, and, when exhibited in large doses, stupor. He considers one grain of codeia equivalent to half a grain of morphia: two grains excite nausea and vomiting. Barbier also states it produces sleep. Dr. W. Gregory says that, in doses of five or six grains, it causes an excitement like that of intoxication, followed in a few hours by depression, nausea, and sometimes vomiting.

Magendie proposes to use it as a substitute for morphia, to procure sleep and allay pain, in doses of from one to three grains. A syrup of codeia (composed of codeia, grs. xxiv.; distilled water, fijiv.; sugar, 3viij.) has been used in hooping cough. The dose for a child, of about seven years of age, is a tea-spoonful. It has been given in irritation of the gastric mucous membrane.

4. Narcotina (Narcotine).—So called from νάρκωτικός, narcotic. The greater part of the narcotina of opium is in the free state, as it is removable by ether without the aid of either acids or alkalis. It is a white, inodorous substance, crystallizing in prisms,—distinguished from morphia by being insipid, very soluble in ether, insoluble in alkalis, by its not becoming blue on the addition of the sesquichloride of iron, by its not decomposing iodic acid, and, when quite pure, by its not yielding a brown colour when treated by chlorine and ammonia. Heated on paper over a candle, it gives a greasy-looking stain to the paper. Nitric acid dissolves it, and acquires an orange tint. It does not affect vegetable colours, and by this character is readily distinguished from both morphia and codeia. It is insoluble in cold water, but dissolves in 400 parts of boiling water,—in 100 parts of cold alcohol,—or in 24 parts of boiling alcohol. The volatile oils also dissolve it. It consists of $C_{48}H_{24}N_8O_{15}$. Its atomic weight, therefore, is 446. The salts of narcotina have been but little examined. They are more bitter than those of morphia, redden litmus, and are precipitated from their solutions by infusion of nutgalls and by the alkalis. The hydrochlorate is crystallizable. Both this and the sulphate are very soluble in water.

Narcotina is extracted from the residue of the opium which has been subjected to the action of cold water. This is treated with water acidulated with either acetic or hydrochloric acid, and to the filtered solution ammonia is added. The precipitate treated with boiling alcohol yields narcotina, which deposits as the liquor cools. Narcotina may be separated from morphia by ether, which dissolves the narcotina, but leaves the morphia, or by a solution of potash, which dissolves the morphia, but leaves the narcotina, or by the cautious addition of weak acetic acid, which dissolves the morphia, and, unless the acid be greatly in excess, does not dissolve the narcotina.

When narcotina was first discovered, it was said to be the stimulant principle of opium; and Magendie states a grain of it, dissolved in olive oil, produced the death of a dog in twenty-four hours, while twenty-four times this quantity was given, dissolved in acetic acid, with impunity. Orfila, at one time, declared it was inert, then that it acted like morphia, and subsequently that its operation was remarkable and peculiar. Bally asserts that, in a solid state, it is inert; for 129 grains may be given, at one dose, without exciting any obvious effect. The truth is, I believe, that narcotina possesses but little activity; and I presume, therefore, that the first experimenters with it employed an impure substance. Dr. Roots gave gradually increased doses of it, up to a scruple, without the least

---

**Journ. de Chim. Médi. x. 223.**

**Formulaire, 37, 8th ed.**

**Journ. de Chim. Méd. x. 214 & 337.**

**Ibid. p. 219.**

**Journ. de Pharm. xxiv. 144.**
injury. The bitterness of its sulphuric solution led him to employ it in inter-
mittents, as a substitute for disulphate of quina. More recently attention has
been drawn to it in India, by Dr. O'Shaughnessy, as an Indian indigenous sub-
stitute for quina; and nearly 200 cases of intermittent and remittent fevers,
treated by it with success, have been published.

5. Narceine (Narceina).—So called from νάρχης, styrax. It is a white, inodorous
solid, crystallized in long, fine, silky needles, with a slightly bitter, and even
somewhat metallic, taste. It dissolves in 230 parts of boiling water, or 375
parts of water at 60°. It fuses at about 198°, and at a higher temperature is
decomposed.

Narceine has several very striking properties by which it is distinguished
from other substances. The first of these deserving of notice is the action of
mineral acids on it. Thus the sulphuric, nitric, and muriatic acids, so diluted
with water that they cannot alter the elementary composition of narceine, give
this substance a fine light-blue colour, immediately on coming in contact with it.
This alteration of colour does not appear to depend on any change in the elemen-
tary composition of narceine, since, by saturating the acids with ammonia, the
narceine is precipitated unchanged. When much water is added, the blue
colour disappears.

Another peculiar trait of narceine is, that it forms a bluish compound (iodide
of narceine) with iodine: heat and alkalis destroy the colour. So that iodine is
not an absolute test for starch.

The characters now mentioned are sufficient to distinguish narceine from all
other known substances. In addition, I may add, that it does not form a blue
colour with the sesquichloride of iron, as morphia does.

Narceine was at first supposed to be a vegetable alkali; but as it does not af-
flect vegetable colours, nor combine with nor saturate acids, it is now regarded as
a neutral principle. Narceine is composed of \( C_{28} H_{20} N \) O_{12}.

Two grains have been several times thrown into the jugular vein of a dog,
without producing any appreciable effect. It is presumed, therefore, to be
inert.

6. Meconine. — So called from μέκων, a poppy. It is a white, crystalline, odour-
less solid. Its taste, which at first is scarcely perceptible, is afterwards sensibly
acid. The crystals are six-sided prisms, with dihedral summits. It fuses at
194°, and becomes a colourless, limpid fluid. At a higher temperature it may be
distilled. It dissolves in 265 parts of cold water, or in eighteen parts of boiling
water. It is soluble in alcohol and in ether. It is distinguished from morphia
and codeia by its not possessing alkaline properties. From morphia it is further
distinguished by its great fusibility, its greater solubility in water, and its not
becoming blue on the addition of sesquichloride of iron. Cold sulphuric acid
dissolves meconine, the solution being limpid and colourless. If heat be applied,
the liquid becomes dark. If the quantity of sulphuric acid be small in propor-
tion to that of meconine, the liquid assumes a green colour. If chlorine gas
be passed over fused meconine, the latter becomes blood-red, and on cooling
forms crystals. The compound thus formed is composed of chlorine and some
organic base: if the first be removed by oxide of silver, a white acid is obtained,
which Courbe calls mechloic acid (C_{14} H_7 O_{10}). By the action of nitric acid on
meconine we obtain hyponitromeconic acid, composed of one atom of meconine
and half an atom of hyponitrous acid. Meconine is remarkable for not contain-
ing nitrogen. Its composition is C_{10} H_{5} O_{4}.

A grain dissolved in water, and injected into the jugular vein of a dog, pro-
duced no remarkable effect. Further experiments, however, are required before
we can positively declare it to be an inert substance.

7. Thebaina (Paramorphia).—So called from Thebes, an ancient city of Egypt.
It is a white, crystalline, fusible solid, having an acrid, styptic taste, very soluble
in alcohol and ether, but hardly at all soluble in water. It possesses alkaline
properties, and dissolves in weak acids. From these solutions it is precipitated

---

by alkalis. An excess of alkali cannot dissolve it, unless, indeed, the alkaline solution be very concentrated. It fuses at 302°, but does not volatilize at any temperature. It is distinguished from morphia by not becoming blue on the addition of the perchloride of iron, and by not forming crystallizable salts with acids. From codeia it differs in not crystallizing in large crystals, and in not forming crystallizable salts. With meconine and norceine it has no analogy, and from them it is distinguished by the want of the peculiar properties which characterize these bodies. It resembles narcotina more than any other substance, but is distinguished by the crystals being shorter or granular, and wanting the pearly brilliance possessed by those of narcotina; by its acid taste; by its fusibility at 302°; by its greater solubility in alcohol; and by nitric acid when dropped on it converting it into a substance like a soft resin, before dissolving it. Pelletier considered it isomeric with morphia;—hence he called it paramorphia. According to Dr. Kane's analysis it consists of C_{27}H_{18}N_{0}I_{4}; and its atomic weight is 202. Couerbe's analysis gives another atom of oxygen. The last-mentioned chemist says that, by fusion, the crystals lose two atoms of water. Magendie states that one grain injected into the jugular vein, or placed in the pleura, acts like brucia or strychnia, and causes tetanus and death in a few minutes.

8. Pseudomorphia.—This is a substance which Pelletier has occasionally met with in opium. It is a whitish solid, which, like morphia, dissolves in caustic alkalis, is reddened by nitric acid, and made blue by contact with the sesquichloride of iron. But it does not decompose iodic acid, and cannot form salts with acids. It consists of C_{27}H_{18}N_{0}I_{4}. It is not poisonous; at least, nearly eight grains, given to a rabbit, produced no effect. Pelletier thinks that pseudomorphia must be some combination of morphia, in which this substance has lost its poisonous properties.

9. Porphyroxin?—This name has been given by Merck to a supposed new principle found in Bengal opium. It is described as crystallizable, fusible, soluble in alcohol, ether, and weak acids. Alkalis precipitate it from its acid solution. Further experiments are required to determine its existence and precise nature.

10. Resin.—Brown, insipid, inodorous, softened by heat, insoluble in water and ether, but soluble in alcohol and in alkaline leys. Nitrogen is a constituent of it.

11. Extractive.—The substance usually denominated the extractive of opium, is probably a heterogeneous body. It is brown and acid, and has been supposed to be one of the active principles of opium. The reasons for this opinion are the following:—In the first place, it has been asserted that after the morphia has been separated from an infusion of opium by magnesia, the filtered liquor gives by evaporation an extract which produces the same kind of narcotic effect that opium does. Secondly, the effects of the known active principles of opium are not sufficiently powerful to authorize us to refer the whole of the active properties of opium to them. Thus on an average 100 parts of opium yield from 8 to 10 parts of morphia (the most active of the known constituents of opium), and, therefore, if this alkali were the only active principle, it ought to be 10 or 12 times as powerful as opium is. Now we know that morphia is but little, if at all, more active than opium, and, therefore, this last-mentioned substance either contains some other active principle, or the activity of morphia is surprisingly increased by the principle or principles with which it is naturally in combination. Butter says the insoluble residuum possesses considerably narcotic qualities.

12. Fatty Matter.—Yellow or brownish. Probably colourless when pure. It reddens litmus, and unites with alkalis to form soaps, from which acids disengage it apparently unchanged.

13. Meconic Acid.—Hitherto found in the poppy tribe only. It is usually procured from meconate of lime by acting on it, in hot water, with hydrochloric acid. The meconic acid crystallises on cooling. The formula of the anhydrous

* Pharm. Centra Blatt für 1837, S. 342; and Brit. Ann. of Med. ii. 82.
* Berzelius, Traité de Chim. t. v. p. 136; and t. vi. p. 152.
The crystallised acid contains 9 equivalents of water; and the acid dried at 212° contains 3 equivalents of water. When pure it is in the form of white, transparent, micaceous scales, which are soluble in four times their weight of boiling water. But at this temperature water decomposes it; carbonic acid is evolved, and a solution of komenic acid \((C_i^2 H_2 O_8 + 2 \text{aq.})\) is obtained. Cold water dissolves a smaller quantity of meconic acid. Alcohol is also a solvent for meconic acid. By the dry distillation of meconic acid, it loses carbonic acid and water, and becomes pyromeconic acid \((C_{10} H_3 O_5 + \text{aq.})\).

The characteristics of meconic acid are as follows:—1st. It reddens the sesquisalts of iron, forming the meconate of the sesquioxide of iron. Alkalis, protochloride of tin, and nitric acid, assisted by heat, destroy this red colour. Bichloride of mercury, which destroys the red colour of sulphocyanide of iron, does not decolorize a red solution of meconate of iron. 2dly. It forms, with a weak solution of ammoniated sulphate of copper, a green precipitate (meconate of copper). 3dly. It yields white precipitates (meconates) which are soluble in nitric acid, with acetate of lead, nitrate of silver, and chlorid of baryum. The acetates which, like meconic acid, redden the sesquisalts of iron, and might, therefore, be confounded with it, do not occasion precipitates with the salts of lead and of baryum. 4thly. It is not reddened by chlorid of gold, which reddens hydrosulphocyanic acid and the sulphocyanides.

It deserves especial notice that many substances enjoy equally with meconic acid the power of communicating a red colour to the sesquisalts of iron. The following are some of them:—the acetates, hydrosulphocyanic acid, and the sulphocyanides, the saliva of man and of the sheep, the urine of man (frequently), infusion of white mustard, komenic, pyromeconic, and indigotic acids, the liquid obtained by the action of hydrochloric acid on detonating silver, the decoctions of Cetraria islandica (p. 879) and of Gigartina Helminthocorton (p. 876).

Meconic acid is an inert substance. Sertürner swallowed five grains of it without observing any effect. Sömerring gave ten grains to a dog; Feneglio and Blengini eight grains to dogs, crows, and frogs, and four grains to various men: in all cases no effects were observed. Combined with bases, it doubtless modifies their action. Meconate of soda, however, is not active, as Sertürner asserted. It is supposed that the effect of the morphia in opium is modified by its combination with meconic acid. I have already mentioned that this acid is said to be an antidote in cases of poisoning by bichloride of mercury (see p. 754). If, however, the statement be true, the fact is of little practical value, on account of the scarcity of the acid; for neither opium nor laudanum can be given in quantity sufficient to neutralize the effect of this salt, without proving deleterious. Moreover, we have other good and easily accessible antidotes. Anthelmintic properties have been ascribed to the acid and some of its salts.

Chemical Characteristics. — Litmus paper is reddened by a watery infusion of opium (or tincture of opium diluted with water), owing to a free acid (meconic). Sesquichloride of iron gives it a deep red colour (meconate of iron). Acetate and diacetate of lead occasion a copious grey precipitate (meconate and sulphate of lead, with colouring matter), which, treated by sulphuric acid or sulphured hydrogen, yields free meconic acid. Chloride of baryum also causes a precipitate (meconate and sulphate of baryta). Ammonia renders the infusion turbid (precipitated morphia and narcotics). Tincture of nutgalls causes a precipitate (tannates of morphia and codeia). Nitric acid communicates to the infusion a red colour (oxidized ? morphia). Iodic acid and starch cause, after some hours, a
**TABULAR VIEW OF THE PRINCIPAL CHARACTERS OF THE CRYSTALLINE PRINCIPLES OF OPIUM.**

<table>
<thead>
<tr>
<th>Characters</th>
<th>Morphia</th>
<th>Pseudomorphia</th>
<th>Codeia</th>
<th>Narcotina</th>
<th>Thebaina</th>
<th>Narceine</th>
<th>Meconine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taste</td>
<td>Very bitter</td>
<td>...?...</td>
<td>Bitter</td>
<td>Insipid; the salts bitter</td>
<td>Rather acrid and metallic</td>
<td>Slightly bitter</td>
<td>Rather acrid.</td>
</tr>
<tr>
<td>Fusibility in Cold Water</td>
<td>Fusible</td>
<td>Infusible?</td>
<td>Fusible at 302°</td>
<td>Fusible at 330°</td>
<td>Fusible at 226°</td>
<td>Fusible at 230°</td>
<td>Fusible at 198°</td>
</tr>
<tr>
<td>Ditto in Boiling Water</td>
<td>Infusible</td>
<td>Infusible</td>
<td>Soluble in 30 pts.</td>
<td>Insoluble</td>
<td>Soluble in 17 pts</td>
<td>Soluble in 375 pts</td>
<td>Fusible.</td>
</tr>
<tr>
<td>Solubility in Potash or Soda</td>
<td>Insoluble, or nearly so</td>
<td>Almost insoluble</td>
<td>Soluble in 80 pts.</td>
<td>Soluble</td>
<td>Soluble in 100 parts</td>
<td>Soluble in 230 pts</td>
<td>Soluble.</td>
</tr>
<tr>
<td>Cold Water</td>
<td>Soluble in 100 parts</td>
<td>Less soluble</td>
<td>Very soluble</td>
<td>Insoluble, or nearly so</td>
<td>Very slightly soluble</td>
<td>Still more soluble</td>
<td>More soluble.</td>
</tr>
<tr>
<td>Boiling Water</td>
<td>Soluble in 40 pts.</td>
<td>than in water</td>
<td>Cold ley</td>
<td>Alkaline</td>
<td>Very soluble</td>
<td>Very soluble</td>
<td>Insoluble.</td>
</tr>
<tr>
<td>Cold Alcohol</td>
<td>Soluble</td>
<td>Soluble in 30 parts</td>
<td>Readily soluble</td>
<td>Salifiable</td>
<td>Insoluble, unless the ley be very concentrated</td>
<td>Insoluble, unless the ley be very concentrated</td>
<td>Insoluble.</td>
</tr>
<tr>
<td>(Potash or Soda)</td>
<td>Soluble</td>
<td>Solution not red</td>
<td>solution yellow</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Not salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Action of Nitric Acid</td>
<td>Reddened</td>
<td>Alkaline</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Steam</td>
<td>Not</td>
<td>Solution not red</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>Not</td>
<td>Not</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Ditto by Iodine</td>
<td>Coloured blue</td>
<td>Coloured blue</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Decomposed by Iodic Acid</td>
<td>Decomposes Iodic acid.</td>
<td>Decomposes Iodic acid</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
<tr>
<td>Composition</td>
<td>C27 H18 N1 O4</td>
<td>306</td>
<td>Made yellow:</td>
<td>Salifiable:</td>
<td>Alkaline</td>
<td>Salifiable:</td>
<td>Not salifiable.</td>
</tr>
</tbody>
</table>

* I have had no opportunity of verifying the statements in this column.
blue precipitate (iodide of starch). This last test does not always succeed. Chloride of gold causes a deep fawn-coloured precipitate.

Application to Medico-legal Purposes.—On examining the alimentary canal of persons destroyed by opium, it not unfrequently happens that no traces of the poison can be obtained. I have met with several instances of this, and others are referred to by Dr. Christison *. Either, therefore, opium is rapidly absorbed, and its unassimilated parts thrown out of the system by the excretories, or the constituents of this substance are digestible and assimilable.

The characters available for the detection of opium are two-fold,—physical and chemical.

1. Physical Characteristics.—Whether in the solid state or dissolved in water or spirit, opium possesses three physical properties, by one or more of which it may be frequently recognized. These are, a more or less brown colour, a remarkable and peculiar odour, and a bitter taste. Of these the odour is the only characteristic one. In the alimentary canal it is strongest when the stomach is just opened, or when the opiate liquor is just reaching the boiling point. Other odours, however, frequently mask it. The analogy between the odours of lactu- carium and opium deserves notice.

2. Chemical Characteristics.—The chemical tests of opium are those for meconic acid and morphia above mentioned. In a case of suspected poisoning, the stomach and duodenum (cut into small pieces), with their contents, are to be digested in distilled water, and the solution filtered successively through a sieve, muslin, and paper. A little acetic acid added to the water coagulates any caseum, and is thought to facilitate the solution of the morphia. Its presence is objectionable, on account of the red colour produced by the action of the acetates on the ferruginous salts, and which simulates that developed with these salts by meconic acid.

a. Application of trial tests.—To a small portion of the filtered liquid apply the following tests:

1. A few drops of tincture of chloride of iron, which produces a red colour (meconate of iron) in an opiate solution.—The fallacies of this test have been before stated (see pp. 1738).

2. Apply excess of strong nitric acid, which also reddens (oxidizes? morphia) opiate liquors.—The fallacies of this are pointed out at p. 1776.

3. Add iodic acid and starch, and set aside for twenty-four hours. Blue iodide of starch is sometimes formed if morphia be present (unless, indeed, the quantity be very minute).—The fallacies of this are stated at p. 1776.

The success or failure of these tests is not to be considered as absolutely decisive as to the presence or absence of opium.

b. Separation of the Morphia and Meconic Acid.—Add to the filtered liquor a considerable excess of a solution of acetate of lead, and set aside in a tall vessel for the precipitate (meconate and sulphate of lead, with colouring matter) to subsside, leaving a clear liquor (acetates of morphia and lead, &c.) Pour off the latter, and collect the precipitate on a filter.

Before adding the acetate of lead, it may be sometimes necessary to evaporate the liquor, in a water-bath, to the consistence of syrup, which is to be digested and boiled in alcohol, and the alcoholic tincture evaporated, and the residuum dissolved in water. To the filtered solution add the acetate of lead. This complication of the process is not usually necessary. Furthermore, by boiling with water, meconic acid is decomposed.

The above-mentioned clear liquor and the lead precipitate are then to be tested (the first for morphia, the second for meconic acid), as follows:

On Poisons.
1. Proceeding with the lead precipitate (meconate and sulphate of lead, and colouring matter).

Suspend the lead precipitate in water contained in a conical glass (see fig. 111, p. 629), and pass a stream of sulphuretted hydrogen through it, to convert the lead into a sulphuret, which is to be removed by filtration. The clear liquor is then to be gently heated (to expel the excess of sulphuretted hydrogen), and, if necessary, concentrated by evaporation. Or add a few drops of diluted sulphuric acid to the meconate of lead, by which an insoluble sulphate of lead is formed, and meconic acid left in solution. Boiling decomposes the meconic acid. The tests for meconic acid (p. 1738) are then to be applied, viz.:

- a. Tincture of chloride of iron.
- b. Ammoniacal sulphate of copper.
- c. Chloride of gold.
- d. Acetate of lead.

Dr. Christison observes, that "it will often happen, in actual practice, that the only indication of opium to be procured by the process consists in the deep red colour struck by permuriate of iron with the meconic acid. Now, will this alone constitute sufficient proof of the presence of opium? On the whole, I am inclined to reply in the affirmative." I regret I cannot agree with him in this conclusion, since several other substances produce the same colour, and three of these are very likely to be met with in the alimentary canal, namely, the acetates, (thus acetate of ammonia or acetate of potash administered medicinally,) mustard, and saliva. In regard to the latter substance, he remarks, "it is seldom possible to procure a distinct blood-red coloration from the saliva, except by evaporating a large quantity to dryness, and re-dissolving the residue in a small quantity of water; and I question whether it can be separated at all after the saliva is mixed with the complex contents of the stomach." I am sorry again to be at issue with so high an authority, but our results being discordant, it is but right I should state my experience. In a large majority of cases I find saliva is distinctly and unequivocally reddened by the persalts of iron. In some few cases only have I observed this test indistinct. I have several times obtained from the stomach of subjects in the dissecting-room a liquor which reddened the salts of iron.

2. Proceeding with the clear liquor (solution of the acetates of morphia and lead).

Place the clear liquor in a conical glass (see fig. 111, p. 629), and pass through it a stream of sulphuretted hydrogen, to precipitate the lead, and then filter. Then boil the filtered liquor, and, if necessary, concentrate by evaporation. To the clear liquor apply the tests for morphia, (see p. 1776), viz.:

- a. Strong nitric acid in excess.
- b. Iodic acid and starch (several hours may be necessary for the success of this test).
- c. Tincture of chloride of iron (this test will only succeed with solid morphia, or very concentrated solutions).
- d. Ammonia.
- e. Infusion of nutgalls (this test will not answer if much free acid be in the liquor).
- f. Chlorine, and afterwards ammonia.

Estimation of the Purity and Strength of Opium.—Opium is brought into the market of very unequal degrees of purity, in consequence of its having been subjected to adulteration; and partly, perhaps, from the employment of different methods of preparation. Moreover, its consistence is by no means uniform; that of some kinds being quite soft (as the Patna and Benares), and of others quite hard (as some of the Egyptian opium). As this diffornity depends on the presence of unequal quantities of water, an obvious variation of strength is the consequence. Moreover, the quantity of morphia in good opium of different or even of the same localities is by no means constant. Furthermore, opium, from which the morphia has been extracted, has been fraudulently introduced into commerce. It is

---

1 Journ. de Pharm. xxiv. 325, 446; xxv. 297; also Journ. de Chim. Med. iv. 2nd Sér. pp. 335, 432.
highly desirable, therefore, to have a ready, easy, accurate, and precise method of determining the purity and strength of opium. I regret to state that such a method is still a desideratum.

1. Of the Estimation of the Water.—This will be readily judged of by the consistence, but still better by observing the loss on drying a given weight of the opium.

2. Of the Detection of Foreign Bodies.—A physical examination of opium will frequently detect impurities (as leaves, bullets, stones, fruits, &c.) If a decoction of the suspected opium be made and strained, various foreign matters are often left on the sieve. In this way I obtained 10 drachms of small stones and gravel from 10 ounces of opium. On another occasion I detected a gelatiniform substance, which was insoluble in both water and alcohol, in an opium (Egyptian?), the tincture of which could not be rendered clear by filtration. A decoction of opium, when cold, should not give a blue precipitate (iodide of starch) on the addition of tincture of iodine: if it do, the presence of starch or flour is obvious.

3. Of the Estimation of the Quantity of Morphia in Opium. (Morphiometry.)—This is a subject of no slight difficulty. A remark connected with it, which deserves notice, is, that there is no constant ratio between the quantity of morphia in a given sample of opium and that of any other constituent. Berthomot⁵, however, is of opinion that it is in the ratio of that of the meconic acid. The correctness of this opinion is not borne out by my own observation, and was positively denied by Robiquet ¹. It follows, therefore, that the extraction of the morphia is the only true morphimetrical method of proceeding. Several methods of effecting this have been proposed.

a. Process of the Edinburgh Pharmacopoeia.—"A solution of 100 grains, macerated 24 hours, in two fluidounces of water, filtered, and strongly squeezed in a cloth, if precipitated by a cold solution of half an ounce of carbonate of soda in two waters, and heated till the precipitate shrinks and fuses, will yield a solid mass on cooling, which weighs, when dry, at least 11 grains, and, if pulverized, dissolves entirely in solution of oxalic acid."—Ph. Ed. 1839. This is a modification of the process for procuring disulphate of quina (see p. 1417), and of estimating the quality of yellow bark (see p. 1402). The fused mass obtained by the process is morphia, narcotine, and resinous extractive. From the trials I have made of this process, I am inclined to speak very doubtfully of its value. Morphia is soluble in a solution of carbonate of soda, and, therefore, variations in the degree of heat applied to the liquor, as well as in the time during which it is subjected to heat, will be attended with corresponding variations in the results. Nay, if the heat be maintained too long, the whole of the morphia will be dissolved! Hence, therefore, to prove successful, this process requires more precautions than the directions of the College would lead one to imagine.

b. Thibonmary's process.—Prepare an aqueous extract of the opium to be examined, and dissolve it in water. Add ammonia to the boiling liquor, [taking care not to add much excess] and, when cool, filter. Wash the precipitate on the filter first with cold water, then with proof spirit, and afterwards dry it. Then boil it with animal charcoal in rectified spirit, and evaporate the filtered liquor, by which crystals of morphia are procured ¹.—The following modifications of the process will be found valuable. After the precipitate on the filter has been washed with water, dry it, mix it with proof spirit, and add drop by drop acetic acid until the solution slightly reddens litmus. By this means the morphia, and not the narcotina, will be dissolved. Precipitate the morphia from the filtered solution by ammonia.—This perhaps is the best process for determining the goodness of opium at present known.

⁵ Journ. de Pharm. xxiv. 445.
¹ Ibid. p. 438.
γ. Berthemot's process.—To a filtered infusion of opium add chloride of calcium, boil, filter (to get rid of the meconate and sulphate of lime), and evaporate to the consistence of syrup. The residuum should form a granular crystalline mass (principally hydrochlorate of morphia), which is to be separated from the mother-water and purified by resolution in water. This is an application of Gregory's process hereafter to be described. It appears to be an objectionable method; as a considerable portion of the morphia will be left in the mother-liquor.

δ. Couerbe's process.—Boil an infusion of opium with lime (which dissolves the morphia) and filter through paper. Saturate the filtered liquor with an acid, and precipitate the morphia by ammonia. This, perhaps, is the most speedy process for the detection of opium.

Physiological Effects. a. On Vegetables.—The effects of opium on plants have been principally examined by Marcret and Macaire. The latter writer states, that the stamens of the barberry (Berberis vulgaris) and the leaves of the sensitive plant lost their contractility, and soon died, when the stems of these vegetables were immersed in an aqueous solution of opium. But I have tried this experiment with a different result. I immersed a flowering stem of the barberry in water, to which tincture of opium had been added. In thirty hours I could not perceive any effect on the plant. The stamens, even in the overblown flowers, still retained their contractility. Charvet states that he watered a sensitive plant with a moderately strong infusion of opium forty-eight days, without effecting the irritability of the plant. By immersing a portion of Chara in a solution of opium the circulation of this plant becomes slower, is soon suspended, and is ultimately stopped.

β. On Animals generally.—The operation of opium on animals has repeatedly been the subject of physiological investigation. An abstract of a considerable number of experiments made by various individuals has been published by Wibmer. The most complete and extended series of experiments is that made by Charvet, on the different classes of animals, for the purpose of determining its comparative action. While on all it has been found to act as a poison, its effects are observed to vary somewhat, according to the degree of development of the nervous system (see p. 99).

In the invertebrated animals opium causes weakness or paralysis of the contractile tissues, with gradual sinking, and death. Thus in the polygastrica and the annelides, it first accelerates the animal movements, but afterwards paralyses them. Now in the lower invertebrata, a central nervous apparatus is altogether wanting; while in the higher animals of this class, it is not sufficiently developed to exercise that influence over the whole individual which we observe it to possess in the vertebrated classes.

In the vertebrated animals we have a high development of the central organs of the nervous system, and a consequent increase in the...
number of symptoms caused by opium. Thus in fishes, amphibials, and reptiles, we observe, in addition to the weakened and paralytic condition of the contractile tissues, convulsions. In the fish, the convulsive contractions bend the body laterally; whereas, in the other vertebrata, the superior dorsal muscles are affected, and hence the head and tail are elevated. These differences obviously depend on the disposition of the muscles. Proceeding in the ascending order, we observe in birds and mammals, besides the paralysis and convulsions, stupor. The last-mentioned symptom, however, is principally manifested in the highest of the mammals, man,—that is, in that animal which has the most highly developed brain, while, in some of the lower mammals, as the ruminants, it is scarcely observed; and even in the carnivora, as dogs, it is very slight. It is somewhat remarkable that the stupor is more manifest in birds than in the lower mammals. Moreover it is not undeserving of notice, that the operation of opium on the different races of man is not uniform, as already noticed (see p. 138). On the negro, the Malay, and the Javanese, it more frequently acts as an excitant, causing furious madness, or delirium and convulsions. Are we to ascribe the less frequent occurrence of these symptoms in the Caucasian variety to the greater development of his brain? In conclusion, then, it appears that the effects of opium on the animal kingdom have a relation to the degree of development and influence of the nervous system.

γ. On Man.—I propose to examine the effects of opium under three heads or subdivisions:—first, the effects of one or a few doses employed medicinally; secondly, the effects of the habitual employment of opium, either by chewing or smoking it; and thirdly, its effects on the different systems of organs.

1. Effects of one or a few doses.—We may consider these under three degrees of operation.

First degree of operation.—In small doses, as from a quarter of a grain to one grain, opium generally acts as a stimulant, though in this respect the symptoms are not uniform. Usually the vascular system is somewhat excited, and a sensation of fulness is experienced about the head. Dr. Crumpe took one grain of opium when his pulse was at 70, and the alteration in the number of beats was as follows:

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse beat</td>
<td>70</td>
<td>74</td>
<td>76</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>72</td>
<td>72</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

The excitement in the cerebral vascular system is accompanied by alterations in the condition of the nervous functions. The mind is usually exhilarated; the ideas flow more quickly; a pleasurable or comfortable condition of the whole system is experienced, difficult to describe; there is a capability of greater exertion than usual. These symptoms are followed by a diminution of muscular power, and of susceptibility to the impression of external objects; a desire of repose
is experienced, with a tendency to sleep. While these effects are taking place, the mouth and throat become dry, and hunger is diminished, though the thirst is increased; and slight constipation usually follows. Such are the ordinary effects of a small dose of opium on persons unaccustomed to its use. By repetition, however, its influence becomes considerably diminished; and those, therefore, who resort to it for the purpose of producing a pleasurable excitement, are obliged to augment the dose to keep up an equal effect (see p. 136).

Second degree of operation.—Given in a full medicinal dose (as from two to four grains), the stage of excitement is soon followed by that of depression. The pulse, which at first is increased to fulness and frequency, is afterwards reduced below the natural standard. The effect of two grains and a half on Dr. Crumpe (when his pulse was beating at 70) were as follows 9:

<table>
<thead>
<tr>
<th>In........</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>75</th>
<th>90 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse beat</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>72</td>
<td>70</td>
<td>64</td>
<td>64</td>
<td>66</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

The skin becomes hot; the mouth and throat dry; the appetite diminished; the thirst increased; and frequently nausea, or even vomiting, are induced. The symptoms of excitement soon pass away, and a state of torpor succeeds: the individual seems indisposed to exertion, the muscular system appears enfeebled; the force of external impressions on the organs of the senses is diminished; and the ideas become confused. This state is followed by an almost irresistible desire of sleep, which is frequently attended by dreams—sometimes of a pleasing, at others of a frightful nature.

These effects are usually succeeded by constipation (which may continue for several days), by nausea, furred tongue, headache, and listlessness.

Third degree of operation: poisonous effects of opium. — Dr. Christison has so briefly summed up the effects of a poisonous dose of opium, that I cannot do better than quote his statement:—"The symptoms of poisoning with opium, when it is administered at once in a dangerous dose, begin with giddiness and stupor, generally without any previous stimulus. The stupor rapidly increasing, the person becomes motionless and insensible to external impression; he breathes very slowly, generally lies quite still, with his eyes shut and the pupils contracted; and the whole expression of the countenance is that of deep and perfect repose. As the poisoning advances, the features become ghastly, the pulse feeble and imperceptible, the muscles exceedingly relaxed, and, unless assistance is speedily procured, death ensues. If the person recovers, the sopor is succeeded by prolonged sleep, which commonly ends in twenty-four or thirty-six hours, and is followed by nausea, vomiting, giddiness, and loathing of food."
2. Habitual Use of Opium.—Of those who habitually employ opium as an intoxicant, some chew, or eat it; others smoke it.

Opium-eating.—The ill effects of opium-eating have been described by most travellers in Turkey and Persia, where this practice is carried to a greater extent than in any other part of the world. In the writings of Dr. Russell, Chardin, the Baron de Tott, Pouqueville, and Madden, will be found notices of these effects. The following extract is from one of the latest accounts, that of Dr. Oppenheim:

"The causes leading to the use of opium are many, and among them may be reckoned the following:—long-continued diarrhoea, as a remedy for which opium is used in the first instance, and its use afterwards continued from habit; chronic coughs, in which opium is also used as a popular remedy; habitual drunkards also frequently have recourse to opium as a new stimulus, after they have abjured wine in some fit of repentance. Persons holding high offices or dignities in the state also have recourse to opium, when the preservation of their character forbids them the use of wine: some very strict believers also take opium as a restorative in cases of great exertion, as the Tartars (couriers), who travel with astonishing celerity.

Opium-eaters generally begin with doses of from half a grain to two grains, and gradually increase the quantity till it amounts to two drachms and sometimes more a day: they usually take the opium in pills, but avoid drinking any water after having swallowed them, as this is said to produce violent colic: to make it more palatable, it is sometimes mixed with syrups or thickened juices; but in this form it is less intoxicating, and resembles mead; it is then taken with a spoon, or is dried in small cakes, with the words 'Mash Allah,' 'the work of God,' imprinted on them.

"The effect of the opium manifests itself one or two hours after it has been taken, and lasts for five or six hours, according to the dose taken and the idiosyncrasy of the subject. In persons accustomed to take it, it produces a high degree of animation, which the Theriaki (opium-eaters) represent as the acme of happiness.

"The habitual opium-eater is instantly recognised by his appearance. A total attenuation of body, a withered, yellow countenance, a lame gait, a bending of the spine, frequently to such a degree as to assume a circular form, and glossy, deep-sunken eyes, betray him at the first glance. The digestive organs are in the highest degree disturbed, the sufferer eats scarcely anything, and has hardly one evacuation in a week: his mental and bodily powers are destroyed,—he is impotent. By degrees, as the habit becomes more confirmed, his strength continues decreasing, the craving for the stimulus becomes even greater, and, to produce the desired effect, the dose must constantly be augmented.

"When the dose of two or three drachms a day no longer produces the beatific intoxication so eagerly sought by the Opiophagi, they mix the opium with [corrosive] sublimate, increasing the quantity till it reaches to ten grains a day; it then acts as a stimulant.

"After long indulgence the opium-eater becomes subject to nervous or neuralgic pains, to which opium itself brings no relief. These people seldom attain the age of forty, if they have begun to use opium at an early age. The fasts in the month of Ramasan are for them fraught with the most dreadful torments, as during the whole of that month they are not allowed to take any

---

1 Nat. Hist. of Aleppo, i. 126. 1794.
2 Voy. en Perse et autres Lieux de l'Orient.
3 Mem. sur les Turcs et les Tart. 1785.
5 Travels in Turkey, &c. vol. i. p. 23. 1829.
thing during the day. It is said that, to assuage their sufferings, they swallow before the morning prayer, besides the usual dose, a certain number of other doses, each wrapped up in its particular paper, having previously calculated the time when each envelope shall be unfolded, and allow the pill to produce the effects of their usual allowance. When this baneful habit has become confirmed, it is almost impossible to break it off; the torments of the opium-eater, when deprived of this stimulant, are as dreadful as his bliss is complete when he has taken it; to him night brings the torments of hell, day the bliss of paradise. Those who do make the attempt to discontinue the use of opium, usually mix it with wax, and daily diminishing the quantity of the opium, the pill at last contains nothing but wax."

For an account of the effects produced on English opium-eaters I may refer to the well-known confessions of Mr. De Quincey and of the late Mr. S. T. Coleridge. Numerous instances of the enormous quantities of opium which, by habit, may be taken with impunity, have been published. One of these I have already referred to (see p. 136). Dr. Chapman tells us that he knew a wine-glassful of laudanum to be given several times in the twenty-four hours. "But what is still more extraordinary," says this author, "in a case of cancer of the uterus, which was under the care of two highly respectable physicians (Drs. Monges and La Roche) of Philadelphia, the quantity of laudanum was gradually increased to three pints, besides a considerable quantity of solid opium in the same period." Pinel mentions a lady who required 120 grains of opium to give her ease in cancer of the uterus.

Some doubt has been entertained as to the alleged injurious effects of opium-eating on the health, and its tendency to shorten life; and it must be confessed that in several known cases which have occurred in this country no ill effects have been observable. Dr. Christison has given abstracts of eleven cases, the general result of whose histories "would rather tend to throw doubt over the popular opinion." A few years ago, a Life-Assurance Company, acting on this general opinion, resisted payment of a sum of money, on the ground that the insurer (the late Earl of Mar) had concealed from them a habit which tends to shorten life. But the case was ultimately compromised. Dr. Burnes asserts that the natives of Cutch do not suffer much from opium-eating.

In those cases of disease (usually cancerous) in which enormous doses of opium are taken to alleviate pain, I have usually observed constipation produced. But Dr. Christison says, "constipation is by no means a general effect of the continued use of opium. In some of the cases mentioned above, no laxatives have been required; in others, a gentle laxative once a week is sufficient."

In 1841 an opium-eater, aged 26, was admitted into the London Hospital. He was accustomed to take two or two and a half drachms of solid opium daily. He originally began its use to relieve the attacks of Angina Pectoris. He was now most anxious to leave off this habit; though the difficulty of doing so was extreme. It did not diminish, but, according to his assertion, augmented his appetite; for, after each dose, he ate voraciously. At first when he commenced

---

1 Confessions of an English Opium-eater.
3 Elem. of Therap. ii. 199.
4 Treat. on Poisons.
its use it caused dryness of the mouth and throat and constipation, but latterly his bowels were regular as before he commenced the use of this drug. His pulse ranged from 88 to 96. His urine was somewhat less than natural. The condition of his skin varied; in general it was dry, but occasionally was covered with profuse perspiration. He described the effect of the opium on his mental faculties as those of calmness, comfort, and serenity. Under its use he was able to support great bodily and mental fatigue. He never experienced the exhilarating and pleasurable sensations described by De Quincey. His feelings, when not under the influence of opium, were most distressing. Mr. Davies (an intelligent pupil) described his condition at this time as follows:—eyes hollow, dark, and sunken; features haggard; hands trembling; voice and manner anxious; mouth parched; appetite wanting; sleeplessness. Unable to sleep for want of his accustomed dose, he used to pace the ward of the hospital at night almost frantic, though quite sensible of his miserable condition, and anxious to abandon the practice.

Opium-smoking.—I have already referred to the enormous quantities of opium consumed in China and the islands of the Indian Archipelago by smoking. The smokeable extract, called chando (see p. 1732), is made into pills about the size of a pea. “One of these being put into the small tube that projects from the side of the opium-pipe, that tube is applied to a lamp, and the pill being lighted, is consumed at one whiff or inflation of the lungs, attended with a whistling noise. The smoke is never emitted by the mouth, but usually receives vent through the nostrils, and sometimes, by adepts, through the passage of the ears and eyes.” The residue in the pipe is called Tye-chando, or faecal opium, and is used by poor persons and servants.

Fig. 322.

Chinese Opium Pipe and Apparatus.

a. The Pipe. The specimen from which the above figure was drawn, was made of bamboo.
b. and c. Extra bowls of different shapes. All the above bowls were of porcelain.
d. A lamp.
e. Box for containing the smokeable extract.
f. Instruments used by opium smokers.

The mode of using the pipe has been depicted by Mr. Davies. Some details respecting the mode of smoking opium has been given by Dr. Hill.

* Marsden, Hist. of Sumatra, p. 278, 3rd ed.
* The Times newspaper for Dec. 3rd, 1841.
In the first edition of this work I stated that though the immoderate practice of opium-smoking must be highly detrimental to health, yet that I believed the statements of Medhurst and others applied to cases in which this practice was carried to excess; and I observed that an account of the effects of opium-smoking by an unbiased and professional witness was a desideratum. My opinion was founded on the statements of Botta and Marsden. The latter, a most accurate writer, observes that “the Limun and Batang Assei gold-traders, who are an active and laborious class of men, but yet indulge as freely in opium as any others whatever, are, notwithstanding, the most healthy and vigorous people to be met with on the island.”

This desideratum has been recently supplied by Mr. Smith, surgeon, of Pulo Penang, whose statements fully confirm my opinion. For though the practice is most destructive to those who live in poverty and distress, and who carry it to excess, yet it does not appear that the Chinese, in easy circumstances, and who have the comforts of life about them, are materially affected, in respect to longevity, by the private addiction to this vice. “There are many persons,” observes Mr. Smith, “within my own observation, who have attained the age of sixty, seventy, or more, and who are well known as habitual opium-smokers for more than thirty years past.”

The first effect of this drug on the Chinese smokers is to render them more loquacious and animated. Gradually the conversation drops, laughter is occasionally produced by the most trifling causes, and to these effects succeed vacancy of countenance, pallor, shrinking of the features, so that the smokers resemble people convalescing from fever, followed by deep sleep for half an hour to three or four hours. An inordinate quantity causes headache, vertigo, and nausea. The Malays are rendered outrageous and quarrelsome by the opium-pipe.

It is extremely difficult to discontinue the vice of opium-smoking, yet there are many instances (among which is the present Emperor of China) of its being done. The continuance of this destructive practice deteriorates the physical constitution and moral character of the individual, especially among the lower classes. Its powerful effects on the system are manifested by stupor, forgetfulness, deterioration of the mental faculties, emaciation, debility, sallow complexion, lividity of lips and eyelids, languor and lacklustre of the eye, appetite either destroyed or depraved, sweetmeats or sugar-cane being the articles that are most relished. “In the morning these creatures have a most wretched appearance, evincing no symptoms of being refreshed or invigorated by sleep, however profound. There is a remarkable dryness or burning in the throat, which urges them to repeat the opium-smoking. If the dose be not taken at the usual time, there is great prostration, vertigo, torpor, discharge of water from the eyes, and in some an involuntary discharge of semen, even

---

1 China, 1838.
2 Froriep’s Notizen, xxvi.
4 Lancet, February 19, 1842.
when wide awake. If the privation be complete, a still more formidable train of phenomena takes place. Coldness is felt over the whole body, with aching pains in all parts. Diarrhoea occurs—the most horrid feelings of wretchedness come on; and, if the poison be withheld, death terminates the victim's existence. The offspring of opium-eaters are weak, stunted, and decrepit.

4. Action of Opium on the different organs.—In discussing this subject, it will be convenient to consider the organs arranged in groups or systems devoted to some common functions.

a. On the Cerebro-spinal System.—Taken in small or moderate doses, opium first produces excitement of the vascular system of the brain, accompanied with corresponding excitement in the cerebro-spinal functions, as already stated. This state, however, is succeeded by that of depression. The effect of opium-eating and opium-smoking on the intellectual faculties has been already described. In large or poisonous doses the leading symptom is sopor—that is, a state analogous to profound sleep, from which the patient can be roused, though with difficulty. In the latter stage of poisoning this symptom is succeeded by coma—that is, profound sleep, from which the patient cannot be roused. Sopor is usually accompanied either with actual paralysis of the muscular fibres, or with a diminished power almost amounting to it; both of which states doubtless arise from the same condition of the cerebro-spinal system which produces sopor or coma. This state is usually supposed to be sanguineous (venous) congestion. The pupil is usually contracted,—a circumstance deserving of especial notice.

But in some cases we have delirium in the place of sopor or coma, and convulsions instead of paralysis. These are to be regarded as exceptions to the general rule, and are accounted for, pathologically, by supposing they depend on a state of irritation or excitement set up in the nervous centres, and which usually, though not invariably, terminates in congestion.

Another effect of opium is diminished sensibility. Thus the whole body becomes less susceptible of painful impressions; in dangerous and fatal cases, the eyes are insensible to light,—the ears to sound. This state has been accounted for by supposing that the functions of the sensitive nerves are diminished or suspended by the congested condition of the brain.

From these effects of opium on the cerebro-spinal system the following inferences may be drawn:—

1. That it is an objectionable agent in apoplexy, phrenitis, and paralysis.
2. That under proper regulations it is a remedy which may be used to stimulate the cerebro-vascular system, to promote sleep, to diminish inordinate muscular contraction, to diminish the sensibility of the body, and thereby to alleviate pain.

b. On the Digestive System.—The usual effects of opium on the organs of digestion are the following:—It diminishes secretion and exhalation from the whole canal; thus it causes dryness of the mouth and throat, and diminishes the liquidity of the stools: it excites thirst,
OPINUS.  1751

lessens hunger, checks the digestive process (for in some animals poisoned by opium, food which they had taken previously has been found in the stomach unchanged): and in some cases it excites vomiting. Mr. Kerr tells us, that in the famine which prevailed in the East Indies, in the year 1770, opium was purchased by the unhappy sufferers, at extraordinary prices, to allay the cravings of hunger, and to banish the dreadful prospect of death. The Tartar couriers, who travel immense distances in a short period of time, take opium only during the journey, to support them. It diminishes the sensibility and contractility of the digestive organs: hence the difficulty, in severe cases of poisoning, of producing vomiting. The constipation which follows the use of opium depends partly on the same cause, and in part also on the diminished excretion of bile, and diminished secretion from the gastro-intestinal mucous membrane.

Sprægel found the choledic ducts of animals, to whom opium had been given, filled with bile; yet it had not passed into the intestines, for the faeces were scarcely tinged by it, but had the same appearance which we observe them to have in jaundiced patients.

From these effects of opium on the digestive organs, we may draw the following inferences:

1. That in diminished secretion from the gastro-intestinal membrane, in extreme thirst, in loss of appetite and weak digestion, in obstinate costiveness, and in diminished excretion of bile, opium is an objectionable remedy.

2. That under proper regulations, opium is an admissible remedy for the following purposes:—To diminish excessive hunger; to allay pain, when unaccompanied by inflammation; to diminish the sensibility of the digestive organs, in cases of acrid poisoning, and in the passage of biliary calculi; to produce relaxation of the muscular fibres of the alimentary canal (in colic and diarrhœa), and of the gall ducts (in the passage of calculi), and to diminish excessive secretion from the intestinal canal, in diarrhœa.

By continued use (as by opium-eaters) this drug frequently ceases to cause dryness of the mouth, to pall the appetite, or to confine the bowels, as I have already mentioned.

γ. On the Vascular System.—Opium certainly influences the movements of the heart and arteries; but the effect is by no means uniform, since in some cases we see the pulse increased, in others diminished in frequency; and a like variation is noticed in its fulness. Moreover, these variations occur in the same case at different stages. From Dr. Crumpe’s experiments, before referred to, it appears that, after the use of a moderate dose of opium, the frequency of the pulse is first increased, then decreased. The diameter of the artery, and the force and regularity with which the pulsations are effected, are properties of the pulse readily, but by no means uniformly, affected by opium. To a certain extent we perceive a relation between the condition of the pulse and that of the cerebro-spinal functions. Thus, when convulsions occur, we usually have a hurried pulse,—whereas, when sopor or coma supervenes, the pulse becomes weaker or slower, or

2 Quoted by Christen, Opium hist. chem. and pharm. invest. p. 66. 1820.
both, than natural. But these conditions are by no means uniform. A frequent pulse, with a feverish condition of the body, are common consequences of the use of small or moderate doses of opium; and in poisoning by this drug, a quick pulse, even though no convulsive movements are observed, is by no means rare. A poisonous dose of opium usually enfeebles the pulse, sometimes makes it fuller, often renders it irregular, and towards death always renders it feeble, and often imperceptible. We can easily believe that the muscular fibres of the heart must experience, from the use of a large dose of opium, a diminution of power in common with other muscular fibres, and hence the contractions become weaker. It is also probable that the contractile coat of the arteries and capillaries equally suffers. Now Wirtensohn\(^1\) supposes that the fulness of the pulse sometimes observed in poisoning by opium, arises from the insufficient power of the heart to propel the blood through this paralysed or weakened capillary system. The accumulation of blood observed in the large venous trunks and cavities of the right side of the heart, is supposed to arise from the obstruction experienced to its passage through the pulmonary vessels.

In attempting to lay down indications and contra-indications for the use of opium as a remedy for morbid conditions of the circulation, two difficulties present themselves:—first, the same condition of the vascular system may be induced by various and even opposite causes, for some of which opium may be an appropriate remedy, while for others it may prove an injurious agent; secondly, the effects of opium on the circulation are not uniform, and hence not to be relied on. The following conclusions, therefore, are submitted with considerable hesitation as to the universality of their application:—

1. That in increased activity of the vascular system with considerable power, or with diminished secretions and exhalations, and in morbid conditions of the vascular system with a tendency to sopor or coma, opium is an objectionable remedy.

2. That in vascular excitement with great diminution of power, as after hemorrhage; and in various morbid conditions of the pulse attended with acute pain, spasm, or profuse secretion and exhalation, but without visceral inflammation, opium often proves a serviceable agent.

5. On the Respiratory System.—In studying the effects of opium on the respiration, we must remember that the mechanical part of this function is effected by muscular agency; and as the contractility of the muscular fibre is powerfully influenced by opium, so the respiratory movements are also necessarily modified. Occasionally the primary effect is a slight increase in their frequency; but the secondary effect is almost always of an opposite kind, the respiration being slower than usual; and when coma is present, the breathing is usually gentle, so as scarcely to be perceived; but in some cases it is stertorous. In fact, a paralytic condition of the respiratory muscles takes place, in consequence of which inspiration becomes gradually more and more difficult, until eventually asphyxia is induced, which is usually the immediate cause of death.

\(^1\) Quoted by Barbier, Traité Elém. de Mat. Méd. t. ii. 2me éd.
Another effect ascribed to opium is, that it checks the arterialization of the blood, by diminishing the supply of nervous agency, without which the decarbonization or oxygenization of this fluid cannot take place. It is difficult, however, to distinguish the consequences of this effect from those of asphyxia produced by paralysis of the respiratory muscles.

The third point of view under which we have to examine the influence of opium on the respiratory system is, its effect on the membrane lining the trachea and bronchial tubes and cells. In the first place, it diminishes the sensibility of this, in common with other parts of the body; and, secondly, it checks exhalation and mucous secretion.

A knowledge of these effects of opium on the organs of respiration leads to the following conclusions:

1. That this agent is contra-indicated in difficulty of breathing arising from a deficient supply of nervous energy, as in apoplectic cases; that it is improper where the venous is imperfectly converted into arterial blood; and, lastly, that it is improper in the first stage of catarrh and peripneumony, both from its checking secretion, and from its influence over the process of arterialization.

2. That in cases of poisoning by opium, artificial respiration is indicated, to prevent asphyxia.

3. That opium may, under proper regulations, be useful to diminish the contractility of the muscles of respiration, or of the muscular fibres of the air tubes, as in spasmodic asthma; to diminish the sensibility of the bronchia, in the second stage of catarrh, and thereby to allay cough by lessening the influence of the cold air; and lastly, to counteract excessive bronchial secretion.

e. On the Urinary System.—Authors are not agreed as to the effect of opium on the kidneys; some asserting that it increases, others that it diminishes, the quantity of urine secreted. Thus, Dr. Michaelis \(^m\) asserts, that in giving opium in venereal cases, he has sometimes found the secretion of urine exceeding in quantity all the fluids drank. It cannot, however, be doubted, that in most cases a moderate quantity of opium diminishes the excretion, while at the same time it makes this fluid turbid and thick. This does not, however, prove the kidneys to be the part affected. Sprégel \(^n\) tells us, that when he gave two scruples of opium to dogs, no urine was passed for two days; and, under the influence of two drachms of this medicine, the urine was retained for three days. But dissection showed that the kidneys had not ceased to secrete urine, since the bladder was found distended with this secretion, and its parietes without the least sign of contractility on the application of nitric acid; so that it would appear the non-evacuation of the urine was referrible to the insensible and paralysed condition of the vesical coats, and not to the diminished urinary secretion. Charvet \(^o\) has also noticed in dogs, cats, and hares, that the urinary bladder was distended. As, however, in man opium usually increases the cutaneous exhalation, while in other mammals this effect was not ob-

\(^m\) Med. Comm. i. p. 307, 1784.
\(^n\) Cited by Christen, op. supra cit. p. 68.
\(^o\) Op. supra cit. p. 221.
served, we must be careful in transferring our conclusions with respect to the influence of opium on one order of animals to another order. But I ought to add, that Welper, of Berlin, always found the bladder filled with urine both in man and animals. In some morbid conditions of system, opium certainly checks the urinary secretion. This is decidedly the case in diabetes.

The ureters and bladder have their sensibility and contractility diminished by opium. With respect to the effect on the first of these parts, the statement seems proved by the well-known beneficial influence of opium in cases where calculi are descending along these tubes. The acute pain is frequently relieved, and the ureters relaxed, so that large calculi are sometimes allowed to descend from the kidneys along them.

Besides the observations of Sprægel, before referred to, we have other evidence of the paralysing and benumbing effect of opium on the bladder. In some cases of poisoning by this substance, the bladder has been found to be unable to contract on its contents. In some other instances the sphincter of the bladder has been paralysed, and in consequence the urine was voided involuntarily. Barbier has also noticed the same thing, and quotes the experience of Dr. Bally to the same effect. The effect of morphia on the bladder is more marked than that of opium.

These remarks on the effect of opium on the urinary organs lead to the following conclusions:

1. That in diminished sensibility or contractility, or both, of the ureters or bladder, the use of opium is objectionable.

2. That, under proper regulations, opium may be a valuable remedy to dull the sensibility of the pelvis of the kidney, in cases of renal calculi; to allay pain and produce relaxation of the ureters when calculi are passing along these tubes; and, lastly, to diminish irritation of the bladder, whether produced by cantharides or other causes.

2. On the Sexual System. aa. Of men.—Opium has long been celebrated as an aphrodisiac; and we are told that the Japanese, Chinese, Indians, Persians, Egyptians, and Turks, use it as such. Among other symptoms of excitement produced by the habitual use of large doses of opium, it is not improbable that there may be a heightened condition of the venereal feelings, in consequence of an increased determination of blood to that part of the brain supposed to be devoted to the sexual function, which part the phrenologists assert to be the cerebellum. Moreover it is said to produce erection; and in support of this statement the following strange story is told:—“Turcae ad Levenzinum, 1664, contra Comitem Lud. Souches pugnantes, opio exaltati, turpiter cæsi et octo mille numero occisi mentulas rigidas tulere.” Cabanis adopts this story, and ascribes the above-mentioned condition to the convulsive movements which affect the body in articulo mortis, and not to an aphrodisiac opera-

p Prout, Inq. into the Nat. and Treat. of Affect. of the Urin. Org. p. 74, 2nd ed.
r Christien, op. supra cit. p. 55.
OPIUM.  1755

The effect alluded to, if it really do take place, is probably to be referred to the accumulation of blood in the erectile tissues, arising from a disordered state of the circulation. Impotence is ascribed by some to opium-eating, and is a more probable effect. I am unacquainted with any facts on which to ground any well-founded opinion as to the power of opium to diminish or increase the spermatic secretion.

ββ. Of women.—We have little positive information as to the effects of opium on the reproductive organs of women. It is said that the catamenia, lochia, and secretion of milk, are unaffected by it, but that it causes intumescence of the nipples. Under its use the milk acquires a narcotic property (see p. 108). Furthermore, at times it has appeared to have an injurious effect on the foetus in utero. Opium appears to act on the uterus as on most other contractile parts of the body; that is, it diminishes the contractility and sensibility of this viscus.

From these observations it follows:

1. That wet nurses and pregnant women must employ opium with great caution, as its use by them may endanger the life of the child.
2. That opium may be employed to allay pain, spasm, and morbid irritation of the sexual organs in either sex; and that its use in the female is not likely to be attended with retention of the uterine or mammary secretions.
3. That the influence of opium on the venereal appetite is not sufficiently and satisfactorily determined to permit us to make any practical application of it.

η. On the Cutaneous System.—Considered as an organ of sense, the cutaneous system is affected by opium in an analogous way to the other organs of sense; that is, its sensibility is diminished. But the skin has another function—that of excretion, and which does not appear to be at all diminished, nay, to be increased, by the use of opium; one of the usual effects of this medicine being perspiration, which is in some cases attended with a pricking or itching of the skin, and occasionally with an eruption. In fact, taken medicinally, opium is a powerful sudorific, and often proves so even when acting as a poison. "In a fatal case, which I examined judicially," says Dr. Christison, "the sheets were completely soaked to a considerable distance round the body."

From these remarks it follows:

1. That opium is not likely to relieve loss of feeling or excessive perspiration; but may, on the other hand, under some conditions of the system, prove injurious.
2. That opium is adapted to the relief of pain or excessive sensibility of the skin, and for provoking perspiration; but the propriety of its use for these purposes must be determined by reference to the condition of the system generally. Experience proves that when the skin is very hot, and especially if it be also dry, opium is seldom beneficial, but often hurtful.

6. Topical effects.—The local effects of opium are, compared with the general ones, very slight. Applied to the eye, internal mem-

brane of the nose, urethra, cutis vera, wounds or ulcers, it first causes pain, a sense of heat, and inflammation; but these effects subside, and are followed by a weakened or a paralytic condition of the sensitive and motor nerves. Several physiologists have proved that opium causes a local paralysis of the nerves; and Müller has shown that the narcotic action is not propagated from the trunk of a nerve to its branches. Crumpe showed, that, at the end of thirty minutes, the eye to which opium had been applied was somewhat less susceptible of the action of alcohol. Scarcely any obvious effect results from the application of opium to the ordinary integument, on account of the barrier presented by the cuticle. Employed endermically the effects are much more powerful.

Post-mortem Appearances.—The most important appearances are those observed in the nervous system; such as turgescence of vessels, effusion of water or of coagulable lymph, and occasionally, though rarely, extravasation of blood.

Whenever redness of the digestive canal is observed, I believe it is referrible to the use of some irritants (such as spirits, ammonia, or emetics) taken either with, or after the use of, opium.

Modus Operandi.—Under this head I propose to examine several points not hitherto noticed, and which involve the theory of the operation of opium on the system.

1. The Odorous and Active Principles of Opium are absorbed.—This assertion is proved by the following facts:

a. The odour of opium is sometimes recognizable in the secretions and exhalations: thus it is well known that the opiate odour is frequently detected in the breath of persons poisoned by this drug; and Barbier states, it may be also noticed in the urine and sweat.

b. The secretions, in some cases, appear to possess narcotic properties. Barbier mentions the case of an infant who was thrown into a state of narcotism of several hours' duration, in consequence of having sucked a nurse who had previously swallowed a dose of laudanum, to relieve a cramp of the stomach.

c. Barruel asserts that he detected morphia in the blood and urine of a person under the influence of a poisonous dose of laudanum. As, however, these results have not been obtained by Dublanc or Lassaigne, the statement is not to be absolutely relied on.

2. The Constitutional Effects of Opium depend in great part, if not wholly, on the absorption of its active principles.—The facts on which this assumption rests, are:

a. The active principles of opium are absorbed.

b. The constitutional effects of it are found to be proportionate to the absorbing powers of the part.

c. The effect of opium, when thrown into the jugular vein, is similar to, though more powerful than, that produced by its application to other parts of the body.

\[^{1}\] Phys. by Baly, vol. i. p. 630.

\[^{2}\] Op. supra cit.

\[^{3}\] Traite Elem. de Mat. Med., ii. 732, 2nd ed.

\[^{4}\] On one occasion I at first supposed that I had detected morphia and meconic acid in the urine of a man poisoned by opium: for both nitric acid and the sesquisalts of iron gave a red colour to this secretion. I have since found, however, that the urine of healthy individuals often yields the same results.
5. "The narcotic action does not re-act from a particular point of a nerve on the brain."

3. The Essential and Primary Operation of Opium is on the Nervous System (the Brain and Spinal Cord chiefly).—This axiom is proved by reference to the already-described effects of opium. An examination of them shows that—

a. The most important effects of opium are direct and obvious lesions of the nervous functions.

b. The other effects of opium appear, for the most part, to be secondary,—that is, they arise out of the nervous lesions just referred to.

4. Opium acts on the Nervous System as an Alterative.—There are but three kinds of changes, compatible with life, which medicines can effect in the vital actions of an organ,—viz. an increase, a diminution, or an alteration of activity. A change in the intensity or energy merely of the vital actions of the nervous system, would not give a satisfactory explanation of the effects of opium. We are obliged, therefore, to assume that opium changes the quality of the actions. This is what is meant by the term alterative.

The inquiry into the nature and kind of influence exercised by opium over the system, presents an extensive field for speculation and hypothesis. Galen declared opium to be cold in the fourth degree, and his authority long prevailed in the schools. It was first opposed by the intro-chemists, who declared opium to be of a hot nature. Some, however, adopted a middle course, and asserted that it possessed both hot and cold particles. The intro-mechanists endeavoured to explain the operation of opium on mechanical principles. By some expansion, by others condensation, of the blood, was supposed to be produced by the mechanical properties of the opiate particles acting on the nerves. Dr. Cullen considered opium to be a sedative, and referred its effects to its power of diminishing the mobility, and in a certain manner suspending the motion, of the nervous fluid. Several later writers, Barbier for example, also call opium a sedative. Brown declared it to be a stimulant, and his opinion has been adopted by Crumpe, Murray, and Dr. A. T. Thomson, in this country, and of course by the partisans of the Italian theory of contra-stimulus. Fontana ascribed the operation of opium to changes which it induces in the blood. Mayer declared opium to be both stimulant and sedative,—viz. stimulant to the nerves and vascular system, but sedative to the muscles and digestive organs. Lastly, Orfila asserts that "opium, employed in strong doses, ought not to be ranked among the narcotics or the stimulants; it exerts a peculiar mode of action which cannot be designated by any of the terms at this moment employed in the Materia Medica." These examples, selected out of many opinions, will be sufficient to prove how

---

* Müller, Phys. by Baly, i. 631.
* See Crumpe, op. supra cit. p. 91
* See an account of these opinions by Tralles, Usus Opii, Sect. 1. 1757.
* Mat. Med. ii. 223.
* Traité Elém. de Mat. Méd. ii. 2nd éd.
* Elementa Medicinae.
* Syst. of Mat. Med. and Therap. Edinb.
* Elem. of Mat. and Therap.
* Treat. on the Venom of the Viper, iii. 199.
* Quoted by Orfila, Toxicol. Gen.
* Ibid.
little is really known of the real action of opium; and I believe we shall save ourselves much time and useless speculation by at once confessing our ignorance on this point.

5. The operation of Opium, compared with that of other cerebro-spinants or narcotics, is distinguished by both positive and negative characteristics.—The symptoms whose presence constitutes the positive characters, are relaxation or paralysis of the contractile tissues, a tendency to sleep or stupor, a contracted pupil, and constipation. The symptoms whose absence furnishes the negative characters, are tetanic convulsion, delirium or inebriation, dilated pupil, syncope, gastro-intestinal irritation, and topical numbness.

These are the general characteristics of the opiate medication. To some of them occasional, or perhaps frequent, exceptions exist.

I have already pointed out the distinguishing effects of hyoscyamus (p. 1224), belladonna (p. 1230), and stramonium (p. 1239). The topical numbness caused by aconite distinguishes its operation from that of opium. Moreover, in three cases of poisoning by this substance, which came under my notice, there was no stupor. Tobacco and foxglove enfeeble the vascular system, causing syncope; and they also produce gastro-intestinal irritation. Furthermore, they have not that tendency to induce sleep which we observe after the use of opium. The speedy operation, short period of influence, and, usually, the presence of convulsions, distinguish the operation of hydrocyanic acid. Indian hemp induces a cataleptic state. Vinous liquids cause their well-known peculiar inebriation. Their effects in small doses agree, to a certain extent, with those of small doses of opium; but they are not equally available as antispasmodics. The peculiarities of the operation of comia have been pointed out (p. 1481).

Uses.—Opium is undoubtedly the most important and valuable remedy of the whole Materia Medica. We have, for other medicines, one or more substitutes; but for opium we have none,—at least in the large majority of cases in which its peculiar and beneficial influence is required. Its good effects are not, as is the case with some valuable medicines, remote and contingent, but they are immediate, direct, and obvious; and its operation is not attended with pain or discomfort. Furthermore, it is applied, and with the greatest success, to the relief of maladies of every day's occurrence, some of which are attended with the most acute human suffering. These circumstances, with others not necessary here to enumerate, conspire to give to opium an interest not possessed by any other article of the Materia Medica.

We employ it to fulfil various indications; some of which have been already noticed. Thus we exhibit it, under certain regulations, to mitigate pain, to allay spasm, to promote sleep, to relieve nervous restlessness, to produce perspiration, and to check profuse mucous discharges from the bronchial tubes and gastro-intestinal canal. But experience has proved its value in relieving some diseases in which not one of these indications can be at all times distinctly traced.

1. In Fevers.—The consideration of the use of opium in fever
OPIMUM.

1759

presents peculiar difficulties. Though certain symptoms which occur in the course of this disease, are, under some circumstances, most advantageously treated by opium, yet, with one or more of these symptoms present, opium may, notwithstanding, be a very inappropriate remedy. The propriety or impropriety of its use, in such cases, must be determined by other circumstances, which, however, are exceedingly difficult to define and characterise. It should always be employed with great caution, giving it in small doses, and carefully watching its effects. The symptoms for which it has been resorted to are, watchfulness, great restlessness, delirium, tremor, and diarrhoea. When watchfulness and great restlessness are disproportionate, from first to last, to the disorder of the vascular system or of the constitution at large; or when these symptoms continue after excitement of the vascular system has been subdued by appropriate depletives, opium frequently proves a highly valuable remedy: nay, the safety of the patient often arises from its judicious employment. The same remarks also apply to the employment of opium for the relief of delirium; but it may be added, that in patients who have been addicted to the use of spirituous liquors, the efficacy of opium in allaying delirium is greatest. Yet I have seen opium fail to relieve the delirium of fever, even when given apparently under favourable circumstances; and I have known opium restore the consciousness of a delirious patient, and yet the case has terminated fatally. If the skin be damp and the tongue moist, it rarely, I think, proves injurious. The absence, however, of these favourable conditions by no means precludes the employment of opium; but its efficacy is more doubtful. Dr. Holland suggests that the condition of the pupil may serve as a guide in some doubtful cases;—where it is contracted, opium being contra-indicated. A similar suggestion with respect to the use of belladonna was made by Dr. Graves (see p. 1234), to which I have offered some objections. When sopor or coma supervenes in fever, the use of opium generally proves injurious. Recently the combination of opium and emetic tartar has been strongly recommended in fever with much cerebral disturbance, by Dr. Law, and Dr. Graves.

2. Inflammatory diseases.—Opium has long been regarded as an objectionable remedy in inflammation; but it is one we frequently resort to, either for the purpose of palliating particular symptoms, or even as a powerful auxiliary antiphlogistic remedy. The statement of Dr. Young, "that opium was improper in all those diseases in which bleeding was necessary," is, therefore, by no means correct in a very considerable number of instances. The objects for which opium is usually exhibited in inflammatory diseases, are to mitigate excessive pain, to allay spasm, to relieve great restlessness, to check

---

* See some interesting observations on this subject, by Dr. P. M. Latham, Lond. Med. Gaz. vol. x. pp. 11, 12.
* Ibid. xx. 538.
* Treatise on Opium, p. 169. Lond. 1753.
excessive secretion, and to act as an antiphlogistic. In employing it as an anodyne, we are to bear in mind that it is applicable to those cases only in which the pain is disproportionate to the local vascular excitement; and even then it must be employed with considerable caution; for to "stupify the sensibility to pain, or to suspend any particular disorder of function, unless we can simultaneously lessen or remove the causes which create it, is often but to interpose a veil between our judgment and the impending danger." As an antiphlogistic, it is best given in conjunction with calomel, as recommended by Dr. R. Hamilton, of Lynn. The practice, however, does not prove equally successful in all forms of inflammation. It is best adapted for the disease when it affects membranous parts; and is much less beneficial in inflammation of the parenchymatous structure of organs. In gastritis and enteritis the use of opium has been strongly recommended by the late Dr. Armstrong. After bleeding the patient to syncope, a full opiate (as 80 or 100 drops of the tincture, or three grains of soft opium) is to be administered, and if the stomach reject it, we may give it by injection. It acts on the skin, induces quiet and refreshing sleep, and prevents what is called the hemorrhagic reaction. If the urgent symptoms return when the patient awakes, the same mode of treatment is to be followed, but combining calomel with the opium. A third venesection is seldom required. In peritonitis, the same plan of treatment is to be adopted; but warm moist applications are on no account to be omitted. Of the great value of opiates in puerperal fever abundant evidence has been adduced by Dr. Ferguson. In cystitis, opium, preceded and accompanied by blood-letting and the warm bath, is a valuable remedy; it relieves the scalding pain, by diminishing the sensibility of this viscus to the presence of the urine, and also counteracts the spasmodic contractions. In inflammation of the walls of the pelvis of the kidney, and also of the ureters, especially when brought on by the presence of a calculus, opium is a most valuable remedy; it diminishes the sensibility of these parts, and prevents spasm: furthermore, it relaxes the ureters, and thereby facilitates the passage of the calculus. In inflammation of the gall ducts, produced by calculus, opium is likewise serviceable; but, as in the last-mentioned case, blood-letting and the warm bath should be employed simultaneously with it. In inflammation of the mucous membranes, attended with increased secretion, opium is a most valuable remedy. Thus, in pulmonary catarrh, when the first stage of the disease has passed by, and the mucous secretion is fully established, opium is frequently very beneficial: it diminishes the sensibility of the bronchial membrane to cold air, and thereby prevents cough. In severe forms of the disease, blood-letting ought to be premised.

* Holland, op. supra cit. p. 421.
* See Brachet, De l'Emploi de l'Opium dans les Phlegm. des Membr. muq. ser. et fbr. 1828.
* Transactions of the Association of Apothecaries, 1823.
* Essays on the most Important Diseases of Women. Part i. 1839.
Given at the commencement of the disease, Dr. Holland says, that twenty or thirty drops of laudanum will often arrest it altogether. In diarrhoea, opium, in mild cases, is often sufficient of itself to cure the disease; it diminishes the increased muscular contractions and increased sensibility (thereby relieving pain), and at the same time checks excessive secretion. Aromatics and chalk are advantageously combined with it. In violent cases blood-letting should precede or accompany it. Mild or English cholera, the disease which has been so long known in this country, and which consists in irritation or inflammation of the mucous lining of the stomach, is generally most successfully treated by the use of opium: two or three doses will, in slight cases, be sufficient to effect a cure. When opium fails, the hydrocyanic acid is occasionally most effective. In dysentery, opium can only be used beneficially in the latter stages, and then with great caution: it is best given in combination with either ipecacuanha or calomel. I have already stated that in inflammation of the parenchymatous tissue of organs the use of opium is less frequently beneficial, but often injurious. Thus in inflammation of the cerebral substance it is highly objectionable, since it increases the determination of blood to the head, and disposes to coma. In peripneumonia it is for the most part injurious; partly by its increasing the febrile symptoms, partly by its diminishing the bronchial secretion, and probably also, by retarding the arterialization of the blood, and thereby increasing the general disorder of system. It must be admitted, however, that there are circumstances under which its use, in this disease, is justifiable. Thus, in acute peripneumonia, when blood-letting has been carried as far as the safety of the patient will admit, but without the subsidence of the disease, I have seen the repeated use of opium and calomel of essential service. Again: in the advanced stages of pneumonic inflammation, when the difficulty of breathing has abated, opium is sometimes beneficially employed to allay painful cough, and produce sleep. In inflammation of the substance of the liver, opium is seldom beneficial: it checks the excretion, if not the secretion, of bile, and increases costiveness. In rheumatism, opium frequently evinces its happiest effects. In acute forms of the disease it is given in combination with calomel, as recommended by Dr. R. Hamilton,—blood-letting being usually premised. From half a grain to two grains of opium should be given at a dose. Dr. Hope recommends gr. viij. or gr. x. of calomel to be combined with each dose of opium. It is not necessary, or even proper, in ordinary cases, to affect the mouth by the calomel; though to this statement exceptions exist. The use of mercury may even, in some cases, be objectionable; and in such, Dover's powder will be found the best form of exhibition. This plan of treatment is well adapted for the diffuse or fibrous form of acute rheumatism; but it does not prove equally successful in

---

\(^{1}\) Op. supra cit. p. 421.
the synovial forms of the disease. It is also valuable in chronic rheumatism.

3. In Diseases of the Brain and Spinal Cord.—In some cerebro-spinal diseases great benefit arises from the use of opium; while in other cases injury only can result from its employment. The latter effect is to be expected in inflammation of the brain, and in apoplectic cases. In other words, in those cerebral maladies obviously connected with, or dependent on, an excited condition of the vascular system of the brain, opium acts injuriously. But there are many disordered conditions of the cerebro-spinal functions, the intensity of which bears no proportion to that of the derangement of the vascular system of the brain; and there are other deviations from the healthy functions in which no change in the cerebral circulation can be detected. In these cases opium or morphia frequently evinces its happiest effects. In insanity its value has been properly insisted on by Dr. Seymour. He, as well as Messrs. Beverley and Phillips, employed the acetate of morphia. Its good effects were manifested rather in the low, desponding, or melancholic forms of the disease, than in the excited conditions; though I have seen great relief obtained in the latter form of the disease by full doses. Opium is sometimes employed by drunkards to relieve intoxication. I knew a medical man addicted to drinking, and who, for many years, was accustomed to take a large dose of laudanum whenever he was intoxicated and was called to see a patient. On one occasion, being more than ordinarily inebriated, he swallowed an excessive dose of laudanum, and died in a few hours of apoplexy.

In delirium tremens the efficacy of opium is almost universally admitted. Its effects, however, require to be carefully watched; for large doses of it, frequently repeated, sometimes hasten coma and other bad symptoms. If there be much fever, or evident marks of determination of blood to the head, it should be used with great caution, and ought to be preceded by loss of blood, cold applications to the head, and other antiphlogistic measures. Though opium is to be looked on as a chief remedy in this disease, yet it is not to be regarded as a specific. Dr. Law speaks in high terms of its association with emetic tartar. I have before noticed the use of opium in alleviating some of the cerebral symptoms which occur during fever.

In spasmodic and convulsive diseases opium is a most important remedy. In local spasms produced by topical irritants, it is a most valuable agent, as I have already stated: for example, in spasm of the gall ducts or of the ureters, brought on by the presence of calculi; in colic, and in painful spasmodic contractions of the bladder, or rectum, or uterus. In spasmodic stricture opium is sometimes useful. In genuine spasmodic asthma, which probably depends on a spasmodic condition of the muscular fibres investing the bronchial tubes, a full dose of opium generally gives temporary relief; but the recurrence of the paroxysms is seldom influenced by opium. There are

---

several reasons for believing that one effect of narcotics in dyspnoea is to diminish the necessity for respiration. Laennec states, that when given to relieve the extreme dyspnoea of mucous catarrh, it frequently produces a speedy but temporary cessation of the disease; and if we explore the respiration by the stethoscope, we find it the same as during the paroxysm,—a proof that the benefit obtained consists simply in a diminution of the necessity for respiration. That the necessities of the system for atmospheric air vary at different periods, and from different circumstances, is sufficiently established by the experiments of Dr. Prout; and it appears that they are diminished during sleep, at which time, according to Dr. Edwards, the transpiration is increased. Moreover, the phenomena of hybernating animals also bear on this point; for during their state of torpidity, or hybernation, their respiration is proportionally diminished.

In the convulsive diseases (chorea, epilepsy, and tetanus,) opium has been used, but with variable success: in fact the conditions of system under which these affections occur, may be, at different times, of an opposite nature; so that a remedy which is proper in one case is often improper in another. In tetanus, opium was at one time a favourite remedy, and is undoubtedly at times a remedy of considerable value. But it is remarkable that the susceptibility of the system to its influence is greatly diminished during tetanus. I have already (p. 137) referred to the enormous quantities which may, at this time, be taken with impunity. In 128 cases of tetanus noticed by Mr. Curling, opium in various forms, and in conjunction with other remedies, was employed in eighty-four cases; and of these, forty-five recovered. Notwithstanding, however, the confidence of the profession in its efficacy is greatly diminished.

Lastly, opium occasionally proves serviceable in several forms of headache, especially after loss of blood. I have seen it give great relief in some cases of what are commonly termed nervous headaches; while in others, with apparently the same indications, it has proved injurious. Chomel applied, with good effect, opium cerate to a blistered surface of the scalp, to relieve headache.

4. In Diseases of the Chest.—In some affections of the heart and of the organs of respiration opium is beneficial. I have already alluded to its employment in catarrh, peripneumonia, and spasmodic asthma. In the first of these maladies caution is often requisite in its use. "In an aged person, for example, suffering under chronic bronchitis or catarrhal influenza—and gasping, it may be, under the difficulties of cough and expectoration—an opiate, by suspending these very struggles, may become the cause of danger and death. The effort here is needed for the recovery of free respiration; and if suppressed too long, mucus accumulates in the bronchial cells, its

---

\[b \text{Treat. on the Diseases of the Chest, by Forbes, pp. 77 and 99. 1827.}
\[c \text{Ann. of Phil. ii. 330; and iv. 331.}
\[d \text{Dr. l' Hoff, des Agyen Physiq. p. 321. 1824.}
\[e \text{Treat. on Tetanus, p. 151. 1836.}
\[f \text{London Med. Gaz. vol. i. p. 156.}
extrication thence becomes impossible, and breathing ceases altogether."

5. In Maladies of the Digestive Organs.—I have already referred to the use of opium in gastritis, enteritis, peritonitis, diarrhoea, dysentery, colic, the passage of gall-stones, and in hepatitis. With respect to the use of opium in hepatic affections, I am disposed to think with Dr. Holland, that, with the exception of the painful passage of a gall-stone through the ducts, there is scarcely a complaint of the liver and its appendages "where opium may not be said to be hurtful, though occasionally and indirectly useful when combined with other means." In poisoning by acrid substances opium is used with advantage to lessen the susceptibility of the alimentary canal, and thereby to diminish the violence of the operation of these local irritants. Cantharides, all the drastic purgatives, when taken in excessive doses, (as elaterium, colocynth, gamboge, scammony, and croton oil or seeds) and Arum maculatum, may be mentioned as examples of the substances alluded to. Besides the above-mentioned beneficial operation, opium allays the spasmodic contractions of the bowels, relieves pain, and checks inordinate secretion and exhalation.

6. In Maladies of the Urino-genital apparatus opium is a most valuable remedy. It mitigates pain, allays spasmodic action, checks copious mucous secretion, and diminishes irritation. Its use for one or more of these purposes in nephritis, cystitis, the passage of urinary calculi, and spasmodic stricture, has been already pointed out. In irritable bladder it is an invaluable remedy, especially in conjunction with liquor potassae (see p. 486). In irritation and various painful affections of the uterus, and in chordee, the value of opium is well known. In the treatment of the phosphatic diathesis it is the only remedy that can be employed, according to Dr. Prout, to diminish the unnatural irritability of the system.

Of all remedies for that hitherto intractable malady, diabetes, opium has been found to give the most relief. Under its use the specific gravity, saccharine quality, and quantity of urine, have been diminished. It has not, however, hitherto succeeded in permanently

---

5 Holland, op. supra cit. p. 425.
7 See Prout, Inq. into the Treat. of Diabetes, &c. p. 74, 2nd ed. 1825.
curing this disease. Dr. Prout has also found it serviceable when there is an excess of urea in the urine.

7. As an anodyne.—To relieve pain by dulling the sensibility of the body, opium is, of all substances, the most useful, and the most to be relied on for internal exhibition. We sometimes use it to alleviate the pain of inflammation, as already mentioned; to diminish spasm and the sensibility of the part in calculi of the gall ducts, in the ureters, and even when in the urinary bladder; to relieve pain in the various forms of scirrhus and carcinoma, in which diseases opium is our sheet-anchor; to allay the pain arising from the presence of foreign bodies in wounds; to prevent or relieve after-pains; to diminish the pain of menstruation; and, lastly, as an anodyne in neuralgia. As a benumbing or topical anodyne it is greatly inferior to aconite. Hence in neuralgia the latter is much more successful than opium. (See Aconitum.)

8. In hemorrhages.—Opium is at times serviceable to obviate certain ill effects of hemorrhages; as when there is great irritability attended with a small and frequent pulse, and also to relieve that painful throbbing about the head so often observed after large evacuations of blood. In or immediately after uterine hemorrhage the use of opium has been objected to, on the ground that it might prevent the contraction of the womb; but where the employment of opium is otherwise indicated, this theoretical objection deserves no weight. In bronchial hemorrhage it is at times a valuable remedy, and may be associated with acetate of lead (notwithstanding the chemical objections to the mixture) with good effect.

9. In mortification.—When mortification is attended with excessive pain, opium is resorted to. In that kind of mortification called gangrena senilis, which commences without any visible cause, by a small purple spot on the toes, heels, or other parts of the extremities, and which sometimes arises from an ossified condition of the arteries, Mr. Pott strongly recommended opium, in conjunction with a stimulating plan of treatment, and experience has fully proved its great efficacy.

10. In venereal diseases.—Opium is frequently employed in venereal diseases to prevent the action of mercurials on the bowels during salivation; also to allay the pain of certain venereal sores, and venereal diseases of the bones. By some it has in addition been employed as an anti-venereal remedy; and, according to Michaelis and others, with success. Moreover, it is stated by Dr. Ananian, who practised at Constantinople, that those persons who were in the habit of taking opium rarely contracted the venereal disease. But opium possesses no specific anti-venereal powers. It has appeared to me, on several occasions, to promote the healing of venereal sores.

11. In various forms of ulcers, and in granulating wounds, the effi-
cacy of opium has been satisfactorily established by Mr. Skey, Richter, and others, had already noticed its good effects; but their statements had attracted little attention. Mr. Grant, in 1785, pointed out the efficacy of opium in the treatment of foul ulcers, attended with a bad discharge, and much pain. He ascribed these symptoms to "morbid irritability," which the opium removed. Its use is prejudicial in ulcers attended with inflammation, in the florid or sanguineous temperament, and in childhood. But in the chronic or callous ulcer, in the so-called varicose ulcer, in recent ulcers (from wounds) in which granulation proceeds slowly, or in other cases, the efficacy of opium, administered in small doses, (as ten drops of laudanum three times daily), is most manifest, especially in elderly persons, and in those whose constitutions have been debilitated by disease, labour, spirituous liquors, &c. It appears to promote the most genial warmth, to give energy to the extreme arteries, and thereby to maintain an equal balance of the circulation throughout every part of the body, and to animate the dormant energies of healthy action.

12. The external application of opium is comparatively but little resorted to, and for two reasons: in the first place, its topical effects are slight; and, secondly, its specific effects on the brain and general system are not readily produced through the skin. Aconite and belladonna greatly exceed opium in their topical effects. The following are some of the local uses of opium:—In ophthalmia, the wine of opium is dropped into the eye when there is excessive pain (see Vinum Opii). In painful and foul sores, opiates are used with occasional good effects. Mr. Grant applied the tincture twice a-day, in an oatmeal poultice, to irritable sores. Opiate frictions have been employed as topical anodynes, and to affect the general system. Thus, in chronic rheumatisms and sprains, the opium liniment proves a useful application. In maniacal delirium, as well as some other cerebral disorders, Mr. Ward employed, with apparently beneficial effects, opiate frictions; for example, 3ss. of opium, mixed with gr. iv. of camphor, 3iv. of lard, and 5j. of olive oil. In neuralgic affections, an opiate cerate, or finely powdered hydrochlorate of morphia, applied to a blistered surface, occasionally gives relief. In gastrodynia, it may be applied in the same way to the epigastrium (Holland). In gonorrhea and gleet, opium injections have been used. In spasmodic stricture, diseases of the prostate gland, and in gonorrhea to prevent chordee, an opiate suppository is a useful form of employing opium, especially where it is apt to disagree with the stomach. In nervous and spasmodic affections (as some forms of asthma), the endermic application of opium or morphia, applied along the course of the spine, is often singularly beneficial, when all

---

1766  ELEMENTS OF MATERIA MEDICA.

* On a new Method of Treatment employed in the Cure of various forms of Ulcer and Granulating Wounds. Lond. 1837.
* See Ploucquet’s Lit. Med. iv. 244. 1809.
* Op. supra cfr.
methods of depletion and counter-irritation have proved utterly un-
availing (Holland). In tooth-ache, opium is applied to the hollow of
a carious tooth. Dr. Bow* speaks in the highest terms of the effi-
cacy of the external application of opium in inflammatory diseases,
but especially bronchitis and croup.

ADMINISTRATION.—Opium is given, in substance, in the form of
pill, powder, lozenge, or electuary. The dose is subject to great
variation, depending on the age and habits of the patient, the
nature of the disease, and the particular object for which we wish to
employ it. In a general way, we consider from an eighth of a grain
to half a grain a small dose for an adult. We give it to this extent
in persons unaccustomed to its use, when we require its stimulant
effects, and in mild catarrhs and diarrhoeas. From half a grain to
two grains we term a medium dose, and employ it in this quantity as
an ordinary anodyne and soporific. From two to five grains we de-
nominate a full or large dose, and give it to relieve excessive pain,
violent spasm, in some inflammatory diseases after blood-letting, in
tetanus, &c. These are by no means to be regarded as the limits of
the use of opium. Opium pills (pilule opii) may be prepared either
with crude or powdered opium. The latter has the advantage of a
more speedy operation, in consequence of its more ready solution in
the gastric liquor. Employed as a suppository, opium is used in
larger doses than when given by the stomach. Five grains, made
into a cylindrical mass with soap, may be introduced into the rectum,
to allay irritation in the urino-genital organs.

ANTIDOTES.—In a case of poisoning by opium, the first indication
is to remove the poison from the stomach, the second is to neutralize
any of it which may be retained in the system, and the third is to
obviate its injurious effects.

1. Use of evacuants.—Until other and more powerful evacuant means
can be obtained, we should have recourse to tickling the throat with
the fingers, or with a feather dipped in oil. As domestic emetics,
mustard or salt may be exhibited. A dessert-spoonful of flour of
mustard, or a table-spoonful of salt, may be taken, stirred up in a
tumblerful of water. The stomach-pump is, however, the best means
of evacuating the contents of the stomach, and when it can be pro-
cured, should always be preferred. The emetics usually resorted to
are the sulphates of zinc and copper: the first is preferred. It
should be given in doses of from one to two scruples. The dose of
sulphate of copper is less,—from five grs. to fifteen. Ipecacuanha or
tartar emetic may be resorted to when the other means are not at
hand. Clysters, containing fifteen or twenty grs. of tartar emetic,
may be administered; or, in extreme cases, a solution of one or two
grs. of this salt may be injected into the veins, taking care to prevent
the introduction of air.

2. Use of chemical antidotes. — There are no known agents which
completely destroy the activity of opium by their chemical proper-
ties, and which can be resorted to in these cases. Infusion of galls however, is regarded as the best, though an imperfect antidote. Magnesia, as well as iodine and chlorine, have also been recommended.

3. Use of therapeutical means to obviate the effects.—The following are the principal means which have been found efficacious:

a. Rousing the patient, by exercising him up and down a room between two men. It may sometimes be necessary to continue this for several hours. β. Cold affusion.—Dashing cold water over the head and chest is an exceedingly valuable agent. It oftentimes assists the operation of emetics. Dr. Boisragon\(^a\) recommends the alternation of impression, with hot or cold water, and at different parts of the surface of the body. γ. Irritants.—The application of irritants to the body is also sometimes a useful practice: thus blisters and sinapisms to the feet. δ. Venesection.—Blood-letting is sometimes necessary; but it can be only safely practised after the opium has been withdrawn from the stomach. Orfila says, that under these circumstances it never increases, but in most cases materially relieves the symptoms.

ε. Stimulants.—Ammonia, camphor, musk, coffee, and other stimulants, are sometimes used with advantage. ζ. Vegetable acids.—Orfila has found the vegetable acids to be the best anti-narcotics. For this purpose, drinks of vinegar and water, lemon juice, or cream of tartar and water, should be given every ten minutes. These agents, however, should not be resorted to till the poison has been evacuated from the stomach. η. Artificial Respiration.—As a last resource this is on no account to be omitted. Death has on several occasions been apparently averted by it. An interesting case, in which it was successfully practised, was published many years ago by Mr. Whately\(^v\). Natural respiration was extinct when it was begun. In another successful case, related by Mr. Smith\(^w\), artificial respiration was kept up for four hours and a half (with an interval of an hour). When it was commenced there was no pulse at the wrist, and only a slight irregular action of the heart, indicative that life was not quite extinct. A third case, also successful, is that of an infant ten days old, who had taken twenty-five or thirty drops of laudanum intended for the mother, and had lost the power of deglutition, was comatose, and had several convulsions. Artificial respiration was sustained for two or three hours\(^x\).

Preparations.—In noticing the preparations of the poppy employed in medicine, I shall arrange them under three heads:—1st, Preparations of poppy heads; 2ndly, Of opium; 3rdly, Of morphia.

a. Preparations of Poppy Heads.


---

\(^a\) Lond. Med. Gaz. March 6, 1840.
\(^v\) Med. Obs. and Inq. vi. 331.
\(^w\) Med. Chir. Trans. xx. 86.
\(^x\) United States' Dispensatory.
PREPARATIONS OF POPPY HEADS.

Oij. wine-measure, D.] Boil for a quarter of an hour, and strain.)—The seeds contribute, by their oleaginous properties, to the emollient quality of the decoction. This preparation forms a common fomentation, which is applied to bruised, inflamed, excoriated, tender, or swollen parts; to the eye in ophthalmia, to the abdomen in enteritis, peritonitis, &c., to tender ulcers, &c. In cancer and other painful affections of the uterus, it is thrown into the vagina as a soothing remedy.

2. SYRUPUS PAPAVERIS, L. E. D.; Syrup of White Poppies. (Poppies heads [without the seeds, E.; dried, bruised, and deprived of seeds, D.] lb. iij. [lb. jss. E.; 5xxvij. D.]; Sugar [pure, E. D.], lb. v. [lb. iij. E.; 3xxvii. D.]; Boiling Water, Cong. v. [Oxv. E.; Cong. ii. wine-measure, D.]) Boil down the capsules in the water to two gallons, and strongly express the liquor while hot. Again boil down the strained liquor to four pints and filter while hot. Set it by for 12 hours that the dregs may subside; then boil down the clear liquid to two pints, add the sugar and dissolve it, L.—Both the Edinburgh and Dublin Pharmacopoeias direct the poppy heads to be first macerated in water for some [twelve, E.; twenty-four, D.] hours. Then boil down [to five pints E. two pints, D.] and strain while hot, D. and express strongly through calico, E. Again boil [the defecated liquor, D.] down [to Oij. E.; Oj. D.], add the sugar, and dissolve it with the aid of heat.)—Syrup of poppies, especially if too thin, is very liable to ferment, and then contains spirit or acetic acid, or both, and is of course ill adapted for medicinal use. To check these changes, it should be carefully made according to the directions of the College, taking care that it has the proper consistence, and keeping it in a cool place. Occasionally a mixture of treacle and laudanum, or of syrup and extract of poppies, has been substituted; but this fraud is highly dangerous, and has on several occasions proved fatal to children. Syrup of poppies is narcotic, sedative, and anodyne, and is commonly employed as the infant's opiate. It mitigates pain, allays spasm and troublesome cough, and promotes sleep. Even in the adult it is sometimes used for these purposes. It forms a useful adjunct to pectoral tinctures. Over ordinary opiates it has the positive advantages of a less disagreeable taste, and the supposed one of being less likely to create nausea and headache. Even when properly prepared its administration to infants requires the greatest caution, on account of their known susceptibility to the influence of opiates. "I have been informed," says Dr. Montgomery, "of more than one instance in which a tea-spoonful has been known to prove fatal to a healthy child."—The dose of it, for an infant of three or four months old, is 5ss.; for adults from 5ij. to 5iv.

3. EXTRACTUM PAPAVERIS, L. E.; Extract of Poppy. (Poppy-heads, without the seeds, bruised, 5xv.; Boiling [distilled, L.] Water, Cong. j. Macerate for twenty-four hours; then boil down to four pints, and filter the liquor while hot: lastly, evaporate to a

7 See the cases referred to by Dr. Montgomery, in his Obs. on the Dublin Pharm. 472.
proper consistence, [by the vapour-bath, E.])—Anodyne and soporific. It appears to me to produce effects similar to those of opium, for which it is frequently substituted, on the supposition that, while it allays pain and promotes sleep, it is less liable to occasion nausea, constipation, headache, or delirium. If it be prepared from a decoction, instead of an infusion of the poppy-heads as directed in the pharmacopoeias, it will contain a considerable quantity of inert mucilaginous matter.—Dose, gr. ij. to 3j.

b. Preparations of Opium.

1. PILULE OPII sive THEBAICÆ, E.; Opiate Pills. (Opium, one part; Sulphate of Potash, three parts; Conserve of Red Roses, one part: beat them into a proper mass, which is to be divided into five-grain pills.—It is to be observed that this pill contains twice as much opium as the opiate pill of the last Latin edition of this pharmacopoeia, E.)—Employed as an anodyne and soporific.—Dose, one or two pills (i.e. gr. v. to gr. x). The sulphate of potash serves to divide the opium. One pill of five grains contains one grain of opium.

2. PILULE SAPONIS COMPOSITÆ, L.; Pilulae Saponis cum Opio, D. Compound Soap Pills. (Hard Opium, powdered, 3ss.; Hard Soap, 311. Beat them together until incorporated.)—Employed as an anodyne and soporific.—Dose, gr. iij. to gr. x Five grains contain one grain of opium. The soap enables the pills to dissolve readily in the juices of the stomach. From gr. v. to 3j. are sometimes used as a suppository.

3. PILULE CALOMELAÆS ET OPII, E. See p. 746.

4. PILULE PLUMBII OPIATÆ, E. See p. 810.

5. TROCHISCI OPIII, E.; Opium Lozenges. (Opium, 5ij.; Tincture of Tolu, 3ss.; Pure Sugar, in fine powder, 3vi.; Powder of Gum-Arabic, and Extract of Liquorice, softened with boiling water, of each 3v. Reduce the opium to a fluid extract by the formula [given for extract of opium]; mix it intimately with the liquorice previously reduced to the consistence of treacle; add the tincture; sprinkle the gum and sugar into the mixture, and beat it into a proper mass, which is to be divided into lozenges of ten grains.)—In London the manufacture of lozenges is practised as a distinct trade. The opium lozenges of the shops usually contain each about one-eighth of a grain of opium. Lozenge-makers employ a much smaller proportion of gum. The tincture of tolu, which they use, is much more concentrated than that of the shops, the spirit of which is objectionable. Opium lozenges are used to allay troublesome cough.

ployed in diarrhoea.—Dose for adults, 3 j. to 9 j.; for children, gr. j. to grs. x. according to their age. Forty grains of this powder, prepared according to the London or Dublin Pharmacopoeia, or thirty-seven of the Edinburgh Pharmacopoeia, contain one grain of opium.

7. CONJECTIO OPII, L. D.; Electuarium Opii, E.; Confection of Opium; Philonium Londinense; Philonium Romanum. (Hard Opium, powdered, 5 vj.; Long Pepper, 3 j.; Ginger, 3 j.; Caraway, 3 iij.; Tragacanth, powdered, 3 iij.; Syrup, f 3 vj. [lb. j. D.] Rub the opium with the syrup previously heated, then add the other ingredients in powder, and mix, D.—The London College directs the dry ingredients to be kept mixed in the form of a very fine powder, and the syrup to be added when the confection is to be used. The Edinburgh College adopts the following formula:—“Aromatic Powder, 5 vj.; Senega, in fine powder, 3 iij.; Opium diffused in a little Sherry, 8 ss.; Syrup of Ginger, lb. j. Mix them together, and beat into an electuary.”—Aromatic and narcotic. Employed in flatulent colic and diarrhoea; in the latter complaint usually as an adjunct to the chalk mixture.—Dose, gr. x. to 3 j.—The Dublin preparation contains gr. j. of opium in about twenty-five grains of confection. The London preparation is somewhat weaker, and contains gr. j. of opium in perhaps thirty-six grains. The Edinburgh preparation is still weaker; forty-three grains of it containing about one grain of opium.

8.EMPLASTRUM OPIII, L. E. D. Plaster of Opium. (Hard Opium, powdered, 5 ss.; Resin of the Spruce Fir, powdered, 3 iij.; Plaster of Lead, lb. j.; Water, 3 vij. Add the Resin of the Spruce Fir, the Opium, and the Water, to the melted Plaster, and with a slow fire boil down until all unite into a proper consistence, L.—The Edinburgh and Dublin Colleges omit the water, and, for the Resin of Spruce Fir, substitute Burgundy Pitch.)—Employed as a topical anodyne in rheumatism, lumbago, and neuralgia. Its powers are very light, or even equivocal.


---

1 The ancient philonium was a famous electuary of the opiate kind. It was called Philo’s antidote, after Philo, of Tarsus, its inventor, who lived, it is supposed, in Augustus’s time. The composition of the Philonium, described in Greek elegiac verses, is preserved and explained by Galen, De med. comp. sec. loc. lib. ix. 4. The terms of the recipe are enigmatical, and may amuse some readers; we give the substance:—“Take of the yellow and fragrant hair of the divine Crocus, whose blood glitters in the fields of Mercury, as many drachms as a man has senses; of the Eubcean Nauplian, a drachm; of the slayer of Minoeides, as preserved in the bowels of sheep, the like quantity; add twenty drachms of white flame, and twenty of the bean of the wild animal of Arcadia; a drachm of the root (falsely so called) which grows in the land famous for the Pisanean Jove; take twice five drachms of mor, written with the masculine article prefixed; and mingle all with the production, of the daughters of the bulls of Athens.” Galen interprets this curious medico-poetical farrago, which, without his aid, would certainly be not a little obscure, as implying the admixture of saffron pyrethrum, euphorbium, white pepper, hyoscyamus, spikenard, opium, and Athenian honey. It is, moreover, stated in the verses, that the pains for which this φηγοσ φοιησ was most serviceable were those of colic, of the liver, dysuria, and stone.—(Dr. Wm. Cummin, Lond. Med. Gaz. vol. xvii. p. 990.)
twelve hours, that it may soften; then, the remaining water being poured in gradually, rub them until they are very well mixed, and set by, that the dregs may subside; afterwards strain the liquor, and evaporate to a proper consistence, _L._—The _Edinburgh College_ digests five times successively; each time in a pint of water, and for twenty-four hours each time. Filter the successive infusions as they are made, passing them through the same filter; unite and evaporate them in the vapour bath to the due consistence.—The _Dublin College_ exposes the infusion to the air for two days before evaporation.)—When opium is digested in water, this fluid takes up the _odorous principle_, the _salts of morphia and codeia_, the _narcotina_, the _gum_, the _extractive_, and some of the _resin_. A portion of _morphea_ is frequently found in the dregs. Moreover, a portion of the _oil_ is found in the solution. By concentration, the _odorous principle_ is dissipated, and the _resin_ and the _oil_ combined with, and in part saturating the _narcotina_, are separated. These matters would be more completely got rid of by re-dissolving the extract in water. The removal of these inert principles, as well as the impurities of opium and the consequent concentration of the active constituents of this substance, must, of course, render the extract a more powerful preparation than ordinary opium. Good opium yields more than half its weight (from 60 to 70 per cent.) of extract, which, therefore, should be at least one-third more active than crude opium. It is usually believed to operate with less disturbance to the general system than the ordinary preparations of opium. It is employed as an _anodyne_, _sedative_, and _soporific_, in cases where crude opium or its tincture disagrees.—The dose of it is from gr. \(\frac{1}{4}\) to gr. iij. or gr. iv.

**Liquor Opii Sedativus.**—Mr. Battley, some years since, assured me that the only ingredients employed in the preparation of his _liquor opii sedativus_ were opium, water, and heat. It appears to contain somewhat less _meconic acid_ than the ordinary tincture of opium. Probably this and some other principles of opium are got rid of by successive evaporations and solutions. Perhaps an aqueous solution of the watery extract of opium, with the addition of a little spirit to preserve it, would be a convenient substitute.

**10. Tinctura Opii, L. E. D. Tincture of Opium; Laudanum.** (Hard Opium, powdered, 3iij.; Proof\(^a\) Spirit, Oij. Macerate for fourteen days, and filter, _L._—The proportions used by the _Dublin College_ are 3x. of Opium and Oj. [wine-measure] of spirit. The _Edinburgh College_ directs—"Opium sliced, 3iij.; Rectified Spirit, Oj. and f3vij.; Water, f3xiiijss. Digest the opium in the water at a temperature near 212° for two hours; break down the opium with the hand; strain and express the infusion; macerate the residuum in the rectified spirit for about twenty hours, and then strain and express very strongly. Mix the watery and spirituous infusions, and filter.—This tincture is not easily obtained by the process of percolation; but when the opium is of fine quality, it may be prepared thus:—Slice the opium finely; mix the spirit and water; let the opium

---

\(^a\) The London Pharmacopoeia erroneously directs _rectified spirit_.
macerate in fourteen fluidounces of the mixture for twelve hours, and then break it down thoroughly with the hand; pour the whole pulpy mass and fluid into a percolator, and let the fluid part pass through, add the rest of the spirit without packing the opium in the cylinder, and continue the process of percolation till two pints are obtained," \( E \).

The percolation process of the Edinburgh College is unnecessary and troublesome, and will, I suspect, be rarely, if ever, adopted by laudanum preparers. Tincture of opium is of a deep brownish red colour, with the peculiar odour and taste of opium. Its sp. gr., according to Mr. Phillips, is 0.952. Nineteen minims of it contain about one grain of opium. Proof spirit dissolves the same constituents as water does (see p. 1772), but it takes up a large proportion of narcotina, resin, and oil. I have repeatedly prepared morphia from the insoluble residue left behind in the preparation of the tincture. Tincture of opium is a powerful and valuable anodyne and soporific. Its employment is to be preferred to that of solid opium where a more immediate effect is required. Moreover, in administering opiates to children, the facility of adjusting small doses of it presents a great advantage over solid opium. The dose of it, like that of solid opium, must vary according to several circumstances. For an adult it varies from \( \frac{1}{9} \) to \( \frac{1}{3} \) j. To children it must be given with the greatest caution. I have seen a powerful effect produced in a very young infant by one drop.

11. ENEMA OPII, L. D. Enema Opii vel Anodynum, E. Opium Clyster. (Decoction of Starch, \( \frac{3}{4} \) iv.; Tincture of Opium, \( \frac{3}{4} \) xxx. Mix, L. — The Dublin College employs \( \frac{3}{4} \) iv. of water instead of the Starch Mucilage, and \( \frac{3}{4} \) j of Tincture of Opium. — The Edinburgh College uses \( \frac{5}{4} \) ss. of Starch; \( \frac{3}{4} \) ss. to \( \frac{1}{2} \) j of Tincture of Opium; and \( \frac{3}{4} \) j. of Water. The starch is boiled in the water, and the tincture added when the mucilage is cool enough for use. — The formula of the London College is, in my opinion, to be preferred to those of the other British colleges; but it may be sometimes necessary to double or treble the quantity of tincture employed. In the passage of renal calculi, in nephritis, irritation or inflammation of the bladder, uterus, or prostate gland, in dysentery, and painful affections of the large intestine, the opium clyster is most valuable.

12. LINIMENTUM OPII, L. E. Linimentum Saponis cum Opio vel Linimentum Anodynum D.; Liniment of Opium. (Soap Liniment, \( \frac{5}{4} \) vj. (by measure four parts, \( D \)); Tincture of Opium, \( \frac{3}{4} \) j. (by measure three parts, \( D \)). Mix, L. — Castile Soap, \( \frac{3}{4} \) vj.; Opium, \( \frac{3}{4} \) ss.; Camphor, \( \frac{3}{4} \) j.; Oil of Rosemary, \( \frac{5}{4} \) vj.; Rectified Spirit, Oj. Macerate the soap and opium in the spirit for three days; filter, add the oil and camphor, and agitate briskly, \( E \). — Employed as an anodyne in rheumatism, neuralgic pains, sprains, &c.

\* Transl. of the Pharm.
13. **VIMII OPII, L. E. D.** *Laudanum Liquidum Sydenhami, Ph. L.* 1720. *Tinctura Thebaica, Ph. L.* 1745. *Wine of Opium.* (Opium, \(\frac{3}{4}\)j. D.; Purified Extract of Opium, \(\frac{5}{12}\)SS. L.); Cinnamon, bruised; Cloves, bruised, of each, \(\frac{5}{12}\)SS. \(\frac{3}{8}\)S. D.; Sherry Wine, Oij. (Oj. *wine-measure, D.*). Macerate for fourteen [seven, E.; eight, D.] days, and filter.)—Its effects are similar to those of the tincture of opium, but its taste and smell are more agreeable. It was recommended by Mr. Ware as an application to the eye in ophthalmia; and experience has fully proved its efficacy where there is much scalding pain, lachrymation, and intolerance of light. When first applied it causes a sharp pain and a copious flow of tears, but these effects soon subside, and are followed by a considerable abatement of the former sufferings.—For internal use the dose is gtt. x. to f5j.

14. **TINCTURA OPII AMMONIATA, E.** *Ammoniated Tincture of Opium.* (Benzoic Acid; and Saffron, chopped, \(\frac{5}{12}\)v. of each; Opium sliced, \(\frac{5}{12}\)SS.; Oil of Anise, \(\frac{3}{12}\); Spirit of Ammonia, Oij.; Digest for seven days, and filter.)—Employed as a powerful diffusible stimulant and anti-spasmodic in hooping-cough and other spasmodic affections. Each drachm and a quarter contains about a grain of opium.—Dose, f\(\frac{3}{4}\)SS. to f5j.

15. **ACETUM OPII, E. D.** *Vinegar of Opium.* (Opium, \(\frac{3}{4}\)v.; Distilled Vinegar, f\(\frac{3}{4}\)xv. “Cut the Opium into small fragments, triturate it into a pulp with a little of the vinegar, add the rest of the vinegar, macerate in a closed vessel for seven days, and agitate occasionally. Then strain and express strongly, and filter the liquors.”) —Vinegar dissolves all the principles of opium soluble in water, and is better adapted for holding in solution the narcotina and the resinous matter of opium. It cannot, of course, effect any change in the sulphate of morphia contained in opium. Whether any acetate of morphia is formed at the expense of the meconate of morphia has not been satisfactorily proved. The effects of vinegar of opium do not appear to be precisely those of ordinary opium. It is believed to possess the anodyne, sedative, and soporific qualities of opium, without being apt to excite the disagreeable effects (nausea, headache, constipation, and general disorder of system,) which sometimes result from the ordinary preparation of this drug. Hill says that Le Mort observed a very odd effect from this preparation, “which was, that it often brought on suppressions of urine.” Dr. Montgomery has seen one instance of this effect; and Dr. Thomas Beattie has remarked the same result from the Black Drop. This paralyzing effect on the bladder is doubtless referrible to the morphia, which seems to acquire, in this preparation, increased activity.

---

*Remarks on Ophthalmia, p. 29. 1780.*
*Hist. of the Mat. Med. p. 784. 1731.*
Vinegar of opium is employed as an anodyne, sedative, and soporific. Dr. Montgomery observes, that he has found this preparation of opium decidedly superior to every other in relieving the agony of cancer uteri, and procuring rest at night." The same authority states, that twenty drops are equivalent to thirty of the common tincture of opium.—Dose, gtt. vi. to gtt. xxx.

Black Drop.—*Acetum Opii* may be regarded as the officinal substitute for a celebrated quack medicine called the *Black Drop, or The Lancaster, or Quakers' Black Drop*, the method of preparing which has been described by the late Dr. Armstrong. In this preparation *verjuice* (juice of the wild crab) is employed instead of vinegar. But there are several sources of uncertainty in the process.

Dr. Porter's *solution of opium in citric acid* has never come into general use.

16. **UNGUENTUM GALLÆ COMPOSITUM.** See p. 1083.

17. **TINCTURA CAMPHORÆ COMposita.** See p. 1160.

18. **PILULÆ STYRACIS COMPOSITÆ.** See p. 1327.

19. **PULVIS IPECACUANÆ COMPOSITUS.** See p. 1431.

20. **PILULÆ IPECACUANÆ COMPOSITÆ.** See p. 1433.

21. **PULVIS KINÆ COMPOSITUS.** See p. 1577.

22. **ELECTUARIUM CATECHU.** See p. 1592.

c. Morphia and its Preparations.

1. **MORPHIA, L. Morphina, Morphine, Morphium.**—So called from *Morpheus*, the god of sleep. Wedelius, Fr. Hoffman, and Neumann, speak of a *crystalline salt* obtained from a solution of opium; but they formed no correct notions of its nature. The *magistery of opium*, noticed by Ludwig, in 1688, may, perhaps, have been morphia.

Morphia is peculiar to the poppy tribe. It exists in opium in combination with meconic and sulphuric acids. Doubts, indeed, have been expressed with respect to its existence in opium, some chemists having suggested that it was a *product* rather than *educt*; but the accuracy of these views has been satisfactorily disproved.

The following are the directions for preparing morphia, given in the *London Pharmacopœia*:

Take of Hydrochlorate of Morphia, 3ż.; Solution of Ammonia, 15y.; Distilled Water, Oj. Add the Hydrochlorate of Morphia, first dissolved in a pint of water, to the solution of Ammonia with an ounce of water, shaking them together. What is thrown down wash with distilled water, and dry it with a gentle heat.

In this process the ammonia unites with the hydrochloric acid, and the morphia being set free is precipitated.

Pure morphia presents itself under the form of transparent crystals,
whose primary form is the right rhombic prism. On turmeric paper, as well as on reddened litmus paper, morphia has an alkaline reaction. Notwithstanding that it is insoluble, or nearly so, in cold water, it has a distinctly bitter taste. Boiling water dissolves a little more than one-hundredth part of morphia. It dissolves in 40 parts of cold anhydrous alcohol, and 30 parts of boiling alcohol: but it is insoluble, or nearly so, in ether. It is soluble in the oils (fixed and volatile), in solutions of potash and soda, and also, in much smaller quantity, in solution of ammonia: lastly, it readily dissolves in sulphuric, hydrochloric, and acetic acids. When heated, the crystals lose their transparency and water of crystallization; a strong heat causes them to enter into fusion, in which state they form a yellow liquid similar to melted sulphur, and which becomes white and crystalline on cooling. Heated in the open air, it burns like resin, and leaves a carbonaceous residuum.

The following are the chief characteristics of morphia:—

1st. Nitric acid reddens morphia or its salts (the chlorate excepted, according to Dumas), and forms with them an orange-red solution, which is much darkened by excess of ammonia, and which becomes yellow after a little time. By the prolonged digestion of morphia in nitric acid, we obtain oxalic acid.—Fallacies. Nitric acid produces a red colour with several other bodies, as bruca, commercial strychnia, several volatile oils (as oil of pimento and oil of cloves), some resinous substances, infusion of cloves or of pimento, &c.

2nd. Iodic acid is deoxidized by morphia, iodine being set free. Hence, when this alkali is added to a solution of iodic acid, the liquor becomes reddish brown, and forms a blue compound (iodide of starch) with starch.—Fallacies. Sulphuretted hydrogen, sulphurous acid, phosphorous acids, and some other agents, have a similar effect on iodic acid.

3dly. Sesquichloride of iron dropped on crystals of morphia renders them blue. The same effect is produced on the acetate and oxalate, and slightly on the sulphate of morphia. No obvious effect is produced on the hydrochlorate of morphia until an alkali is added. The nature of the blue compound is not perfectly understood. Possibly, part of the morphia is oxidized, and the compound thus produced, unites with some oxide of iron (morphe of iron). If water in excess, or acids, or alkalis, be added to the blue compound, the colour is destroyed.—Fallacies. Tannic and gallic acids with a little water, and infusion of cloves or of pimento, also form blue compounds with sesquichloride of iron.

4thly. The alkaline carbonates occasion a white precipitate (carbonate of morphia) in solutions of the soluble morphiatic salts.

5thly. Solution of ammonia precipitates morphia from its solution in acids. A considerable excess of ammonia redissolves the precipitate. In very dilute solutions, ammonia occasions no precipitate until heat be applied to drive off the excess of alkali.

6thly. Infusion of nutgalls, or a solution of tannic acid, causes a precipitate (tannate of morphia) in neutral solutions of the morphiatic salts. The precipitate is soluble in acetic acid.

7thly. An alcoholic solution of carbazotic acid causes no precipitate in an alcoholic solution of morphia.

8thly. If a solution of chlorine be mixed with a solution of morphia, or its salts, and then ammonia added, a dark brown colour is developed.

The composition of morphia is, according to Regnault, as follows:—

\[ \text{Pharmaceutisches Central Blatt für 1838, S. 486.} \]
The *morphitic salts* are, for the most part, crystallizable. When pure, they are colourless. They have a bitter taste.

The following characters of morphia are given in the *London Pharmacopoeia*:

Very little soluble in cold water, little in boiling water, but very readily in alcohol. This solution exhibits alkaline properties when tried with turmeric; and, when the spirit is distilled from it, it yields crystals, which are totally destroyed by heat. On the addition of Nitric acid, morphia becomes first red, and afterwards yellow. Tincture of sesquichloride of iron gives it a blue colour. Chlorine and [afterwards] ammonia being added to its salts, they are rendered of a brown colour, which is destroyed when more chlorine is added. Morphia is also precipitated from its salts by solution of potash, which, added in excess, re-dissolves it.

The precise relation which the effects of this alkaloid and its salts bear to those of opium, is a point on which the profession is by no means agreed. Some recent writers\(^a\) declare that, after having carefully compared the effects of the morphia salts with those of opium, they can discover no difference between them; but my own limited observation of the effects of these salts induces me to agree with those who admit the similarity, but not the identity, of the effects of these substances. Charvet\(^b\) could observe no difference between them in their action on the *invertebrata*. But on the higher classes of the *vertebrata* there were obvious differences. The effects of morphia on *man* are in several respects different from those of opium, but they appear to want uniformity; that is, the same results have not yet been arrived at by different experimenters. This may in some cases at least be ascribed to the employment of morphia contaminated with some other principles of opium. *In small doses*, as from a quarter of a grain to one grain, acetate of morphia causes a feeling of distension or fulness about the head, some disturbance of vision, oftentimes headache, giddiness and somnolency, or actual sleep, which, however, differs from ordinary sleep, and is often more or less disturbed. The pupils are usually contracted. Orfila says this occurs in nineteen out of twenty cases. However, in some instances dilatation has been observed, and in others the pupil was natural. The pulse is generally slow and small, though sometimes it is more frequent, and occasionally is soft and full. Itching of the skin is frequently noticed, or even a cutaneous eruption is by no means uncommon. Grain doses readily excite gastric uneasiness, nausea, and vomiting. One remarkable symptom often caused by acetate of morphia, especially in men, is a difficulty in voiding the

---

\(^a\) Trousseau and Pidoux, *Traité de Thérap.* i. 164. 1836.
\(^b\) *De l’Action Comp. de l’Opium.* 1826.
urine, and which appears to depend on a weakened or paralytic condition of the bladder. Bally\textsuperscript{i} lays great stress on this last-mentioned symptom, especially when a full dose of morphia has been taken. When these effects subside, loss of appetite, muscular feebleness, and constipation, are left behind. When the dose is increased, the effects become somewhat alarming. Great cerebral excitement is produced, vision is disordered and obscured, there is singing in the ears, and the patient, when lying horizontally, experienced sudden convulsive movements, like those produced by the electric shock. When a fatal dose has been swallowed, the stomach sometimes manifests irritation, but this is soon followed by great disorder of the cerebrospinal system, which ultimately assumes an apoplectic character. The sight becomes dim, excessive weakness is experienced, gradually all consciousness is lost, and coma supervenes, attended usually with contracted, though sometimes with dilated pupils, coldness of the surface, frequent and small pulse, hurried stertorous respiration, and occasionally with convulsions. Before insensibility comes on, as well as when it is subsiding, there is itching of the skin. Difficulty in passing the water is also experienced, in consequence of the paralysed state of the bladder. Not unfrequently, lividity of skin is observed.

The effects of morphia and its salts appear to be identical in their nature. The soluble salts (as the hydrochlorates) are more constant and certain in their operation than uncombined morphia, in consequence probably of the difficult solubility of the latter.

In comparing the morphitic salts with opium, we observe that they are less stimulant, and less disposed to cause sweating, constipation, headache, and dryness of the tongue. The feelings which they excite are less agreeable, and hence they are not adapted to be substituted for opium by the eaters of this drug. They more readily affect the bladder than opium.

Uses.—We employ morphia or its salts in preference to opium when our object is to make applications to the denuded dermis (endermic medication, see p. 149). They are employed in this way for the purpose of alleviating violent neuralgic pains, and to relieve the excessive endermic operation of strychnia, (see p. 1306-11). Gastrodynia and obstinate vomiting are sometimes relieved by the endermic application of morphia to the epigastrium; and violent headache by the application of this remedy to the temples. Occasionally this mode of administration is adopted, when we wish to bring the general system under the calming and sedative influence of morphia, and where from some cause its exhibition by the mouth is objectionable. Some cases of maniacal delirium may be treated with advantage this way.

The morphia salts are given internally in cases where we wish to obtain the anodyne, soothing, sedative, soporific, and anti-spasmodic qualities of opium, and where this drug is objectionable on account of its tendency to excite certain injurious effects already

\textsuperscript{i} Mem. de l'Acad. Roy. de Med. i. 99.
ACETATE OF MORPHIA. 1779
referred to (see p. 1774) In all cases where both opium and the morphia salts are equally admissible, I prefer the former, its effects being better known and regulated: moreover, opium is to be preferred as a stimulant and sudorific, and for suppressing excessive mucous discharges.

Administration.—The salts of morphia are given internally, in substance or solution, in doses of from one-eighth to one-fourth of a grain, or, beyond this. I have given in insanity two grains of muriate of morphia at a dose. For ndermic use they are to be finely powdered, and applied to the extent of a grain or a grain and a half at a time.

2. MORPHIA ACETAS, L. E. Acetate of Morphia.—This salt is thus directed to be prepared by the London College:—

Take of Morphia, 5vj.; Acetic Acid, f5ij.; Distilled Water, f3iv. Mix the Acid with the water, and pour them upon the morphia to saturation. Let the liquor evaporate with a gentle heat, that crystals may be formed.

In this process the acetic acid saturates the morphia, and the solution by evaporation yields crystallized acetate of morphia.

The following are the directions of the Edinburgh College:—

"Take muriate of morphia, any convenient quantity. Dissolve it in fourteen times its weight of warm water, and, when the solution is cool, add aqua ammonia gradually, and with constant agitation, until there is a permanent but faint odour of ammonia in the fluid. Collect the precipitate on a calico filter, wash it moderately with cold water, and dissolve it by means of a slight excess of pyrogallous acid, in twelve parts of warm water for every part of muriate of morphia that was used. Concentrate the solution over the vapour-bath, and set aside to crystallize. Drain and squeeze the crystals, and dry them with a gentle heat. More acetate of morphia may be obtained on concentrating the mother liquor."

In this process the ammonia decomposes the muriate of morphia, and the precipitated morphia is afterwards dissolved in diluted pyrogallous (acetic) acid.

Acetate of morphia is usually prepared by evaporating its solution to dryness by a gentle heat. Obtained in this way it is amorphous. It is difficult to obtain pure, as it readily undergoes decomposition, when its solution is evaporated, and is converted into a mixture of morphia, neutral acetate, and the super-acetate of morphia. Hence, as met with in commerce, it is imperfectly soluble in water, unless a few drops of acetic acid be added. It is usually slightly coloured. Its crystals, when pure, are colourless and radiating. The following is the composition of this salt:—

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Eq.Wt</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>292</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Acetate of Morphia</td>
<td>1</td>
<td>332</td>
</tr>
</tbody>
</table>

Crystallized acetate of morphia is,—

Very readily dissolved in water. Its other properties are such as have been stated of morphia, Ph. L.

It is less soluble in alcohol than in water.
The Edinburgh College gives the following characters of the purity of this salt:

One hundred measures of a solution of ten grains in half a fluid ounce of water and five minims of acetic acid, heated to 212°, and decomposed by a faint excess of ammonia, yields by agitation a precipitate which, in twenty-four hours, occupies 15.5 measures of the liquid.

The dose of this and the other morphitic salts has been already mentioned (see p. 1779).

3. MORPHIA HYDROCHLORAS, L. Morphia Muria, E.; Hydrochlorate, or Muriate of Morphia. In the London Pharmacopoeia this salt is directed to be prepared as follows:

Take of Opium, sliced, lb. j.; Crystals of Chloride of Lead, ſij., or as much as may be sufficient; Purified Animal Charcoal, ſijss.; Hydrochloric Acid; Distilled Water; Solution of Ammonia, each as much as may be sufficient. Macerate the opium in four pints of distilled water for thirty hours, and bruise it; afterwards digest for twenty hours more, and press it. Macerate what remains again, and a third time, in water, that it may become free from taste, and as often bruise and press it. Evaporate the mixed liquors, with a heat of 140°, to the consistence of a syrup. Then add three pints of distilled water, and, when all the impurities have subsided, pour off the supernatant liquor. Gradually add to this two ounces of chloride of lead, or as much as may be sufficient, first dissolved in four pints of boiling distilled water, till nothing further is precipitated. Pour off the liquor, and wash what remains frequently with distilled water. Then evaporate the mixed liquors as before, with a gentle heat, that crystals may be formed. Press these in a cloth, then dissolve them in a pint of distilled water, and digest, with an ounce and a half of animal charcoal, in a heat of 120°, and strain. Finally, the charcoal being washed, evaporate the liquors cautiously, that pure crystals may be produced. To the liquor poured off from the crystals first separated, previously mixed with a pint of water, gradually drop in as much solution of ammonia, frequently shaking it, as may be sufficient to precipitate all the morphia. To this, washed with distilled water, add hydrochloric acid, that it may be saturated; afterwards digest it with two ounces of animal charcoal, and strain. Lastly, the animal charcoal being thoroughly washed, evaporate the liquors cautiously, that pure crystals may be produced.

Water extracts from opium the meconate and sulphate of morphia and codeia; a part of the narcotin, of the meconine, of the narceine, and of the thebaina; the brown acid extractive; and a part of the resin, and of the fat oil. When chloride of lead is added to infusion of opium, meconate, with a little sulphate of lead, and some resinous colouring matter, are precipitated, while the hydrochlorates of morphia and of codeia are left in solution. A solution of the impure crystals is then decomposed by ammonia, by which the morphia is precipitated, while codeia and hydrochlorate of ammonia are left in solution. The morphia is dissolved in hydrochloric acid, and the solution of the hydrochlorate decolorized by charcoal.

The Edinburgh College follows Gregory’s process. Their directions for preparing this salt are as follows:

"Take of Opium, ʒxx.; Water, ſviij.; Muriate of lime, ʒj. or a slight excess. —Macerate the opium in fragments for twenty-four hours in two pints of water, and separate the infusion, squeezing well the residue. Repeat the maceration successively with two pints more of the water till the whole is made use of. Concentrate the whole infusion over the vapour-bath to one pint, and add the muriate of lime dissolved in four fluidounces of water. Set the whole aside to
settle; pour off the liquid; wash the sediment with a little water, adding the washings to the liquid. Evaporate the liquid sufficiently in the vapour-bath for it to solidify on cooling. Subject the cooled mass to a very strong pressure in a cloth; redissolve the cake in a sufficiency of warm distilled water; add a little powder of white marble, and filter; acidulate the filtered fluid with a very little muriatic acid; and concentrate a second time in the vapour-bath for crystallization. Subject the crystals again to very strong pressure in a cloth. Repeat the process of solution, clarification by marble and muriatic acid, concentration and crystallization, until a snow-white mass be obtained.

On the small scale, trouble and loss are saved by decolorizing the solution of muriate of morphia by means of a little purified animal charcoal after two crystallizations. But on the large scale it is better to purify the salt by repeated crystallizations alone, and to treat all the expressed fluids, except the first, in the same way with the original solution of impure muriate of morphia. An additional quantity of salt may often be got from the first dark and resinous fluid obtained by expression, on merely allowing it to remain at rest for a few months, when a little muriate of morphia may be deposited in an impure condition.

The opium which yields the largest quantity of precipitate by carbonate of soda, according to the formula in p. 1742, yields muriate of morphia not only in greatest proportion, but likewise with the fewest crystallizations.

In this process the changes are analogous to those before described for the process of the London Pharmacopeia, except that meconate and sulphate of lime, instead of meconate and sulphate of lead, are produced.

Another, and, it is believed, a greatly improved, method of obtaining morphia, has been recently suggested by Mohr. It consists in adding, to a concentrated infusion of opium, milk of lime prepared with a quantity of dry lime, equal to the fourth part of the weight of the opium. The mixture is heated till it boils, and is filtered while hot through linen. The filtered liquor has a light brown yellow colour. While still hot it is mixed with pulverized sal ammoniac in excess; the lime is saturated by the muriatic acid of the sal ammoniac, and the ammonia of the latter is set free, and the morphia precipitated. In this way crystallized morphia may be obtained without the use of alcohol.

Pure hydrochlorate of morphia crystallizes in plumose, acicular crystals. It is colourless, odourless, bitter, soluble in from 16 to 20 parts of cold water, but less of boiling water. When its saturated boiling solution is allowed to cool, it congeals to form a crystalline mass. It is soluble in alcohol. By heat it is decomposed and totally dissipated. Nitric acid reddens it. Sesquichloride of iron with an alkali colours it blue.

The air-dried crystals are thus composed:

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Ew. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>392</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Water</td>
<td>6</td>
<td>54</td>
</tr>
</tbody>
</table>

Crystallized Hydrochlorate of Morphia

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Ew. Wt.</th>
<th>Per Cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphia</td>
<td>1</td>
<td>383</td>
</tr>
</tbody>
</table>

According to the London College, crystallized hydrochlorate of morphia should be,
Soluble in water. What is precipitated [i.e. chloride of silver] from the solution by nitrate of silver, is not totally dissolved either by ammonia, unless added in excess, or by hydrochloric or nitric acid.

The Edinburgh College gives the following characters of its purity:

"Snow white; entirely soluble; solution colourless; loss of weight at 212° not above 13 per cent.; one hundred measures of a solution of 10 grains in half a fluidounce of water heated to near 212°, and decomposed with agitation by a faint excess of ammonia, yield a precipitate which, in twenty-four hours, occupies 12.5 measures of the liquid.

On the above I would merely observe, that Mr. Sandall found that the quantity of water which this salt loses by drying varies from 9.20 to 14.33 per cent.

The effects, uses, and doses of this, as well as the other morphitic salts, have been already described (see p.1778-9).

3. MORPHIE MURIATIC SOLTIO, E.; Solution of Muriate of Morphia. (Muriate of Morphia, 5iss.; Rectified Spirit, 3v.; Distilled Water, f3xxv.; Mix the Spirit and Water, and dissolve the muriate of morphia in the mixture with the aid of a gentle heat.)—About one hundred and six minims of this solution contain one grain of muriate of morphia.—The dose is from mx. gradually increased to f33ss.

4. TROCHISCI MORPHIE, E.; Morphia Lozenges. (Muriate of Morphia, 3j.; Tincture of Tolu, 3ss.; Pure Sugar, 3xxv. Dissolve the muriate of morphia in a little hot water; mix it and the tincture of Tolu with the sugar; and, with a sufficiency of mucilage, form a proper mass for making lozenges; each of which should weigh about fifteen grains.)—Each lozenge contains about one-fortieth of a grain of muriate of morphia. The morphia lozenges of the shops usually contain each one-twenty-fourth of a grain of muriate of morphia.—This is an agreeable mode of employing morphia, especially in pectoral affections.

5. TROCHISCI MORPHIE ET IPECACUANHA, E.; Morphia and Ipecacuanha Lozenges. (Muriate of Morphia, 3j.; Ipecacuan, in fine powder, 5j.; Tincture of Tolu, f3ss.; Pure Sugar, 3xxv. Dissolve the Muriate in a little hot water; mix it with the tincture and the ipecacuan and sugar; and, with a sufficiency of mucilage, beat the whole into a proper mass, which is to be divided into fifteen-grain lozenges.)—Each lozenge contains about one-fortieth of a grain of muriate of morphia, and one-thirteenth of a grain of ipecacuanha. Useful to allay tickling cough.

6. MORPHIE SULPHAS; Sulphate of Morphia.—This salt, though not contained in the British pharmacopoeias, is occasionally used in medicine. It is crystalline, and readily soluble in water. It consists of 1 atom sulphuric acid = 40, 1 atom morphia = 292, and 6 atoms water = 54. One of these atoms of water is an
essential constituent of the salt, and cannot be removed without destroying the salt. The other 5 atoms are the water of crystallization. The dose of it is the same as the other morphitic salts (see p. 1779).

Order LXXXII.—Menispermacae, De Candolle.—The Cocculus Tribe.

Menispermeæ, Jussieu.

Essential Character.—Flowers (by abortion?) unisexual, usually dioecious, very small. Floral integuments in one or several rows, each of which consists of three or four parts, hypogynous, deciduous. Petals sometimes absent. Males: stamens monadelphous, or rarely distinct; sometimes equal in number and opposite to, the petals; at other times three or four times as many; anthers adnate, turned outwards, or inserted on the apex of the filament. Females: ovaries sometimes numerous, each with one style cohering slightly at the base; sometimes solitary, crowned with many stigmas, internally many-celled, and, therefore, consisting of many carpels soldered together. Drupes usually berried, one-seeded, oblique or lunate, compressed. Seed of the same shape as the fruit; embryo curved or turned in the direction of the circumference; albumen none, or small and fleshy; cotyledons flat, sometimes lying face to face, sometimes distant from each other, and lying in two cells of the seed; radicle superior, but sometimes appears inferior when the apex of the fruit is, by the mode of growth, contiguous with the base.—Sarmentaceous, flexible tough shrubs. Leaves alternate, simple or rarely compound, mucronate. Flowers small, usually racemose (De Cand.)

Properties.—The roots of several species are bitter and tonic; the seeds of some of them are narcotic.


Menispernum palatum, Lamarck.

Sex. Syst. Dioecia, Hexandria.

(Radix, L. D.—Root, E.)

History.—Franciscus Redi, in 1675, is the first writer who mentions the root of this plant: he praises it as an alexipharmic or antidote for poisons. Cartheuser afterwards examined it; but Dr. Thomas Percival gave the best account of it. This root has been known by various names, such as Calumba, Colombo, Calomba, and Colomba. Its native country and history were long involved in obscurity. In 1830, Dr. Hooker published a complete description of both the male and female plants. The root was at first supposed to come from Colombo, a town of Ceylon, and from which it was said to derive its name. But it is now known to be the produce of Mozambique. Its English name Calumba is derived from the Portuguese word Kalumbo, the o in which is mute.

Botany. Gen. Char.—Flowers unisexual, (always?) dioecious. Calyx
of twelve sepals in four series, with two, three, or more, close-pressed bracteoles. Males: stamens six, or rarely three, opposite to the inner sepals, distinct; anthers two-celled, terminal, dehiscing vertically; filaments either filiform with the anther cells horizontal, approximate, and each externally two-lobed, or thickened at the apex with the cells divericating downwards, and separated by the connecting. Females: ovaries three, six, or numerous. Drupes one to six, or numerous, one-celled, one-seeded. Peduncles axillary or rarely lateral; males usually many-flowered; females generally few-flowered, without bracts, or with very small ones if present (Lindley).

Sp. Char — Leaves cordate at the base, five- to seven-lobed; lobes quite entire, acuminate, somewhat hairy. Stems and ovaries clothed with glandular hair (De Cand.)

Root perennial, of several fasciculated, fusiform, fleshy tubers, with a brown warty epidermis; internally deep yellow, odourless, very bitter. Stems annual, herbaceous, twining, beset at the lower part with long glanduliferous hairs: of the males, simple; of the females, branching. Leaves alternate, nearly orbicular, wavy on the margin, with long hairy footstalks. Racemes axillary, solitary; in the male plants compound. Flowers small, green. Fruit drupaceous or berried, about the size of a hazelnut, densely clothed with long spreading hairs, tipped with a black oblong gland.

Hab.—Thick forests on the shores of Oibo and Mozambique, as well as inland for 15 or 20 miles.

Preparation of the Roots.—The natives never cultivate the plant, the spontaneous produce being sufficient. The roots are dug up in March (the hot season), the offsets from the main root are cut in slices, strung on cords, and hung up to dry in the shade. It is deemed fit for commerce, when, on exposure to the sun, it breaks short; and of a bad quality when it is soft or black.

Description.—Calumba or Colombo root (radix calumba) is met with in flat circular or oval pieces, of from half an inch to three inches diameter, and from one to three or four lines thick. It occurs also in cylindrical pieces of from one to two inches long. The epidermis covering the sides of the pieces is of a yellowish gray or brownish colour, smooth or irregularly rugous. The transversal surfaces are of a greenish or grayish yellow colour, depressed in the middle from the great shrinking of the medulla in the drying process, and consist of three or four concentric layers. The outer or cortical portion varies in thickness, but is usually about two or three lines thick. It is separated from the ligneous portion by a dark-coloured layer, not ex-

ceeding a hair in thickness. The internal or medullary portion is light, spongy, and shrunk. The odour of calumba is faint, but somewhat aromatic: the taste aromatic, and very bitter. In the larger and thicker pieces small holes are occasionally observed, which have been made for the convenience of drying. On account of the starch which it contains, the root is readily attacked by insects.

I am indebted to Mr. N. B. Ward for a sample of calumba root cultivated at the Mauritius. It is deficient in the bright greenish yellow tint of the Mozambique calumba.

Commerce.—In the year 1838, duty (2d. per lb.) was paid on 19,805 lbs., and in 1839 only on 9384 lbs. of calumba.

Composition.—The more recent analyses of Calumba root are those of Planche and Buchner.

<table>
<thead>
<tr>
<th></th>
<th>Planche.</th>
<th>Buchner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter matter</td>
<td>13</td>
<td>10 to 12.2</td>
</tr>
<tr>
<td>Animal matter, soluble in water and not in alcohol</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Yellow resinous extractive</td>
<td>0</td>
<td>5.0</td>
</tr>
<tr>
<td>Volatile oil</td>
<td>a trace</td>
<td>0.0</td>
</tr>
<tr>
<td>Wax</td>
<td>3</td>
<td>3/8 to 4/7</td>
</tr>
<tr>
<td>Gum</td>
<td>9</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Starch</td>
<td>33</td>
<td>17.4</td>
</tr>
<tr>
<td>Vegetable medulla (pectin?)</td>
<td>39</td>
<td>12.5</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>0</td>
<td>9.8</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calumba root</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

1. Odorous Principle (Volatile Oil?)—The odour of the root is supposed to depend on a volatile oil, traces of which were procured by Planche. The distilled water of the root possesses the odour of the latter.

2. Calumin—(Bitter Principle).—A crystallizable, odourless, very bitter, neutral substance, extracted from Calumba root by Wittstock. Its crystals are rhombic prisms. It is fusible; very slightly soluble in water, alcohol, ether, and volatile oils. Boiling rectified spirit dissolves about 1/40th of its weight. It dissolves in acids and alkalies; its best solvent being acetic acid. It is unaffected by metallic solutions, and by infusion of nutgalls. Sulphuric acid dissolves it, assuming first a yellow, then a red colour. Its composition, according to Liebig, is carbon 65.45, hydrogen 6.18, oxygen 28.37: or C12 H7 O4.

Planche describes the active principle of calumba as a yellow bitter matter soluble in water and alcohol, and yielding no precipitate either with the salts of lead or infusion of galls.

3. Starch.—This constitutes about one-third by weight of the root. It renders the root an easy prey to insects. The structure of the starch particles has been described by Payen. These bodies are remarkable by their gibbosities, and by the hilum being found on the largest part of the particles.

Chemical Characteristics.—If the root be moistened with water, and then touched with tincture of iodine, it becomes black. A decoction of the root when cold forms with a solution of iodine a blue colour (iodide of starch). Sulphate of iron, emetic tartar, and gela-
tine, produce no obvious change in an infusion of calumba, shewing the absence of tannic and gallic acids. Litmus detects no free acid. Infusion of nutgalls causes in the infusion of calumba a precipitate (tannate of starch?)

Adulteration. — The root of Frasera Walteri, called the American or false calumba, (see p. 1285), has been occasionally substituted for calumba root on the continent. Such a fraud would not be practicable in England, at least to any extent, as the appearance of the root is quite dissimilar to that of the genuine calumba. It is distinguished chemically from the latter by three characters: 1st, It undergoes no change of colour when touched with tincture of iodine, shewing that it contains no starch; 2ndly, It becomes blackish green on the addition of sulphate of iron; 3rdly, It yields a precipitate with a solution of gelatine. The two last characters indicate the presence of tannic acid.

Physiological Effects. — Calumba is an excellent tonic; promoting the appetite, assisting the digestive process, and improving the quality of the secretions from the gastro-intestinal mucous membrane. It is not a stimulant; for Dr. T. Percival took a scruple of it on an empty stomach, but did not observe that it had the least effect on the regularity, fulness, or velocity of the pulse. In another experiment he swallowed half a drachm: in ten minutes his pulse was fuller, and slower by three beats, and continued so for three-quarters of an hour. In consequence of the quantity of starch and gum which it contains, it is sometimes termed a mucilaginous or demulcent tonic. Cetraria islandica and Simaruba bark agree with calumba in this circumstance. But from them, as well as from Quassia, it is distinguished by its aromatic properties. In some respects (i.e. in its tonic and aromatic qualities) it approximates to rhubarb, but is devoid of the purgative and astringent properties of the latter. Its want of astringency distinguishes it from the astringent tonics (as cinchona). Full doses of it, in the form of powder, given when the stomach is very irritable, cause vomiting. It does not appear either to constipate or relax the bowels. We are not acquainted with the effects of excessive doses of it. Poisonous properties have been assigned to it by Buchner, who states, that Hârtl, one of his pupils, applied a grain of the etherial extract of calumba, deprived of wax by repeated solution in water, to a wound in the leg of a rabbit, and that it proved fatal in ten hours.

Uses. — Calumba is one of our most useful stomachics and tonics. Its great value consists in its not being apt, like other and more powerful tonics, to create nausea, sickness, febrile disorder, or headache, so that it is tolerated when other remedies of this class would be immediately rejected. Indeed on many occasions it evinces a positive power of checking vomiting. Schwilgué, in order to test its anti-emetic qualities, gave it when vomiting had commenced after

Toxikol. S. 229.
* Mat. Med. ii. 374.
the use of emetic tartar and ipecacuanha. It frequently arrested the vomitings. He also gave it in conjunction with these emetics, and observed that the vomiting occurred more slowly than usual, and was milder. Probably it owes these valuable properties to a combination of circumstances; such as its freedom from acidity and astringency, the large quantity of starch which it contains (from which it acquires demulcent properties), and the peculiar operation of its bitter principle. The following are the principal uses to which it has been applied:—

1. In a languid state of the stomach, with general debility, attended with want of appetite, indigestion, nausea, and flatulence, experience has fully established the value of calumba, and has proved the justice of the encomiums passed on it by Dr. T. Percival. It is of all tonics the least likely to disagree with the stomach. In the stage of convalescence after an attack of fever, the infusion of calumba is an excellent preparative for the more powerful tonics (infusion of cinchona and disulphate of quina). In those forms of dyspepsia attended with great acidity of stomach, it may be given with advantage in combination with bicarbonate of potash.

2. To allay vomiting, when not dependent on inflammatory conditions of the stomach, calumba is often highly serviceable; as in bilious vomiting, in the sickness which so frequently attends pregnancy and dentition. Even vomiting arising from renal calculi or diseased kidney has been somewhat palliated by calumba. I have seen the most satisfactory results from the combined use of infusion of calumba and effervescing draughts (composed of citric acid and bicarbonate of potash) in those occasional attacks of vomiting especially observed in delicate females, and which are commonly termed bilious attacks. By this treatment the violence and continuance of the vomitings have been diminished, and the continued employment of calumba has reduced the frequency, and in some cases prevented the occurrence, of future attacks.

3. In diarrhoea and dysentery, where tonics are admissible, as in the later periods of these diseases, when the inflammatory symptoms have subsided, and in habitual diarrhoea, calumba often proves serviceable. In Germany it is denominated Ruhrwurzel, (i.e. dysenteric root).

Administration.—Calumba is administered in the form of powder, infusion, or tincture. The dose of the powder is from gr. x. to 3ss. The infusion is the most eligible form of exhibition.

1. INFUSUM CALUMBAE, L. E. Infusum Colombae, D.; Infusion of Calumba. [Calumba, sliced [in coarse powder, E.], 5v. [3ss. E.; 5ij. D.]; Boiling [distilled, L.] Water [Cold Water, E.], Oj. [Oss. wine-measure, D.] Macerate for two hours in a lightly covered vessel, and strain, L. D.—"Triturate the Calumba with a little of the water, so as to moisten it thoroughly: put it into a percolator, and transmit cold water till f3xvj. of infusion be obtained," E.)—The facility with which this preparation undergoes decomposition is ascribed by Planche to the substance which he terms animal matter.—Dose of the infusion, fij.
to $\frac{5}{12}$ij. It may be conjoined with alkalis or chalybeates, without injury or obvious change.

2. **Tinctura Calumbæ, L. E. Tinctura Colombae, D.** Tincture of Calumba. (Calumba, sliced [in small fragments; if by percolation in moderately fine powder, E.], $\frac{5}{12}$ij. [5ijs D.]; Proof Spirit, Oij. [wine-measure, D.] Macerate for fourteen days, and filter. "Digest for seven days, pour off the clear liquor. Express the residuum strongly, and filter the liquors. This tincture is much more conveniently prepared by the process of percolation, allowing the powder to be soaked with a little of the spirit for six hours before putting it into the percolator," E.)—An excellent adjunct to bitter infusion and effervescent medicines, when given to check vomiting.—Dose, $\frac{5}{12}$j. to $\frac{3}{12}$ij.

2. **Anamık'Ta Coć'culus, Wight and Arnott, E.—THE COCCULUS INDICUS PLANT.**

Coć'culus subero'sus De Candolle, D.
Sex. Syst. Dioecia, Monadelphia.
(Fruit, E — Fructas vulgo Cocculus indicus, D.)

**History.**—"According to Sprengel z, the fruit now usually called Cocculus indicus was introduced by the Arabians, and was described by Avicenna and Serapion under the name of Maheradsch x. In my copy, however, of the Latin translation of Avicenna y, the word Maheradsch does not occur: but Mahezheregi or Maheizhera z is said to intoxicate fish. Nor can I find it in Serapion. Cocculus indicus is sometimes termed the Levant nut, or bacca orientalis.

**Botany.** Gen. char. — Flowers dioecious. Calyx of six sepals in a double series, with two close-pressed bracteoles. Corolla none. Male: stamens united into a central column dilated at the apex; anthers numerous, covering the whole globose apex of the column. Female: flowers unknown. Drupes one to three, one-celled, one-seeded. Seed globose, deeply excavated at the hilum; albumen fleshy; cotyledons very thin, diverging.—Twining plants, with a corky bark. Leaves more or less cordate-ovate. Flowers in lateral compound racemes (Wight and Arnott.)

Sp. Char. — The only species.

A strong climbing shrub. Bark deeply cracked, ash-coloured. Leaves stalked, large (from eight to twelve inches long); petiole a little shorter than the leaves.

Hab. — Malabar, and Eastern Islands, &c. of India.

Description. — As met with in commerce, Cocculus indicus (also called Cocculus levanticus seu piscatorius) has considerable resemblance to the bay berry (bacca lauri, see p. 1163), but is scarcely so large as the latter. It consists externally of a dried, thin, blackish-

---

3 Schwartze, Pharm. Tabell. S. 388, 2* Ausg.
4 Venet. 1564.
5 Lib. 2*er; tr. 2*er, cap. 488.
brown, rugous, acrid and bitter layer, which envelops a thin, bivalved, white, ligneous shell (endocarp). In the middle of this shell arises a central placenta, which is contracted at its base, but enlarged and divided into two cells superiorly. Between this placenta and the shell is an oleaginous, yellowish, very bitter nucleus (seed) of a semi-lunar form. This nucleus never wholly fills the cavity of the shell,—at least in the Cocculus indicus of commerce; for by keeping, it gradually becomes atrophied, and in old samples it is not uncommon to find the shell almost empty. This change is observed also in other oleaginous seeds. By this character alone, Cocculus indicus may be instantly distinguished from the bay berry. The Edinburgh College requires that,—

"The kernels should fill at least two-thirds of the fruit."

Commerce.—Cocculus indicus is imported in bags from Bombay, Madras, and Ceylon. I am not acquainted with any official returns of the quantity annually brought over. From a druggist's private books I find that, in 1834, about 2500 bags entered; and this probably is much below the quantity imported. The greater part is consumed for illegal purposes,—principally for adulterating beer and ale; though this practice is prohibited by the legislature, under a penalty of 200l. upon the brewer, and 500l. upon the seller of the drug.

Composition.—Cocculus indicus was examined in 1811, by Boullay, and in 1834 by Pelletier and Couerbe. The results obtained by the last-mentioned chemists were as follows:

<table>
<thead>
<tr>
<th>Analysis of the Nucleus</th>
<th>Analysis of the Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Resin.</td>
<td>2. Paramenispermin.</td>
</tr>
<tr>
<td>4. A fatty acid substance.</td>
<td>4. Hypopicrotoxic acid.</td>
</tr>
<tr>
<td>5. An odorous matter.</td>
<td>5. Wax.</td>
</tr>
<tr>
<td>11. Inorganic substances (nitrate and sulphate of potassa, and chloride of potassium), by incineration carbonates of potash, and of lime, manganese and iron.</td>
<td>11. Inorganic substances (as those of the nucleus with the addition of copper).</td>
</tr>
</tbody>
</table>

1. Picrotoxin (Picrotoxic Acid).—At first it was supposed to be an alkaline substance, and was termed picrotoxia. It is a white, crystalline, intensely bitter substance, usually crystallizing in needles, but sometimes in silky flexible filaments or transparent plates, or granular crystals. It is soluble in 150 parts of water at 57° F., in 25 parts of boiling water, in a third of its weight of alcohol, and in less than half its weight of ether. It is insoluble in the fixed and volatile oils, but is soluble in acetic acid. It does not combine with acids, but forms combinations with alkalis. It seems, therefore, to be an acid, though a feeble one. It consists of C14H17O5. The poisonous properties of the nucleus (seed) of cocculus indicus depend on picrotoxin.

2. Menispermia (Menispermina: Menispermine).—This is an opaque, white, crystalline substance, soluble in alcohol and ether, but insoluble in water. It

b Ann. de Chim. Ixxx. 299.
fuses at 248° F., and at a higher temperature is decomposed, leaving an abundant charcoal. It dissolves in, and saturates acids; and from these solutions alkalis precipitate it. Concentrated sulphuric acid has little action on it; hot nitric acid converts it into a yellow resinous substance, and oxalic acid. It is composed, according to Gay-Lussac, of C\textsubscript{18} H\textsubscript{12} N O\textsubscript{2}. It does not appear to have any marked action on the animal economy.

3. Paramenisperma (Paramenispermina; Paramenispermine).—This is a crystalline solid, insoluble in water, scarcely soluble in ether, but dissolving readily in alcohol. It is fusible and volatile, and may be sublimed unchanged. It does not saturate acids, and, therefore, differs in this respect from the preceding substance. Notwithstanding this, however, its composition is the same.

4. Hypopicrotoxic Acid.—This acid is an amorphous, brown, solid, insoluble in water (cold or boiling), insoluble in ether, soluble in alkalis, and precipitable from its solution in them by the mineral acids. It is composed of, carbon 64.14, hydrogen 6.09, oxygen 29.77. This composition approximates to that of picrotoxin.

The yellow alkaline matter of the shell has been scarcely examined. Boullay\textsuperscript{d} mentions a crystalline substance which he calls menispermic acid; but its properties require further examination\textsuperscript{e}.

**Chemical Characteristics.**—Iodine colours the nucleus brown. The cold watery infusion of the whole fruit is slightly acid, and produces a dark precipitate with the sesquichloride of iron. Infusion of galls also occasions a precipitate.

**Physiological Effects.**

\textit{a. On Vegetables.}—A solution of the aqueous extract of Cocculus indicus killed a haricot plant in twenty-four hours\textsuperscript{f}.

\textit{b. On Animals generally.}—It is poisonous to all animals; at least it has been found to be poisonous to dogs, goats, cows, crocodiles, birds, and insects. Goupil\textsuperscript{g} considered it to be a local irritant; but the correctness of this opinion is denied by Orfila\textsuperscript{h}. When introduced into the stomach its irritant effects were confined to the production of nausea and vomiting. It acts on the cerebro-spinal system, causing staggering, trembling, tetanic convulsions, and insensibility. Goupil states, that all fish which eat it die,—roach being killed very easily, barbel with more difficulty. “The barbel,” we are told, “is, of all fish, that whose flesh the most frequently occasions accidents in those animals who eat it; probably because these fish, taking a longer time to die, the poison is longer subjected to the action of the digestive juices, and a considerable quantity of it is consequently absorbed.” Orfila says, Cocculus indicus acts like camphor on the nervous system, and principally on the brain.

\textit{γ. On Man.}—Its effects on man have not been accurately ascertained. Hill\textsuperscript{i} says, three or four grains of it have brought on nauseas and faintings. It is frequently added to malt liquors, for the purpose of increasing their intoxicating powers; but, from some accounts which I have received from an Excise officer, who has been repeatedly subjected to the influence of beer thus adulterated, its action

\textsuperscript{d} Journ. de Pharm. xiv. 61.
\textsuperscript{f} Marcet, Ibid. xxix. 215.
\textsuperscript{g} Quoted by Orfila, Toxicol. Gén.
\textsuperscript{h} Ibid.
\textsuperscript{i} Hist. of the Mat. Med.
PAREIRA BRAVA. 1791

appeared to be rather on the voluntary muscles than on the intellectual powers.

The operation of Picrotoxine is analogous to, though stronger than, that of Cocculus indicus. Ten or twelve grains, given by the mouth, are sufficient to kill a dog. A grain and a half, injected into the jugular vein of a dog, killed the animal in twenty minutes.

Uses.—Cocculus indicus is rarely employed in medicine. It has, however, been used as an external application, in the form of powder or ointment, to destroy pediculi (hence the Germans call these fruits Läusekorner, or louse-grains). It has also been employed in some obstinate skin diseases, as porrigo; but its use requires caution, especially where the skin is not entire, on account of the danger of absorption. Notwithstanding the severe prohibitory statutes against the employment of Cocculus indicus in brewing, I have reason to believe that it is extensively used; but being employed in the form of a solution of the extract, the form is not easy of detection. Morrice gives full directions for its employment. In the manufacture of porter, this author directs three lbs. of Cocculus indicus to be added to every ten quarters of malt. "It gives," says he, "an inebriating quality, which passes for strength of liquor," and he adds, "that it prevents second fermentation in bottled beer, and consequently the bursting of the bottles in warm climates."

Antidote.—In poisoning by Cocculus indicus, or picrotoxin, remove the poison from the stomach as speedily as possible. No chemical antidote is known, though acetic acid has appeared to give relief. The symptoms must be combated on general principles, no peculiarities in the treatment being known. As a last resource, try artificial respiration.

UGUENTUM COCCULI, E. Ointment of Cocculus Indicus.—(Take any convenient quantity of Cocculus indicus, separate and preserve the kernels; beat them well in a mortar, first alone, and then with a little axunge, and then add axunge till it amounts, altogether, to five times the weight of the kernels).—Used to destroy pediculi.

Jäger has an ointment of picrotoxin (composed of gr. x. of picrotoxin and 3j. of lard) in obstinate forms of porrigo.

3. CISSAM'PELOS PAREI'RA, Linn. E.D.—PAREIRA BRAVA OR VELVET LEAF.

Sex. Syst. Dioecia, Monadelphia.

(Radix, L.—Root, E.)

History.—The root of this plant was first mentioned by Piso in 1648, under the name of Caapeba. It was introduced into Paris, in 1688, by M. Amelot, the French ambassador at Portugal.  

---

1 Treatise on Brewing.
3 Hist. Nat. Brasil, 94.
4 Murray, App. Med. i. 499.
It is usually termed *Pareira* (Parreyra) *brava*, which means, literally, wild vine, on account of its supposed resemblance to the root of the wild vine. The Germans call it *Grieswurzel* (i.e. gravel root), on account of its beneficial effects in stone or gravel.

**Botany. Gen. Char.—Dioecious. Male: sepals four, in a double series. Petals four, united into a cup-shaped corolla, with usually an entire margin. Stamens united into slender columns dilated at the apex, bearing two two-celled anthers opening horizontally; cells placed end to end, and forming a four-lobed, four-celled annulus round the top of the column. Female: calyx of one! lateral sepal. Corolla of one! petal in front of the sepal. Ovary solitary. Stigmas three. Drupe obliquely reniform; but compressed, wrinkled round its margin. Seed solitary uncinate; embryo long, terete, inclosed in a fleshy albumen (Wight and Arnott).**

**Sp. Char.—Leaves peltate, subcordate, ovate-articulate; silky-pubescent beneath. Female racemes larger than the leaf. Berry hispid (De Cand.).**

A climbing shrub. Root woody, branching. Stem round, smooth, or with close-pressed down. Leaves aristate at the point, when full-grown smooth above, underneath covered with silky pubescence (hence called velvet leaf), but not truly downy. Flowers small, yellow. Berry scarlet, round or reniform, hispid.

**Hab.—West India Islands and Spanish Main.**

**Description.**—The root of *Cissampelos Pareira*, commonly termed *pareira brava* (*radix pareirae bravae*), is sometimes imported under the name of *abuta* or *butua* root (*radix butiae*). Von Martius says, that in the Brazils, *Cissampelos Pareira* is called *Butua* or *Capeeba*. *Pareira brava* occurs in more or less cylindrical pieces, sometimes flattened or bluntly angular. Some of the pieces are as thick as a child's arm,—their length often a foot or more long. Externally they are covered with a dark-brown rind or cortex, which is furrowed longitudinally, and wrinkled transversely. The wrinkles have very much the appearance of large, transversely elongated lenticella. The surface of the transverse section of the root is of a yellowish gray colour, and presents a number of concentric circles (the annular layers), traversed by numerous radiating lines (medullary rays); between these lines are triangular bundles of woody fibres and ducts,—the latter are large, and being cut transversely, constitute the numerous holes or apertures presented by the cut surface. The circles or layers occasionally assume a very eccentric appearance.

The number of concentric circles varies with the age of the root. The fracture of the root is coarsely fibrous. The taste is sweetish—aromatic, afterwards bitter and unpleasant. The root has no odour.

**Substitution.**—The *pareira brava* of commerce yields most unequal quantities of extract. This circumstance, as well as some variation in the appearance of the pieces, leads to the belief that the roots (and stems?) of more than one plant, are sold under this name. A sample of a supposed spurious root, yields "only a very minute
quantify of the extract; and the decoction prepared from it, according to the usual formula, has only a slightly bitter taste, instead of the strong bitter of the decoctions" of the true root. A piece of this supposed spurious root presents an appearance of medulla, and is covered externally with a lichen, whence it would appear to be a portion of a stem.

Composition.—Pareira brava has been analyzed by Feneulle, who found the constituents to be, a soft resin, a yellow bitter principle, a brown colouring principle, vegeto-animal matter, fecula, supermalate of lime, nitrate of potash, and some ammoniacal and mineral salts. More recently, Wiggers has announced the discovery of a new vegetable alkali, which he calls cissampelin, in this root.

1. Feneulle considers the yellow bitter matter to be the active principle of the root. It is described as being soluble in both alcohol and water. From its solution it was precipitated by tincture of nutgalls as well as by subacetate of lead. In these properties it appears to agree with cathartine (see p. 1604); but it is, probably, a mixture of several substances.

2. The properties of cissampelin have not been described. Wiggers says it is a strong saline base, soluble in ether and in acetic acid. From its acetic solution it is precipitated by carbonate of soda.

Chemical Characteristics.—The presence of starch in the root is shown by iodine. An infusion of the root yields a precipitate on the addition of infusion of galls, and is rendered brown by the sesquichloride of iron.

Physiological Effects.—I am unacquainted with any experiments made to determine the effects of this root in the healthy state of the body. From its taste, botanical affinities, and effects in diseases, it appears to possess a tonic power, and occasionally to act as a diuretic. Furthermore, its efficacy in certain maladies of the urinary organs induces us to ascribe an almost specific influence to this root over the mucous membrane lining the urinary passages. It certainly does appear to have the power of altering the quality of the urinary secretion. Large doses prove aperient.

Uses.—It was originally introduced into medicine as a lithontripptic. Its powers in this way were at one time highly vaunted, and Helvetius even went so far as to assert that calculi, the size of an olive, had disappeared under its use, and that the operation of lithotomy was no longer necessary! We now employ it almost solely in discharges from the urino-genital mucous membrane.—It has been used in gonorrhoea, leucorrhoea, and chronic inflammation of the bladder. In the latter of these diseases Sir B. Brodie states, that he has seen more good done by this root than by the Uva-ursi. "I am satisfied," says this eminent surgeon, "that it has a great influence over the disease which is now under consideration, lessening very materially the secretion of the ropy mucus, which is itself a very great evil, and, I believe, diminishing the inflammation and irritability.

* Journ. de Pharm. vii. 404.
* Lond. Med. Gaz. i. 300.
of the bladder also." He recommends it to be taken in the form of a concentrated decoction, to which may be added some tincture of hyoscyamus; and in these cases, in which there is a deposit of the triple phosphates, muriatic or diluted nitric acid may be added.

**Administration.**—The powder has been given in doses of from half a drachm to a drachm. But the infusion or decoction, to which some extract has been added, is to be preferred. A tincture or essence has been prepared by digesting one part of the root in five parts of rectified spirit. It is reputed diuretic and anticitarrhal. Its dose is fʒj.

1. **INFUSUM PAREIRÆ, L. E.** Infusion of Pareira brava. — (Pareira, Ἐ. ; Boiling Water, Oj. Macerate for two hours in a lightly covered vessel, and strain [through calico, E.].)—Dose, fʒj. to fʒj. It will be advisable to increase the strength of this decoction by the addition of some extract of pareira to it. Furthermore, narcotics (as opium or hyoscyamus) or acids may be conjoined according to circumstances. Sir B. Brodie employs a decoction of pareira (prepared by boiling half an ounce of the root in three pints of water, down, by by gentle simmering, to one pint); of this eight or twelve ounces should be taken daily.

2. **EXTRACTUM PAREIRÆ, L. E.** Extract of Pareira brava. (Prepared as Extract of Gentian [as Extract of Liquorice-root, E.])—Dose, gr. x. to 5ss. It is usually given in conjunction with the infusion or decoction.

---

**OTHER MEDICINAL MENISPERMACEÆ.**

The student must not confound Pareira brava with the Pereira bark belonging to Strychnacese, and before noticed (see p. 922), nor with the Pereira medica, Lindley¹, a menispermaceous plant, whose root is employed by the Cingalese as a stomachic.

---

**Order LXXXIII.—MAGNOLIACEÆ, De Candolle.—THE MAGNOLIA TRIBE.**

**Magnoliaceæ and Winteraceæ, Lindley.**

**Essential Character.**—All the parts of the flower disposed in ternary number. Sepals three to six, deciduous. Petals three to twenty-seven, in many series, hypogynous. Stamens numerous, free, inserted on the torus beneath the ovaries; anthers adnate, elongated. Ovaries numerous, inserted on the torus above the stamens, generally disposed like a spike, monostylous; styles short; stigmas simple. Carpels as many as the ovaries, one-celled, one- or many seeded; capsular, and dehiscing by a superior chink; or capsular and bivalved, dehiscing by an inferior chink; or follicular; or somewhat fleshy and indehiscent; or, lastly, Samariform, aggregate, or partially united into a loose or dense strobile. Seeds attached to the internal angle of the carpels; albumen fleshy; embryo straight, small, inferior.—Elegant trees or shrubs.

¹ Fl. Med. 370.
**Leaves** alternate, pinnatifid. **Flowers** conspicuous, often powerfully odoriferous (De Cand.)

**Properties.**—Bark tonic and aromatic. The same properties are possessed by some of the fruits. The flowers by their odour readily occasion nausea, headache, and faintness.

**Drimys Winteri, De Candolle, D.**—**WINTER'S BARK TREE.**

Wintera aromatica, Murray.

Sex. Syst. Polyandria, Tetragynia.

(Cortex, D.)

**History.**—William Winter, captain of one of the ships which accompanied Sir Francis Drake, in the year 1578, to the Straits of Magellan, returning in 1579, brought the bark of some trees, which he had cut down there, to Europe. From this circumstance Clusius called it Winter's bark (Winteranus cortex). It was afterwards confused with Canella bark (see p. 1679).

**Botany. Gen. Char.**—Carpels congested, baccate, many-seeded. Filaments thickest at the apex; cells of the anther separate (De Cand.)

**Sp. Char.**—Leaves oblong, obtuse, glaucous beneath. Peduncles simple, approximated, or very short, divided into elongated pedicels (De Cand.)

A large forest tree. Branches often tuberculated from the scars of the old footstalks. Sepals two to three, green. Petals seven, milk-white. Fruit ovate.

**Hab.**—Straits of Magellan, Chili, Peru, New Grenada.

**Description.**—Winter's bark (Cortex Winteri seu Winteranus) occurs in quills or rolled pieces, commonly a foot long, one or two inches in diameter, and two or three lines thick. Its colour externally is pale-yellowish, or dull reddish-gray, with red elliptical spots; internally it is reddish-brown. Its odour is aromatic, its taste warm and pungent. The characters by which it is distinguished from Canella bark have been already pointed out (see p. 1680). Its infusion is darkened by the salts of iron.

**Composition.**—Winter's bark has been analyzed by M. Henry, who found its constituents to be resin, volatile oil, colouring matter, tannin, acetate of potash, chloride of potassium, sulphate of potash, oxalate of lime, and oxide of iron.

1. Volatile oil (Oleum Corticis Winteri).—Pale-yellow, lighter than water, with a very hot and acrid taste. By standing it is separated into two parts: one
1796  ELEMENTS  OF  MATERIA  MEDICA.

(the most abundant part) a greenish-yellow liquid; the other (heavier but lighter than water) white, and of a fatty consistence.

2. Resin.—Reddish-brown, and almost odourless. Its taste is at first feeble; then acrid and persistent.

Physiological Effects and Uses.—Stimulant, aromatic, and tonic. Its uses are similar to those of cinnamon and canella alba. Winter employed it in scurvy. It is seldom employed.—Dose, 5ss. or 5j.

OTHER MEDICINAL MAGNOLIACEÆ.

Illicium anisatum is an evergreen tree, growing in Japan and Cochin-China. Its fruit constitutes the star-anise (anisum stellatum) of the shops. It consists of a variable number (usually six to twelve) of hard woody follicles, disposed in a star-like form, each containing an oval reddish seed. It has the odour of common anise (Pimpinella Anisum), but somewhat sweeter. By distillation it yields the oil of star-anise (oleum badiani) which closely resembles, and is often substituted for, the oil of common anise (see p. 1448); but it congeals less readily than the latter. Star-anise is aromatic and carminative. Both the fruit and the oil are employed by liqueur-makers. As regards its effects it might be substituted for common anise.

Order LXXXIV.—Ranunculaceæ, De Candolle.—The Crow-Foot Tribe.

Essential Character.—Sepals, three to six, hypogynous, deciduous, generally imbricate in aestivation, occasionally valvate or duplicate. Petals three to fifteen, indefinite in number, hypogynous. Petals three to fifteen, hypogynous, in one or more rows, distinct, sometimes deformed. Stamens definite or indefinite in number, hypogynous; anthers adnate. Carpels numerous, seated on a torus, one-celled or united into a single many-celled pistil; ovary one or more seeded, the ovules adhering to the inner edge; style one to each ovary, short, simple. Fruit either consisting of dry akenia, or baccate with one or more seeds, or follicular with one or more valves. Seeds albuminous; when solitary, either erect or pendulous; embryo minute; albumen corneous.—Herbs, or very rarely shrubs. Leaves alternate or opposite, generally much divided, with the petiole dilated and forming a sheath half clasping the stem. Stipules occasionally present. Hairs, if any, simple. Inflorescence variable (Lindley).

Properties.—Mostly poisonous. Acridity is the prevailing quality, conjoined, in a considerable number of instances, with a narcotic quality. Several of the species are topical benumbers.


Sex. Syst. Polyandria, Polygynia.

(Folia, D.)

Botany. Gen. Char.—Calyx of five sepals; sepals not separate at the base, deciduous. Petals five, rarely ten, with nectariferous scales at the base. Stamens and ovaries numerous. Caryopsides ovate, somewhat compressed, terminating in a short mucro or horn, scarcely larger than the seed, smooth, striated or tuberculated, arranged in a globose or cylindrical head (De Cand).

Sp. Char.—Calyx spreading. Flower-stalks round and even. Leaves
in three deep-lobed and cut segments; those of the uppermost linear and entire. Stem erect, covered with close hairs.

Perennial. Flowers yellow. Petals with a scale at the base.

Hab.—Indigenous; very common in meadows and pastures. Flowers in June and July.

Composition.—Not analysed. Its acrid principle is either very volatile, or readily undergoes decomposition, as, by drying, the plant loses its acridity.

Physiological Effects.—A powerful acrid. Inflammation of the palm of the hand has been produced by pulling it up and carrying it a little distance. Withering says it easily blisters the skin. Orfila has shewn, by experiments on animals, its power of causing inflammation of the tissues to which it is applied.

Uses.—It has been applied as a rubefacient and epispastic, but is far inferior to cantharides and mustard, on account of the uncertainty of its operation.


Crowfoot.

Sex. Syst. Polyandria, Polygynia.


Perennial. Leaves nearly entire, sub serrate. Flowers bright gold colour.

Hab.—Indigenous; sides of lakes and ditches abundant.

Physiological Effects and Uses.—Similar to those of Ranunculus acris.


Sex. Syst. Polyandria, Polygynia.

(Root, E.—Radix, D.)

History.—According to Sprengel this is the plant called by the Abbess Hildegard, Christiana.

It must not be confounded with the ἤλέβαρος μελαν (black hellebore) of Dioscorides, which, according to Dr. Sibthorp, was the plant which he has described and figured under the name of Helleborus officinalis. Hippocrates employed hellebore in medicine. Melampus employed it with great success in the treatment of madness, 1400 years before Christ. His use of it is the earliest instance on record.

* Smith, Eng. Fl.
* Curtis, Fl. Lond., vol. i.
* Arrang. of Brit. Plants, iii. 681.
* Tox. Gén.
* Hist. Rel. Herb. i. 226.
* Lib. iv. cap. 181.
* Fl. Graec.
of the use of a purgative. It has been called after him melampodium, a term which has also been applied to Helleborus niger.

I cannot understand what circumstance can have induced the London College to adopt the Helleborus officinalis, Sibth., a native of Greece, as the source of the hellebore root of the shops, which comes from Germany. That it is an error cannot be for a moment doubted. Even the authors of the Pharmacopoea Graeca, 1837, adopt the Helleborus niger, though they also refer to the H. officinalis.

BOTANY. Gen. Char.—Calyx persistent, of five sepals; sepals roundish, obtuse, large, usually green. Petals 8 to 10, very short, tubular, narrow, and nectariferous beneath. Stamens 30 to 64. Ovaries 3 to 10. Stigmas terminal, orbicular. Capsules coriaceous. Seeds in a double row, elliptical, umbilicated, (De Cand.)

Sp. Char.—Leaves radical, pedatisect, quite smooth. Scape leafless, one- to two-footed, bracteate (De Cand.)

Rhizome several inches long, tuberculated, horizontal, scaly, blackish brown externally, white internally, with many dependent, long, simple root-fibres. Leaves on cylindrical stalks from four to eight inches long; lobes ovate-lanceolate, serrate near the point. Scape shorter than the petiole. Sepals ovate or roundish, large, white, slightly tinged with pink, eventually becoming green. Petals green, tubular, shorter than the stamens. Follicles many seeded. Seeds black, shining.

Hab.—Sub-alpine, woodland regions in the midland and southern parts of Europe.

Commerce.—Hellebore root is imported in barrels and bags from Hamburgh usually, but sometimes from Marseilles.

Description.—The root met with in commerce under the name of black hellebore root (radix hellebori nigri; seu radix melampodii) consists of two parts, — the rhizome or rootstock, and the fibres which arise from it. The rhizome is half an inch or less thick, several inches long, horizontal or contorted, knotty, with transverse ridges and slight longitudinal striae. The fibres are numerous, cylindrical, dark brown externally, internally whitish or yellowish white, with a central paler cord. The odour is very feeble, and scarcely perceptible, but has been compared to that of senega root. Its taste is slight at first, then bitterish, acrid, and nauseous.

Substitution.—It is probable that the roots of Helleborus viridis and foetidus are sometimes substituted for, or intermixed with, black hellebore root. This practice certainly occurs on the continent. The root of Actaea spicata (sometimes called radix hellebori nigri falsi) is also said to be occasionally substituted for the genuine root: its stronger fibres, when cut transversely, present the form of a cross. As far as I have observed, the roots, sold in this country as black hellebore, have a very uniform appearance, and from this I have not had reason to suspect any intermixture of other roots.

Composition.—Vauquelin analysed the root of Helleborus hiemalis. This analysis is quoted by Sönbeiran as the analysis of black
hellebore root. Feneulle and Capron analysed the black hellebore root.

<table>
<thead>
<tr>
<th>Vauquelin's Analysis</th>
<th>Feneulle and Capron's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very acrid oil.</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Extractive.</td>
<td>Fatty oil.</td>
</tr>
<tr>
<td>Starch.</td>
<td>Volatile acid.</td>
</tr>
<tr>
<td>Vegeto-animal matter.</td>
<td>Resinous matter.</td>
</tr>
<tr>
<td>Sugar.</td>
<td>Wax.</td>
</tr>
<tr>
<td></td>
<td>Ulmin.</td>
</tr>
<tr>
<td></td>
<td>Gallate of potash.</td>
</tr>
<tr>
<td></td>
<td>Ammoniacal salts.</td>
</tr>
</tbody>
</table>

Root of Helleborus hiemalis. | Root of Helleborus niger.

Acrid Oil, Vauquelin; (Soft Resin, Gmelin; Helleborin). This substance is odourless, has an acrid taste, and is soluble in spirit. Vauquelin ascribed the activity of hellebore to it. Feneulle and Capron, on the other hand, ascribe it to a combination of fatty oil and volatile acid. Probably the two latter correspond to the acrid oil of Vauquelin.

Physiological Effects. 

a. On Animals.—Given by the mouth to the carnivora (as dogs), it causes vomiting, frequently purging and griping. In excessive doses it produces gastro-enteritis. If the oesophagus be tied, to prevent the ejection of the root from the stomach, it causes staggering, weakness or paralysis of the hind extremities, insensibility, and death. Similar effects result from its application to a wound. Orfila states, when the animals survive a few hours, inflammation of the rectum is a constant occurrence; whereas Vicat says it causes inflammation of all the intestines, except only the rectum: the latter statement is entirely erroneous.

b. On Man.—Black hellebore is a local irritant, drastic purgative, and emmenagogue. Given in small doses it increases the secretion and peristaltic motion of the intestines, and acts as a stimulant to the pelvic circulation, thereby promoting the menstrual and hemorrhoidal discharges, and by its influence over the portal circulation contributing probably to increase the hepatic secretion. Large doses act as a drastic purgative, and frequently also occasion sickness. They produce a more manifest influence over the pelvic vessels, often cause cold sweats, and lower the strength of the pulse. In an excessive or poisonous dose it acts as a narcotic-acrid poison, and causes vomiting, purging, burning pain in the stomach and intestines, cramps of the lower extremities, cold sweats, faintness, paralysis, insensibility, and death. The fresh root applied to the skin produces rubefaction and vesication.

As a drastic purgative it is allied to colocynth (see p. 1496), from which its narcotic operation and its greater influence over the pelvic organs distinguish it.

Uses.—Black hellebore, though greatly esteemed by the ancients,
is but little employed by the moderns. It is adapted for torpid, phlegmatic individuals, especially when the pelvic circulation is languid. On the other hand, in easily-excitable persons, and where any irritation of the pelvic organs (especially the uterus and rectum) exists, it proves injurious.

1. In affections of the nervous system, especially mania, melancholia, and epilepsy, it has long been celebrated, and under the above-mentioned conditions, at times proves serviceable.

2. As an emmenagogue it was greatly esteemed by Dr. Mead, and is still much valued by some practitioners. He gave two teaspoonfuls of the tincture in a glass of warm water twice a day. The remarks already made will readily suggest the class of cases to which it is applicable.

3. In dropsy its drastic operation renders it useful. Furthermore, when this disease depends on, or is connected with, a languid state of the portal circulation, black hellebore proves further useful by the stimulus which it communicates to the hepatic vessels.

4. Lastly, black hellebore has been used in chronic skin diseases, and as an anthelmintic.

**Administration.** — The dose of powdered hellebore is from grs. x. to 3j. as a drastic purgative. When we require a milder effect, we may give it in doses of grs. ii. to grs. vii. It has also been given in decoction; but the tincture is the most frequently employed preparation.

**Tinctura Hellebori, L.**; **Tincture of Black Hellebore.**—(Hellebore, bruised, 3v.; Proof Spirit, Oij. Macerate for fourteen hours, and strain).—Dose, 5ss. to 5j. Principally employed as an emmenagogue.

2. **Delphinium Staphysa'gria, Linn. L. E. D.**—STAVESACRE.

**Sex. Syst.** Polyandria, Trigynia.

(Semina, L. D.—Seeds, E.)

**History.** — Hippocrates employed stavesacre in medicine. Sibthorp found the plant growing in Crete and Zante, and identified it with the σαφις αγρία of Dioscorides.

**Botany. Gen. Char.** — Calyx deciduous, petaloid, irregular; the sepals elongated at the base into a spur. Petals four, the two upper appendiculated within the spur (De Cand.)

**Sp. Char.** — Spur very short. Bractlets inserted at the base of the pedicel. Petioles pilose. Pedicels twice as long as the flower (De Cand.)

A stout herb, one or two feet high. Stem and petioles hispid, with soft hairs. Leaves broad, palmated, stalked, five- to nine-cleft. Racemes lax. Flowers bluish or purplish. Capsules three, large.

---

1 Works, p. 563, 1762.
2 Prodr. Fl. Graece, i. 372.
3 Lib. iv. cap. 196.
Habit.—South of Europe, the Levant, and the Canaries.

Description.—Stavesacre seeds (semina staphisagriae seu staphidis agriae) are irregularly triangular (sometimes quadrangular), slightly arched, blackish-brown, and wrinkled. They contain a white and oily nucleus. Their odour is slight but disagreeable; their taste bitter, very acrid, hot, and nauseous. Iodine colours the seeds brown. Their watery infusion is darkened by sesquichloride of iron. Infusion of nutgalls renders it turbid.

Composition.—Stavesacre seeds were analyzed in 1820 by Brandes, and in 1821 by Lassaigne and Feneulle.

<table>
<thead>
<tr>
<th>Brandes's Analysis</th>
<th>Lassaigne and Feneulle's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delphinia</td>
<td>Malate of delphinia.</td>
</tr>
<tr>
<td>Fatty oil</td>
<td>Volatile oil.</td>
</tr>
<tr>
<td>Waxy substance</td>
<td>Fatty oil.</td>
</tr>
<tr>
<td>Gum</td>
<td>Brown bitter matter.</td>
</tr>
<tr>
<td>Starch</td>
<td>Yellow ditto.</td>
</tr>
<tr>
<td>Woody fibre</td>
<td>Uncrystallizable sugar.</td>
</tr>
<tr>
<td>Phytoel with salts</td>
<td>Gum.</td>
</tr>
<tr>
<td>Vegetable albumu</td>
<td>Woody fibre.</td>
</tr>
<tr>
<td>Sulphates and phosphates of lime,</td>
<td>Animal matter.</td>
</tr>
<tr>
<td>potash, and magnesia</td>
<td>Albumen.</td>
</tr>
<tr>
<td>Water</td>
<td>Mineral salts.</td>
</tr>
</tbody>
</table>

Stavesacre Seeds. 100.49

1. Delphina (Delphina; Delphine; Delphinum).—As usually met with, this is a white, odourless powder. Its taste is extremely acrid and very bitter. It fuses at 248° F. It is scarcely soluble in water whether hot or cold, but dissolves in ether, and still better in alcohol. Its alcoholic solution reacts as an alkali on test paper. It is not crystallizable, though its texture is said to be crystalline, when the powder is moistened. It saturates acids, forms salts which are acrid, very bitter, and difficultly crystallizable. From its solution in acids it is precipitated by alkalis. Its composition is C_{27}H_{19}N_{10}. Its atomic weight, therefore, is 211. Courbe says that, as usually procured, it is not absolutely pure, but contains a resinous matter, and an acrid resin which he calls staphysain.

2. Volatile Acid (Delphinic Acid?).—Discovered by Hofschläger. It is white, crystalline, volatile at a low temperature, and in small doses is a powerful emetic.

Physiological Effects.—The activity of stavesacre seeds depends partly on the delphinia and partly on the volatile acid. The powder of the seeds readily excites nausea, vomiting, and purging. Orfila has shown that, on dogs, it acts first as an acrid, and afterwards as a narcotic poison. Its operation appears to be similar to cebadilla (see p. 959).

Uses.—Stavesacre seeds have been used to destroy pediculi, whence the Germans term them Läusesaamen, or louse-seeds. For this purpose they are employed in the form of ointment or acetous infusion. They have also been administered internally (in doses of from three to eight grains) against worms, and externally

1 Gmelin, Handb. d. Chem. ii. 1240.
2 Ann. de Chim. et de Phys. xii. 358.
3 Journ. de Pharm. xiii. 365.
5 Toxicol. Gén.
in the form of decoction (prepared by boiling 3j. of the seeds in Oij. of water) in inveterate itch.

**Antidote.**—See Veratrum album.

**Delphinia.**—Four grains of delphinia dissolved in a drachm of rectified spirit produce, when rubbed on the skin, a sensation of burning and prickling, with tingling, and slight redness. Taken internally, in doses of half a grain, it sometimes acts slightly on the bowels, and increases the flow of urine. In larger doses, as a few grains, it gives rise to sensations of heat and tingling in various parts of the body. The diseases in which it is chiefly successful are neuralgic cases. It has also been used in rheumatic affections with some benefit. It is employed externally in the form of ointment or alcoholic solution. The *unguentum delphiniæ* consists of 5ss. of delphinia, 5j. of olive oil, and 5j. of lard. The *solutio delphiniæ*, composed of 5j. of delphinia dissolved in 53j. of rectified spirit, is an excellent embrocation. Internally, delphinia is given in the form of pills. The *pilula delphiniæ* consist of gr. j. of delphinia; gr. xij. extract of hyoscyamus; and the same quantity of extract of liquorice; divide the mass into twelve pills, one of which may be taken every three hours (Turnbull).

3. **Aconitum napellus**, Linn. E.—**Common Wolfsbane or Monkshood.**

**Sex. Syst.** Polyandria, Trigynia.

**(Leaves, E.)**

**History.**—The ancient history of Aconite is involved in great obscurity. The Greeks make frequent reference to a most virulent poison which they term μῶτος. Theophrastus is the earliest writer who speaks of it. As *Aconitum napellus* is a virulent poison, and is a native of Greece, where it is known at the present day as μῶτος, it would at first appear probable that our common aconite was the plant referred to by the ancient Greeks. But the characters of it as given by Theophrastus quite preclude this supposition; and I believe no one has been able to identify satisfactorily the plant described by this ancient naturalist. Dioscorides has noticed two kinds of μῶτος.

**Botany. Gen. Char.**—Calyx petaloid, irregular, deciduous or withering; upper sepal concave, helmet-shaped. Petals two, superior, (nectaries), on long stalks, expanded at the apex into a bag hidden beneath the helmet (De Cand.)

**Sp. Char.**—Flowers densely spiked or loosely panicled. Helmet semi-circular, rarely boat-shaped. Bag of the petals somewhat coni-
MONKSHOOD.

Perennial herb. Root tapering. Flowers blue.—This species is subject to great variation in the dense or loose condition of the inflorescence, in the form of the helmet, the colour and size of the flower, the breadth and the number of slashes of the leaves, the downiness of the parts of the plant, and the condition of the stem. De Candolle admits no less than twenty-nine varieties.

Hab.—Europe. It is placed among indigenous plants, but it is a doubtful native.

The Dublin College has adopted Aconitum paniculatum De Candolle, as the official species, and direct the leaves (folia) to be used. The London College has followed the Dublin College, except that they direct the root (radix) as well as the leaves (folia) to be employed. I confess myself unacquainted with any just grounds for this preference. The Aconitum Napellus is one of the most active species of the genus, and no good evidence has yet been adduced to prove its inferiority to the A. paniculatum, var. 7. Storkianum, which Stork published as A. Napellus officinalis. Moreover, the roots of A. paniculatum are not found in commerce, nor is the plant grown (except in botanical gardens) in this country; so that druggists and apothecaries cannot, if they would, obey the directions of the London and Dublin Colleges.

DESCRIPTION.—Aconite root (radix aconiti), when fresh, consists of a tapering rootstock, placed perpendicularly, or nearly so, in the earth, and of numerous, cylindrical, fleshy fibres arising from it. At its upper and thickest part, the rootstock seldom exceeds the thickness of the finger; inferiorly it is attenuated and filiform. Sometimes two or three rootstocks are conjoined. In the latter case the root has a palmated appearance. Its total length is three or four or more inches. Its colour, as well as that of the fibres, is externally coffee brown; its odour is earthy. Internally it is white and fleshy. Its taste is bitter; but after a few minutes a remarkable numbness and tingling is perceived on the lips, tongue, and fauces. By drying, the root shrivels, and becomes darker coloured. The root should be gathered in the spring, just before the leaves appear. The leaves (folia aconiti), when chewed, have the same taste, and produce the same feeling of numbness.

COMPOSITION.—No complete analysis either of the root or the leaves of Aconitum Napellus has been made. The following are the constituents of the root of A. Lycocotonum, according to Pallas w:—A black oil, a green fatty matter, a substance having some analogy with the vegetable alkalis [impureaconitina?], vegetable albumen, starch, lignin, and some salts.

The leaves of Aconitum medium Schraderi were analysed by Bucholz.

Both Brandes and Peschier announced the existence of a peculiar

---

w Journ. de Chim. Méd. i. 192.
Gmelin, Handb. d. Chem. ii. 1241.
alkali (aconitina) in aconite. Their statement was confirmed in 1825, by Pallas, and, in 1832, by Geiger and Hesse. Peschier also asserted that aconite contained a peculiar acid (aconitic acid). His assertion has been substantiated by L. A. Buchner, jun. It has been since ascertained that the same acid is developed by the action of heat on citric acid (see p. 407). Most chemists have admitted the existence of a volatile acid principle in aconite; but it has not hitherto been isolated.

1. Aconitina.—(See p. 1810.)

2. Volatile Acid Principle.—This principle, though admitted by several chemists, has not been isolated. Geiger submitted the fresh herb of Aconitum Napellus, with water, to distillation, and obtained a liquor having an acrid taste, an unpleasant odour, and whose emanations affected the eyes. May not this volatile principle be the product of the decomposition of aconitina? The following circumstances favour this suggestion:—1st. The fresh herb and root have little odour; 2ndly, the local effect of aconitina is similar to that of the root and leaves; 3rdly, aconitina, when mixed with the other constituents of the plant, readily undergoes decomposition, so that considerable nicety of manipulation is required in the extraction of it; and Mr. Morson tells me he has sometimes failed to obtain it.

3. Aconitic Acid.—In the evaporation of the juice of aconite, octohedral crystals of aconitate of lime are frequently deposited. From these L. A. Buchner obtained the acid. The acid also exists in Equisetum fluviatile, and may be formed by the action of heat on citric acid (see p. 407). As obtained from Aconitum it is scarcely crystalline, merely forming warty elevations. It is white, permanent in the air, odourless, very sour, and is very soluble in water, alcohol, and ether. When heated it fuses, but at the same time undergoes decomposition; but does not yield fumaric acid. From the latter acid it is distinguished by its greater fusibility and solubility; from maleic acid by its forming indistinct crystals, and not yielding fumaric acid by heat. The anhydrous acid, as found in aconitate of silver, consists of $C_8H_8O_3$.

4. Fatty Oil.—This is extracted from the root by alcohol. It is dark coloured. All the specimens of it, which I have obtained, possess a powerfully benumbing property [from the presence of aconitina].

Physiological Effects.—Hitherto I have met with no clear and accurate account of the effects of aconite, and some of them appear to me to have been entirely overlooked.

a. On Animals.—If a small quantity of the soft alcoholic extract of the root of aconite be introduced into a wound (as into the cavity of the peritoneum) in a dog, it usually causes vomiting (sometimes of a stercoraceous character), diminishes the force of the circulation, weakens the muscular system so as sometimes to cause the animal to stagger in walking, and destroys common sensibility of feeling, without causing stupor. A dog under the influence of not too strong a dose, will sometimes follow its owner around the room, recognize him by wagging his tail when called, and yet be totally insensible to pinching, pricking with needles, &c. Convulsions do not usually occur until a short period before death, and they are then commonly.
slight, and rather to be termed spasmodic movements. I have repeatedly demonstrated these effects to the pupils attending my lectures.

The following is a notice of one experiment:—

March 31, 1837: London Hospital. Present Mr. Adams, and several medical students.—A small portion of alcoholic extract of aconite was introduced into the peritoneal sac of a strong dog, who had been kept fasting for some hours. In a few minutes he was evidently affected. He was less capable of supporting himself, and leaned against a wall. In ten minutes was insensible to the pain caused by the introduction of pins into his legs, paws, body, tail, nose, &c. His sight, however, was unaffected; at least he winked as usual when attempts to strike him were feigned. Was not paralytic, for he walked, though not firmly. He recognised several individuals, and wagged his tail when spoken to. He made violent attempts to vomit. He then laid down, became apparently weaker, and died without a single convulsion. At one period the action of the heart was slower than usual, and the first and second sounds of the heart were unusually clear and distinct. Subsequently the circulation was quickened. Respiration was not disordered; nor were the bowels affected.

I have subsequently found that if a large quantity of alcoholic extract be used, the loss of feeling is not so well marked; for death succeeds in so short a period of time that the loss of feeling, as distinguished by the insensibility immediately preceding death, is not well observed. For the same reason, rabbits do not answer well for demonstrating these effects; and the weakness (paralysis?) of the hind extremities, and spasmodic movements, are much more marked in them than in dogs. I can distinguish no difference between the effects of Aconitum Napellus on rabbits, and those of Aconitum ferox on the same animals. On opening the bodies of dogs killed by aconite, immediately after death, no pulsations of the heart are visible. Want of space compels me to abstain from entering into any details respecting the experiments made on animals with aconite by Wepfer, Sprægel, Viborg, Brodie, and Orfila.

β. On Man.—The topical effects are peculiar and most remarkable. If a leaf or a small portion of the root be chewed, or a few drops of the alcoholic tincture of the root be applied to the lips, there are produced in a few minutes numbness and a remarkable tingling sensation. These effects endure for many hours. If the quantity taken into the mouth be somewhat larger, the palate and throat are affected. To me the sensation appears as if the velum and soft palate were elongated, and rested on the dorsum of the tongue. To relieve this, frequent attempts are made to swallow.

When small and repeated doses of the alcoholic tincture of the root are taken internally, they cause a sensation of heat and tingling in the extremities, and occasionally a slight diuresis.

---

* See the results of my experiments on the latter plant, in the splendid work of my friend Dr. Wallich, Monst. Rariores Asiaticos; also a detail of my experiments in the Edinb. Journ. of Nat. and Geogr. Science, July 1830, p. 235.
* Hist. Cie. Ag. 1733.
* Ibid. S. 34.
* Phil. Trans. for 1811, p. 178.
* Toxicol. Gen.
The extract of aconite of the shops is but little to be relied on. Many samples produce neither numbness nor tingling when rubbed on the lips and gums. Störck\(^1\) states that it acts as a diaphoretic and diuretic. These symptoms, however, are by no means constantly produced, and, when they occur, are not always clearly referrible to the aconite used.

In poisonous doses the effects of aconite are most remarkable. The following details of the effects produced on a family of three persons were furnished me, a few days after the accident, by one of the sufferers (Mrs. Prescott), and her account was confirmed by a very intelligent neighbour who witnessed the progress of the symptoms:—

In December, 1836, Mr. Prescott, aged 57, residing in the City Road, planted in his garden a few pieces of horse-radish. On February 5th, 1837, he observed some green shoots, which he supposed to be those of horse-radish. He dug up three of them. The roots (samples of which were given, and have yielded me thriving plants of Aconitum Napellus) were tap-shaped and small. Perhaps a very small walnut would exceed in bulk that of the whole root. These roots were washed, scraped, placed on a plate with some vinegar, and eaten at dinner (at 2 o'clock) with roast-beef, by Prescott, his wife (aged 57), and a child (aged 5). It was remarked at dinner that the root was very mild, and had not the pungency of horse-radish. After the family had dined, about one root was left; so that two had been eaten at dinner, the greater part (perhaps one or one and a half roots) by the husband. About three-quarters of an hour after dinner, Mr. Prescott complained of burning and numbness of the lips, mouth, and throat, and which soon extended to the stomach, and was accompanied with vomiting. The matters ejected were first his dinner, and afterwards a frothy mucus; but at no time was any blood brought up. The vomiting was very violent and constant for an hour, and continued more or less until within half an hour of his death. An emetic was swallowed at a quarter past four o'clock; and therefore the subsequent vomiting may be ascribed, in part at least, to this. His extremities were cold, but his chest was warm; the head was bathed in a cold sweat. His eyes, to use the expression of his neighbour, were "glaring." He complained of violent pain in the head, and trembled excessively. The last symptom might, perhaps, be in part owing to his terror of the mistake he had committed. The lips were blue. His mental faculties were not disordered; on this point I made particular inquiry, and I was assured that he was neither delirious nor sleepy, but was quite conscious until within two minutes of his death. He had no cramp, spasm, or convulsion; the only approach to it was trembling. He frequently put his hand to his throat. Though exceedingly weak he did not lose his power over the voluntary muscles; for within a few minutes of his death he was able, with the assistance of his neighbour, to walk to the water-closet. His bowels were acted on once only after dinner, and that on the occasion just mentioned, which was about an hour after he had taken the emetic and some castor oil. His breathing was apparently unaffected. On his return from the water-closet he was put to bed, and within a few minutes expired, apparently in a fainting state. Death occurred about four hours after dinner.

Mrs. Prescott was affected in a similar way. She had the same burning and numbness of the lips, mouth, throat, and violent vomiting. She experienced a curious sensation of numbness in the hands, arms, and legs; and she lost the power of articulating, so that she was unable to tell the address of her son. Her attempts to speak were attended with unintelligible sounds only. She experienced great muscular debility, and was unable to stand. In this respect her condition differed from that of her husband, who could both stand and walk. She felt stiffness of, and difficulty in moving, her limbs. She had no

---

\(^1\) Essay on the Internal Use of the Thorn-Apple, Henbane, and Monkshood, Lond. 1763.
cramps, spasms, or convulsions. The only approach thereto was the stiffness of the muscles when she attempted to put them in action, as in her attempts to wipe her face. Some of the external senses were disordered: thus, to use her own expression, though her eyes were wide open, her sight was very dim, and surrounding objects were seen indistinctly. The hearing was unaffected. The sensibility of the body was greatly impaired; her face and throat were almost insensible to touch. She felt very giddy, but was neither delirious nor sleepy. For the most part she was conscious, but at times scarcely knew what was passing around her. Her body and extremities were cold. She was frequently pulling her throat about, but she knew not why. Five or six hours after dinner she began to recover, and her natural warmth returned. The remedies employed were an emetic, castor oil, pediluvia, rum and water, and some "warm" medicine given her by a neighbouring practitioner.

The child was similarly but more slightly affected, except that she evinced a slight tendency to sleep. Like the others she was constantly putting her hands to her throat.

Mr. Sherwen has published a most interesting case of a female poisoned by the alcoholic tincture of the root. About five minutes after swallowing it, she was seized with a pricking and tingling down her arms and fingers, and a painful numbness across the wrists; the tongue and mouth next felt the same, then the legs and feet; and in less than ten minutes her face seemed to her feelings to be swelling, and the throat growing tight. She felt sick, made many efforts to vomit. Her legs failed, she was almost blind, but was conscious of her plight. When seen by Mr. Sherwen her eyes were fixed and protruded, with contracted pupils; countenance livid; jaws and fauces rigid; arms and hands quite cold and pulseless; the legs and trunk much in the same state; breathing short, imperfect, and laborious; while the heart fluttered feebly. She was sufficiently sensible to tell how the accident occurred. In an attempt to administer an emetic a strong convulsion occurred. Copious vomiting afterwards took place. Five hours after she had taken the poison the pulse was becoming full, only 58 per minute, and intermitting. There was less oppression at the praecordia, and the pupils were larger. She eventually recovered.

The cases now recorded agree with the one detailed in the Philosophical Transactions. Pallas (quoted by Christison) and De gland have published cases in which violent vomiting, purging, colic, and abdominal tenderness, are said to have been produced by aconite. In comparing the operation of aconite with that of other cerebrospinants we observe that its most characteristic topical effect is numbness and tingling. Applied to the eye it causes contraction of the pupil. When the root or its tincture is swallowed, the most marked symptoms are numbness and tingling of the parts about the mouth and throat, and of the extremities, vomiting, contracted pupil, and failure of the circulation. The heart appears to be weakened or paralysed, and a state approaching to asphyxia is produced. Con-
Vulsion or spasm is not constantly present, and when it does take place, is probably a secondary effect arising from the incipient asphyxia. In neither of the cases which I have above detailed, nor in that of Mr. Sherwen, did stupor occur. Yet in some recorded instances it has happened. In such it probably depends, as Mr. Sherwen suggests, on the congested condition of the venous system of the brain brought on by the failure of the heart’s action, and the consequent accumulation of blood on the right side of the heart.

Uses.—A knowledge of the physiological effects of aconite suggests the therapeutical uses of this medicine. A benumber is obviously the physiological remedy for increased sensibility (pain) of the nerves.

As a topical remedy, aconite is most valuable for the relief of neuralgic and rheumatic pains. In neuralgia, no remedy, I believe, will be found equal to it. One application of the tincture produces some amelioration, and, after a few times’ use, it frequently happens that the patient is cured. In some cases the benefit seems almost magical. In others, however, the remedy entirely fails to give any permanent relief. Though the pathology of this disease be but little understood, yet we know that the causes of it, and the conditions under which it occurs, are by no means uniform. We are, therefore, easily prepared to believe, that while in some cases aconite may prove beneficial, in others it may be useless. I do not think that in any it proves injurious. The causes of neuralgia, are, however, usually obscure, and therefore we are, in most cases, not able to determine à priori the probability or the reverse of the beneficial agency of aconite. Hence its employment must be, for the most part, empirical. I have observed, that when it succeeds, it gives more or less relief at the first application. When the disease depends on inflammation, aconite will be found, I think, an unavailing remedy. In a painful affection of the nerves of the face, arising from inflammation of the socket of a tooth, it gave no relief. In rheumatic pains, unaccompanied with local swelling or redness, aconite is frequently of great service. In painful conditions of the intercostal, and other respiratory muscles, occurring in rheumatic individuals, I have found this remedy most valuable. In one case of sciatica it gave partial relief: but in most cases in which I have tried it, it has failed. In lumbago I have not tried it. Dr. Turnbull states that a lady was cured of this disease by the aconite ointment. In acute rheumatism its application has not proved successful in my hands; but I have been informed of cases occurring to others in which it has been of great service.

Aconite has been administered internally in various diseases, principally on the recommendation of Störck. It has been employed as a narcotic (anodyne) sedative, sudorific, resolvent, and diuretic. The diseases in which it has been employed are rheumatism, gout, scrofula, phthisis, syphilis, some skin diseases, scirrhus and cancer,

---

n See his Treat. on Painf. and Nerv. Dis. 1837.

n Essay on the Int. Use of Thorn-Ajple and Monkshoed. 1763.
intermittents, dropsies, paralysis, epilepsy, amaurosis, uterine affections, and hypertrophy of the heart.

In the large majority of these maladies scarcely any practitioner now believes in its efficacy. Fouquier gave it very extensive trials without obtaining much relief from it, except as a diuretic in passive dropsies. In rheumatism it has frequently proved serviceable when combined with a sudorific regimen. I have seen it give great relief in rheumatic pains. In hypertrophy of the heart it has been recommended by Dr. Lombard, on account of its decidedly sedative effects on the heart.

Administration.—The only preparations of aconite, whose activity may be relied on, are the tincture (made with rectified spirit), the alcoholic extract, and Morson's aconitina. The powder is given in doses of one or two grains, gradually increased, until some effects are produced. But no reliance can be placed on it. When of good quality, it causes numbness and tingling of the lips and tongue a few minutes after its application to these parts.

Antidotes.—See the treatment for poisoning by tobacco, p. 1254. In Mr. Sherwen's case great benefit was obtained by the abstraction of ten ounces of blood from the jugular vein.

1. TINCTURA ACONITI, Tincture of Monkshood. (Root of aconite, recently dried and coarsely powdered, lb. j; Rectified Spirit, Oiss. Macerate for fourteen days and strain.) This formula is very nearly that given by Dr. Turnbull. Its dose is five drops three times a day. It should be employed with great caution. As an embrocation in neuralgia and rheumatism it is invaluable. It is applied by means of a sponge tooth-brush, or a small piece of sponge attached to the end of a stick. Mr. Curtis, of Camden Town, has suggested to me the use of an aconite plaster, prepared by spreading the soft alcoholic extract (obtained by evaporating the tincture) on adhesive plaster, in neuralgia.

2. EXTRACTUM ALCOHOLICUM ACONITI, Alcoholic Extract of Monkshood. (Prepared by distilling the spirit from the tincture, until the consistence of an extract has been obtained.)—It has been employed internally in doses of one-sixth of a grain every three hours. It should be given in the form of pills (pilula aconiti) made of liquorice powder and syrup. It may be also employed externally in the form of ointment (unguentum aconiti), composed of one part of the extract, and two parts of lard (Turnbull), or spread on adhesive plaster.

3. EXTRACTUM ACONITI, L. E. Succus Spissatus Aconiti, D. Insipissated Juice or Extract of Monkshood. (Fresh Aconite Leaves, lb. j. Having moistened the leaves with water, bruise them in a

---

* Brit. and For. Med. Rev. i. 249.
* Treat. on Painf. and Nerv. Dis. p. 91. 1837.
stone mortar; then press out the juice, and evaporate it, unstrained, to a proper consistence, *L. D.*—"Take of the leaves of monkshood, fresh, any convenient quantity; beat them into a pulp; express the juice; subject the residuum to percolation with rectified spirit, so long as the spirit passes materially coloured; unite the expressed juice and the spirituous infusion; filter; distil off the spirit, and evaporate the residuum in the vapour bath, taking care to remove the vessel from the heat so soon as the due degree of consistence shall be attained," *E.*)—An uncertain preparation. When of good quality it causes numbness and tingling, within a few minutes after its application, in the mouth and lips. The tincture or alcoholic extract are, in my opinion, greatly to be preferred to this variable preparation.—Dose, one or two grains at the commencement, and to be gradually increased until some obvious effect is produced.

4. ACONITINA, *L.* Aconitine. The following directions for making this alkaloid are given in the London Pharmacopoeia:—

"Root of Aconite, dried and bruised, *lb. ij.*; Rectified Spirit, *Cong iij.*; Diluted Sulphuric Acid; Solution of Ammonia; Purified Animal Charcoal, each as much as may be sufficient. Boil the Aconite with a gallon of the Spirit for an hour, in a retort with a receiver adapted to it. Pour off the liquor, and again boil the residue with another gallon of the Spirit and the Spirit recently distilled, and pour off the liquor also. Let the same be done a third time. Then press the Aconite, and all the liquors being mixed and strained, let the Spirit distil. Evaporate what remains to the proper consistence of an extract. Dissolve this in water, and strain. Evaporate the liquor with a gentle heat, that it may thicken like a syrup. To this add of dilute Sulphuric Acid, mixed with distilled water, as much as may be sufficient to dissolve the Aconitina. Then drop in solution of Ammonia, and dissolve the Aconitina precipitated, in diluted Sulphuric Acid and water, mixed as before. Afterwards mix in the Animal Charcoal, frequently shaking them during a quarter of an hour. Lastly, strain, and solution of Ammonia being again dropped in that the Aconitina may be precipitated, wash and dry it.

Aconitina exists in the plant in combination with a vegetable acid (aconitic acid?). Alcohol extracts this salt with some other matters. The alcoholic extract yields this salt to the water, and on the addition of sulphuric acid a sulphate of aconitina is formed, which is decomposed by ammonia, and the aconitina precipitated. It is then again dissolved by sulphuric acid, the solution decolorized by charcoal, and the aconitina again precipitated by ammonia.

As prepared by Mr. Morson, this substance presents the following properties:—It is a white, odourless solid, either dull and amorphous or somewhat sparkling, and apparently crystalline. As it is usually described as being uncrystallizable, I have carefully examined a supposed crystalline mass with the microscope, but I could not detect distinct crystals. The fragments appeared like thin plates of chlorate of potash, and, though they varied greatly in shape, the triangular form seemed predominant. Heated in a tube, aconit a readily fuses, and forms a pale amber-coloured liquid; and at a higher temperature decomposes. It is not volatile. Heated on platinum foil over a
spirit-lamp, it is speedily and entirely dissipated. It is soluble in alcohol, ether, and the acids. From its acid solution it is precipitated by ammonia. A minute portion of it mixed with lard, and applied to the eye, causes contraction of the pupil, as I have repeatedly seen. Geiger and Hesse state that the aconitina which they obtained produces dilatation of the pupil. Mr. Morson's aconitina is so powerful that one-fiftieth of a grain has endangered the life of an individual. It is the most virulent poison known, not excepting hydrocyanic acid.

The following are the notes appended to it in the London Pharmacopœia:

"An alkali prepared from the leaves and root of aconite. It is very soluble in sulphuric ether, less in alcohol, and very slightly in water. It is totally consumed in the fire, no salt of lime remaining. This substance possessing strong power, is not to be rashly employed."

A spurious aconitina is found in the shops. It is imported from France, and bears the stamp and label of a celebrated French chemical firm. Its colour is greyish-yellow. It is inert or nearly so; at least I have taken one grain of it without perceiving the least effect of it on the tongue or otherwise. It is not completely soluble in either ether or alcohol. When burnt on platinum foil it leaves a calcareous residue. The only genuine aconitina which I have met with is that manufactured by Mr. Morson, of Southampton-row; and Dr. Turnbull informs me that he has found none other to possess any medicinal value. Mr. Skey also found this to be the case.

The effects of this alkaloid are similar to those of aconite root, but, of course, much more powerful. If the ointment or alcoholic solution of this substance be rubbed on the skin, it causes intense heat, tingling, and numbness, which continue for more than twelve or eighteen hours. A minute portion of an ointment, composed of a grain of the alkaloid to two drachms of lard, applied to the eye, causes almost insupportable heat and tingling, and contraction of the pupil. This last effect was shewn me by Dr. Turnbull, in some amaurotic cases of several years' standing, and whose pupils underwent no change when the eye was exposed to strong day-light. In very minute doses it has caused heat and tingling upon the surface of the body, and sometimes diuresis; but it cannot be administered internally with safety. In one case (an elderly lady), one-fiftieth of a grain had nearly proved fatal. Satisfied that great insecurity attends its internal use, Dr. Turnbull tells me he has long since ceased to employ it in this way, as the slightest inattention on the part of the dispenser may be attended with fatal results.

The enormous cost (3s. 6d. per grain!) of Morson's aconitina limits its use. I believe that the alcoholic tincture is a perfect substitute for it; and the experience of others confirms my own observation.

*See Lond. Med. Gaz. xix. 185.*
Of the great efficacy of aconitina in neuralgic and rheumatic affections, no one can entertain any doubt who has submitted the remedy to trial. The following are Dr. Turnbull's formulae for using aconitina externally:

1. Unguentum Aconitine. Aconitine Ointment. (Aconitine, gr. xvj.; Olive Oil, 5ss.; Lard, 3j. Mix).—It is employed by friction, with the finger, during several minutes.

2. Solutio Aconitine. Aconitine Embrocation. (Aconitine, gr. viij.; Rectified Spirit, 3j. Dissolve.)—Used by friction-sponge (as a sponge tooth-brush). Care must be taken not to employ it where the skin is abraded.

---

OTHER MEDICINAL OR POISONOUS RANUNCULOCÆ.

1. The leaves of Helleborus fœtidus are emetic and purgative. They have been employed as a vermifuge against the large round worm (Ascaris lumbricoides).

2. Helleborus viridis possesses similar properties.

3. Aconitum ferox is, perhaps, the most violent of the ranunculaceous poisons. It is a Nepal plant, and constitutes the Bish or Bikh poison of that country. Several years since I undertook, at the request of Dr. Wallich, to examine the effects of this plant on animals. My experiments were made with plants which had been ten years in Dr. Wallich's possession, and which, therefore, had doubtless lost part of their activity; yet their effects were most energetic; but of the same nature as those of Aconitum Napellus.

---

* See Dr. Turnbull, op. supra cit.; Mr. Skey, Lond. Med. Gaz. vol. xix. p. 181.
II. The Animal Sub-Kingdom.

Division I. Invertebrata.—Invertebral Animals.

Essential Characters.—Animals destitute of a vertebral column and an internal skeleton. Skin sometimes ossified, and thereby forming an external skeleton. Nervous system not always evident.

Subdivision I.—ACRITA, Macleay.

Nervous system indistinct, diffused, or molecular (Owen)\(^w\).

Class I.—PORIPHERA, Grant.—PORIPHEROUS ANIMALS.

Essential Characters.—Simple, soft, aquatic animals, with a fibrous axis, without perceptible nerves or muscular filaments, or organs of sense, or any circulating or glandular organs. Their body is composed of a soft gelatinous flesh, traversed internally with numerous, ramose, anastomosing canals, which commence from superficial minute pores, and terminate in larger, open vents\(^x\).

**SPONGIA OFFICINALIS, Linn. E. D.—THE OFFICINAL SPONGE.**

(Sting, E.)

History.—Aristotle\(^y\) was acquainted with the sponges, and notices the popular but erroneous opinion of their shrinking when attempted to be plucked.

Zoology. Gen. Char.—Body soft, very elastic, multiform, more or less irregular, very porous, traversed by numerous tortuous canals which open externally by very distinct vents (oscula), and composed of a kind of subcartilaginous skeleton, anastomosed in every direction, and entirely without spicules (De Blainville)\(^z\).

My friend, Mr. J. S. Bowerbank\(^a\), has recently shown that spicula do exist in the keratose or horny sponges of commerce. They are imbedded, to a greater or less extent, in the substance of the fibre, and are mostly to be observed in the larger flattened portions of the fibre, and not in the finer anastomosing threads.

Mr. Bowerbank has also shown that the fibre of the true sponges is solid, and not tubular, as commonly supposed\(^b\).

Sp. Char.—Masses very large, flattened and slightly convex above, soft, tenacious, coarsely porous, cracked and lacunose, especially beneath. Vents round, and for the most part large (Lamouroux)\(^c\).

These characters are insufficient to distinguish the officinal sponge from numerous other allied species; and it is tolerably clear, from Mr. Bowerbank's

\(^w\) Cyclop. of Anat. art. Acrita.

\(^y\) Grant, Brit. Annual, for 1838, p. 267.

\(^z\) Hist. de Anim. lib. i. cap. ix. p. 16. Tolosse, 1619.

\(^a\) Mem. d’Actinol. p. 529. 1834.


\(^c\) The only tubular sponge known to Mr. Bowerbank is Spongia fistularis. This, however, he proposes to separate from the genus Spongia, and to give it the generic name of Fistularia.

discoveries, above alluded to, that the naked eye is incompetent to distinguish species of this curious genus, and that the microscope must be principally, if not wholly, relied on for ascertaining specific characters. Mr. Bowerbank has recognised three distinct species in the sponges of commerce.

The animality of sponge is by no means universally admitted; indeed a considerable number of the naturalists of the present day regard it as of vegetable origin; and its position, in a natural classification of plants, it is said, should be between Algae and Fungi. But the recent observations of Mr. Bowerbank appear to me to be conclusive as to its animality. In one species of sponge he detected a branched vascular system, with globules in the vessels analogous to the circular blood disks of the higher animals. Now, nothing analogous to this has hitherto been detected in plants.

The sponge derives its food from the fluid in which it lives. The water (containing the matters necessary for the existence of the animal) enters by the superficial pores, circulates through the anastomosing canals, and is expelled by the faecal orifices or vents, carrying along with it particles which separate from the sides of the canals.

Sponge adheres to rocks by a very broad base. When first taken out of the sea it has a strong fishy odour. Its colour varies from pale to deep brownish yellow. It often contains stony or earthy concretions (lapides spongiarum), which Bley found to consist principally of the carbonates of lime and magnesia. Shells also are found in sponges. Various marine animals pierce and gnaw it into irregular holes.

Hab. — In the Red and Mediterranean Seas. Chiefly collected about the islands of the Grecian Archipelago.

Collection.—The inhabitants of the Greek islands collect sponge by diving for it. In their submarine operations they carry with them a knife. Practice enables them to remain a considerable time under water. As soon as the sponge is brought on shore, it is squeezed and washed to get rid of the gelatinous matters, otherwise putrefaction speedily ensues.

Description.—Commercial sponge (spongia) is the dry skeleton of the animal, from which the gelatinous flesh has been removed, as just mentioned. When deprived of stony concretions, &c. found in the interior of the mass, it is soft, light, flexible, and compressible. When burnt it evolves an animal odour. It absorbs water, and thereby swells up. Nitric acid colours it yellow. Liquor potassae dissolves it: the solution forms a precipitate on the addition of an acid. The finer sponges, which have the greatest firmness and tenacity, were formerly called male sponge; while the coarser portions were denominated female sponge.

In 1841 duty (6d. per lb. with an additional 5 per cent. on the duty) was paid on 58,931 lbs. of sponge.

In English commerce two kinds of sponge are met with, which are respectively known as Turkey and West Indian.

---

4 See Hogg, in the Linn. Trans. vol. xviii. p. 363 & 363; also, Johnson's History of British Zoophytes, Ed. 1838.
5 Grant, Outlines of Comparative Anatomy, p. 310. Lond. 1836.
6 Pharm. Central Blatt für 1834, S. 273.
8 On the continent a considerable variety of sponges are known. See Baudrimont, in the Dict. de l'Industrie, t. iv. art. Eponge; and Dr. T. W. C. Martinus's Lehrbuch der pharmaceutischen Zoologie. Stuttgart, 1838.
a. Turkey Sponge.—This is imported from Smyrna, and constitutes the best sponge of the shops. It occurs in cup-shaped masses of various sizes. Its texture is much finer than the West Indian kind. Mr. Bowerbank, by the aid of the microscope, has discovered that it consists of two species of Spongia, not distinguishable from each other by the naked eye. One of these is characterized by the presence of a beautiful, branched, vascular tissue, which surrounds, in great abundance, nearly every fibre of its structure, and is inclosed in an external membrane or sheath. In the other, and most common, kind of Turkey sponge, no vascular tissue has yet been discovered.

β. West Indian Sponge.—The principal source of this is the Bahama Islands; whence it is commonly known as Bahama Sponge. Its forms are more or less convex, with projecting lobes. Its fibre is coarser. Its tissue has but little cohesion, and hence this kind of sponge is commonly regarded as rotten. Mr. Bowerbank states that it consists of one species only of Spongia.

Composition.—Well-washed sponge, freed as much as possible from earths and salts by dilute acids, was analysed, in 1828, by Hornemann, who found it to consist of a substance similar to osmazome, animal mucus, fat oil, a substance soluble in water, a substance only soluble in potash, and traces of chloride of sodium, iodine, sulphur, phosphate of lime (?), silica, alumina, and magnesia. Mr. Hatchett found sponge to consist of gelatine (which it gradually gave out to water), and a thin, brittle, membranous substance, which possessed the properties of coagulated albumen.

Uses.—The extensive economical uses of sponge are familiar to every one. To the surgeon it is of great value on account of its softness, porosity, elasticity, and the facility with which it imbibes fluids. Its use at surgical operations and for checking hemorrhage is well known. It has also been applied to wounds and ulcers for imbibing acrid discharges. The sponge-tent is usually made of compressed sponge impregnated with wax (spongia cerata), and which is called prepared sponge (spongia preparata). It is prepared by dipping sponge into melted wax, and compressing it between two iron plates till the wax hardens. It was formerly much used for dilating sinuses and small openings, but it is seldom resorted to now.

Spongia Usta. Pulvis spongiae ustae, D. Calcined or burnt sponge. (Having cut sponge into pieces, beat it to free it from little stones; burn it in a closed iron vessel until it becomes black and friable, and reduce it to powder, D.).—Preuss calcined 1000 parts of sponge: of these, 343.848 parts were destroyed by heat. The residue consisted of carbon and siliceous insoluble matters, 327.0; chloride of
1816

ELEMENTS OF MATERIA MEDICA.

sodium, 112.08; sulphate of lime, 16.43; iodide of sodium, 21.42; bromide of magnesium, 7.57; carbonate of lime, 103.2; magnesia, 4.73; protoxide of iron, 28.72; and phosphate of lime, 35.0.—Burnt sponge, if good, should evolve violet fumes (vapour of iodine) when heated with sulphuric acid in a flask. It has been employed as a resolvent in bronchocele, scrofulous enlargement of the lymphatic glands, &c. Its efficacy is referrible to iodine and bromine. Iodine is now almost invariably substituted for it.—Dose, 5/ to 3/2. It is given in the form of electuary or lozenges (burnt sponge lozenges; trochisci spongiae ustae).

CLASS 2.—POLYPIPHERA, Grant.—POLYPIPHEROUS ANIMALS.

The polypipherous animals have received their name from the circumstance of their bearing tubes called polypes. They consist of two parts, a skeleton and a fleshy portion. The skeletons vary in their consistence, and also in their position relative to the soft parts. They are soft and flexible, or hard and calcareous. They are external and tubular, or internal and solid. The fleshy portion may be, with respect to the skeleton, either external or internal. It gives origin to fleshy tubes (polypes), each of which, at its external orifice, is surrounded by tentacula.

The calcareous internal skeleton of Corallium Rubrum, Lamarck (Isis nobilis, Pallas; Gorgonia pretiosa, Ellis), is the Red Coral of the shops. It consists of carbonate of lime principally coloured with oxide of iron. Prepared Red Coral (Corallium rubrum preparatum) was formerly used in medicine, but it presents no advantage over chalk. Its powder, obtained by levigation, or an imitation of it, is still kept in the shops, and is occasionally employed as a dentifrice.

SUBDIVISION II.—RADIATA, Lamarck.—RADIATE ANIMALS.

Essential Characters.—Nervous system distinct, composed of filaments and rudimentary ganglia; the filaments arranged circularly around the buccal orifice (Cyclo-neura).

No officinal substance is obtained from the Radiata.

SUBDIVISION III.—MOLLUSCA, Latreille.—MOLLUSKS OR SOFT ANIMALS.

Malacozoa, Blainville.—Cyclo-gangliata, Grant.

Essential Characters.—Inarticulated animals with a soft not annulated skin. Cerebral ganglia arranged circularly around the oesophagus.

CLASS III.—CONCHIFERA, Lamarck.—CONCHIFEROUS MOLLUSKS.

Essential Characters.—Acephalous, aquatic mollusks, with a bivalve or a multivalve shell. Organs of respiration four pectinated laminae. Heart simple. Impregnation effected without the assistance of a second individual.
COMMON EDIBLE OYSTER.

OS'TREA ED'ULIS Linn. L.—COMMON EDIBLE OYSTER.

(Testa, L.)

History. — Oysters were greatly admired by the Romans as a most delicious article of food. Those of Britain were much esteemed; though they were said to be inferior to those of Cyzicena (Pliny). Zoology. Gen. Char. — Body compressed, more or less orbicular. Edges of the mantle thick, non-adherent or retractile, and provided with a double row of short and tentacular filaments. The two pair of labial appendices triangular and elongated. A subcentral, bipartite muscle. Shell irregular, inequivaled, inequilateral, coarsely laminated. Left or inferior valve adherent, largest, and deepest; its summit prolonged, by age, into a kind of keel. Right or upper valve smallest, more or less opiculiform. Hinge oral, toothless. Ligament somewhat internal, short, inserted in a cardinal pit, growing with the summit. The muscular impression unique and subcentral (Blainville).

Sp. Char. — Valves ovate-roundish or obovate; the upper one flat. Lamellae of both valves, imbricated and undulated (Brandt). Brandt has given an elaborate account of the anatomy of the oyster, to which I must refer the student interested in these details.

Hab. — European and Indian seas. Our own coasts furnish some of the finest kinds. Those found at Purfleet are said to be the best.

Oyster Fisheries. — Oysters are caught by dredging. In order to improve their flavour and size they are laid on beds in creeks along shore, where they rapidly improve. Colchester and other places of Essex are the nurseries or feeding grounds for the metropolis.

Description. — The officinal parts of oysters are the shells (testa ostreae). The hollow valves are preferred, as they contain more carbonate of lime. When calcined, oyster shell yields a quicklime formerly much esteemed as a lithontriptic.

Composition. — Oyster shells have been analysed by Bucholz and Brandes, and by Rogers. — The flesh of the oyster has been analysed by Pasquier.

Bucholz and Brandes's Analysis.  

| Carbonate of lime | 98.6 |
|Phosphate of lime | 1.2 |
|Alumina | 0.2 |
|Albuminaceous matter | 0.5 |

Oyster Shells  100.5

Pasquier's Analysis.  

| Osmazome | 12.6 |
|Gelatine | 13.6 |
|Mucus | 87.4 |

Flesh of the Oyster  100.0

Juvenal, Sat. iv.
Ibid. Bd. ii.
For details respecting the treatment of oysters in beds, see Spratt's History of the Royal Society, p. 307.
Gmelin, op. supra cit.
The dietetical properties of oysters have been before noticed (see p. 62).

**TESTE PREPARATE, L.; Teste Ostreorum Preparatoe; Prepared Oyster Shells.** (Wash the Shells, first freed from impurities, with boiling water; then prepare in the same manner as directed for chalk, L.)

—The mode of preparing chalk by elutriation has been already described (see p. 596). After oyster shells have been washed, boiled, and crushed, they are dried and ground to an impalpable powder previous to elutriation. In the shops the substance sold as prepared oyster shells is in small conical masses. The principal constituent of prepared oyster shells is carbonate of lime, and they therefore possess the same medicinal properties as chalk, already described (p. 597), and which is usually substituted for them.

**CLASS IV.—CEPHALOPODA, Cuvier.—CEPHALOPODS.**

**ESSENTIAL CHARACTERS.**—Body inclosed in a bag (mantle). Head protruding from the bag, crowned with inarticulated arms, furnished with cups or suckers, and surrounding the mouth. Eyes two, sessile. Mouth with two horny mandibles. Hearts three. Sexes separate.

**SE'PIA OFFICINALIS, Linn. — COMMON CUTTLE FISH.**

The substance called os sepiae or cuttle-fish bone is an oval or oblong calcareous bone (sometimes termed a shell) deposited in the mantle of the animal. The common species of sepia is S. officinalis, Linn.; but S. elegans, Blainville, also yields part of the cuttle-fish bone of the shops.

Os sepiae has a cellular texture, and is so light as to float on water. It is cast in considerable quantities on the shore, and is collected for commercial purposes. It was analysed by John, who found the constituents to be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Hard, Upper or Outer Portion</th>
<th>Porous Part.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate (with a trace of phosphate) of lime</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Non-gelatinous animal matter, soluble in water with some common salt</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Gelatinous membrane, not soluble in water</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Water, with a trace of magnesia</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Reduced to powder it is used as a dentifrice. It is employed for several purposes in the arts, as for polishing, for forming moulds for small silver castings, and as a pounce.

**SUBDIVISION IV.—ARTICULATA, Cuvier.—ARTICULATED ANIMALS.**

**ESSENTIAL CHARACTERS.**—Skin annulated. Muscles attached to the inner surface of the skin. Nervous system of two cords extended along the ventral surface of the body, with ganglionic enlargements at intervals (diplo-neura); the anterior ganglion (brain) placed over the oesophagus.

* Brandt and Ratzburg, Med. Zoolog. ii. 299.
THE BLOOD-SUCKING LEECHES.

CLASS V.—ANNULOSA, Macleay.—ANNULOSE ANIMALS.

ANNELIDES seu ANNELIDA.

Essential Characters.—Body more or less elongated. Skin soft, segmented and annulated. Articulated members and wings absent. Blood red.

SANGUISUGA, Savigny.—THE BLOOD-SUCKING LEECHES.

latrobdella, Blainville.

History.—We have no accurate knowledge of the exact period when leeches either became known to, or were employed by, man; but this deficiency of information is not necessarily referrible to their discovery preceding the date of our historical documents. It is true that in the common version of our most ancient record, the Bible 

\[\text{Prov. xxx. 15.}\]

\[\text{Med. Zool. ii. 231.}\]

\[\text{Euterpe, Ixviii.}\]

\[\text{Le Clerc, Hist. de la Medec. p. 442. Nouv. ed. 1729.}\]

this passage occurs, "The horse-leech hath two daughters, crying, give, give;" but critics are not agreed as to the correctness of this translation. The word "Olukeh," or "Aluka," here interpreted "horse-leech," means, according to Bochart, destiny or fate; the daughters alluded to being Eden and Hell. But the Vulgate, Greek, and Lutheran translations, are all against his opinion. Brandt \[\text{x}\] has entered into a very elaborate discussion of this subject, from which it appears that, in Arabic, the term Aluka indicates a leech, while Aluk signifies fate; the latter being derived from Alaka, to attach or hang to, because every man's fate is supposed to be appended to him, just as a leech affixes itself to the body; so that from this it appears probable the word "Olukeh" of the Old Testament really refers to the leeches. Nay, I think there is some reason for suspecting that the Sanguisuga aegyptiaca is the species referred to. The leeches referred to by Herodotus \[\text{y}\] are Bdella nilotica (Savigny).

But admitting that these animals were known at this early period, it does not appear that they were employed in medicine: for Hippocrates makes no mention of them, though he notices other modes of drawing blood. Aristotle also is silent with regard to them. In the extracts which Calius Aurelianus has made from the writings of Diocles, Praxagoras, Herophilus, Heraclides, Asclepiades, and other ancient physicians, who lived between the time of Hippocrates and Themison, no mention is made of the employment of leeches; a remarkable fact in favour of the opinion that they were not at this period in use. In fact, the founder of the Methodic sect, Themison, is the first person in whose works we find mention of leeches being employed therapeutically \[\text{z}\]. However, it does not follow that he was the first who prescribed them, though our documentary evidence fails in tracing back their use beyond his time.

\[\text{x Prov. xxx. 15.}\]

\[\text{y Med. Zool. ii. 231.}\]

\[\text{z Euterpe, Ixviii.}\]

\[\text{Le Clerc, Hist. de la Medec. p. 442. Nouv. ed. 1729.}\]
In the Latin and Greek languages, the animal has received its name from its sucking or drawing qualities. Thus the Greeks called it βεναλα, from βεναλω, to suck; the Romans hirudo, probably from haurio, to draw out; or sanguisuga, literally signifying “blood-sucker,” from sanguis and suyo. It would appear, however, that the latter of these two Latin terms is the more modern; for Pliny *, in speaking of elephants, says, “Cruciatum in potu maximum sentiunt, hausta hirudine, quam sanguisugam vulgo cepisse appellari adverto.”

Zoology. Gen. Char.—Jaws with two rows of pointed, numerous teeth, which are mutually inclined at an acute angle (Brandt) b.

Body elongated. Back convex. Belly flat. Extremities somewhat narrowed, furnished with disks or suckers; the anterior extremity somewhat narrower than the posterior one. Rings from ninety to a hundred. Eyes represented by ten blackish points. Mouth tri-radiate. Jaws cartilaginous, armed with numerous cutting teeth. Anus small, placed on the dorsum of the last ring.

Cuvier c includes all leeches in the genus Hirudo; but later naturalists have found it necessary to arrange them in several genera. The leeches employed in medicine have been formed into a distinct genus, called by Blainville d Iatrobdella (from λαρψ and βεναλα, a leech), by Savigny e, Sanguisuga. The latter classical term, so expressive of the blood-sucking properties of the genus, I have adopted. All leeches, it appears, are not provided with an apparatus for perforating the skin of vertebrate animals. In consequence of the numerous complaints addressed to the Préfet de Police, in 1825, that of the leeches sold in Paris some would not bite, while others caused painful and obstinate wounds, he consulted the Council de Salubrité, who deputed MM. Pelletier and Huzard, to inquire into the accuracy of the statements. One of the results of the investigation was, that the animal called in France horse-leech, and which had been particularly charged with causing painful wounds, could not perforate the human skin, the teeth of the animal being quite blunt f. The horse-leech referred to, the reporters declared to be Hemopis sanguisorba, Savigny; but Blainville says it was Hemopis nigra.


Moquin-Tandon g admits three varieties:—

a. Dorsal bands interrupted at intervals.

b. Dorsal bands reduced to blackish spots.

g. Dorsal bands united by transverse ones.

---

d Dict. des Scienc. Nat. t. 47, art. Sanguine.
f Journ. de Pharm. t. xi.
g Monogr. de la fam. les Hirud. p. 112.
2. **Sanguisuga medicinalis**, Savigny. *Hirudo medicinalis*, Linn. L. D. True English or Speckled Leech.—Back greenish or olive-green, with six rusty red longitudinal stripes, which are mostly spotted with black. Belly greenish yellow, spotted with black (Brandt).—Spots very variable in size and number; in some cases they are but few; in others are so numerous as to form the almost prevailing tint of the belly, the intervening spaces appearing like greenish yellow spots.—Europe, especially the northern parts. A native of England, but rare. Imported from Hamburgh.

Several varieties of this leech have been described and figured. One of the most remarkable of these is the flesh-coloured medicinal leech (*Sanguisuga medicinalis carnea*) described by Guillez of Paris. The anterior half of its body is flesh-coloured; while the posterior half is of the usual colour. The spotted or piebald leech is flesh-coloured with olive-green spots.

These are the only species employed in medicine in this country. Others have been described and figured by Brandt. The following is a short sketch of the anatomy of the medicinal leech:

The Cutaneous System of the animal consists of a transparent *epidermis* (which is thrown off from the body every four or five days) and the *corium*. The latter consists of condensed cellular tissue, composed, according to Brandt, of globules. Like the epidermis, it shows the partitions into rings. It contains a number of *globules* impregnated with a pigment, varying in colour in different places, and which is the source of the colours presented by the surface of the animal.

It is asserted that the predominant or base colour is, in part at least, owing to the colour of the soil in which the animals are found. Dr. J. R. Johnson says, "Mr. Baker, a man of some intelligence, residing in Glastonbury, and who for the last twenty years has been in the habit of collecting large quantities of leeches for sale, informs me that at the Black River, near Glastonbury, they are black, from the peat being of that colour; at Cook's Corner, they are of a reddish cast, from the red peat; while at Auler Moor, where, from a deficiency of peat, they penetrate the clay, they are yellow."

The Muscular System has been elaborately described by Brandt, but can scarcely be comprehended without the aid of drawings. The muscles of the trunk are arranged circularly, longitudinally, and obliquely; of these, the circular fibres are the most external, and the longitudinal ones the most internal.

The Digestive System consists of a mouth, alimentary tube, anus, salivary glands, and liver. The *mouth* is placed in the middle of the oval or buccal disk; its shape is tri-radiate,—that is, of three equidistant lines or rays meeting in a centre. Within it are three white sublenticular *dentiferous tubercles* or piercers), which in appearance are cartilaginous; but Brandt says they consist of a strong firm skin, inclosing a muscular mass. On the free-curved sharp margin of each jaw are about sixty small, finely-pointed *teeth*. The *oesophagus* is a muscular tube, and dilates as it approaches the stomach; but at its termination it contracts into a small circular aperture, its whole length not exceeding a quarter of an inch. The *stomach* occupies two-thirds of the length of the animal, and is divided into about eleven compartments or cells, each of which, from the second to the eleventh, gives off on each side a *caecal sac*, those of the last cell being far the largest, and extending down by the side of the intestine as far as the commencement of the rectum. The stomach consists of three coats,—a cellular, a muscular, and a mucous one.

---


*Treat. on the Med. Leech,* p. 42. 1816.
Its eleventh cell terminates by a funnel-shaped projection in the intestine. The intestine is about an inch in length; at its upper orifice is a valve, and at its lower end a sphincter: on either side of it, for the greater part of its length, is one of the sacs for the last compartment of the stomach; on its inner surface are several folds. It is divided into small and large intestine, the lower part of the latter being called a rectum. The anus is not, as we might anticipate, in the posterior disk, but on the dorsal surface of the last ring. Salivary organs have been described: they consist of whitish granular masses placed around the oesophagus, into which tube the common salivary duct opens. De Blainville, Carus, and Brandt, speak of a liver. It is a brownish mass placed on the alimentary canal, the ducts opening into the stomach and intestine. The best mode of displaying the cells of the stomach is to immerse a leech, fully gorged with blood, for a week in a saturated solution of corrosive sublimate.

The Vascular System consists of four great pulsating vessels, giving off numerous ramifying branches; but without any heart, commonly so called. Two of these are placed laterally, a third in the median line of the dorsal surface, and a fourth on the abdominal surface. All these vessels pulsate (Johnson). We know very little about the manner in which the blood circulates. Brandt thinks that the lateral vessels must be arteries, on account of their very distinct transverse and longitudinal fibres: the dorsal and venous vessels he terms veins. Does not the alimentary canal correspond to the vena cava, and the abdominal vessel to the vena porta of higher animals? Grant, however, terms the dorsal vessel of the annelides an artery.

The Respiratory System consists of small apertures (called stigmata or spiracula) arranged in two rows on the abdominal surface, and occurring at every fifth ring. They lead into little cavities lined by mucous membrane, and which have been called air sacs, pulmonary vesicles, mucus bags, crypte, or lateral vesicles, containing usually a whitish fluid. They are placed on each side of the alimentary canal, in the spaces between the ceecal sacs of the stomach, and are usually regarded as organs of respiration. Brandt, however, asserts that the respiratory function is effected solely by the skin, and that these vesicles are, in fact, receptacles for mucus secreted by a neighbouring glandular apparatus, which has a whitish appearance, and in form represents a folded intestine. This notion, however, is not new, but was held by De Blainville and Johnson.

The Nervous System consists of two parts: one (which we may compare to the cerebro-spinal axis of the vertebrata) consists of a chain of ganglia (usually about twenty-three in number) occupying the mesial line of the abdomen, and connected by a double nervous cord; the first ganglion (brain) is placed on the oesophagus, and supplies the eyes and neighbouring muscles. The second
part of the nervous system is that lately discovered by Brandt, and may be regarded as a kind of sympathetic system. It consists of three ganglia (connected to the brain by filaments, and supplying the jaws), and a single nerve connected to them, and running along the abdominal surface of the stomach in the mesial line.

Of the External Senses three only have been recognized: feeling, which resides in the external surface of the body; taste, apparently indicated by the fondness of leeches for certain fluids (as blood, milk, &c.); and vision, effected by ten eyes (in the form of black spots) arranged in a crescent form at the anterior or cephalic extremity of the animal.

The Sexual System is double,—that is, each animal is androgynous, or possesses both male and female organs. There is, however, no power of self-impregnation (the contact of two individuals being requisite, each acting to the other in a double capacity of male and female).

The Male Organs consist of several pairs of testicles, two vasa deferentia, two vesiculae seminales, two ejaculatory ducts, and a penis surrounded at its base by what some have termed a prostate gland. The penis projects from the abdominal surface at about one-third distant from the anterior extremity. The Female Organs consist of two ovaries, two oviducts (which subsequently unite into one) a hollow organ (uterus) which opens by a contracted aperture (vagina) externally, at about the twenty-ninth ring, or five rings below the penis.

That leeches are essentially oviparous admits of no doubt; and we have now an admirable account of their development by Professor Weber. It appears that soon after copulation an unusual activity pervades the ovaries, in consequence of which some ova (termed by Weber germs, by Carus yelks) are separated, and pass along the oviduct to the uterus, where they stop, in order to obtain the matters necessary for their development, and their proper coats. They here become invested with a serous-like membrane, on the inner side of which is produced (either by secretion from the uterine cavity or from the membrane itself) an albuminous whitish mucus, serving in part for the nourishment of the ovum, and which is regarded as a kind of liquor amnii. Subsequently a glutinous fluid is deposited on the outside of the serous coat. When the ova are expelled from the uterus, part of this fluid gives a coating to them, while part is expelled before and after them. But this coat seems now distended with air vesicles, and has the frothy appearance of well-beaten white of egg, produced by the violent contraction of the uterus.

The animals usually deposit their ova (in their own native waters) in holes or moist places on the shore, from May to the end of September. When first expelled, they are somewhat cylindrical in form, and have a brownish appearance. The frothy layer adheres very slightly; but after lying in the water for a quarter of an hour, the outer surface becomes somewhat hardened, forming a kind of pellicle or fine skin. After some days a portion of this frothy covering is converted into a spongy tissue (spongy coat of the cocoon), covering

---

*Meckel's Archiv for 1828, p. 366.*
the capsule of the ova (cocoon) wholly or partially. In this state the cocoon has a brownish, fibrous appearance, similar to fine sponge, and varies somewhat in its size and weight; its longest diameter being from six to twelve lines, its shortest from five to eight, and its weight from twenty-four to twenty-eight grains.

The ova or germs, which have a lenticular form, evince vital movements; and very soon we perceive on each a funnel-shaped tube, extending from their surface inwards, and which appears to absorb the albumen of the cocoon. The ovum goes on enlarging, and becomes somewhat elongated, and subsequently the young leech begins to be developed on the exterior part of the ovum, the aperture of the funnel being the spot where the mouth of the young animal is observed. The abdominal surface is the first, the dorsal the last, to be developed. When the young leeches have attained a considerable size they pierce their cocoon.

**Diseases of Leeches.**—The natural duration of the life of leeches is not easily determined; but judging from the slowness of their growth, and the length of time full-grown leeches have been preserved, we may necessarily infer that they are long-lived animals. Dr. Johnson thinks that in their native waters, if they can always meet with an abundant supply of food, they may live at least twenty years. But they are subject to several diseases, some of which are epidemic, and of a very destructive kind. Although the study of the pathology of this animal is of considerable interest in a commercial and even scientific point of view, yet no practically useful results have hitherto been arrived at, in regard to the prevention and treatment of the diseases of leeches. Dr. J. R. Johnson mentions three diseases as common to this animal:—1st. An ulcer, seated in various parts of the body, but more generally affecting the side. It destroys life in a few days. 2dly. A rigidity and narrowing of one part, whilst another portion is studded with tumors of putrid coagulated blood. 3dly. A flaccid appearance of the whole body, except the lips, which are hard, swollen, purple, and frequently

* See figures of the cocoon, in Dr. J. R. Johnson’s Furth. Observ. on the Med. Leech, 1825.
bloody. These diseases are particularly prevalent during the summer months. Brostat describes three epidemic disorders.

Collection and Commerce of Leeches.—Leeches may be caught with the hand, or by a kind of net (described by Derheims), or by the gatherers going into the ponds with naked feet, to which the leeches adhere; or by baits, especially the liver of animals. The two latter methods are objectionable,—one because it is not free from danger to the gatherers, and the other because it is apt to injure the health of the animal. An interesting and graphic account of the leech fishery at La Brenne, and of the miserable appearance of the fisherman who collects the leeches, by allowing them to attach themselves to his legs and feet, has been published in the Gazette des Hôpitaux. A translation of this paper is given in M'Culloch’s Dictionary of Commerce.

All our leeches are imported from Hamburg. The Hamburg dealers draw their supplies from the Ukraine. “Having exhausted all the lakes of Siberia, Bohemia, and other more frequented parts of Europe, the buyers are now rolling gradually and implacably eastward, carrying death and desolation among the leeches in their course—sweeping all before them, till now they have got as far as Pultava, the pools and swamps about which are yielding them great captures.”

Leeches are sometimes imported in bags, but more usually in small barrels, each holding about 2000, the head being made of stout canvas to admit the air. The best vessels for preserving these animals are unglazed brown pans or wooden tubs. The dealers have a notion (and possibly a correct one) that the leaden glazing is injurious. These pans should be very little more than half filled with soft water (pond, river, or rain water). This does not require changing so often as is commonly supposed. In very hot weather, or when the water has become bloody, or otherwise much discoloured, it should be changed every day or so; otherwise, in summer every four or five days or a week; in winter, once a month is believed, by large dealers, to be sufficient.

The consumption of leeches must be enormous. Some years ago it was stated that four principal dealers in London imported, on the average, 600,000 monthly, or 7,200,000 annually. Féé says, “it is estimated that 3,000,000 are annually consumed in Paris; and as the population of Paris is to that of the whole of France as one is to thirty-three, it follows that, independently of exportation, 100,000,000 are consumed annually, which is equivalent to three leeches annually for each person. Now, if we estimate the average price at fifty francs per thousand, we shall have the enormous sum of five millions of francs paid for this one article of our materia medica.”

Mode of Biting.—Having fixed on a suitable spot, the animal applies his oval disk, and firmly fixes it (at first, perhaps, by atmos-
pheric pressure; then by intimate contact), so that the anterior end forms an angle with the other portions of the body. The three cartilaginous jaws bearing the sharp teeth are now stiffened and protruded through the tri-radiate mouth against the skin, which they perforate, not at once, but gradually, by a saw-like motion. Dr. Johnson" says, "The jaws are carried from side to side in an oblique direction;" and adds, "their action may be seen by presenting to the leech a coagulum of blood, and when the leech is in the act of suction, cautiously removing it. For a few seconds it appears unconscious of its removal, which presents a fair opportunity of observing the oscillatory movement of each piercer." The wound is not produced instantaneously, for the gnawing pain continues for two or three minutes after the animal has commenced operations. Thus, then, it appears that the leech saws the skin; hence the irritation and inflammation frequently produced around the orifices. The flow of blood is promoted by the suction of the animal, who swallows the fluid as fast as it is evolved. During the whole of the operation the jaws remain lodged in the skin. In proportion as the anterior cells of the stomach become filled, the blood passes into the posterior ones; and when the whole of this viscus is distended, the animal falls off. On examination it will be found that not a particle of blood has passed into the intestine.

Physiological Effects.—There are two classes of phenomena observed in all modes of drawing blood; one of which has been termed local, the other general. In phlebotomy and arteriotomy, the first is trifling, and of no therapeutic value; and we resort to these operations only as means of affecting the general system. On the other hand, we obtain topical effects, both powerful and useful, from cupping and leeching; hence these are termed local, while the former are denominated general blood-lettings. It must, however, be remembered, that constitutional or general effects are also frequently obtained from both cupping and leeching.

1. Constitutional or general effects of leeching are the same in kind as those caused by the loss of blood from other means. A moderate quantity of blood may be abstracted without any obvious effects on any of the functions; but, if the amount taken be increased, syncope results. The quantity necessary to produce this varies, however, considerably, and will depend on the mode of drawing it (whether rapidly, or otherwise); the position, constitution, and age of the patient; the nature of the disease; and many other circumstances not necessary to enumerate. It is well known that a small quantity will, if taken rapidly, and the patient be in the erect posture, cause this effect; whereas a considerably larger amount may be abstracted, if taken gradually, and the patient in the recumbent position, without giving rise to it. The usual explanation of this is, that when blood is drawn faster than the vessels can contract, the circulation is tem-
porarily stopped, and fainting ensues. Several reasons, however, lead me to doubt the sufficiency of this explanation. Leeching, then, as being a slower mode of abstracting blood, is less likely to cause syncope than venesection, or even cupping. As the patient recovers from the fainting state, hysterical symptoms sometimes manifest themselves. Throbbing headache, and sleeplessness, are by no means uncommon consequences of loss of blood. In some cases I have seen febrile excitement, of several hours' duration, brought on by blood-letting.

Dr. Marshall Hall has directed attention to the disorder of the cerebral functions (marked by convulsions, delirium, or coma) caused by blood-letting. I may observe, that convulsive movements are by no means uncommon in syncope from general blood-letting, and I think are not always to be considered as denoting that the remedy has been used beyond the safe degree. I have on several occasions been told by patients about to lose blood, that they are apt to faint and struggle when bled; and I have, in consequence, been requested to prevent them from injuring themselves. Delirium and coma are less frequently met with. Great depression of the vascular system, followed by sudden dissolution, is another occasional effect of loss of blood.

As might be expected, an operation so powerfully affecting the vital functions cannot be passive in its influence over morbid action; but the phenomena vary so much in different diseases, and even in the same disease under different circumstances, that it becomes extremely difficult to offer any general results. That loss of blood is sometimes beneficial, at other times hurtful, is well known. Its immediate beneficial effects are best seen in pneumonia and ophthalmia. In the first of these diseases the respiration sometimes becomes easier, and the pain removed, while the blood is flowing; and from this time the amendment progresses. In ophthalmia, the redness of the conjunctiva disappears during the syncope from blood-letting, and sometimes never returns with equal intensity. A tendency to hemorrhage has been thought by some experienced practitioners to be engendered or increased by the application of leeches. Thus the return of the menses, the aggravation of menorrhagia, hæmoptysis, and apoplexy, have been found to follow, and apparently to result from, the employment of leeches.

The effects of blood-letting are considerably influenced by disease. Every practitioner is acquainted with the fact, that in certain morbid conditions patients bear the loss of larger quantities of blood than in others. I need only mention apoplexy, inflammation of the serous membranes, peripneumony, and phrenitis, as examples of increased tolerance; while chlorosis and cholera may be cited as instances of

* For further details respecting the effects of loss of blood, see Dr. Clutterbuck On the proper Administ. of Blood-letting, 1840.
* On the Morb. and Curative Effects of Loss of Blood, 1830.
* See an illustrative case in the Lancet, vol. xi. p. 94.
* See the observations of Laennec and Sir James Clark, in Forbes's translation of Laennec's Treat. on Dis. of the Chest, p. 193, 1837.
diminished tolerance. On this point there cannot be, I think, two opinions.

I confess I am not prepared to assent to the inferences Dr. Hall has drawn from these facts, nor to the rules he has laid down in the diagnosis and treatment of disease founded on the circumstances just mentioned. The susceptibility to syncope is so great in some persons, that we should, I suspect, be often led into error, if we were to infer the absence of inflammation merely from the occurrence of fainting after the loss of a few ounces of blood. Besides, it not unfrequently happens, that a patient faints on the first, but not on the second or third bleeding. I have more than once seen this. Neither do I think it would always be safe to bleed *ad deliquium*, even if we were satisfied that inflammation be present; for in some it is difficult to occasion syncope, although the quantity of blood lost be so great as to endanger the safety of the patient. The practice of Dr. Hall, however, is much to be preferred in this respect to that of Mr. Wardrop; for, although both recommend bleeding to syncope in inflammation, the former places his patient in the erect, the latter in the recumbent posture. And here I cannot help remarking, that the practice of ordering patients to be bled to syncope in the recumbent posture appears to me a highly dangerous one. That fainting will sometimes occur in the erect position, before a sufficient quantity of blood has been drawn, we all know; and, to prevent this occurrence, it is frequently proper to bleed in the recumbent posture: but I must protest against bleeding patients to *syncope* in this position.

I have yet to notice another class of the general effects of the loss of blood, which may be denominated secondary or remote, and which are in no way useful in the treatment of disease. In some cases excessive re-action occurs, attended with throbbing of the vessels of the brain, pain and disorder of the cerebral functions. Examples of this are seen in women who have suffered severely from uterine hemorrhage. Exhaustion, with insufficient re-action, is another remote effect of loss of blood. In two cases of infants, I have seen this effect consequent on hemorrhage after a leech bite, terminate fatally. Other secondary or remote effects of blood-letting are mentioned; they consist principally in disorder of the sensorial functions, marked by delirium, coma, or even amaurosis.

Having hitherto described the consequences of bleeding generally, I must now refer more particularly to leeching. The constitutional or general effects caused by the application of leeches are best observed in children and delicate females—more especially the former. I have, on several occasions, seen infants completely blanched by the application of one or two leeches. Pelletan mentions the case of a child, six years old, who died from the hemorrhage occasioned by six leeches applied to the chest. Leeching, then, is here, to all intents and purposes, a mode of general blood-letting, arising in part from the

---

1 On Blood-letting.
2 Dr. M. Hall, *op. supra cit.*
powerful influence which a small quantity of blood produces in infants; and secondly, because one leech will cause the loss of more blood in them than in adults, owing to the greater vascularity of the cutaneous system. It is apparent, therefore, that in the diseases of infants, leeching may, in most cases, be substituted for venesection. But in disorders which are rapidly fatal, as croup, opening the jugular vein is undoubtedly to be preferred, since it is necessary to produce an immediate and powerful effect. As children advance in years they become capable of bearing larger evacuations of blood; and, therefore, leeching excites a less influential effect. It is quite impossible to say at what age venesection ought to be substituted, or, in infancy, what number of leeches should be applied; since they take away such unequal quantities of blood. These are points which must be decided by the practitioner in each case. Here is a tabular statement of the amount of blood which Dr. James Blundell has taken from children at different ages:

<table>
<thead>
<tr>
<th>Ages</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>1 oz. to 1½ oz.</td>
</tr>
<tr>
<td>4 months</td>
<td>1½ oz. to 2 oz.</td>
</tr>
<tr>
<td>8 months</td>
<td>2 oz. to 3 oz.</td>
</tr>
<tr>
<td>12 months</td>
<td>3 oz. to 4 oz.</td>
</tr>
<tr>
<td>18 months</td>
<td>4 oz. to 5 oz.</td>
</tr>
<tr>
<td>3 years</td>
<td>8 oz. to 10 oz.</td>
</tr>
<tr>
<td>6 years</td>
<td>10 oz. to 12 oz.</td>
</tr>
</tbody>
</table>

But the quantities are exceedingly large, and in most instances greater than it will be found prudent to abstract. Guersent says, that in infants up to two years of age, we ought never to draw more than three or four ounces of blood in twenty-four hours*.  

2. The local effects of leeching must now be noticed. The jaws of the leech may be compared to three saws, each armed with sixty teeth. It is, therefore, not surprising that pain and afflux of blood to the wounded part should be occasioned by the laceration of the skin by a single leech. I have sometimes seen one of these animals produce intense redness to the extent of an inch around the bite. This is best observed when the skin is delicate, as that covering the mammae of the female. Now when a number of these animals are applied, their united local effects must have some influence over a neighbouring disease. There are also certain topical effects which occur subsequently, such as ecchymosis; the irritation and inflammation of the mouths of the punctures; the diffused redness and the soreness in the parts intervening between the bites, which cannot be without influence over morbid action. They act on the principle of counter-irritation. In taking into consideration the beneficial influence of leeches, we must, therefore, not forget these, nor the fomentations and poultices subsequently employed.

When leeches are applied to the temples, especially if they fix close to the external canthus, a diffused swelling frequently arises,
similar to that caused by erysipelas. This is not referrible to any noxious qualities of the animal, for it happens when the finest and most healthy are employed; nor to the teeth of the animal being left within the wound, since I have often seen it when the leech has fallen off spontaneously.

In concluding these remarks on the local effects of leeches, I have only to add, that independently of the local irritation caused by the puncture, I believe the evacuation of blood from an inflamed part may be more beneficial than the same quantity taken by the usual operation of venesection. In other words, I am disposed to admit what were formerly termed the derivative effects of local bleeding. The amount of benefit obtained by the application of leeches to parts that have been injured by falls, &c. as in fractures and dislocations, has frequently appeared to me much greater than could be referred to the combined influence of the quantity of blood lost, and the local irritation of the punctures; so, also, with respect to the good effects of leeching hemorrhoidal tumors. Mr. Wardrop thinks more benefit is in some cases obtained by the application of leeches at a distance from the affected organ, constituting what has been termed a revulsive operation.

I trust the remarks now offered will be sufficient to prove, that in estimating the therapeutic influence of leeches, the quantity of blood drawn is not the only element in the calculation; and I think, in practice, constant proof will be found that leeching is more beneficial than can be accounted for by the mere quantity of blood drawn.

Uses.—The following are some of the uses of leeches:

1. In children and delicate adults (as females and aged persons) leeches often form an excellent substitute for general blood-letting, where the object is not to occasion any immediate or sudden effect on the disease. In children it is necessary to avoid applying them to the neck, or other parts where compression cannot be conveniently made.

2. In local determinations of blood, unattended with febrile symptoms, local blood-letting, when it can be resorted to, is generally, though not invariably, preferred to phlebotomy. The advantages of leeching over cupping are, the less pain, and the ease with which blood may be procured; for it is evident that in swelled testicle, in inflammation attending fractured limbs, and in acute inflammation of the mammary gland, patients could not, in most cases, bear the necessary pressure of the cupping-glass; and in some parts of the body, as the abdomen, blood can only be procured from cupping by a very dexterous manipulation.

3. In internal and other inflammatory affections, accompanied with constitutional disorder, the rule is to employ general in preference to local blood-letting. But circumstances occasionally render the reverse practice justifiable and proper, as where the disease is not active, and the patient delicate and weak. In many instances it will be found most advantageous to combine both modes of drawing blood: for example, in abdominal inflammations, the application of leeches, preceded by venesection, will sometimes do more good than
the same quantity taken by the lancet alone. During the progress of fever with determination of blood to the brain, the application of leeches to the temples, after the use of blood-letting, is often attended with the best effects.

4. There are some diseases in which no substitute of equal efficacy can be found for leeches. Such, I conceive, are hemorrhoidal tumors, and prolapsus of the rectum. In these cases general is not equal to local blood-letting, and cupping is out of the question.

5. In various organic diseases leeches will often be found an exceedingly useful palliative means. I would particularly mention as examples, affections of the heart and lungs.

6. Dr. Crampton recommends the application of leeches to the internal surfaces; as to the conjunctiva in ophthalmia, to the tonsils in cynanche tonsillaris, and to the internal surface of the nostrils in epistaxis. The mode of applying a leech to the tonsils is as follows: pass a single thread of silk through the body of the leech, and make fast the ligature to the finger of the operator: then apply the leech to the part.

There are few diseases in which loss of blood is required, where leeching is positively objectionable; indeed, erysipelas is the only one that can be named. Here it has been supposed that the local irritation caused by leeches would add to the severity of the malady; but I believe that even in this case the objections are more imaginary than real. There are, however, numerous instances in which leeching is negatively objectionable: in some the quantity of blood drawn by these animals is insufficient to make much impression on the disease, as in visceral inflammation of robust persons; in others, where the disease is very rapid and fatal, the effects of leeches are too slow, as in croup. Venesection is the remedy in all these instances.

**Mode of Applying Leeches.**—Let the part be well cleansed (sometimes it may be necessary to shave it): then dry the leeches, by rolling them in a clean linen cloth: place them in the lid of a pill-box, and apply to the affected part. This is a preferable method to applying them by the fingers, or in a wine-glass. A narrow tube (called a leech-glass) will be found useful when we wish to affix one of these animals to the inside of the mouth, or any particular spot.

Several circumstances influence the fixing of leeches; as the condition of the animal, whether healthy or otherwise; the nature and condition of the part to which it is applied: thus, leeches will not readily attach themselves to the soles of the feet, or the palms of the hands, or to the hairy parts—the presence of grease, vinegar, salt, and some other substances, will prevent them from biting; whereas milk, sugared water, and blood, are said to have the contrary effect. Scarifying the part has been advised to promote their attachment. The condition of the patient also affects the fixing of the animal.

---

cc Dublin Hospital Reports, vol. iii. 1822.

* For a more extended account of the uses of leeching, see Dr. R. Price, Treat. on the Utility of Sanguinection, 1822.
Derheim says that leeches will not bite those under the influence of sulphur, on account of the evolution of sulphuretted hydrogen by the skin. The effluvia, or vapours of the room, as the fumes of tobacco, sulphur, vinegar, &c., will prevent them biting, or even cause them suddenly to fall off.

The quantity of blood a leech is capable of drawing varies considerably. I believe four drachms to be the maximum. On an average I do not think we ought to estimate it at more than one drachm and a half. Of course this has no reference to that lost after the animal has fallen off, and which varies according to the vascularity of the part; in children being oftentimes very considerable. When the leech has had sufficient it drops off; but it is said that if the tail be snipped, the animal will continue to bite, the blood passing out posteriorly as fast as it is taken in by the mouth. I have tried several, but they usually let go their hold the instant the tail is cut. H. Cloquet has made the same remark.

In order to disgorge the leech of the blood, the usual practice is to apply salt to its body; but it is objectionable (if you wish to preserve the animal), since the surface is frequently thereby blistered, and several days elapse ere the creature regains its former activity. Some advise squeezing the blood out by the mouth; others the application of diluted vinegar to the head. If no kind of emetic be employed, the blood remains for a considerable time in the stomach of the leech undigested, but without putrefying.

After-treatment.—When leeches have fallen off it is generally desirable to promote the sanguineous discharge. This is best done by the use of warm fomentations or cataplasms; or even, in some cases, by cupping-glasses. Great caution is necessary in the case of children. Some years since, the application of a leech was ordered to the chest of a child labouring under pneumonia; it was at the same time mentioned that the bleeding should be encouraged. The directions were literally fulfilled—the discharge of blood was assiduously promoted—until so large a quantity had been lost, that death was the result. No attempt was made to stop it, nor notice sent to the Dispensary, in the practice of which the case occurred. The child being illegitimate, and the mother evidently careless of its recovery, led some to suspect that this did not take place through mere ignorance. In another instance, two leeches were ordered for a child aged about eighteen months, suffering with pneumonic inflammation, a consequence of measles. The following day the poor little creature was found in a fainting, or rather dying, state, with face and lips completely blanched. On inquiry it appeared the leech-bites were still bleeding, and no attempt had been made to stop the discharge, the mother thinking it would be beneficial, more especially as the pneumonic symptoms had considerably abated. As predicted, the little sufferer died within twenty-four hours.

In some persons there appears to be an hereditary predisposition to hemorrhage, so that very slight wounds are attended with serious

* Dict. de Médec. art. Sangue, p. 83.
and even fatal effects. Mr. Wilson, quoted by Mr. Wardrop, has related the case of a child where one leech had nearly caused death, by the serious hemorrhage. When about three or four years old, this child bit its tongue, and notwithstanding that every attempt was made to stop the discharge, death took place from the loss of blood.

I have been called to many cases of hemorrhage after leech-bites, and never failed in stopping it by compression. Sometimes mere exposure to the air will be sufficient; or, if this fail, we may apply a dosil of lint and a bandage. In other instances this will not succeed. I usually employ compression, thus: roll a piece of lint into a fine cone, and introduce it into the bites by means of a needle or probe; over this lay a compress and bandage. Sponge may be substituted for the lint. Various other modes have been proposed; some, I think, exceedingly cruel, since I do not believe them ever necessary. I allude, now, to the application of a red-hot needle; and to passing a needle through the orifice, and wrapping thread round, just as a farrier stops the discharge of blood from the vein of a horse. Some employ absorbing powders, as gum arabic; or styptic washes, as a saturated solution of alum. One very effectual means is to apply a stick of lunar caustic scraped to a point, or powdered nitrate of silver. Sir Charles Bell, in one case, stitched up the wound.

Accidents from Leeches in the Mucous Cavities. — The ancients were very apprehensive of the ill consequences likely to arise from swallowing leeches. That their fears were not groundless is proved from the following circumstances, related by the celebrated Baron Larrey. When the French army entered upon the deserts which separate Egypt from Syria, the soldiers, pressed by thirst, threw themselves on their faces, and drank greedily of the muddy water, and which, unknown to them, contained leeches (Sanguisuga aegyptiaca), having the form of a horse-hair, and the length of a few lines only. Many of them felt immediately stings, or prickling pains, in the posterior fauces, followed by frequent coughs, glairy spots, slightly tinged with blood, and a disposition to vomit, with a difficulty of swallowing, laborious respiration, and sharp pains in the chest, loss of appetite and rest, attended with great uneasiness and agitation. On pressing down the tongue of the individual first attacked, a leech was discovered, which was with difficulty removed by the forceps. Little or no hemorrhage followed, and the patient recovered. Those which had attached themselves to the posterior fauces were removed by the use of gargles composed of vinegar and salt water. The Chief of Brigade, Latour-Mauberg, commander of the 22d regiment of chasseurs, swallowed two in the deserts of St. Makaire, a day's journey from the Pyramids, which so much weakened him, that his convalescence was long and difficult.

Derheims relates a case where a young man, who had leeches applied to his anus, was so unfortunate as to have one enter his rectum unnoticed. The animal made several punctures; and was
not expelled until some hours after, when salt water injections were used. The wounds caused by the bites, however, did not heal for several months, during which time the patient suffered considerably, and constantly passed blood with the feces.

Whenever practicable, salt-water injections should be resorted to. In the following cases related by Derheims this practice could not be adopted. Two small leeches were applied to the gums of an infant during the period of dentition, and by the inattention of the nurse they fixed themselves at the back part of the mouth, and, becoming gorged with blood, caused great difficulty of respiration. The infant, by strongly closing the jaws, prevented the removal of the animals, who only ceased their hold when they were filled with blood. The hemorrhage continued for two hours.

Ill effects have resulted from swallowing leeches. A lady accidentally swallowed a leech she was applying to her gums. Acute cardialgia soon came on with a feeling of erosion, and creeping in the interior of the stomach; sometimes convulsive movements in the limbs and muscles of the face; frequency and irregularity of the pulse; universal agitation and paleness of the countenance. The physician who was called in, recollecting the fact ascertained by Bibiena, that leeches could not live in wine, administered half a glass every quarter of an hour. The symptoms were soon alleviated; and the fourth dose caused vomiting, by which the dead leech was evacuated, with much glairy matter, mixed with clots of black blood. By a proper subsequent treatment the patient recovered in eight days.

**Class VI. Insecta, Goldfuss.—Insects.**

**Essential Characters.**—Articulated animals with six feet (hexopoda), one pair of antenna, a dorsal vessel for circulation, respiring by tracheae, and undergoing metamorphosis (being successively ovum, larva, pupa, and imago). Head distinct from the thorax.

**Order I. Coleoptera, Linnaeus.—Beetles.**

**Essential Characters.**—Four wings, of which the two upper or anterior (elytra or wing cases) are horny or leathery, united down the back by a straight suture; lower or posterior wings folded longitudinally. Mandibles and jaws for mastication.

**Cantharis Vesicatoria, Latreille, L. E. D.—The Blister Beetle or Spanish Fly.**

*Lytta vesicatoria, Fabricius.*—*Meloë vesicatorius, Linnaeus.*

(The whole fly, E.)

**History.**—Hippocrates employed in medicine an insect which he calls (*κανθαρός*), whose effects were similar to those of our *Cantharis vesicatoria*. Hence it has been erroneously inferred by some writers that our blistering beetle is identical with that employed by

---

1 Page 140.

2 Recueil périodique.
the ancients. That this inference is incorrect is proved by the following facts. In the first place, many beetles agree in their effects on the system with those of Cantharis vesicatoria; secondly, the word κανθαρίδες merely signifies a small beetle or scarabaeus parvus; thirdly, both Dioscorides and Pliny refer to several kinds of cantharides, but remark that the most powerful are those with transverse yellow bands on the wings, and that those which are homogeneous in colour are weak and inert. It is tolerably clear, therefore, that neither of these ancient writers were acquainted with Cantharis vesicatoria. Now the characters assigned to the ancient blistering insect agree precisely with those of two species of Mylabris. Burmeister suggests that Mylabris Fusselini, a native of the south of Europe, was the species used by the ancients. Mylabris Cichorii is employed as a blistering beetle at the present day in China and some parts of Hindostan, and may, perhaps, have been used by the Greeks and Romans.

Zoology. Gen. Char.—Antennae elongate, simple, filiform. Maxillary palpi with terminal joint somewhat ovate. Head large, heart-shaped. Thorax small, rather quadrate, narrower than the elytra, which are as long as the abdomen, soft, linear, the apex slightly gaping. Wings two, ample (J. F. Stephens). Sp. Char.—Bright glossy brass-green or bluish, glabrous; beneath more glossy, with a few hairs. Breast densely pubescent, finely punctured. Head and thorax with a longitudinal channel. Elytra with two slightly raised lines. Tarsi violaceous. Antennae black, with the basal joint brassy (J. F. Stephens).

Form elongated, almost cylindrical. Length six to eleven lines. Breadth one to two lines. Colour brass or copper green. Odour nauseous, unpleasant. Body covered with whitish grey hairs, which are most numerous on the thorax. Head large, subcordate, with a longitudinal furrow along its top. Eyes lateral, dark brown. Thorax not larger than the head, narrowed at the base. Elytra from four to six lines long, and from 3-4ths to 1\frac{1}{2} lines broad; costa slightly margined. Wings ample, thin, membranous, veined, transparent, pale brown; tips folded. Legs stout, from four to six lines long, the hinder ones longest: tibiae clavate, in the female all terminated by two small moveable spurs; in the male the two hinder pairs of extremities alone have this

---

\(^1\) Lib. ii. cap. 63.
\(^3\) Man. of Entomol. by Shuckard, p. 562. 1836.
arrangement, the anterior ones having but one spur; last joint of the tarsi with a pair of bifid claws. Abdomen soft, broadest in the female. In the female, near the anus, are two articulated, caudal appendages.

The internal organization of these animals has been elaborately studied by Audouin and by Brandt. The Nervous System consists of a cerebro-spinal axis, and a double and single sympathetic system. The cerebro-spinal axis consists of a double nervous cord, and nine ganglia (two cephalic, one of which is the brain, three thoracic, and four abdominal). The single sympathetic system commences at the brain by two branches, which unite at the ganglium frontale, from which a single nerve proceeds along the esophagus to the stomach, where it divides into two, forming at its division a small ganglion. The double sympathetic system consists of four ganglia placed on the esophagus, two on either side of the single nervous cord just described, with which, as well as with the brain, they are connected by nervous twigs. The Vascular System consists of a simple pulsating dorsal vessel, which extends from the head to the extremity of the abdomen. The Respiratory System consists of ten pair (three thoracic, seven abdominal) of stigmata, which open into the trachea. The Digestive System consists of the mouth, which terminates in the pharynx. The latter contracts into a long muscular esophagus, which ends in an elongated fusiform stomach. The latter is marked transversely by bands formed by the muscular coat. Between the stomach and intestine is a valve (pylorus) formed by four small, floating, kidney-shaped bodies. The small intestine forms two curvatures, and then proceeding directly backwards terminates in the swollen cecum, which ends in the very short narrow rectum. The biliary vessels consist of six very long, filiform, convoluted tubes, which terminate anteriorly at the stomach near the pylorus, and posteriorly at the intestine near the cecum. The Sexual System of the Male consists of a pair of spherical testicles, having externally a granulated appearance; two vasa deferentia, which have a ringed appearance; three or four pair of tubes (seminal vesicles or epididymoid vessels), the functions of which are imperfectly known; a common spermatic duct; and a penis which has three barbs or hooks at its extremity, and is enveloped by a sheath. The Female Organs consist of two large, hollow, egg-shaped ovaries, the cavities of which are called calyces. On their external surface is an immense number of pyriform egg tubes.

Digestive Organs of the Cantharis vesicatoria.

a. The head, which supports the antennae, the eyes, a transverse clypeus, to which is united anteriorly the labrum: on the sides of the latter are the mandibles and maxillary palpi.
b. The esophagus.
c. The stomach.
d. The biliary vessels.
e. The small intestine.
f. The cecum.
g. The rectum.
h. The last ring of the abdomen.

---

From each ovary or calyx arise an oviduct, and the two oviducts by their junction form the common oviduct, the lower portion of which is called the vagina. Into the common oviduct passes a tube from a vesicular bag, called spermatheca (vesicle copulatrice, Audouin), and also of other appendages (sebaceous glands, Audouin).

**Fig. 331.**

**Female Organs of Cantharis vesicatoria.**

- a, a, The ovaries covered by the egg tubes. Each ovary sends out an oviduct. b. The two ducts unite to form the common oviduct, which receives the excretory tube of the spermatheca, c, and of other appendages, d d.
- e, Portion of the inverted intestine.
- f, Last abdominal ring.

I must refer to Audouin's paper for an amusing account of the amours of these animals.

**Hab.—Europe.** Originally, perhaps, a native of the southern parts, especially Italy and Spain. Now found in France, Germany, Hungary, Russia, Siberia, and England. With us they are rare. In the summer of 1837 they were abundant in Essex and Suffolk. They are found on species of Oleaceae (as the ash, privet, and lilac,) and of Caprifoliaceae (as the elder and Lonicera).

**Mode of catching Cantharides.**—In the south of France these animals are caught during the month of May, either in the morning or evening, when they are less active, by spreading large cloths under the trees, which are then strongly shaken, or beaten with long poles. The catchers usually cover their faces, and guard their hands by gloves. Various methods have been recommended for killing the insects; such as exposing them to the vapour of vinegar (the practice...
mentioned by Dioscorides), or of hot water, or of spirit of wine, or of the oil of turpentine. Geiger states, that if destroyed by dropping oil of turpentine into the bottle in which they are contained, they are not subject to the attack of mites; but I believe they are more frequently destroyed by immersing the cloths containing them in hot vinegar and water, and then drying on hurdles covered with paper or cloths.

**Preservation.**—Cantharides should be preserved in well-stoppered bottles, and to prevent them from being attacked by mites (*Acarus domesticus*), a few drops of strong acetic acid should be added to them. I have found this a most successful mode of preservation. Besides mites, they are subject to the attacks of a moth (*Tinea flavifrontella*) and two coleopterous insects (*Anthrenus muscorum* and *Hoplia farinosa*.)

**Commerce.**—Cantharides are imported from St. Petersburgh, in cases, each containing 160 or 170 lbs.; and also from Messina, in barrels or cases, holding each about 100 lbs. They are principally brought over towards the end of the year.

In 1839, duty (1s. per lb.) was paid on 16,376 lbs.

The cantharides from St. Petersburgh are the largest and most esteemed. They are somewhat more copper-coloured than the French or English varieties, which have rather a brassy than copper tint. Sir James Wylie states that they are very abundant in the southern provinces of Russia.

**Characteristics for Medico-legal purposes.**—There are no chemical tests for cantharides to be relied on. Orfila has published the effects of various reagents on tincture of cantharides; but they are unimportant. Cantharides are rarely met with in a sufficiently perfect form to enable us to recognise them by their zoological characters. Their physical characters are much more important. In all powders of cantharides you may distinguish golden green particles; these may be separated from the other contents of the stomach by immersing them in boiling water: the fatty matter rises to the surface, while the cantharides powder falls to the bottom. Orfila has recognised these particles in a body nine months after interment; so that they do not readily decompose, even when mixed with decaying animal matters. Some other insects, however, have the same golden-green colour, but are without vesicating properties; and vice versa, there are many insects which vesicate, but which have not a golden-green colour. The physical characters of the particles, aided by their physiological effects, together form tolerably conclusive evidence of the presence of cantharides. To judge of the effects of cantharides, and their preparations, we should proceed as follows:—If the suspected matter be a liquid, evaporate it to the consistence of an extract; then digest in repeated quantities of sulphuric ether. The ethereal solutions are to be mixed, and allowed to evaporate in the air: the

---

2 *Toxicol. Gén.*
vesicating properties of the residuum may be determined by applying it to the inside of the lip or to the arm. If the suspected matter contain solid particles, these are to be digested in ether, and the concentrated tincture applied to the inner surface of the lip. Dr. Hastings has published an interesting fatal case of inflammation of the alimentary canal and urinary organs. The symptoms simulated those caused by excessive doses of cantharides; but the moral and other evidence seemed to negative the suspicion that these insects had been taken.

Adulteration and Goodness.—The goodness or quality of cantharides may be recognized by their odour, and freedom from other insects, especially mites. Sometimes the powder, but more commonly the plaster, is adulterated with powdered euphorbium. I have been informed, by persons well acquainted with the fact, that it is a common practice, amongst certain druggists, to mix one pound of euphorbium with fourteen pounds of powdered Spanish flies.

Composition.—Cantharides were analysed in 1803 by Thouvenal, in 1804 by Beaupoil, and in 1810 by Robiquet.

---

**Thouvenal's Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watery extract</td>
<td>37.50</td>
</tr>
<tr>
<td>Subsequent alcoholic extract</td>
<td>10.42</td>
</tr>
<tr>
<td>Subsequent ethereal extract</td>
<td>2.08</td>
</tr>
<tr>
<td>Insoluble residuum</td>
<td>50.00</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>100.00</td>
</tr>
</tbody>
</table>

**Beaupoil's Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black matter insoluble in alcohol, but soluble in water</td>
<td>12.94</td>
</tr>
<tr>
<td>Yellow matter soluble in water, alcohol, and ether</td>
<td>12.94</td>
</tr>
<tr>
<td>Green oil soluble in alcohol and ether</td>
<td>13.99</td>
</tr>
<tr>
<td>Parenchyma, salts, and oxide of iron</td>
<td>60.13</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>?</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>100.00</td>
</tr>
</tbody>
</table>

**Robiquet's Analysis.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cantharidin</td>
<td></td>
</tr>
<tr>
<td>2. Green fatty oil, soluble in alcohol</td>
<td></td>
</tr>
<tr>
<td>3. Fatty matter, insoluble in alcohol</td>
<td></td>
</tr>
<tr>
<td>4. Yellow viscid substance, soluble in water and alcohol (osmazome?)</td>
<td></td>
</tr>
<tr>
<td>5. Black matter, soluble in water, insoluble in alcohol</td>
<td></td>
</tr>
<tr>
<td>6. Yellow matter, soluble in ether and alcohol</td>
<td></td>
</tr>
<tr>
<td>7. Free acetic and uric acids</td>
<td></td>
</tr>
<tr>
<td>8. Phosphate of lime, and phosphate of magnesia</td>
<td></td>
</tr>
</tbody>
</table>

---

1. **Cantharidin (Vesicatorin; Cantharides-Camphor).**—Has been found in Cantharides vesicatoria, Lytta viitata, Mylabris Cicorii, and other vesicating insects. Probably exists in all the blistering beetles. To procure it, concentrate an alcoholic tincture (prepared by percolation) and set aside: the cantharidin slowly crystallizes. It is purified by washing with cold alcohol, and boiling with alcohol and animal charcoal. Its properties are as follows:—It crystallizes in the form of micaceous plates, which are fusible, forming a yellow oil, which by a stronger heat is vaporizable, forming white vapours; these subsequently condense into acicular crystals of cantharidin. Dana regards it as an organic alkali, but without any just grounds; for it will not restore the blue colour of litmus paper reddened by an acid. Gmelin’s opinion, that it is a solid volatile oil, seems to be correct. When isolated, it is not soluble in water, but becomes so by combination with the other constituents of cantharides; the yellow matter probably being the principal agent in rendering it so. This, then, is the reason why an aqueous infusion of the insects contains cantharadin in solution. Cold

---

\* Ibid. xlvi. 29.
\* Ibid. ixxvi. 302.
spirit, digested on cantharides, extracts cantharidin; which it can only do by the agency of some of the other principles of the flies. It is easily soluble in ether, oils (volatile and fixed), and hot spirit of wine; and from the latter it separates as the liquid cools. Concentrated boiling sulphuric acid dissolves cantharidin: the solution is slightly brown; when diluted with water it deposits small needle-like crystals of cantharidin. Boiling nitric and muriatic acids dissolve it without changing colour; the solutions, by cooling, deposit it. Cantharidin is dissolved by potash and soda; but when concentrated acetic acid is added to the solution, the cantharidin is precipitated. Ammonia is without action on it. According to Regnaud, it consists of carbon, 61.68; hydrogen, 6.04; and oxygen, 32.28.

Robiquet thus describes the effects of cantharidin:—The 1-100th part of a grain, placed on a slip of paper and applied to the edge of the lower lip, caused, in about a quarter of an hour, small blisters. A little cerate being applied served only to extend the action over a larger surface, and both lips were in consequence covered with blisters. Some atoms of cantharidin, dissolved in two or three drops of almond oil, were rubbed over a small piece of paper, and applied to the arm; in six hours a blister was formed, the size of the paper. The volatility of cantharidin at a comparatively low temperature, and the action of the vapour on the conjunctival membrane, are shown by the accident which happened to one of Robiquet’s pupils, who was watching its crystallization, and felt acute pain in the... by inflammation, accompanied with small phlyctenae and loss of sight for several days. Robiquet, who was not so near the liquid, suffered but slightly. I have suffered once in preparing this substance. I applied one drop of an ethereal solution of impure cantharidin to the inside of the lower lip; but immediately afterwards, repenting of my temerity, I wiped it carefully off. In about an hour a blister had formed on the inside of the lip, and it was five or six days before the part had completely healed. Bretonneau, in his experiments on animals, has not found any marked aphrodisiac effect produced by cantharidin. He found that it rendered the circulation slower, and caused fatal lethargy.

2. Volatile Odorous Oil?—Orfila asserts, that volatile odorous oil is one of the constituents of the insects. The distilled water of cantharides is strongly odorous and milky; and its vapour affects the eyes and kidneys like cantharides.

The active and odorous principles of cantharides reside principally in the sexual organs of the animals. Both Farines and Zier tell us, that the soft contain more active matter than the hard parts. It appears, also, that the posterior is much more acid than the anterior portion of the body; and Zier says the ovaries are particularly rich in this active matter. If so, it is evident that we ought to prefer large female to male insects. It is a well-known fact, that the odour of these animals becomes much more powerful at the season of copulation than at other periods; and that persons sitting under the trees in which these insects are, at this season more particularly, are very apt to be attacked with ophthalmia and ardor urinæ.

Physiological Effects. a. On Animals.—The principal experiments with cantharides on animals (dogs) are those of Orfila and Schubarth. It results from their investigations, that these insects cause violent inflammation in the parts to which they are applied, and an affection of the nervous system (spinal cord principally). Injected into the jugular vein, the oleaginous infusion caused tetanus; introduced into the stomach, the oesophagus being tied, the tincture produced insensibility (Orfila). Inflammation of the inner coat of the bladder was observed when the poison had remained in the stomach for a few hours before death.

1 Tolcol. Gên.
β. On Man.—The topical effects of cantharides are those of a most powerful acrid. When these insects are applied to the skin, the first effects noticed are, a sensation of heat accompanied by pain, redness, and slight swelling. These phenomena are soon followed by a serous effusion between the corium and epidermis, by which the latter is raised, forming what is commonly termed a blister, or, in the more precise language of the cutaneous pathologist, an ampulla or bulla. The effused liquid has a pale yellow colour, with a very feeble taste and smell. Two analyses of it have been made:

**Analysis by Dr. Bostock.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>6.00</td>
</tr>
<tr>
<td>Uncoagulable matter</td>
<td>0.14</td>
</tr>
<tr>
<td>Salts</td>
<td>1.00</td>
</tr>
<tr>
<td>Water</td>
<td>92.86</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100.00</strong></td>
</tr>
</tbody>
</table>

**Analysis by Brandes and Reimann.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumen</td>
<td>5.75</td>
</tr>
<tr>
<td>Animal matter, with muriate of ammonia, potash salts, carbonate, lactate, muriate and sulphate of soda</td>
<td>0.26</td>
</tr>
<tr>
<td>Water</td>
<td>93.99</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100.00</strong></td>
</tr>
</tbody>
</table>

If the cuticle be removed, the subjacent corium is seen intensely reddened, and, by exposure to the air, oftentimes becomes exceedingly painful. If irritants be applied, a secretion of pus takes place, and sometimes a whitish-looking false membrane is formed. Long-continued irritation occasionally causes tubercular granulations. Not unfrequently I have noticed eczematous pustules around the blistered surface; and in one remarkable case, which fell under my notice, the whole body, but more especially the pectoral region (to which the blister had been applied), was covered with them. Sometimes the vesicles of eczema occur. Ulceration and gangrene are not uncommon: the latter effect is occasionally observed after exanthematous diseases, especially measles. I have seen death result therefrom in two instances. The constitutional symptoms frequently produced are excitement of the vascular system (as denoted by the increased frequency of pulse, heat of skin, and furred tongue), and irritation of the urinary and genital organs (marked by heat and pain in passing the urine, which is usually high coloured, or there may be complete suppression). It not unfrequently happens, that the part to which a blister has been applied remains considerably darker coloured than the surrounding skin. Rayer states, that the disappearance of these discolorations is hastened by the use of sulphurous baths.

When swallowed, cantharides act topically on the gastro-intestinal membrane; in poisonous quantities they excite inflammation of the mucous lining of the alimentary canal, with constriction and difficulty of swallowing, which is sometimes so great, that not a particle of fluid can be got into the stomach without the most inexpressible anguish; violent burning pain, nausea, vomiting, frequently of bloody matters, sometimes with flakes like the inner lining of the alimentary tube, and great tenderness to touch. These phenomena sufficiently indicate the gastric inflammation. Ptyalism is not an uncommon occurrence. The enteritic symptoms are, abundant and frequent evacuations, sometimes of blood, with horrible griping and burning pain, and exquisite sensibility of the abdomen.
The volatile odorous matter evolved by these insects is a local irritant; for it causes itching and even inflammation of the eyelids and conjunctiva, irritation of the air-passages, marked by epistaxis, convulsive sneezing, &c. If it be inhaled, as is done when persons sit under trees on which the animals are found, or by breathing the vapour of the decoction of cantharides, an affection of the urinary organs may be brought on. The same remote effects may also be excited by blisters, by handling the insects, by applying them to wounds, by swallowing them, or by injecting solutions of their active principle into the veins. We may classify the remote effects of cantharides into those observed in the urino-genital, the nervous, and the vascular systems.

aa. Action on the urino-genital system.—The pain in the loins, and the alteration in the quantity and quality of the urine, are the symptoms indicative of the inflamed condition of the kidneys. The burning pain and tenderness in the hypogastric region, and the constant desire to pass the urine, with the inability of doing so except drop by drop, are evidences of the vesical inflammation. The action on the genital organs in the male is proved by priapism, which is sometimes accompanied by satyriasis, sometimes not; and by the occasional inflammation and mortification of the external organs. In the female, the action on the sexual system is shown by the local heat and irritation, and by the occasional occurrence of abortion.

ββ. Action on the nervous system.—The affection of this system is proved by the pain in the head, disordered intellect, manifested in the form of furious or phrenitic delirium, convulsions of the tetanic kind, and subsequently coma. It is deserving of especial notice, that sometimes several days elapse before the nervous symptoms show themselves: thus, in a case related by Giulio, they appeared on the third day; in another instance, mentioned by Graaf, on the eighth; and in a case noticed by Dr. Ives, they were not observed until the fourteenth day.

γγ. Action on the vascular system.—The pulse becomes hard and frequent, the skin hot, and the respiration quickened; diaphoresis is occasionally observed.

The susceptibility to the influence of cantharides is by no means uniform. Werlhoff mentions the case of a lad who used to be attacked with priapism and involuntary emission by merely smelling the powder. Amoreux says, in one case a pinch of the powder caused death; while in another a spoonful occasioned only slight heat in the throat and ardor urinae. Dr. Hosack has mentioned an instance in which a man took nearly six ounces of the tincture with the view of self-destruction, yet no dangerous symptoms followed. In contrast with this, I may instance a case that came within my own knowledge, where one ounce of the tincture produced serious symptoms. Orfila has seen twenty-four grains of the powder prove fatal.

1. Action in small or medicinal doses.—In very small quantities

b See Christison, Treat. on Poisons.
there are no obvious effects. If we increase the dose, a sensation of warmth is felt in the throat, stomach, and respiratory passages, with increased secretion from the alimentary tube. By continued use, a tickling or burning sensation is experienced in the urethra, with frequent desire to pass the urine, which may or may not be altered in quality and quantity. In some cases diuresis is observed, in others not: in the latter the urine is generally higher coloured than usual. Occasionally the sexual feelings are excited.

2. Action in larger doses: Subacute poisoning.—The symptoms are, heat in the throat, stomach, intestines, and respiratory passages; pain in the loins, burning sensation in the bladder, with frequent desire to evacuate the urine, which is sometimes bloody, and passed with difficulty. Painful priapism, with or without satyriasis. Pulse more frequent, skin hot, and the respiration quickened: the nervous system is frequently excited.

3. Action in still larger doses: Acute poisoning.—The symptoms observed are, in part, common to other irritant poisons; in part peculiar to the vesicating insects. Violent burning pain in the stomach, with exquisite sensibility and constant vomiting; extreme thirst, dryness, and fetid odour of the mouth, and not unfrequently ptyalism. Burning pain and spasmodic contraction of the bladder, giving rise to the most excruciating agony. Notwithstanding the incessant desire to void urine, nothing but drops of blood are passed, and with great pain. The constriction of the throat and difficulty of deglutition are most distressing and alarming: the unfortunate sufferer is constantly tormented with violent gripings, purging, generally of blood, extreme tenderness of the whole abdominal surface, faintings, giddiness, convulsions, and an almost hydrophobic aversion to liquids, with delirium terminating in coma.

The mode, and the immediate cause of death, are various: sometimes the nervous symptoms kill before gangrene makes its appearance; but more usually the patient dies from inflammation and subsequent mortification of the alimentary tube or of the genital organs.

Post-mortem appearances.—On opening the bodies of persons poisoned by cantharides, inflammation and its consequences have been observed in the alimentary tube, and the urinary and genital organs. The cerebral vessels have been found in a congested state. It is deserving of notice that inflammation of the urino-genital organs is more likely to be met with in patients dying within a few days after poisoning.

Uses.—Hippocrates used vesicating insects (under the name of cantharides) internally; but the practice was subsequently regarded as dangerous; and, so lately as the year 1693, the President of the College of Physicians committed Dr. Groenvelt to Newgate for daring to employ them!!

1. Local Uses.—Cantharides are frequently used as topical agents; sometimes as stimulants, sometimes as rubefacients, at other times as vesicants.

"Groenvelt, De Tuto Cantharidum in Medicina Usu Interno, 12mo. Lond. 1698; Greenfield, Treatise on Cantharides, transl. by Martin, 1706."
a. **To stimulate topically.**—Tincture of cantharides with water (in the proportion of three or four drachms of the tincture to a pint of water) has been employed to stimulate ulcers; more especially sinuses and fistulous sores. It is said, on the same principle that stimulant and irritant applications are made to the eye in ophthalmia; that is, to excite a new action, which shall supersede the old one. Matthew's once celebrated injection for fistula in ano is a wash of this kind. In *alopecia* or baldness, when this is not the result of old age, unguents of cantharides have been employed to promote the growth of hair. Powdered cantharides have been advised as an application to the parts bitten by rabid animals.

β. **To produce rubefac tion.**—For this purpose the tincture may be mixed with soap or camphor liniment; or, when it is desirable to limit the effect to a particular spot, and especially if friction be objectionable, the common blistering plaster may be applied, allowing it to remain in contact with the part for an hour or two only. Rubefacient liniments are employed to excite the sensibility of the skin in numbness and paralysis; as also to promote local irritation in neuralgic and rheumatic pains. In the inflammatory affections of children it will be occasionally found useful to employ the plaster as a rubefacient merely.

g. **To excite vesication.**—A considerable number of substances (mineral, vegetable, and animal) cause vesication when applied to the skin. Horse-radish, mezereon, liquor ammonia, and acetic acid, may be mentioned as examples. To these may be added heat, applied in the form of hot water or a hot metallic plate. For facility of application, certainty of effect, and slightness of pain, no agents are equal to cantharides, and these are now almost solely used.

It was formerly supposed that the efficacy of blisters was in proportion to the quantity of fluid discharged. But the truth is, that the therapeutic influence is in proportion to the local irritation, and has no more relation to the quantity of fluid discharged, than that the latter is frequently (not invariably) in the ratio of the former: Stoll's axiom is, therefore, correct:—"**Non suppuration sed stimulus prodest.**"

As to the precise manner in which blisters, or, indeed, any remedies, influence diseases, we are quite in the dark. We are accustomed to refer their operation to the principles of counter-irritation (see p. 145). I must refer those who feel interested in the question whether blisters ought to be applied in the neighbourhood of, or at a distance from, the affected part, to a paper by Barthez, in the *Recueil de la Société Médicale de Paris*. In this country we generally apply them near to the morbid part; to which practice Barthez assents, with some exceptions.

We employ blisters in inflammatory diseases, both acute and chronic; in the former, however, preceding their use by blood-letting. In chronic inflammatory disease we often employ what is termed a perpetual blister—that is, the cuticle is removed, and the blistered

---

* Dr. Paris, *Pharmacologia*. 
surface dressed with savine or cantharides ointment. This practice is advisable in chronic diseases of the chest, of the joints, of the eyes, &c. Blisters are sometimes useful in erysipelas; thus to localize the disease when disposed to spread, and as a revulsive, applied to the feet, in erysipelas of the head. A blister to the perineum has been sometimes found beneficial in gleet.

It is hardly safe to apply blisters to children immediately after exanamethatous diseases, sloughing being not an unfrequent result. If it be required to produce in them counter-irritation, the best plan is to dilute the common blistering plaster, by mixing it with three times its weight of soap cerate. I have seen this compound frequently employed, but never observed any unpleasant results from it. Another plan, sometimes adopted, is to apply a common blister, for an hour or two only, so that it shall merely produce rubefaction.

2. Remote uses.—These will require examination under distinct heads, according to the particular object we have in view in employing cantharides.

a. To act specifically on the urinary organs.—In dropsy they have been used to excite diuresis, though they frequently fail in producing this effect.—In diabetes, cantharides have been employed, but without apparent benefit. In paralysis of the bladder they are frequently useful, when there are no marks of local irritation. Two opposite conditions may be the result of paralysis of this organ; namely, retention or incontinence of urine. The latter condition is not unfrequently met with in children, and is very likely to be relieved by cantharides. It is usually stated that they are particularly serviceable in that species of incontinence which occurs during sleep only; but I have seen them cure the disease during day, and fail in giving relief at night. The case alluded to was that of a boy, 14 years old, who had been subject to incontinence of urine since his infancy. He was a robust lad, and apparently in the most perfect health. I put him under the influence of gradually increased doses of tincture of cantharides, and within two months he was enabled to retain his urine by day, but it still passed involuntarily at night; and, though he continued the remedy for a considerable time, no further benefit was obtained. In incontinence of urine which occurs after lingering labours, from the long-continued pressure of the child's head, cantharides are sometimes serviceable. But their use must not be commenced until all the symptoms of local irritation have subsided.

3. To act on the organs of generation.—In consequence of the specific stimulus communicated by cantharides to the bladder, it has been supposed that the same influence might be extended to the uterus; and thus these insects have been employed as stimulating emmenagogues, in some cases with apparent benefit, but frequently without any obvious effect. Abortion has occasionally happened from their employment, as I have myself witnessed in one case.

Cantharides are also employed as an aphrodisiac, both in man and other animals (as horses, heifers, and asses). In man, if given in sufficient quantity to affect the sexual feelings, it endangers the patient’s safety. Most of the cases in which we are requested to administer
aphrodisiacs, will be found, on examination, to require moral rather than pharmacological treatment. *In discharges from the genital organs*, beneficial effects are frequently obtained by the internal use of cantharides. In gleet it has been often found serviceable. Mr Roberton explains their efficacy by saying, that they excite a mild inflammatory action on the urethra (shown by the discharge becoming thick, opaque, and puriform), which supersedes the previous morbid one. I have frequently found equal parts of tincture of chloride of iron and tincture of cantharides a successful combination in old-standing gonorrhoeas. The dose is twenty drops at the commencement.

γ. *In chronic skin diseases.*—Pliny states that cantharides (*Mylabris*) were employed in a disease which he terms lichen. At the present time, tincture of cantharides is not unfrequently employed in lepra, psoriasis, and eczema. Having found other remedies very successful in lepra and psoriasis, I have rarely had occasion to try cantharides; but Rayer says, "Of all the energetic and dangerous remedies that have been used in lepra, the tincture of cantharides is, perhaps, that which has the most remarkable influence over the disease. The great objection to its employment is its liability to excite inflammation in the digestive organs and urinary passages, especially among females, which necessitates the immediate suspension, and occasionally the entire abandonment, of the medicine." Biett has found it successful in chronic eczema, as well as in the scaly diseases.

δ. *In diseases of the nervous system,* cantharides were at one time in great repute. The cases in which they were employed were hydrophobia, epilepsy, chorea, tetanus, and mania. Experience has shown that they deserve little attention in any of these complaints.

ε. *In obstinate sores,* Mr. Roberton recommends cantharides on the same principle that he uses them in gleet.

Administration.—Powdered cantharides are not frequently employed internally. The dose is one or two grains in the form of pill. The tincture is the safest preparation, and should, therefore, always be preferred.

Antidote.—In poisoning by cantharides, remove the poison as speedily as possible from the stomach. If sickness have not commenced, this may be effected by the stomach-pump, emetics, or tickling the throat (see treatment of poisoning by *Opium*, p. 1767). Assist the vomiting by mucilaginous and albuminous demulcent liquids,—as linseed-tea, milk, white of egg, with water, &c. No chemical antidote is known. Oil was at one time thought to be an excellent remedy; but since the discovery of its being a solvent for the cantharidin, suspicion has been entreated that it is calculated to increase, rather than decrease, the patient's danger. This theoretical and plausible objection, first broached, I believe, by Pallas, seems supported by experience. Orfila found that cantharides macerated

---

* Pract. Treat. on the Powers of Cantharides, 1806.
* Diseases of the Skin, translated by Dr. R. Willis.
in cold oil, and afterwards given to dogs, killed them in a few minutes; and Dr. Christison says, "The case mentioned in the Genoa Memoirs was evidently exasperated by the use of oil." I confess, however, I think farther experience is required to determine the hurtful consequences of employing oil; for,—as the editors of the "Dictionnaire de Matière Médicale" very properly observe,—on the same principles that oil is prohibited, mucilaginous drinks ought also to be proscribed, since cantharadin, aided by the yellow matter, dissolves in water; and on the other hand, oil, in some cases, has appeared to be beneficial. To counteract the effects of cantharides, blood-letting, both general and local, opium, and the warm-bath, must be resorted to. Camphor was at one time highly esteemed for counteracting the effects of cantharides (see p. 1157). Oleaginous and mucilaginous injections into the bladder are recommended to relieve the vesical symptoms.

1. **ACETUM CANTHARIDIS.** (Epispasticum), L. *Acetum Canharidis,* E. Vinegar (epispastic) of Cantharides. (Cantharides, rubbed to powder, ʒiij.; Acetic Acid, Oij.) Macerate the Cantharides with the acid for eight days, occasionally shaking: lastly, express and strain, L.

"Cantharides, in powder, ʒiij.; Acetic Acid, ʃi西洋; Pyrolygineous Acid, ʃi西洋; Euphorbium, in coarse powder, ʃi西洋. Mix the acids, add the powders, macerate for seven days, strain and express strongly, and filter the liquor," E.)—Not fitted for internal employment. Applied to the skin as a convenient and prompt vesicant. In the formula of the London College, eight times as much cantharides are employed as in the tincture.


"This tincture may be obtained much more conveniently and expeditiously by percolation, provided the cantharides be reduced to coarse powder, and left with a little of the spirit in the state of pulp for twelve hours before the process of percolation is commenced," E.)—It is to be regretted that the strength of this preparation is not uniform in the three British Pharmacopoeias.—Dose ʃi西洋., gradually increased to ʃi西洋. Its effects on the bladder must be carefully watched. It should be given in some demulcent liquid, as barley-water or linseed tea. It is sometimes employed externally as a rubefacient.

3. **CERATUM CANTHARIDIS,** L. *Unguentum Cantharidis,* E. Cerate of Cantharides. (Cantharides, in very fine powder, ʒi西洋.; Spermaceti Cerate, [Resinous Ointment, E.] ʃi西洋. ʃi西洋. E.) Add the cantharides to the cerate, softened by heat, and mix.)—This preparation must not be confounded with the next one, than which it is more irritant. The uses of the two are the same. From the greater activity of the cerate more danger of the absorption of the active principle of the cantharides is to be apprehended. When this occurs the bladder becomes affected, and, in severe cases, inflammation of the absorbents, and fever, are produced.
4. **UNGUENTUM INFUSI CANTHARIDIS, E. Unguentum Cantharidis, L.**

**D.** Ointment of Cantharides.—(Cantharides, in very fine powder, ⅜; Distilled Water, ⅜; Resinous Cerate, ⅛. Boil the water with the cantharides down to one half, and strain. Mix the cerate with the strained liquor, then evaporate the mixture to a proper consistence, L. D.—“Cantharides, in moderately fine powder, Resin, and Bees’ Wax, of each, ⅜; Venice Turpentine and Axunge, of each, ⅜; Boiling Water, ⅜. Infuse the cantharides in the water for one night, squeeze strongly, and filter the expressed liquid. Add the axunge, and boil till the water is dispersed. Then add the wax and resin; and, when these have become liquid, remove the vessel from the fire, add the turpentine, and mix the whole thoroughly, ” E.)—A milder and less certain preparation than the preceding. Used to excite a purulent discharge from blistered surfaces, and to stimulate issues and indolent ulcers.

5. **EMPLASTRUM CANTHARIDIS, L. E. D.; Emplastrum Lytta; Plaster of Cantharides; Blistering Plaster.**

(Cantharides, in very fine powder, lb. j.; Plaster of Wax, lb. jss.; Lard, lb. ss. L.—Cantharides, in very fine powder; Resin; Bees’ Wax, and Suet, of each ⅜. E.—Cantharides, in very fine powder; Yellow Wax, of each lb. j.; Yellow Resin, ⅛; Mutton Suet; Hog’s Lard, of each lb. ss. D.—“Liquefy the fats, remove from the heat, sprinkle in the cantharides in very fine powder, and stir briskly, as the mixture concretes on cooling,” E.)—Dishonest druggists sometimes omit a portion of the cantharides here ordered, and substitute powdered euphorbium. In making blistering plasters, care must be taken not to add the cantharides while the melted lard is quite hot, as the heat greatly injures the vesicating power of the insect. For a similar reason the plaster should be spread by the thumb, a heated spatula being objectionable. To prevent the blister moving after its application to the skin, its margin should be covered with adhesive plaster. In order to guard against any affection of the urinary organs, place a piece of thin book-muslin or silver (tissue) paper between the plaster and the skin. The efficacy of the blister depends on the fatty matter dissolving the cantharidin and transuding through the muslin or paper. Some recommend the paper to be soaked in oil, which is supposed to dissolve the cantharidin. Now oil, not being miscible with the blood, is not readily absorbed; and hence, it is supposed, arises its protective influence. The usual time requisite for a blistering plaster to remain in contact with the skin is twelve hours; the vesicle is then to be cut at its most depending part, and dressed with spermaceti ointment. When the irritation caused by these plasters is excessive, it is sometimes necessary to substitute a poultice for the ointment. When we wish to make a perpetual blister, the cerate of cantharides is employed as a dressing; or if we wish to excite less irritation, and prevent the possibility of the urinary organs being affected, the cerate of savine. The danger of applying blisters to children after exanthematous diseases, especially measles, has been already noticed (see pp. 1841 and 1845).
6. **Emplastrum Cantharidis Compositum, E.**; Compound Plaster of Cantharides. (Venice Turpentine, $\frac{3}{11}$vss.; Burgundy Pitch, and Cantharides, of each $\frac{3}{11}$ij.; Bees' Wax, $\frac{1}{3}$j.; Verdigris, $\frac{3}{8}$ss.; White Mustard Seed and Black Pepper, of each $\frac{1}{2}$ij. Liquefy the wax and Burgundy pitch, add the turpentine, and, while the mixture is hot, sprinkle into it the remaining articles previously in fine powder, and mixed together. Stir the whole briskly, as it concretes in cooling, E.)

—"This is supposed to be a most infallible blistering plaster. It certainly contains a sufficient variety of stimulating ingredients ."

7. **Emplastrum Calefaciens, D.**; Warming Plaster. (Plaster of Cantharides, one part; Burgundy Pitch, seven parts. Melt them with a medium heat; mix well and make a plaster.)—Stimulant, rubefacient, and, in some cases, vesicant. Used in catarrh, local pains, &c.

8. **Pannus Vesicatorius**; Blistering Cloth; Taffetas Vesicant. (Digest powder of cantharides in sulphuric ether. Let the ethereal tincture be submitted to distillation, and the residue evaporated, by means of a salt water bath, until ebullition ceases. The oily mass which remains is to be melted with twice its weight of wax, and spread on cloth prepared with waxed plaster $^h$, Henry and Guibourt $^i$.)—Employed as a substitute for the ordinary blistering plaster, than which it is a more convenient and elegant preparation.

The Tela Vesicatoria or Blistering Tissue, and Charta Vesicatoria, or Blistering Paper, are analogous preparations.

The Papier épispastique or Épispastic Paper of Henry and Guibourt is prepared as follows:—Take of white wax 8 parts, spermaceti 3 parts, olive oil 4 parts, turpentine 1 part, powder of cantharides 1 part, and water 10 parts. Boil slowly for two hours, constantly stirring it. Strain the fatty mixture through a woollen cloth, without expression, and spread on paper.

---

**OTHER COLEOPTEROUS VESICANTS.**

In Europe, the ordinary vesicating insect is the *Cantharis vesicatoria*; but in some other parts of the world other blistering insects are employed. Thus, *Cantharis vittata*, or the Potatoe-fly, *C. atrata, marginata*, and *cinerea*, are used in North America. In the Brazils, *C. atomaria* has been employed. *C. ruficeps*, a native of Sumatra and Java, is said to possess extraordinary blistering properties. *C. gigas* (*Lyutta cærulea*, Pflafl), is a native of Guinea and the East Indies. *C. violacea* (*Lyutta gigas mas*, Buchner), is a native of the East Indies. In Arabia, *C. syriaca* (*Lyutta segetum*), is said by Forskal to be employed. *Mylabris Cichorii* is used in China and some parts of the East Indies. *Meloe proscarabæus* is an indigenous vesicating insect which has in two instances caused death. *M. majalis* or *true Mayworm* possesses similar properties.

---

8 Duncan, Edinb. Dispens.

$^h$ The Toile préparée à la cire used by the French pharmacologists, is prepared by spreading the following mixture on cloth:—white wax 8 parts, olive oil 4 parts, and turpentine 1 part (Henry and Guibourt).

**ORDER II.—HEMIPTERA, Linnaeus.**

**Essential Characters.**—Two wings covered by elytra. Mouth formed for suction; the rostrum composed of a tubular articulated sheath, including four scaly setae, in place of mandibles and jaws. Elytra in some crustaceous, with the posterior extremity membranous; in others almost similar to wings, but more extended, thicker, and coloured (Stark).  

**COC’CUS CAC’TI, Linn. L. E. D.—COCHINEAL INSECT.**

*(Cocci, L.—The entire insects, E.)*

**History.**—The Spaniards, on their first arrival in Mexico, about the year 1518, saw the cochineal employed (as it appears to have been done long before) by the native inhabitants of that country, in colouring some parts of their habitations, ornaments, &c.

**Zoology. Gen. Char.—** Tarsi with one joint, and terminated by a single hook. *Male* destitute of a rostrum, with two wings covering the body horizontally; abdomen terminated by two setae. *Female* apterous, furnished with a rostrum. *Antennae* of eleven joints, filiform and setaceous.

**(Sp. Char.)—** Male very small, with the antennae shorter than the body; body elongated, of a deep red, terminated by two long diverging setae; wings large, white, crossed above the abdomen. Female nearly twice as large as the male, bluish red, covered with a white farina; antennae short; body flattened below, convex; feet short.

Wings of the male beautifully snow white. The females fix themselves firmly on the plant, which serves them as a habitation, and never quit this spot: here they couple, and increase considerably in size. Each insect lays several thousand eggs, which proceed from the body through an aperture placed at the extremity of the abdomen, and pass under the belly to be there hatched. Death then ensues; the body of the mother dries up; its two membranes become flat, and form a sort of shell or cocoon, in which the eggs are inclosed, and from whence the little cochineals soon proceed.

**Hab.**—Mexico.

---

THE COCHINEAL INSECT.

Cultivation.—The cochineal insects feed on the Nopal (Opuntia cochinillifera). Mr. Ward 1 says, the plantations are confined to the district of La Misión, in the state of Oaxaca, in Mexico. The animals are domesticated and reared with the greatest care. Plantations of these are cultivated for the nourishment of the insects. Here the impregnated females are placed; this operation being denominated sowing. Young ones are soon developed; and some months afterwards, when the females have become fecundated and enlarged, the harvest commences. The insects are brushed off with a squirrel’s tail, and killed by immersing them in hot water, and afterwards drying them in the sun, or by the heat of a stove.

Three harvests are made annually; the first being the best, since the impregnated females alone are taken; in the second the young females also are collected; and in the third both old and young ones, and skins, are collected indiscriminately. Before the rainy season commences, branches of the nopal plant, loaded with infant insects, are cut off and preserved in the houses of the Mexicans, to prevent the animals being destroyed by the weather.

Commerce.—In 1839, the quantity of cochineal on which duty (1s. per cwt.) was paid, was 489,997 lbs. In 1838, it was only 204,748 lbs. It is said that, on the average, one pound of cochineal contains 70,000 dried insects.

Description.—Cochineal (coccus; coccinella) consists of the dried female insects, which are about one or two lines long, wrinkled, of an irregular figure, convex on one side and flat or somewhat hollow on the other. They are inodorous, have a bitterish warm taste, tinge the saliva violet red, and yield a dark red powder. In burning, they evolve an animal odour, and leave a greyish white ash. By infusion in water they swell up, show their ringed character, and even their feet, giving the liquid a red colour. Both the Honduras and Vera Cruz kinds are distinguished into the silver and black varieties. Silver cochineal (cochinilla jaspeada of the Spaniards) has a purplish gray colour; but in all the furrows and depressions we observe a whitish powder, which, examined by the aid of a lens, appears like fine wool. Black cochineal (cochinilla renigruda or grana nigra of the Spaniards) is reddish or purplish black, and devoid or nearly so of

---

1 Mexico in 1827, vol. i. p. 84.
the silvery character. **Granilla** (cochinilla sylvestre or grana sylvestria) consists of very small cochineal insects, and smaller, wrinkled, globular or ovate masses, (cocoons and new-born insects?) somewhat like fragments of the cochineal insect m.

An extensive system of adulterating cochineal by a mercantile house in London was discovered a few years ago. The genuine article was moistened with gum-water, and then agitated in a box or leathern-bag, first with powdered sulphate of baryta, then with bone or ivory-black, to give it the appearance of black cochineal. By this means the specific gravity of the cochineal was increased from 1.25 to 1.35, and 12 per cent. of worthless heavy spar sold at the price of cochineal n. Powdered t alc and carbonate of lead have been used to give the silvery appearance. But a lens will readily distinguish these powders from the real wool which gives the true silvery character.

**Composition.**—Two analyses of cochineal have been made; one by John o, the other by Pelletier and Caventou p. The latter chemists found the constituents to be carmine, peculiar animal matter, fatty matter, (composed of stearine, olein, and an odorous acid), and salts, (viz. phosphate and carbonate of lime, chloride of potassium, phosphate of potash, and a salt of potash, containing an organic acid).

**CocHenillins (Carmine).**—Obtained by digesting cochineal in ether, to extract the fatty matter, and then in alcohol, which dissolves the carmine. This colouring matter is a brilliant purplish red substance, with a granular or crystalline appearance; unalterable in the air, easily soluble in water and alcohol, but insoluble in ether. It fuses at 112°, F. Chlorine renders it yellow. Acids change its colour. The concentrated mineral acids decompose it. Alkalis render the watery solution of carmine violet. Lime-water forms a violet precipitate with it. The affinity of hydrate of alumina for it is most remarkable: the compound formed by their union is called a lake.

The pigment sold in the shops as carmine, and which is one of the most valuable colours employed by the painter in water-colours, is a compound, of which cochenillin is one of the constituents. Pelletier and Caventou regard it as consisting of cochenillin, animal matter, and an acid. Some mystery is attached to the manufacture of it. A fine clear day seems essential to the formation of a pigment of the most esteemed quality.

**Physiological Effects and Uses.**—Diuretic, diaphoretic, anti-spasmodic, and anodyne qualities, have been assigned to cochineal, but without the least evidence of their existence. A mixture of carbonate of potash and cochineal is a popular remedy for hooping-cough. The only real value of cochineal is as a colouring matter, and as such it is used both in powder and solution. In the arts it is extensively employed in dying scarlet and crimson, and in the manufacture of carmine and lake.
ORDER III.—HYMENOPTERA, Linnaeus.

Essential Characters.—Four naked veined wings of unequal size. Mouth composed of jaws, mandibles, and two lips. Lip tubular at its base, terminated by a labium, either doubled or folded in, and forming a kind of sucker. Females with a compound ovipositor or sting at the anus (Stark).

APIS MELLIFICA, Linn. L. E. D.—THE HIVE BEE OR HONEY BEE.

1. Humor è floribus decerptus et ab Ape preparatus, L.—Saccharine secretion, E.—Mel. D.
2. Cera; Concretum ab ape paratum; Cera alba; Idem dealbatum, L.—Cera flava; Waxy secretion; Cera alba; Bleached Bees' Wax, E.—Cera alba. Cera flava, D.)

History.—This animal was very anciently known, and is frequently referred to in the Old Testament. In all ages it has been an object of admiration and attention, on account of its industry, curious economy, and policy.

Zoology. Gen. Char.—Labium filiform, composing with the jaws a kind of proboscis, geniculate and bent downwards. First joint of the posterior tarsi large, compressed. No spines at the extremity of the last two legs. Upper wings with one radial and three cubital cells (Stark).

Sp. Char.—Blackish. Abdomen of the same colour, with a transverse greyish band, formed by the down at the base of the third and following segment (Stark).

The honey bee lives in societies, called swarms, consisting of from fifteen to thirty thousand individuals. Each swarm is composed of three classes of individuals—viz. a female, males, and neuters. The female, called the queen bee, is narrower and longer than the others. The males, termed drones, are smaller than the females, and are devoid of stings. In each hive there are from 800 to 1000 drones. Towards autumn, when they can be of no further use, they are destroyed by the neuters. The neuters are termed working bees, and are by far the most numerous, since in each hive there are from fifteen to thirty thousand. They are in real nature females, whose ovaries are not developed, in consequence, as some have supposed, of the nature of the aliment with which they are supplied while in the larva state.

The digestive system of the animal consists of highly developed salivary organs communicating with the proboscis, of an esophagus (which enlarges at one part, forming the crop, sucking stomach, or honey bag), a proper stomach, small and large intestines, and biliary vessels. The latter open into the alimentary canal immediately behind the stomach. The sexual system, in the male, consists of a pair of testicles, each having a vas deferens, which terminates in a vesicula seminalis. From the conjoined extremities of the vesicule proceed a common duct terminating in a penis. The female genital organs consist of two ovaries made up of tubes, each containing about twelve ova; the two oviducts from these ovaries terminate in a vagina, into which also opens a duct from a roundish vesicle. The poison apparatus is found in the females and neuters only. It consists of two thin convoluted secreting organs, opening into a pyriform receptacle, from which a small duct passes to the sting, which consists of two portions placed side by side, barbed at the extremity and contained in a sheath. The poison is said to be hot and acrid to the taste. The consequences produced by the sting of a bee are
pain, redness, swelling, and hardness of the part; and might prove fatal if a swarm were to attack an individual. The removal of the sting (if left within the wound), and friction with saliva, or with oil and hartshorn, is all the treatment usually required.

**Hab.**—Old continent (Latreille.) In a state of nature they reside in hollow trees; but they are almost universally domesticated, and are preserved in hives. Curtis has described and depicted a remarkable instance of the nest of some hive bees attached to the arm of a tree. It was discovered in 1838, by Lord Malmesbury, in his plantation near the river Avon.

Bees furnish two products useful in medicine,—viz. honey and wax.

**a. HONEY. Production.**—Honey (mel) is secreted by the nectariferous glands of flowers, and is collected by the working or neuter bees, who take it up by suction or lapping, and pass it into the dilatation of the oesophagus denominated crop, sucking stomach, or honey-bag; beyond which, we presume, the honey does not pass, as it has never been found in the true stomach. When the animal arrives at the hive, the honey is disgorged by a kind of inverted peristaltic motion, and is probably somewhat altered in its properties by the secretions of the crop. It is used by the animal as food.

**Physical Properties.**—Honey varies in its taste and odour according to the age of the bees and the flowers on which they have fed. A hive which has never swarmed is considered to yield the best, which is, therefore, called virgin honey. The flavour of Narbonne honey, which is so much admired, is said to arise from the labiate flowers on which the animals feed; to imitate this, a sprig of rosemary is sometimes added to the honey obtained from other places.

**Purity.**—Flour, it is said, is now and then mixed with honey. It may be readily distinguished by its insolubility in cold water, and by the blue colour produced by the addition of iodine.

The London College directs that honey,—

Is not to be employed without being despumated. Dissolved in water, iodide of potassium and acid being added, it does not become of a blue colour.

**Chemical Properties.**—The constituents of honey vary somewhat according to the food of the bees, the season, the age of the animals, the mode of extracting it from the combs, &c. It must, however, be regarded at all times as a concentrated solution of sugar mixed with odorous, colouring, gummy, and waxy matters. The saccharine matter is of two kinds: one crystallizable, and analogous to the sugar of grapes; the other incrystallizable, and similar to the uncrystallizable brown syrup of the sugar-cane. Guibourt has found also mannite, which differs from sugar in not fermenting when mixed with water and yeast.

---

*Brit. Entomol. xvi.* 1. 769.
Physiological Effects.—Honey is emollient, demulcent, nutritive, and laxative. When fresh it is apt to occasion indigestion and colic. Collected from poisonous plants it has been found to possess deleterious qualities. The honey of Trebizond has long been notorious for its deleterious qualities. Mr. Abbott says it causes violent headache, vomiting, and a condition like that of a tipsy man. A larger dose produces deprivation of all sense and power for some hours afterwards. These effects agree with those assigned to this honey by Xenophon in his account of the "Retreat of the Ten Thousand." Pliny also speaks of this poisonous honey. Tournefort ascribes its venomous properties to the bees feeding on the *Azalea pontica.* Many other instances of poisonous honey are on record.

Uses.—Mixed with flour, and spread on linen or leather, it is a popular application to promote the maturation of small abscesses and furunculi. It sometimes forms a constituent of gargles, partly on account of its taste, partly for its emollient operation. It is also used as a vehicle for the application of other more powerful agents to the mouth and throat, especially in children. It is occasionally employed as an emollient and demulcent in inflammatory affections. In troublesome coughs, barley-water, mixed with honey, and sharpened with slices of lemon, and taken warm, forms a very agreeable and useful demulcent to allay troublesome coughs.

1. *MEL DESPUMATUM,* D.; Clarified Honey. (Melt the honey in a water bath, and remove the scum.)—The object of this process is to deprive honey of certain impurities which render it apt to ferment; but the flavour and odour of the honey is somewhat injured by the operation.

2. *OXYMEL.* See p. 404.

β. WAX. Secretion of Bees’ Wax.—Bees’ Wax (*cera*) was at one time supposed to be merely the pollen of plants elaborated by bees. Bonnet, however, so early as 1768, asserted it to be a secretion from the ventral scales. Hunter and Huber have subsequently proved the correctness of this assertion. The latter writer, indeed, proved that the pollen is not at all essential to the production of wax, for bees fed on honey and water equally secreted it, and formed the usual waxy cells. With this wax they construct the *comb* (*favus*), the cells (*alveoli*) of which are hexagonal with angular bottoms. The substance called *Propolis* is collected by the bees from the buds of trees. It is of a resinous nature, and is used for lining the cells of a new comb, stopping crevices, &c.
Other animals secrete wax. Thus the larva of the *Cicada limbata* or white wax insect of China is covered with a waxy powder, which is communicated to the trees upon which these insects are found, and is collected by the natives, who esteem it highly as a medicinal substance.

Wax is also a product of vegetables; but vegetable wax is not employed in this country. Myrtle wax is obtained from the berries of the *Myrica cerifera*, a native of the United States of America. These are boiled in water and pressed. The wax exudes, floats on the water, is skimmed off, and is remelted. This kind of wax has a greenish-yellow colour. By saponification it yields stearic, margaric, and oleic acids, along with glycerine, so that it is rather fat than wax.

**Preparation.**—Wax is extracted from the comb, partly by allowing the latter to drip, partly by subjecting it to pressure. The comb is then melted in water, by which the impurities subside, and the wax is allowed to cool in moulds.

**Properties of Yellow Bees’ Wax.**—Yellow wax (*cera flava*) has a remarkable and peculiar odour; its colour is more or less yellow, but varying in degree; its specific gravity varies from 0.960 to 0.965. It is said to be sometimes adulterated with suet, which gives it a fatty feel and disagreeable taste. Resin may be recognised by its solubility in cold alcohol; bean or pea meal, by its insolubility in oil of turpentine.

**Wax Bleaching.**—This is effected by melting yellow wax (either in a copper vessel, or in a large vat or tub, by means of steam), running it off, while in the melted state, into a trough, called a cradle, perforated at the bottom with holes, and placed over a large water tank, at one end of which is a revolving cylinder, almost wholly immersed in water. By this means the wax is solidified, converted into a kind of ribbon, and conveyed on the surface of the water to the other end of the tank. These ribbons of wax are here lifted out, and conveyed in baskets to the bleaching grounds, where they are exposed to the air for one or two weeks (according to the state of the weather), being turned every day, and watered from time to time. The wax is then re-melted, re-ribboned, and re-bleached; it is subsequently refined by melting in water acidulated with sulphuric acid.

**Properties of White Wax.**—White Wax (*cera alba; cera dealbata*) is yellowish-white; I have never met with pure wax perfectly white. The circular cakes of commerce, as well as wax candles, always contain spermaceti, which the dealers add to improve the colour. Pure wax is solid, brittle, inodorous, or nearly so, insipid, fusible, and at a much higher temperature decomposable. Its specific gravity varies from 0.8203 to 0.965.

**Composition.**—According to John, wax is a compound of two
other substances;—the one called *cerine*, the other *myricine*. These have been examined by Boudet and Boissenot.

1. **Cerine.**—This constitutes at least 70 per cent. of wax. It fuses at 143° F. It dissolves in 16 parts of boiling alcohol. By saponification with potash it yields margaric acid, a minute portion of oleic acid, and a considerable quantity of a non-saponifiable fat called *cerine*.

2. **Myricine.**—It fuses at 149° F. It dissolves in 200 parts of boiling alcohol of sp. gr. 0.833. It is not saponifiable by potash.

Ettling says that cerine, ceraine, and myricine, are isomeric, and composed of 

More recently Hess asserts that pure wax is homogeneous, and possesses the properties of myricine; its composition being \( C_{30} H_{50} O \). The difference between cerine and myricine he ascribes to the presence of *ceric acid* formed by the oxidation of myricin.

**Physiological Effects and Uses.**—Wax is an emollient and demulcent. It has been administered internally, in the form of emulsion (prepared with melted wax and soap, yolk of eggs, or mucilage), in diarrhoea and dysentery, especially when ulceration of the alimentary canal is suspected. In these cases it has been used by Hufeland and Wedekind. It has sometimes been employed as a masticatory, but its action is mechanical only. Its principal use, however, is externally, sometimes as a mild sheathing or protecting application, sometimes as a basis for the application of other agents. It is a constituent of all cerates, which take their name from it. The vapour evolved from wax placed on red-hot iron has been inhaled in phthisis.

1. **Emplastrum Ceræ**, L. *Emplastrum simplex*, E. *Emplastrum attrahens*. Wax Plaster.—(Wax; Suet, of each, lb. iii.; Resin, lb. j. L.—Bees’ wax, iii. Suet, and Resin, of each, ³ij. E.—“Melt them together with a moderate heat, and stir the mixture briskly till it concretes on cooling,” E.)—Employed in the preparation of *Emplastrum Cantharidis*. Sometimes used to promote discharge from a blistered surface.

2. **Emplastrum Aromaticum**, D. Aromatic Plaster.—(Frankincense (Thys), iii.; Yellow Wax, ⁵ss.; Cinnamon Bark, powdered, ⁵yj.; Essential Oil of Allspice; Essential Oil of Lemons, of each, ⁵ij. Melt the Frankincense and Wax together, and strain; when they are beginning to thicken by cooling, mix in the powder of cinnamon rubbed up with the oils, and make a plaster.”—By keeping, as well as by the application of heat in spreading, the volatile oils of this preparation are dissipated. “It is used as a stimulant, applied over the region of the stomach, in dyspepsia and increased irritability of that organ, to allay pain and nausea and expel flatus.”


---

1. *Journ. de Pharm.* xiii. 38.
Wax [White Wax, E.], &iv. [§iv. E.], L. E.—White Wax, lb. j.; Prepared Hog's Lard, lb. iv. D. Add the oil to the melted wax, and mix [and stir the mixture briskly while it concretes on cooling, E.]. —A mild and cooling dressing. Sometimes used as a basis for more active preparations.

4. UNGUENTUM CER^ FLAVE, D. Ointment of Yellow Wax. (As the preceding, except that Yellow Wax is substituted for White Wax).—Effects and uses as the last.

5. LINIMENTUM SIMPLEX, E. Simple Liniment. (Olive Oil, four parts; White Wax, one part. Dissolve the wax in the oil with a gentle heat; and agitate well as the fused mass cools and concretes.) —Differs from the Unguentum simplex in its greater liquidity. Used to soften the skin, and to promote the healing of chaps, &c.

OTHER HYMENOPTEROUS INSECTS.

The tribe of hymenopterous insects, called Gallicola or Diplolepariae, contains the insects which produce those excrescences on plants commonly denominated galls (see Nutgall, p. 1079, and Bedeguar, p. 1556). Latreille d comprehends all the insects of this tribe in one genus,—viz. Cynips.

CLASS VII.—CRUSTACEA, Cuvier.—CRUSTACEANS.

The dietetical properties of the Crustaceans (Lobsters, Crabs, Cray-fish, Prawns, and Shrimps), have been already noticed (see p. 62).

1. ASTACUS FLUVIATILIS.—In the stomach of the Crawfish are found, at the time the animal is about to change its shell, two calcareous concretions, commonly called Crab's Eyes or Crab's Stones (Lapilli Cancrorum), which were formerly ground and employed in medicine, as absorbents and antacids, under the name of Prepared Crab's Stones (Lapilli Cancrorum preparati; Lapides Cancrorum preparati; Oculi Cancrorum preparati). They consist of carbonate of lime and animal matter principally, with a little phosphate of lime. Their use is now obsolete. In the shops, imitations of them (prepared with chalk and mucilage, or size) are still met with.

2. CANCER PAGURUS.—The Black-clawed or Large Edible Crab was at one time an officinal animal. Its Claws (Chelae Cancrorum) when prepared by grinding, constitute the Prepared Crab's Claws (Chelae Cancrorum preparatae) of the shops. Their composition and uses are similar to those of prepared Crab's stones. For an account of the effects and uses of carbonate of lime, see p. 597.

---

Division II. Vertebrata.—Vertebral Animals.

**Essential Characters.**—Animals furnished with a skull and vertebral column for the protection of the brain and spinal marrow.

**Class VIII. Pisces.—Fishes.**

**Essential Characters.**—Vertebrated animals with cold red blood, respiring by gills or branchiae, and moving in the water by the aid of fins.

No article of the Materia Medica, contained in the British pharmacopoeias, is derived from this class of animals: but the important uses of Isinglass, and the extraordinary efficacy, in various diseases, ascribed by some writers to Cod’s Liver Oil, render it necessary to notice both of these productions.

1. Ichthyocol’s.—Isinglass.

**History.**—Ichthyocolla (ιχθυοκόλλα, from ιχθυς, a fish, and κόλλα, glue) is mentioned by both Dioscorides and Pliny. The latter of these writers ascribes its invention to Daedalus.

**Zoology.**—Isinglass is obtained from various fishes, some only of which have hitherto been ascertained. The finest kinds are procured from different species of Acipenser. Several other genera,—as Silurus, Morrhua, Gadus, Otolithus, Lota, and Polynemus, also yield it.

The organ from which isinglass is usually procured, is the air-bag, or swimming bladder, sometimes termed the sound. It is a membranous sac filled with air (containing from 69 to 87 per cent. of oxygen), and placed under the spine, in the middle of the back, and above the centre of gravity. In most fish it communicates with the oesophagus, or stomach, by the ductus pneumaticus. In others it is an imperforate sac. Occasionally there are two sacs, which communicate with each other. In the Acipenser stellatus, according to Brandt, the bag is composed of three membranes: an external, silvery one, derived from the peritoneum; a middle, membranous (hautigen) one; and the most internal, very vascular, and, as it were, pulpy membrane. The latter, he states, yields the fish gelatine. But unless the sound of this fish differs considerably from that of other fishes, there must be an error in this statement. I have examined all the purse and pipe isinglasses of commerce, and find the internal to be an insoluble membrane. In the cod the innermost membrane is very thin, and is perhaps analogous to the epithelium. External to this is a highly vascular thin coat, and still more external is the gelatinous coat, which appears devoid, or nearly so, of vessels.

**Preparation.**—The mode of preparing the swimming bladder for

---

* Lib. iii. cap. 102.
* Brandt and Ratzeburg’s Medicinische Zoologie, p. 27. Berlin, 1833.
sale as isinglass, varies in different countries. Sometimes the bag is dried unopened, as in the case of the purse, pipe, and lump isinglass of the shops. At other times it is laid open, and submitted to some preparation; being either dried unfolded, as in the leaf and honey-comb isinglass; or folded, as in the staple and book isinglass; or rolled out, as in the ribbon isinglass. When it arrives in this country it is picked or cut. Formerly it was picked into shreds by women and children, but it is now usually cut by machines worked by steam.

Description.—Many varieties of isinglass are imported: the Russian kinds are the most esteemed; but the Brazilian, on account of its cheapness, is the most extensively-used kind.

1. Russian and Siberian Isinglass.—The isinglass produced in the Russian empire is principally obtained from the Sturgeons. These cartilaginous fishes constitute the genus Acipenser.

The following are the generic characters of Acipenser:—Body elongated and angular, defended by indurated plates and spines, arranged in longitudinal rows; snout pointed, conical; mouth placed on the under surface of the head, tubular, and without teeth (Yarrellb). The species are badly determined. Brandtl has described and figured eight. Acipenser Sturio, or the Common Sturgeon, is occasionally caught in the river Thames. The species from which isinglass is procured is the following:

1. A. Huso, Linn. The Beluga or Bieluga.—Inhabits the Caspian Sea and its tributary streams. Its roe (ovary) is esteemed as caviare. Its swimming bladder, when properly prepared, yields leaf isinglass of three qualities, firsts, firsts, and seconds.

2. A. Guldenstadtii, Brandt and Ratzeburg. The Ossetr or Osseter.—Inhabits the Caspian and Black Seas and their tributary rivers. Caviare is prepared from its roe (ovary.) From its swimming bladder are obtained both staple and leaf isinglass. The varieties of the staple are, the Patriarch Astrakan, and Astrakhan firsts, seconds, and thirds. The leaf varieties are firsts, seconds, and thirds.

3. A. Ruthenus, Linn. The Sterlet.—Inhabits the Black and Caspian Seas and their tributary rivers; and the Arctic Ocean. Its roe yields caviare. Leaf and book (first and second) isinglass are obtained from the swimming bladder.

4. A. Stellatus, Pallas. The Sewruga.—Inhabits the Caspian and Black Seas and their tributary rivers. Yields caviare and leaf isinglass.

But in Russia the acipenser is not the only genus from which isinglass is obtained, for it is also procured from Silurus Glanis, which Dr. Royle suggests may be the source of the Samovey isinglass of commerce.

a History of British Fishes, ii. 360.
d Pallas, Reise durch verschiedene Provinzen des russischen Reichs. Theit i. S. 139. Petersburgh, 1771.
e On the production of Isinglass along the Coasts of India, with a notice of its Fisheries, p. 29. Lond. 1842.

This word is sometimes written Samovey or Simovey. I have been unable to trace its derivation. Dr. Royle's suggestion appears to me probable, since the Russian name for the Silurus Glanis is Som, while Albertus Magnus calls it Sumus. The Poles term it Szem. (Brandt and Ratzeburgh, op. supra cit. vol. ii. p. 31.) Moreover Martius says that staple, leaf, and book isinglass are produced from this fish. Now these are the three forms of the Samovey isinglass.
Brandt\(^{11}\) thus describes the preparation of Russian isinglass. The swimming bladder is cut open, washed, and then exposed to the air with the inner silvery membrane turned upwards. The latter is then stripped off and placed in damp cloths, or left in the outer covering, and prepared or kneaded. It is then taken out of the cloths, and either merely dried (leaf isinglass) or twisted in a serpentine manner, between three pegs into the shape of a horse-shoe, heart, or lyre (long and short staple), or folded in the manner bookbinders fold printed sheets of paper (book isinglass). Jackson\(^{12}\) has given figures to illustrate the manner in which the staple and book isinglass are made to retain their shapes by skewers.

Several kinds of leaf isinglass are imported from Russia. The finest kind is that from Astrakhan, of which one kind is said to be obtained from the Beluga (Acipenser Huso). These are imported from St. Petersburgh. The Samovey leaf is an inferior kind brought from Taganrod. Sisane leaf is the produce of a small fish; each leaf measuring only about 2½ inches each way, and weighing about a drachm: it looks like pieces of dried bladder, marked by two fibrous or muscular bands. Kroski isinglass I have not seen; but I am told it is in small circular membranous disks.

Long staple isinglass is of fine quality. It is the produce of the Oural. Of short staple three kinds are known: the finest is from the Oural, and is distinguished by the name of Patriarch, but it is very scarce. The Astrakhan short staple is one of the best kinds. The Samovey short staple is of inferior quality.

Two kinds of book isinglass are met with. That from the Oural is of excellent quality. Samovey book is an inferior kind.

Siberian purse isinglass is of moderately good quality, and is in general demand.

2. Brazilian Isinglass.—This is imported from Para and Maranham; but it has not hitherto been ascertained from what fishes it is procured: though it is obvious, from a superficial examination of the commercial specimens, that they must have been obtained from at least several species or genera. Mr. Yarrell\(^{13}\) suggests the genera Pimelodus and Silurus as the source of it. It comes over in the form of Pipe, Lump, and Honeycomb.

Pipe Brazilian isinglass must have been procured from a large fish. It is prepared by drying the swimming bladder unopened. In some cases this bladder is imported distended with air. The dried bladders, or pipes, as they are called, are from 10 to 12 inches in length, and 2 or 2½ inches broad. Their weight is about 5 ounces. Their shape is somewhat conical, tapering at one extremity, and broader at the other, where, on either side, is a conical caecal prolongation.

\(^{11}\) Though the account above given by Brandt agrees with the statements of Pallas, Gmelin, Georgi, and Tooke, there must be some inaccuracy in it. I have before stated (p. 1859), that the innermost membrane of the swimming bladder is insoluble. But according to Brandt's statement, the innermost is the gelatinous membrane. The account which T. W. C. Martius (Lehrbuch d. Pharmaceut. Zoologie, p. 71, Stuttg. 1838,) gives of the preparation of isinglass in Russia, confirms my views. The swimming bladders, he observes, are first placed in hot water, carefully deprived of adhering blood, cut open longitudinally, and exposed to the air, with the inner, delicate, silvery membrane upwards. When dried, this fine membrane is removed by beating and rubbing, and the swimming bladder is then made into different forms.

\(^{12}\) Royle, op. supra cit. p. 21.

\(^{13}\) Phil. Trans vol. lxxxii. 1783.
It is devoid of smell. **Lump Brazilian isinglass** consists of two swimming bladders placed side by side, considerably separated at one end, and communicating at the other extremity with each other. When perfect, each lump somewhat resembles in shape a torpedo. Its size varies. A perfect, though not very large specimen, now before me, is 8 inches long, and, at the broadest part, 5 inches in breadth. Its weight is 6½ ounces. It consists of three portions, separated by constrictions. The largest portion is 5 inches broad, and 3½ long: flattish in front, rounded posteriorly. It consists of two sacs, placed one on either side. The middle portion is oblong, 3 inches long, and 2 broad; it consists of two sacs, which communicate with those of the preceding portion. The third portion is oblong, 1½ inches long, and ½ of an inch wide. It consists of one sac only, into which both the sacs of the middle portion open. **Honeycomb Brazilian Isinglass** appears to be the largest portion of the lump kind split open.

The lump variety is sometimes softened, and rolled out into thin ribbons, in this country. On account of its deeper colour and inferior solubility, Brazilian isinglass is not in demand for domestic use; though, as it is sold in the cut state, it is probably intermixed by shopkeepers with the finer kinds of Russian isinglass, and sold as such. As it is moderately cheap and soluble, while it is free from any fishy smell, it is in extensive use for fining by brewers, who are the principal consumers of isinglass.

3. **New York Isinglass.** — Occasionally **ribbon isinglass** is imported from New York. It is in thin ribbons of several feet long, and from an inch and a half to two inches in width. It is but little used in this country. It is less soluble than the Russian, and affords a dark-coloured solution. Dr. J. V. C. Smith, author of a work on the fishes of Massachusetts, states, that it is obtained from the air-bladder of the common Hake (Gadus merluccius), which is thrown into water to macerate for a little while, and is then taken out and pressed between two iron rollers, “by which it is elongated to the extent of half a yard and more. It is then carefully dried, packed, and sent to market. The common cod (Morrhua vulgaris) yields a poorer kind of isinglass; but the hake only is known to the extensive manufacturers as fit for their purposes.”

4. **Hudson’s Bay Isinglass.** — I have been unable to ascertain from what fish this isinglass is procured. It comes over in the **purse form.** A specimen now before me measures 12 inches in length, and 3½ inches in diameter; its weight is 1½ ounces. It is light yellow, translucent, and free from taste and smell. The inner lining of the sac, which may be readily stripped off, is insoluble in water: the remaining membrane dissolves in boiling water.

5. **East India Isinglass.** — It appears that, for a long period, this has been exported from Calcutta to China, but it has only recently occupied the attention of Europeans. It is probably the produce of a

---

*United States' Dispensatory; also Journal of the Philadelphia College of Pharm., iii. 17 and 92.*

*In a letter to Dr. S. W. Williams, of Deerfield, Massachusetts, from whom I received the above information.*

*Richardson, in his *Fauna Borzali-Americana*, part iii. says, that the sturgeons of North America are equally numerous with those of Asia, but that their sounds and roes are utterly wasted.*
species of *Polynemus*. But the fishes called, by Dr. Buchanan, *Bola*, and several species of *Silurus*, especially *Silurus raita*, Buchanan, also yield isinglass (Royle). Most of the specimens of Indian isinglass which I have examined, have an unpleasant fishy odour, which renders them totally unfit for domestic use, and greatly deteriorates their commercial value. A specimen of *East India purse isinglass*, now before me, consists of an unopened swimming-bladder, flattened and dried. Its shape is oval-oblong; its length, 9 inches; its breadth, $3\frac{1}{2}$ inches; its weight, $7\frac{1}{2}$ oz. It has a strong fishy smell, and a dark colour.

Another kind (*East Indian leaf isinglass*) is merely the sac laid open and dried. It is 8 or 9 inches long, 6 or 7 inches broad, and about $\frac{7}{10}$ of an inch thick. A third kind, (*East Indian rolled leaf isinglass*) which I have received from Dr. Royle, appears to have been formed by rolling out the preceding kind into thin plates. A specimen before me is about 18 inches long, $3\frac{1}{2}$ inches wide, and $\frac{1}{10}$ of an inch thick. Some of the sheets are covered with a thin film of chalk.

*Picked East India isinglass*, kindly furnished me by Dr. Royle, is in small shreds, two or three inches long, and tapering at the extremities. It is hand-picked in India by the natives.

The composition of this isinglass has been ascertained by Mr. Solly, and will hereafter be stated.

6. Cod Sounds.—Cod sounds, in the dried state, are brought from Scotland, and used as a substitute for foreign isinglass. They are, however, usually preserved soft by salting, and dressed for the table.

Purity.—When isinglass is reduced to small shreds (*picked or cut isinglass*) it is scarcely possible to distinguish, by the eye, some of the inferior from the finer kinds. The best criteria are its whiteness, freedom from unpleasant odour, and its complete solubility in water.

Substitution.—Hartshorn shavings and sole skins (when clean, sweet, and well prepared) are sometimes substituted for isinglass in fining. For domestic uses, *patent gelatine* is frequently used as a substitute for isinglass.

Gelatine.—Gelatine may be extracted from bones, by boiling them in water under pressure; or, more readily, by employing bones, which have been previously digested in hydrochloric acid to extract the phosphate of lime. In this way a nutritious soup is prepared in Paris for the hospitals, and other pauper habitations. Gelatine has even been extracted from fossil bones. A soup was prepared from one of the bones of the great Mastodon, by the Prefet of one of the departments of France.

*Nelson's Patent Gelatine* is obtained from glue-pieces, freed from hair, wool, flesh, and fat. It is probable that inferior kinds of isinglass are also employed. Two kinds of this patent gelatine are made up:—the best (called *gelatine of the first*...
quality) is opaque; it is, by preference, made from the cuttings of the hides of beasts, or from the skins of calves: the inferior kind (called gelatine of the second quality) is transparent; it is made from non-transparent glue-pieces. Both kinds are sold, cut somewhat in imitation of picked isinglass.

French gelatine is sold in cakes, marked like those of common glue, with the nets on which they have been dried. They are either uncoloured, or coloured red, green, or blue.

For the following table of the different kinds of isinglass at the present time known in the London market I am principally indebted to Mr. James Metcalfe, wholesale dealer in isinglass, of No. 20, Artillery Place, Finsbury Square.

<table>
<thead>
<tr>
<th>Country</th>
<th>Place of Produce.</th>
<th>Place of Export.</th>
<th>Name and Character.</th>
<th>Prices Per lb. English.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Oral (Ural) ....</td>
<td>St. Petersburg.</td>
<td>Long Staple Ural 1st &amp; 2nd</td>
<td>14 6 13 6 none</td>
<td>Very choice and dear.</td>
<td></td>
</tr>
<tr>
<td>The Irtysh and Obi &quot;</td>
<td>&quot;</td>
<td>Short ditto Patriarch</td>
<td>14 6 13 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oural and tributaries &quot;</td>
<td>&quot;</td>
<td>Ditto ditto 1st &amp; 2nd Book</td>
<td>14 6 to 9 6</td>
<td>These are the sorts which yield the cut.</td>
<td></td>
</tr>
<tr>
<td>Astrakhan ....</td>
<td></td>
<td>Thin Leaf 1st &amp; 2nd.</td>
<td>14 6 10 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Volga and tributaries &quot;</td>
<td>&quot;</td>
<td>Beluga 1st &amp; 2nd ...</td>
<td>14 6 14 6 13 6 to 9 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cut by machine or hand.</td>
<td>16 0 14 6 13 6 to 9 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pickings (the brown ends)</td>
<td>8 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 0 6 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberia</td>
<td>The Irtysh and Obi St. Petersburg.</td>
<td>Siberian Purse</td>
<td>8 6 7 6</td>
<td>In good esteem.</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>Hudson's Bay and rivers.</td>
<td>Hudson's Bay.</td>
<td>Purse</td>
<td>5 6 6 0</td>
<td>A thin insoluble membrane lining the inside.</td>
</tr>
<tr>
<td>United States</td>
<td>New York.</td>
<td>Ribbon</td>
<td>No price 3 0</td>
<td>Not in use.</td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td>The Brazils</td>
<td>Maranham and Para</td>
<td>Pipe Brazil 5 0 4 0</td>
<td>In general de-</td>
<td></td>
</tr>
<tr>
<td>East Indies</td>
<td>Bay of Bengal</td>
<td>Calcutta.</td>
<td>Lump ditto 5 0 4 0</td>
<td>mand.</td>
<td></td>
</tr>
<tr>
<td>Scotland</td>
<td>Coasts of Scotland.</td>
<td>Cods Sounds.</td>
<td>Cut Brazil 7 6 6 6</td>
<td>Not in much re-</td>
<td></td>
</tr>
<tr>
<td>England</td>
<td></td>
<td>Sole Skins.</td>
<td>(Purse 2 0 4 0</td>
<td>pute.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leaf 3 0 4 0</td>
<td>Used perhaps for mixing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Picked</td>
<td>(Objected to on account of its handy smell and imperfect solubility. When carefully prepared may equal the Brazilian kind.</td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITION.—Isinglass of fine quality was analyzed by John*, who found the constituents to be, gelatine 70 0, osmazome 16 0, membrane insoluble in boiling water, 2 5, free acid (lactic ?), with salts of potash and soda, and some phosphate of lime, 4 0, and water 7 0. These results, however, can scarcely be accurate; for dried flesh, as Berzelius* observes, does not contain more than 8 per cent. of osmazome; and if isinglass contained 16 per cent. it could not be kept dry when exposed to the air.

* Gmelin, Handb. der Chemie, ii. 1468.
* Traité de Chim. vii. 668.
Mr. E. Solly, jun. examined three specimens of Bengal isinglass, and found the constituents to be gelatine, albumen, a small portion of saline and earthy substances, osmazome, and a minute trace of odorous oil. The quantities of gelatine in three specimens were respectively 86.5, 90.9, and 92.8 per cent.; while those of albumen were 13.5, 9.1, and 7.2 per cent.

Effects and Uses.—The dietetical properties of gelatine have been before noticed (see p. 54). Considered medicinally it is an emollient and demulcent. It is employed, dissolved in water or milk, and rendered palatable by acid and sugar, as a nutritious substance for invalids and convalescents.

A solution of isinglass, with some tincture of benzoin, is brushed over black sarcenet to form Court or Black Sticking Plaster. Liston's isinglass plaster consists of oiled silk coated with isinglass. The preparation of Gelatine Capsules has been already described (see p. 1619).

It is also employed as a clarifying or fining agent (for coffee, wines, beer, &c.) Some of the constituents of these liquors unite with the gelatine, and form insoluble compounds, which precipitate, and in the act of precipitation the gelatine incloses within its meshes the matters which rendered the liquid turbid. The great consumers of isinglass are the brewers, who employ principally the Brazilian variety.

2. OLEUM JECORIS ASELLI.—COD LIVER OIL.

(Oleum Morrhuae.)

History.—The oil obtained from the livers of the Common Cod, and various other allied species of fish, appears to have been for a long period a popular remedy, in various countries of Europe, for rheumatism, and some other diseases, though its use by medical practitioners is comparatively recent. In 1782 it was strongly recommended in chronic rheumatism by Dr. T. Percival, and in 1807 by Dr. Bardsley, who states that it was in high repute in Lancashire.

Zoology.—This oil is principally procured from the common cod (Morrhua vulgaris; Gadus Morrhua) formerly called Asellus major; also from allied species, as the Dorse (Gadus callarias), the Coal-fish (Merlangus carbonarius), the Burbot (Lota vulgaris), the Ling (Lota molva), and the Torsk (Brosmius vulgaris).

Preparation.—In different countries the mode of preparing the oil varies somewhat. The cod oil met with in the London market is the produce of Newfoundland, where, according to Pennant, it is thus procured:—"They take a half tub, and, boring a hole through the bottom, press hard down into a layer of spruce boughs; upon which they place the livers, and expose the whole apparatus to as sunny a place as possible. As the livers corrupt the oil runs from them, and, straining itself through the spruce boughs, is caught in a vessel set under the

---

7 Boyle, On the Production of Isinglass, p. 40. Lond. 1842.
8 Pharmaceutical Transactions, vol. i. p. 145.
9 Full particulars respecting the mode of fining beer are given by Jackson in his Essay on British Isinglass, Lond. 1765.
11 Medical Reports, p. 18.
12 See Schonevelde Ichthologica, p. 18, Hamb. 1624. Pliny (Hist. Nat. lib. ix. cap. 28, ed. Valp.) mentions two kinds of Asellus,—namely, a smaller kind called callarias, and a kind termed baccii, caught in deep water only.
13 See Dr. J. H. Bennett's Treatise on the Oleum Jecoris Aselli, p. 17. Lond. 1841.
14 Arctic Zoology, vol. iii. p. 305, 1792.
hole in the tub's bottom." "At Newhaven, near Edinburgh, the fishermen simply boil the livers in an iron pot, and then filter it [the oil] through a towel containing a little sand." (J. H. Bennett.)

**Description.**—Among London dealers I have met with but one kind of Cod-liver oil. Its colour is chestnut brown, and its odour is like that of boiled cod's liver. It is the *Cod Oil* of commerce, the *oleum jecoris aselli fuscum* of continental pharmacologists. It is extensively used by curriers in dressing leather.

Three other varieties are met with in Germany. They are distinguished as the White (*oleum album*), the Yellow (*oleum flavum*), and the Red (*oleum rubrum*), Cod Liver Oils. These differences in colour depend probably in part on the species of fish from which each variety is procured, and in part also on the mode of preparation. Thus the Dorse (*Gadus callarias*) yields a white oil. In Germany the deep golden yellow coloured oil is, for the most part, used medicinally.

**Composition.**—Cod oil has been analysed by several chemists. The most recent analysis is that of Harder. In 200 grs. of the oil he found the following substances:

<table>
<thead>
<tr>
<th></th>
<th>In the Clear Oil</th>
<th>In the Brown Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green soft resin</td>
<td>0'104 (brown resin)</td>
<td>0'130</td>
</tr>
<tr>
<td>Brown hard resin</td>
<td>0'026 (black resin)</td>
<td>0'156</td>
</tr>
<tr>
<td>Gelatine</td>
<td>0'312</td>
<td>0'536</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>11'833</td>
<td>95'000</td>
</tr>
<tr>
<td>Margaric acid</td>
<td>20'625</td>
<td>8'000</td>
</tr>
<tr>
<td>Glycerine</td>
<td>16'832</td>
<td>18'000</td>
</tr>
<tr>
<td>Colouring matter</td>
<td>11'300</td>
<td>23'000</td>
</tr>
<tr>
<td>Chloride of calcium</td>
<td>0'1046</td>
<td>0'2092</td>
</tr>
<tr>
<td>Chloride of sodium</td>
<td>0'1179</td>
<td>0'1883</td>
</tr>
<tr>
<td>Sulphate of potash</td>
<td>0'0361</td>
<td>0'0614</td>
</tr>
</tbody>
</table>

Since the above analyses were made iodine and bromine have been detected in this oil. Herberger examined several oils, and obtained the following results:

<table>
<thead>
<tr>
<th>1000 parts of Cod Liver Oil</th>
<th>Iodide of Copper</th>
<th>Bromide of Potassium</th>
<th>Iodine</th>
<th>Bromine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. White Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Bremen</td>
<td>1'355</td>
<td>0'255</td>
<td>0'903</td>
<td>0'170</td>
</tr>
<tr>
<td>Mainz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannheim</td>
<td>0'439</td>
<td></td>
<td>0'293</td>
<td></td>
</tr>
<tr>
<td>Frankfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Brown Oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From Stuttgart</td>
<td>0'563</td>
<td></td>
<td>0'375</td>
<td></td>
</tr>
<tr>
<td>Mannheim</td>
<td>2'347</td>
<td>0'435</td>
<td>1'564</td>
<td>0'290</td>
</tr>
<tr>
<td>Hamburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bremen</td>
<td>2'586</td>
<td>0'441</td>
<td>1'723</td>
<td>0'294</td>
</tr>
</tbody>
</table>

**Physiological Effects.**—At the commencement of its use it frequently causes nausea, disagreeable eructation, and occasionally vomiting. In the dose of a tablespoonful it acts as a laxative, diaphoretic, and diuretic. But Taufhlied declares that in doses of from two to four spoonfuls a day, he never found it "exert any appreciable influence upon the urine or perspiration, or produce any disturbance in the economy." The disagreeable flavour of the oil sometimes creates nausea and sickness, but when habit has sur-

---

*Pharm. Central-Blatt für 1837*, p. 536.
*Ibid. für 1839*, p. 834.
*Schenk, Hufeland's Journal*, Bd. xxii. 1822.
mounted the repugnance to it these effects cease. In several cases it has proved emmenagogue; and on some occasions has given rise to a cutaneous eruption. Dr. Bardsley found that most patients were disposed to get fat under its use.

Uses.—Though it has been used more or less successfully in a considerable number of diseases, the cases in which it has proved most successful are those of a gouty, rheumatic, or scrofulous nature. But even in these it requires a very long-continued use to prove successful. The most recent writer on its employment observes that its use must be continued long, "at least a month, often six weeks, and sometimes for years." As the oil contains iodine, and as it proves most successful in those maladies in which this element proves successful, it has been suggested that iodine is its active principle. Tauflied, however, denies this, and asserts that the properties of the two are not identical, for the one succeeds where the other fails. Is bromine the active agent?

The oil is best adapted for relaxed, torpid, and phlegmatic temperaments, and for scrofulous subjects. In plethoric habits, and where irritation of the stomach and bowels, or inflammation, exists, its use is contra-indicated.

Rheumatism and scrofula are the diseases in which its employment has proved most successful. In rheumatism it is indicated in the chronic forms of this disease, where the muscles and tendons are rigid, and the joints nearly inflexible. In chronic gout it is said not to be so efficacious. In scrofula it has proved successful in most of the forms of this disease, but especially when it affects the bones (as in rickets, caries, &c.), and in tabes mesenterica. In the latter most intractable form of the disease, its efficacy has occasionally been most surprising. Even in phthisis, benefit is said to have been obtained by its use.

The oil has also been employed in some other diseases, with more or less success. In chronic skin diseases attention was drawn to its use, some years since, by Dr. Marshall Hall. In tinea favosa, impetigo, and chronic eczema, it has been found efficacious as a topical application. In chronic ophthalmia, especially of a scrofulous kind, it has been given internally, and, in some cases, applied to the eye with benefit. In paralysis also it has been found beneficial by Schuppmann.

Administration.—For an adult, the dose at the commencement is a table-spoonful, which may be gradually increased to six times this quantity (!). This dose is to be repeated two, three, or four times a day for several weeks, or even months. One patient consumed thirty-
six lbs. of oil in two years and a half! (Taufflied). Dr. Bardsley gave from 5ss. to 5iss. twice or thrice a day in warm table beer. For children of twelvemonths or under, the dose is a teaspoonful night and morning. The addition of some aromatic oil (as of lemon, peppermint, cassia, or anise) partly covers the unpleasant taste and smell. It is sometimes taken in the form of an emulsion. Peppermint water and lozenges have been recommended for covering the unpleasant taste of the remedy.

**CLASS IX. AVES.—BIRDS.**

**Essential Characters.**—Vertebrated animals, with red and warm blood, respiring by lungs, and the young of which are produced from eggs. Body covered with feathers, and general conformation organized for flying.

**Order I. GALLINÆ, Linnaeus.—GALLINACEOUS BIRDS.**

**Essential Characters.**—Bill short, convex, in some genera covered by a cere. Upper mandible bending from its base or only at the point; nostrils lateral, covered by a membrane, naked or feathered. Tarsus long. Three toes before, united at their base by a membrane; hind toe articulated on the tarsus above the junction of the anterior toes.

**GAL'LUS DOMES'TICUS, Temminck.—THE DOMESTIC COCK AND HEN.**

**Phasianus Gallus, Linn. L. E.**

**Ovum, E.—The Egg, E.**

**History.**—No mention is made of this animal in the Old Testament. Both the male and female are referred to in the New Testament. Aristotle calls the cock ἀλευρητής, the hen ἀλευτρόπος.

**Zoology. Gen. Char.**—Bill of medium size, strong, base naked. Upper mandible arched convex, bent towards the point. Head surmounted by a crest or plume. Ears naked. Three toes before, united to the first joint; the hind toe raised from the ground. Tarsus with a long and bent spur. Middle feathers of the tail arched. Wings short.


Some doubt exists as to the origin of our domestic cock and hen. Sonnerat affirms, that all the varieties originate from the Jungle Fowl (Gallus Sonneratii); while Temminck refers them to the Javan Fowl (Gallus banckiva).

---

*Matthew, xxvi. and xxiii.*

*Hist. de Animal.*

*Voy. aux Ind. Orient. ii. 148.*
Structure of the Ovarium and Development of the Egg.—The Ovarium (racemus vitellorum) or egg-organ, consists of a cluster of ova, in a hen beginning to lay, about 500 in number. The stalk by which each ovum is attached to the ovarium is called the petiolus. The size of the ova is exceedingly various: when quite ripe, they are as large as the yolk of an egg; the smaller ones are white, the larger ones yellow. Each ovum, when ripe, is composed of a calyx, the yolk-bag, and the yolk. The calyx constitutes the outer coat or covering of the ovum, and consists of two layers—an outer one, derived from the peritoneum, and an inner one, which is somewhat thicker. Between these two coats the vessels ramify. The petiolus is merely a prolongation of the calyx: it is studded with a number of small ova resembling vesicles. On that part of the calyx of a ripe ovum which is opposite the petiolus, is a whitish curved stripe, called the stigma, indicating the spot where the calyx bursts, to allow the escape of the yolk. The yolk-bag, or membrana propria vitelli, is within the calyx, and closely invests the yolk. It is a flocculent, delicate, fine coat. In the early state of the ovum, the yolk is constituted of a pellucid fluid lymph, and is hardly distinguishable from the vesicula cicatriculce. It then becomes whitish, and subsequently yellow, globules of oil making their appearance. In a ripe ovum, it is viscid, tenacious, and of an orange yellow colour; and lies in the calyx, with its long axis towards the petiolus. It is composed of three layers, the middle one having the deepest colour; the innermost enclosing a white fluid called the albumen centrale (or substantia alba vitelli), from which passes a little canal to that part of the surface of the yolk called the cicatricula.

The internal surface of the yolk-bag is lined with a very thin stratum of globules, in form and figure like those of the blood, but arranged organically. The cicatricula, or tread (as it is improperly called), is formed by an accumulation of these globules forming a mammiform heap, the convexity of which is towards the centre of the yolk, and is usually situated nearer the petiolus than the stigma. In the top of this is the so-called pellucid pore, which is occupied by a small vesicle discovered by Purkinje, and called by him the vesicula germinativa, or vesicula cicatriculce. It is found in all the ovarian ova, and seems to be a natural organ, since it is found in the ova of fowls which have never had access to the male. When the yolk falls into the infundibulum, this vesicle disappears. The Oviduct has some resemblance to a convoluted intestine. It is situated on the left side of the animal. Its superior expanded free extremity is called the

---

\footnote{Symb. ad ovi acium histor. ante incub. Lipsie, 1830.}
The spiral chalaza are seen at the extremities of the yolk; the circular cicatricula in the middle; and the zona albicans extending from one chalaza to the other.

The infundibulum, the edges of which are fimbriated. Inferiorly, the oviduct opens into the cloaca. It is attached to the spine by the mesometrium. The infundibulum, or expanded portions of the tube, receives the ovum as it escapes from the calyx of the ovary. The upper part of the oviduct is lined by a fine villous membrane, covered with follicles secreting the albumen, or glaire, and thrown into a number of longitudinal folds. The first layer of albumen which the ovum receives forms the membrana chalazifera of Dutrochet; at either end of which is a soft, pellucid, albuminous nodule, which may be regarded as the rudimentum chalazarum. During the descent of the ovum in the oviduct, it receives fresh deposits of albumen; and, as it undergoes spiral rotations in its passage, the above-mentioned processes become curved spirally, and in the perfect egg constitute the chalaza, grandines, appendices albuminis, or the poles or treddles. From one chalaza to the other are observed, in many eggs, one or more white striae, formed by a thickening of the membrana chalazifera. Vicq d’Azyr called this appearance the zona albicans.

The albumen, glaire, or white of the egg, is not uniform in its consistence. The thickest portion is that which is first deposited around the yolk. Proceeding from without inwards, the three layers of albumen are denominated albumen primum, a. secundum, and a. tertium. Just before the egg arrives at that part of the oviduct called the uterus, it receives its outer coat, the pellicula ovi. In the middle, or so-called uterine portion of the oviduct, is formed the calcareous shell. Some eggs are expelled without it; these are termed oon eggs. The chalk is first deposited in small polygonal pieces, having a crystalline appearance; but, when the deposit has attained a certain thickness, all traces of crystallization are lost.

Hab.—Domesticated in all the four quarters of the globe.

Description.—Eggs (ova) are too well known to need much description. Their specific gravity varies from 1·080 to 1·090. By keeping they become lighter, by the evaporation of a portion of the water. Dr. Prout found, that in two years an egg lost 544.3 grains. The relative weights of the different parts of the egg are, according to the same authority, as follows:—shell and membrane, 106·9;
THE DOMESTIC COCK AND HEN. 1871

albumen, 604·2; yolk, 288·9; (total, 1000). By boiling in water an egg loses two or three per cent.

1. Egg-shell (Testa Ovi; Putamen Ovi).—This consists, according to Prout, of carbonate of lime, 97; phosphate of lime and magnesia, 1; animal matter, with traces of sulphur and iron, 2. The chalk renders the egg absorbent and antacid; hence its use to neutralize the acidity of wines.

2. Pellicula Ovi (Membrana Putaminis).—An albuminous membrane which lines the shell. It is soluble in alkalis, and from its solution is precipitated by acids. It weighs about 2·35 grains (the whole egg being supposed to be 1000 grains). At the larger end of the egg it forms the follicula aeris; the air of which, according to Bischoff, contains 23·475 per cent. of oxygen.

3. White or Glaire (Albumen seu Album Ovi) consists of two or three laminae, which are not homogeneous, as two parts at least are discernible,—viz. a solid, probably organized albumen, having the appearance of a very fine delicate membrane, forming a series of cells, in which is contained the liquid albumen. Glaire or white of egg consists, according to Gmelin, of albumen 12·0, mucus 2·7, salts 0·3, and water 85·0. The coagulability of albumen by heat distinguishes it from caseum. Albumen or glaire (or ovalbumen) is distinguished from albumen of the serum of the blood (seralbumen) by its being coagulated by ether. The membranous tissue in which the liquid albumen of eggs is contained is said by Courbe to be devoid of nitrogen: he calls it albumenin or oonin.

4. Yolk (Vitellus Ovi) is a kind of yellow emulsion, consisting of oil suspended in water by means of albumen, and inclosed in a sac called the yolk bag. On its upper surface is seen the cicatricula. At the extremities are the twisted flocculent chalaza. The yolk consists of yellow oil, with crystallizable fat, 28·75, albumen containing phosphorus 17·47, and water 53·8. The yellow oil (oleum ovi) may be obtained by boiling the yolk hard, and digesting in ether or alcohol, which dissolves the oil. By distilling off the alcohol from the filtered tincture, the oil is left behind.

Physiological Effects and Uses.—Both the glaire and the yolk are highly nutritive; the latter, on account of the oil which it contains, is somewhat less easy of digestion than the white. Both are more readily assimilated when in the soft state than when hardened by heat. Considered as medicinal agents, they are emollient and demulcent. The glaire is a valuable agent in the treatment of poisoning by bichloride of mercury (see p. 754), sulphate of copper (see p. 776), and the bichloride of tin. Its efficacy in these cases depends on its chemical properties. The glaire is also used as a demulcent or sheathing agent in all cases of corrosive or acrid poisons. The yolk is a constituent of the mistura spiritus vini gallici (see p. 363). It is also used for preparing emulsions. Its oil has been applied to cracked nipples.

The white or glaire is employed as a clarifying agent for wines and some other liquids. Its efficacy depends on its coagulation, by which it entangles in its meshes the impurities, with which it either rises to the surface or precipitates. When the liquid to be clarified does not spontaneously coagulate the albumen, it is necessary to apply heat. Bookbinders use the glaire as a varnish.

CLASS X.—MAMMALIA, Linnaeus.—MAMMALS.

Essential Characters.—Vertebrated animals with red and warm blood, breathing through lungs, viviparous, and suckling their young with milk formed in their breasts or mammae.
Order I.—CETACEA, Linneus.—The CETACEANS.

Essential Characters.—Body pisciform, terminated by a caudal appendage, cartilaginous, and horizontal. Two anterior extremities formed like fins, having the bones which form them flattened and very soft. Head joined to the body by a very short thick neck. Two pectoral or abdominal mammae. Ears with very small external openings. Brains large. Pelvis and bones of the posterior extremities represented by two rudimentary bones lost in the flesh.

PHYSE'TER MACROCEPH'ALUS, Linn. L. E.—Great Headed Cachalot.

(Concretum in propriis cellulis repurbation, L.—Cetine nearly pure, E.—Cetaceum, D.)

History.—Cuvier is of opinion that this animal is perhaps the Physeter of Pliny, the Orca of some other Latin writers.

Zoology. Gen. Char.—Inferior teeth eighteen to twenty-three on each side of the jaw. Upper jaw broad, elevated, without teeth, or with these short and concealed in the gum; lower jaw elongated, narrow, corresponding to a furrow of the upper, and armed with thick and conical teeth entering into corresponding cavities in the upper jaw. Spiracular orifices united at the upper part of the snout. A dorsal fin in some species, a simple eminence in others. Cartilaginous cavities in the superior region of the head, filled with oily matter.

Sp. Char.—Lower teeth twenty to twenty-three on each side, recurved and pointed at the extremity. Small conical teeth concealed in the upper gums. Tail narrow and conical. A longitudinal eminence on the back above the anus. Upper part of the body blackish or slate blue, a little spotted with white. Belly whitish. Length forty-five to sixty feet.

The snout of the cachalot, notwithstanding its prodigious length, is formed only by the maxillae on the sides, by the intermaxillae towards the median line, and by the vomer on this line. The intermaxillae project to form the anterior part of the snout. Posteriorly the right one ascends higher than the left. The spout hole is single (in most cetacea it is double), and directed towards the left side, so that whenever the animal spouts water, it is to that side only.
SEAT OF SPERMACEI.—Spermacei is found in several parts of the body of the animal, mixed with the common fat. The head, however, is the grand reservoir for it. Here it is found (mixed with oil) in a large excavation of the upper jaw, anterior to, and quite distinct from, the true cranium which contains the brain. Mr. Hunter states that the spermacei and oil are contained in cells, or cellular membrane, in the same manner as the fat in other animals; but that besides the common cells there are larger ones, or ligamentous partitions going across, the latter to support the vast load of oil, of which the bulk of the head is principally made up.

There are two places in the head where this oil lies; these are situated along its upper and lower part: between them pass the nostrils, and a vast number of tendons going to the nose and different parts of the head. The purest spermacei is contained in the smallest and least ligamentous cells. It lies above the nostril, along the upper part of the head, immediately under the skin and common adipose membrane. These cells resemble those which contain the common fat in the other parts of the body nearest the skin. That which lies above the roof of the mouth, or between it and the nostril, is more intermixed with a ligamentous cellular membrane, and lies in chambers whose partitions are perpendicular. These chambers are smaller the nearer to the nose, becoming larger and larger towards the back part of the head, where the spermacei is more pure.

Mr. Hunter discovered about the nose, or anterior part of the nostril, a great many vessels having the appearance of a plexus of veins, some as large as a finger. On examining them, they were found loaded with spermacei and oil; and some had corresponding arteries. They were most probably lymphatics, whose contents had been absorbed from the cells of the head.

Hab.—Pacific Ocean, Indian and Chinese Seas. Especially off New Guinea and parts adjacent, Timor, Australasia, Polynesia, Peru, &c.

EXTRACTION OF SPERMACEI.—In the right side of the nose and upper surface of the head of the whale is a triangular-shaped cavity, called by the whalers "the case." Into this the whalers make an opening, and take out the liquid contents (oil and spermacei) by a bucket. The dense mass of cellular tissue beneath the case and nostril, and which is technically called "junk," also contains spermacei, with which and oil its tissue is infiltrated. The spermacei from the case is carefully boiled alone, and placed in separate casks, when it is called "head matter."

Purification.—The substance called "head matter" consists of spermacei and sperm oil. Its colour is yellow. Its consistence varies with the temperature. In cold weather it consists of a congealed mass (spermacei) surrounded and infiltrated by oil. To separate the latter as much as possible, it is put into filter bags. The solid thus obtained is then submitted to compression in hair bags, placed in an hydraulic press. It is then melted in water, and the impurities skimmed off. Subsequently it is remelted in a weak solution of potash. It is then fused in a tub by the agency of steam, ladled into tin pans, and allowed slowly to concrete into large, white, translucent, crystalline masses.

Properties.—Commercial spermacei (cetaceum; sperma ceti) usually contains a minute portion of sperm oil, which is best removed
by boiling in alcohol. Absolutely pure spermaceti (called cetine) is a white laminated substance, without taste, and almost odourless. By the addition of a few drops of alcohol or almond oil, it may be reduced to powder. It is insoluble in water, and slightly soluble only in alcohol, even at a boiling temperature. By saponification with potash, 100 parts of spermaceti yield 60-96 parts of margaric and oleic acids, 40.64 parts of ethal, and 0.9 parts of a yellow extractiform substance.

Ethal is a crystalline solid, composed of C₆ H₁₇ O. By distillation with phosphoric acid, it yields an oily substance called cetene, composed of C₆ H₁₆. So that ethal may be regarded as a hydrate of cetene.

Composition.—The ultimate analysis of pure spermaceti or cetine was made by Chevreul. The proximate composition of the same substance has been ascertained by Dumas and Peligot.

<table>
<thead>
<tr>
<th></th>
<th>Chevreul's Analysis</th>
<th>Dumas and Peligot's Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At.</td>
<td>Eq.Wt.</td>
</tr>
<tr>
<td>Carbon</td>
<td>81.660</td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>12.862</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>3.478</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Cetine</td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>

Physiological Effects and Uses.—Emollient and demulcent. Internally it has been employed in irritation and inflammation of the alimentary canal (as diarrhoea and dysentery) and of the bronchial membrane (catarrh); but its internal administration is now nearly obsolete. Its principal medicinal use is in the preparation of cerates and ointments.

Administration.—When employed internally it is generally exhibited in the form of an emulsion (spermaceti mixture) made with the yolk of egg. Or it may be made with mucilage.

1. Ceratum Cetacei, L.; Ceratum simplex, E.; Unguentum Cetacei, D.; Spermaceti Cerate. (Spermaceti, 3ij.; White Wax, 3viij.; Olive Oil, Oj. L.—Olive Oil, 6 parts; Bleached Bees’-wax, 3 parts; Spermaceti, 1 part, E.—White Wax, lb. ss.; Spermaceti, lb. j.; Prepared Hogslard, lb. iij. “Heat the oil gently, add the wax and spermaceti, stir the whole briskly when it is fluid, and continue the agitation as it cools,” E.)—If cold oil be added to the wax and spermaceti, the preparation is apt to be somewhat lumpy. As the white wax of commerce is always largely mixed with spermaceti, this preparation has never the precise composition intended by the College. Practically, however, this is of no consequence.—This preparation is employed as a mild and simple dressing for blisters and excoriated surfaces.

2. UNGUENTUM CETACEI, L.; Spermaceti Ointment. (Spermaceti 3v.; White Wax, 3ij.; Olive Oil, f3ij. Having melted them together with a slow fire, stir assiduously until they become cold).—A softer preparation than the preceding, but used in the same cases.

Ambergris.—The substance called Ambergris (Ambra grisea) is procured from the Cachalot or Sperm Whale. In this country it is used as a perfume only; on the continent it is employed in medicine. It appears to be the indurated feces (perhaps somewhat altered by disease) of the animal. Mr. Beale collected some of the semi-fluid feces, and found that the dried mass had all the properties of ambergris. It is a solid, opaque, greyish, striated substance, having a pleasant musk-like odour, and which is supposed to be derived from the Squid (Sepia moschata) on which the animal feeds; and in support of this opinion it must be mentioned that the horny beaks of this animal are found imbedded in the masses. Its sp. gr. is 0-908 to 0-92. John analyzed it, and found it to consist of a peculiar non-saponifiable fat (ambreine) 85, sweet balsamic alcoholic extract, with benzoic acid, 25, aqueous extract, benzoic acid, and chloride of sodium 1-5. Ambreine is soluble in alcohol, and by the action of nitric acid furnishes a peculiar acid called ambreic acid. The effects of ambergris on the system are said to be analogous to those of musk. In the shops is kept an alcoholic tincture (called essence of ambergris) which is employed as a perfume only.

Order II.—Ruminantia, Cuvier.—Ruminants. Pecora, Linnaeus.

Essential Characters.—No incisors in the upper jaw; in the lower usually eight; a vacant space between the incisors and molars, but in which, in some genera, are found one or two canines. Molars twelve in each jaw, the crown marked with two double crescents of enamel, of which the convexity is outwards in the lower jaw, and inwards in the upper. No clavicles. Extremities disposed for walking. Two toes furnished with hoofs; metacarpal and metatarsal bones united. Four stomachs; intestines long. Two or four inguinal mammae. Horns in the males, and often in the females of most species.

The four Stomachs of the Sheep.

a, The gullet.—b, The paunch.—c, The honeycomb.—d, The manyplies.—e, The reed.—f, The commencement of the duodenum.

MOSCHUS MOSCHIFERUS, Linn. L. E. D.—THE MUSK ANIMAL. (Humor in folliculo praeputii secretus, L.—Inspissated secretion in the follicle of the prepuce, E.—Concretum Moschus dictum, D.)

History.—Aristotle, Pliny, Elian, and Oppian, make no mention of this animal. Anius is the earliest writer who notices the perfume. None of the etymologies hitherto given for the word Musk (μορκος) are satisfactory.
ZOOLOGY. Gen. Char.—Incisors \( \frac{2}{3} \). Canines \( \frac{1}{3} \). Molars \( \frac{3}{3} \). \( \frac{2}{3} = 34 \). Canines wanting altogether in the females; superior canines large in the males. Ears long, pointed. Body slender. Feet with hoofs, separated and enveloping the last phalanges. Tail very short. Two inguinal mammae.

Sp. Char.—Fur of a gray-brown; hair coarse. A pouch before the prepuce of the male, filled with an unctuous musky substance. Size of the roebuck.

The absence of horns and the presence of canine teeth distinguish the animal from the Deer (Cervus). The Stylocerus moschatus is the connecting link between the deer and the musks. It has the horns of the one, and the canine teeth of the other.

Skull of Moschus moschiferus.

The most interesting part of the musks is the preputial musk sac. Cuvier\(^b\) says no other species of Moschus possesses a musk sac; but this statement is not correct. \( M. \) Altaicus Eschscholtz (\( M. \) Moschiferus Altaicus Brandt), \( M. \) Napu, and \( M. \) Javanicus, are also said to possess musk sacs.

Anatomy of the Musk Sac.—The sac is peculiar to the male animal. If he be supposed to be laid on his back, and the belly examined, we observe behind the navel, and immediately in front of the preputial orifice, a small aperture (external aperture of the musk sac) leading into the musk canal, which terminates in the cavity of the musk sac. The aperture is about half an inch from the umbilicus, and usually about a line, or a line and a half, from the preputial orifice. In some preparations in my possession the distance is much greater. The preputial orifice is somewhat more prominent, and has a number of longish hairs projecting from it, in the form of a brush or hair-pencil; whereas the external musk aperture is

\(^b\) Règne Animal, i. 259, nov. ed. 1829.
placed in a depression, and is smooth. The relative position of the parts is shewn by the subjoined sectional view of the musk sac in situ (from Brandt):

**Fig. 348.**

**Vertical Section of the Musk Sac in situ.**

a. The penis.—c. Urethra.—d, d, d. The hide.—e. Glans penis.—f. Scrotum.—g. Spot where the spermatic cord is cut off.—h. Aperture of the musk-sac.—i. Preputial orifice.—k, h. Muscular coat of the sac.—y. Position of the anus.

The musk sac is of an oval form, rather broader at the anterior than at the posterior part. It is flat and smooth above, where it is in contact with the abdominal muscles, but convex below (supposing the animal standing). Its breadth is from 1½ to 1¾ inches; its length from 2 to 2½ inches; its depth varies, being greatest anteriorly, where it is about one-half or 3-4ths of an inch. The external aperture of the musk sac is placed in the median line, but nearer to the anterior than the posterior extremity of the sac. The musk canal is about 1 or 1½ lines long, its diameter being about one line. The internal aperture of the musk sac is surrounded by fine hairs, which readily fall off, and are found in the musk of commerce.

**Fig. 349.**

**Musk Sac.**
a. Truncated Penis.

**Fig. 350.**

**Musk Sac, deprived of its hairy coat, to shew its muscular coat.**
a. Portion of the truncated Penis.
c. Aperture of the Musk Sac.

**Fig. 351.**

**Musk Sac, deprived of its hairy coat and circular muscular fibres.**
c. Aperture of the Musk Sac.

The following are the parts of which the musk sac consists:

1. **Outer or hairy coat or skin.**—This is a continuation of the hide, and covers the convex portion of the sac. Its hairs are stiff but smooth, and disposed in a circular manner around the external musk orifice.
2. Muscular coat.—This consists of two strata of fibres which surround the sac in a circular form. Pallas states, that they arise from the groin and unite anteriorly with the panniculus carnosus. He regards them as the compressors and retractors of the follicle and of the prepuce when the genital organ is thrust out. The same naturalist has described two retractors of the penis.

Between the two strata of muscular fibres is placed the penis, which is remarkable from the circumstance of the urethra projecting beyond the extremity of the glans. In its usual state the penis lies rolled up within the belly.

On the inner surface of the muscular fibres is a number of small oblong or roundish glands (see Fig. 352), compared by Pallas to the meibomian glands of the palpebrae.

3. Fibrous coat.—This is the most external of the proper coats of the musk sac. On its inner surface are numerous depressions or cells, surrounded by ramifying folds, within which the blood-vessels ramify. This coat is continuous (through the musk orifice) with the corium.

4. Pearly coat.—A soft delicate membrane, shining like mother-of-pearl. It lines the cells, and covers the folds of the fibrous coat.

5. Epidermoid coat.—It is the inner lining of the sac. Its external layer is silvery white; its internal one yellowish or reddish-brown.

6. Musk glands.—In each of the depressions observed on the internal coat of the musk sac, are found two or more irregular shaped bodies of a yellowish or reddish-brown colour. These bodies consist of a central brownish mass (supposed to be glandular), covered by a fine membrane.

7. Contents of the Musk Sac.—Pallas found, that, in young animals, the sac was empty and contracted. In the adult animal it contained about a drachm and a half of musk, and in old animals more than two drachms. But these quantities must be below the average, since the dried pods of commerce contain on the average more musk than this. Mr. Campbell describes the musk found in the sac as soft, reddish-brown, granular, and having the appearance of soft gingerbread.

Hab.—Asia, between 16° and 58° north latitude, and 92° and 155° of east longitude. Especially on the Atlas and Himalayan ranges. China, Cochin-China, Tonquin, Tartary, and Siberia, have all been celebrated for the musk. The animal is timid, and dwells in cold mountainous districts, where coniferous plants abound.

Capture of the Animals.—Various methods of catching the animals are adopted. Sometimes they are taken by snares or gins, sometimes by pitfalls, sometimes by shooting them. The Tungouses, one of the native tribes of Siberia, employ the bow and arrow only.

Description.—Three kinds of musk are described, viz. China, Russian (or Kabardine), and Bucharian. I am acquainted with the two first only.

1. China, Tonquin, or Thibet Musk, (Moschus tunquensis seu tibetanus).—This is imported in small rectangular boxes (catties), about 7 inches long, 4½ inches broad, and 4½ deep; covered externally by silk, and lined with sheet-lead and paper. These boxes contain about twenty-five sacs or pods, each wrapped separately in paper. On the
outside of the lid of some of the boxes is marked "Lingchong Musk;" and on the inside of the lid is a rude Chinese representation of the musk hunters, some shooting the animal, others cutting out the musk-bag. On the paper, which envelopes each pod, are similar rude representations in blue or red ink.

Pod musk (moschus in vesicis) consists of roundish, or somewhat oval pods, which are generally broader at one end than at the other. The hairs are brownish yellow, or greyish, or whitish, bristle-like, and stiff; arranged in a concentric manner around the orifice of the sac. A careful examination will always discover the remains of the penis. The pods are about 2 1/2 inches long, and 1 3/4 inches broad. The weight of each pod, as well as of the contained musk, is very variable. I am indebted to Mr. Noakes, druggist, of Snow Hill, for the following account of the weights of six pods, and of the grain musk obtained therefrom:—

<table>
<thead>
<tr>
<th>Pods of Musk</th>
<th>Weight</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5vss</td>
<td>Grain Musk, 5vj. grs. xv.</td>
</tr>
<tr>
<td></td>
<td>3vss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5viij. grs. xviijss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3ix. grs. xliijss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5v. grs. xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3ijss</td>
<td></td>
</tr>
</tbody>
</table>

Total, 6 5xxxvij. grs. xv. 5vj. grs. xv.

Average, 1 5vj. grs. xijss. 5ij. grs. xliiss.

Grain musk (moschus in granis; moschus ex vesicis) is granular, unctuous to the feel, mixed with hairs, of a dark reddish-brown colour, a bitter aromatic taste, and a strong, remarkable, very persistent smell (musky odour). Its odour can scarcely be called peculiar, since it is common to several animals and vegetables. Thus, the musk-ox and the musk-cat evolve it. The submaxillary gland of the crocodile secretes an unctuous musky substance. Among plants, Erodium moschatum, Malva moschata, and Centaurea moschata, may be referred to as possessing a musky odour. When mixed with other scents, musk has the remarkable property of augmenting and improving their smell, without much imparting its own: hence it is extensively used by perfumers. A few drops of potash added to musk increases its odour, by setting free, it is supposed, ammonia.

2. Siberian, Russian, or Kabardine Musk (Moschus sibiricus, rossicus seu cabardinus). This is an inferior kind. The pods are said to be more oblong or oval than those of the China kind; the hairs longer and whiter. But I have examined large quantities of Siberian musk, the pods of which are not distinguishable from those of the China by any of these characters. The only invariable distinction I have observed is in the scent, which is remarkably different: it is much less powerful, and more nauseous and disagreeable, being somewhat empyreumatic. Geiger says, it is sometimes accompanied...
by an odour similar to that of the sweat of a horse. This kind of musk is imported in wooden boxes, and all the pods that I have examined were in a good state of preservation; but frequently, I am told, this is not the case.

Bucharian Musk (Moschus bucharicus) is described by some pharmacologists, but I have never met with it. The hairs are said to be yellowish or reddish-brown. The musk has a weak odour, and is of very inferior quality.

Adulteration.—The great sophisticators of musk are the Chinese. I have seen several artificial pods of musk which had been imported from Canton. T. W. C. Martius calls this artificial kind Wampo Musk, and says that, for some years past, it has been extensively introduced into commerce. The hairy portion of the sacs is formed of a piece of the skin of a musk animal, (readily distinguished by its remarkable hairs), coarsely sown at the edges to a piece of membrane, which represents the smooth or hairless portion of the sacs. These pods are distinguished from the genuine ones by the following characters:—the absence of any aperture in the middle of the hairy coat; the hair not being arranged in a circular manner; and the absence of remains of the penis (found in every genuine musk sac). These false sacs, as well as the genuine ones, are sometimes enveloped in papers marked, "Musk collected in Nankin by Jung-then-chung-chung-kee." The odour of the musk of the false sacs is ammoniacal.

Grain musk is sometimes imitated by dried blood, and perhaps by other substances. The fraud is to be detected by a careful examination of the appearance and odour of the particles, and by their chemical characters. An infusion of genuine musk gives no precipitate with a solution of bichloride of mercury, but does with tincture of nutgalls, and acetate of lead. By incineration genuine musk leaves behind a greyish white ash, whereas blood yields a reddish one. Artificial musk is said to be prepared by rubbing in a mortar dried bullock's blood with caustic ammonia, and mixing the half-dried mass with genuine musk. Another kind of artificial musk has been already described (see p. 426).

Commerce.—"At an average of the three years ending with 1832, the imports of musk, from all places eastward of the Cape of Good Hope, with the exception of China, amounted to 4,965 ounces a-year." In 1839, duty (6d. per ounce) was paid on 2,389 ounces.

Composition.—In 1803, Thiemann analysed musk. In 1805, Bucholz examined it. In 1820, Blondeau and Guibourt published an analysis of it. Afterwards, Westler, Buchner, and Geiger and Reinmann, submitted it to chemical investigation.
Odoorous Principle.—Has not hitherto been isolated. The strong and diffusive odour of musk would lead us to expect that its odorous matter was highly volatile. Yet such is not the fact; for we cannot deprive musk of its peculiar odour by distillation, though the distilled liquid has a musky smell. As it is destructible by heat, it is obviously organic. It is not peculiar to musk, since many other substances exhale an analogous odour. Some have suggested that it is the result of putrefaction of one or more of the constituents of musk; and in support of this statement it is asserted that, by Leslie's method of desiccation, musk may be dried and rendered odourless. I have repeatedly performed this experiment with every care, but without obtaining odourless musk. Robiquet was of opinion that many odorous substances owed their odour to a certain quantity of ammonia, which, being disengaged, carried off with it substances not otherwise volatile, which masked the ammoniacal smell. In applying this hypothesis to musk, it must be admitted that it harmonizes well with several of the circumstances observed. Thus musk evolves ammonia; water distilled from musk contains ammonia; and potash added to a solution of musk heightens its odour (by facilitating the evolution of ammonia?).

Physiological Effects.—Musk disturbs the functions of the stomach, acts as a stimulant to the vascular system and brain, and afterwards proves narcotic. Jörg and his pupils submitted themselves to its influence in doses of from 2 to 15 grains in water or mixed with magnesia. Its primitive effects were eructation, weight at the stomach, diminution or increase of appetite, dryness of the oesophagus, heaviness of the head, vertigos, and headache. The secondary effects were more marked on the encephalon than on the digestive canal: disposition to sleep, faintness, and a feeling of heaviness in the whole body. Lastly, deep and long-continued sleep. In very large doses the action on the nervous system was very marked; trembling in the limbs, and even convulsions, were observed.

The pulse was increased in frequency, and somewhat fuller. These effects show that musk belongs to the cerebro-spinants (see p. 174). It is a stimulant to the nervous and vascular systems, and an irritant to the stomach. Its effects are by no means uniform. Trousseau and Pidoux, suffered from its use neither excitement of the vascular system nor sleep. Its influence is more manifested in some constitutions (those, for example, commonly termed nervous, in whom there is a very sensible or excitable condition of the nervous system), than in others (as the phlegmatic). Moreover, its effects are more marked in some morbid conditions of the cerebral functions (of the hysterical kind), than in the healthy condition of these functions. In some persons the nervous system appears to be peculiarly susceptible of the odour of musk; for it is reported that headache, giddiness, and even fainting, have been induced by it. When the digestive apparatus is previously in a state of irritation, musk increases the local disorder, giving rise to pain, nausea, vomiting, and diarrhoea. Sometimes the stimulant influence of musk is directed to the sexual organs. Trousseau and Pidoux experienced from it "une assez vive excitation des organes génitaux." In the female it has occasionally provoked the catamenial discharge. In persons disposed to epistaxis it has at times appeared to bring on the hemorrhage. Occasionally diaphoresis or diuresis has seemed to result from its use.

The odorous principle of musk is absorbed, and subsequently thrown out of the system by the excretories. Barbier observes that the urine and the sweat of persons who have taken this substance are powerfully impregnated with its odour—now and then so strongly, that the hand, applied for the purpose of feeling the pulse, retains the odour for some time. On post-mortem examination, the brain, and the cavities of the chest and abdomen, in those who have taken it during life, sometimes emit a strong smell of musk. Tiedemann and Gmelin recognised the odour of musk in the blood of the mesenteric, splenic, and portal veins; but they failed to detect it in the contents of the lacteals. Trousseau and Pidoux mention that in their experiments, the excretions acquired a feeble odour of musk. Jörg, however, denies that the excretions of those who have taken musk have the smell of this substance.

Uses.—The effects of musk, already alluded to, show that it is a remedy which will be useful where we want to excite the nervous system; and, vice versà, that it will be hurtful where there exists a determination of blood to the brain, and in those constitutions denominated plethoric. The cases in which experience seems to have shown that musk is sometimes useful are the following:—

1. Those diseases which are attended with convulsive movements, and which, therefore, are called spasmodic. Such, for example, as hysteria, epilepsy (especially of children, and where the disease does

---

* Traité de Thérap. t. i. p. 25.
" Traité Elem. de Mat. Med. ii. 143, 2nd ed. 1824.
not depend on organic changes, or on plethora), chorea, and even in some cases of tetanus. The employment of musk here has led to its denomination of antispasmodic.

Dr. Cullen, on whose practical information I place great reliance, says, "I maintain that musk (when genuine) is one of the most powerful antispasmodics that we are acquainted with. I have found it, with Dr. Wall, to be a powerful remedy in many convulsive and spasmodic affections, and in some of a very peculiar kind. I had once a gentleman affected with a spasm of the pharynx, preventing deglutition, and almost respiration. This, when other remedies had failed, was relieved by the use of musk, which often shewed its power; for the disease continued to recur at times for some years after, and was only obviated or relieved by the use of musk."

2. In low fevers which are accompanied with delirium, twitchings of the muscles, a small contracted pulse, and convulsions, musk has been occasionally employed, and with benefit. Like opium, its use in these cases is always uncertain—in one instance relieving, in another increasing the malady, though the cases may be to all appearances parallel.

3. In retrocedent gout, as where gout attacks the stomach or the head, giving rise to headache or delirium, musk has been found beneficial. Cullen relates a case where immediate relief was obtained by the exhibition of fifteen grains of genuine musk.

4. In the delirium which sometimes occurs in pneumonia, but which bears no relation to the intensity of the latter, and is accompanied with adynamia, Recamier has found it beneficial.

5. Lastly, during the late severe visitation of malignant cholera, musk was one of the remedies tried. I saw it employed several times, but without obvious relief. The experience of others was various; but the result is, that the profession has formed a very low estimate of its power in this disease.

Administration.—Musk should be given in substance, either in the form of boluses, or suspended in water by means of saccharine or mucilaginous substances. Its dose is from eight to fifteen grains. In children it may be sometimes used in the form of enema.

1. MISTURA MOSCHI, L.; Musk mixture. (Musk; Gum Arabic powdered; Sugar, of each, siij.; Rose Water, Oj. Rub the Musk, with the Sugar, then with the Gum, the Rose Water being gradually added).—One fluidounce of this mixture contains nine grains of musk. In practice it will be sometimes found convenient to employ twice as much gum, and half as much again of musk.—Dose, f5j. to f3ij.

2. TINCTURA MOSCHI, D.; Tincture of Musk. (Musk in powder, 5ij.; Rectified Spirit, Oj. Digest for seven days, and filter.)—Principally valuable as a perfume. Each f5j. is prepared with only gr.

\(^1\) Mat. Med.

\(^1\) Jacquet, Biblioth. Méd. t. lix.
viijss. of musk; or each f\textsuperscript{5}j. with somewhat less than one grain. It is obvious, therefore, that a dose of the tincture which contains a medium dose of musk, would be dangerous, from the large quantity of alcohol it contains.

Essence of Musk, used as a perfume, is ordinarily prepared from the musk pods from which the grain musk has been extracted. The following formula has been furnished me, as one in common use:—Grain Musk, 3xiv. (or Musk Pods, 3viij.); Boiling Water, Oss. Digest until cold; then add, of Rectified Spirit, Ovjss.; Carbonate of Potash, 5ss. Digest.

2. CER\'VUS EL\'APHAS, Linn. L. E.—THE STAG.

(Cornu, L.—Horn, E. —Cornua Cervina Ramenta, D.)

History.—Both the hart and the hind (the male and female stag) are repeatedly mentioned in the Bible. The stag is also noticed by Hippocrates, Aristotle, Pliny, Galen, and Avicenna.

Zoology. Gen. Char.—Incisors \(\frac{3}{2}\), canines \(\frac{3}{2} - \frac{3}{2}\), or \(\frac{3}{2} - \frac{3}{2}\), molars \(\frac{3}{2} - \frac{3}{2}\) = 32 or 34. Canines, when they exist, compressed and bent back. Head long, terminated by a muzzle. Eyes large, pupils elongated transversely. A lachrymal sinus in most. Ears large and pointed. Tongue soft. Body slender. Four inguinal mammae. Horns solid, deciduous, palmed, branched, or simple, in the males; females, with one exception, without horns.

Sp. Char.—Horns with three anterior antlers, all curved upwards, the summit forming a crown of snags from a common centre. Lachrymal sinuses. Fur red-brown in summer, brown-grey in winter. A pale disc on the buttocks.

The stag usually begins to shed his antlers in February or March, immediately after which their reproduction begins, and by July he has completely renewed them. The first sensible phenomenon of the formation of these parts is the vascular excitement about the frontal bone. The arteries are observed to be enlarged, and to pulsate more strongly than usual; the heat is increased, and, in fact, all the

\* Deut. xiv. 5, and Psalms, xviii. 33.
symptoms of active inflammation come on. Very soon we perceive
two cartilaginous tubercles, one on each side; these enlarge and
elevate the skin, by which they acquire, from the distension of the
latter, a velvety covering. These tubercles are soon converted into
real bone; but the deposit of ossific matter does not stop here: it
continues around the base of the antlers, thus giving rise to what has
been usually termed the burr. These osseous prominences, the
antlers, are supplied with two sets of vessels—an external or cuta-
nenous, which is the most efficient, and an internal. By the pressure
made on the former by the burr, they are obliterated: the covering
of the antlers no longer receiving a supply of blood, soon ceases to
live, dries up, and falls off. The internal vessels continue to keep up
the life of the bone for a few months longer, when death takes place.
This occurrence may be in part owing to the imperfect nutrition, and
partly, perhaps, to the exposure of the bone to the air without any
envelope; but it arises principally from some unknown changes in
the vital actions. The antlers being now dead, nature soon sets
about their separation. To effect this, the living parts at the base
are rapidly absorbed, so that the antlers being left but slightly adhe-
rent to the frontal bone, readily fall off by a gentle knock. A few hours
only elapse before the irregularity on the surface of the os frontis is
covered by a thin pellicle, and shortly afterwards the formation of a
fresh pair of antlers is commenced. Castration stops the growth of the
antlers.

Hab.—Europe, Asia, and North of Africa.

Description and Composition.—The antlers of the stag are com-
monly called hartshorn (cornu cervi vel cornu cervinum). Though
simply designated cornu (horn) in the London and Edinburgh Phar-
macopoeia, their composition is very different to that of the horns of
the ox or the sheep, and which are sometimes called true horn. The
latter consists principally of coagulated albumen; whereas hartshorn
has the same composition as bone. According to Merat-Guillot it
consists of soluble cartilage (gelatine) 27.0, phosphate of lime 57.5,
carbonate of lime 1.0, water and loss 14.5.

Hartshorn shavings or raspings (rasura vel ramenta cornu cervi)
readily give out their gelatine by boiling in water.

Physiological Effects and Uses.—Decoction of hartshorn is
nutritive, emollient, and demulcent. It does not possess any supe-
riority over calf’s foot or other gelatinous liquids. It has been used
in intestinal and pulmonary irritation. It is generally taken flavoured
with sugar, lemon, or orange juice, and a little wine.

Hartshorn shavings are directed to be used in the manufacture of
Antimonial Powder (see p. 661), but manufacturers generally sub-
stitute bone sawings.

Brewers and others sometimes employ decoction of hartshorn for
fining beer and other liquors. It is preferable to isinglass on account
of its cheapness. The gelatinous matter of bones being less soluble
than than that of antlers, bone sawings or shavings do not answer as a substitute for hartshorn.

**CORNU USTUM, L.** *Pulvis Cornu Cervini Usti, D.; Burnt Harts-horn.* (Burn pieces of horn in an open vessel until they become perfectly white; then powder and prepare them in the same manner as directed with respect to chalk.)—Burnt hartshorn is similar in its composition to bone-ash (see p. 600). It has been used in the same cases, but its employment is now nearly obsolete. Its dose is Ωj. to 5j.

3. **O'VIS ARIES, Linn. L. E. D.—THE SHEEP.**

*(Sevum, L.—Fat, E.—Adeps Ovillus, D.)*

**History.**—The sheep is one of the anciently known animals. It is mentioned by Moses\(^1\), by Herodotus\(^2\), Aristotle, and other ancient writers.

**Zoology.** Gen. Char.—Incisors \(\frac{3}{3}\), canines \(\frac{2}{2}\), molars \(\frac{3}{3} - \frac{3}{3} = 32\). Horns common to both sexes, sometimes wanting in the female, thick, angular, wrinkled transversely, pale coloured, turned laterally in a spiral form. Ears small. Legs slender. Hair of two kinds. Tail more or less short. Two mammae.

Sp. Char. [O. Musimon.]—Horns very strong, arched backwards, and curved downwards, and towards the point. General colour fawn, more or less brown, white on the face and legs, and under the belly; a darker streak on the dorsal line, on the flanks, and often black about the neck.

The immense number of races of this animal in cultivation are

---

1. *Genesis* iv. 2.
well known; and it is now difficult, perhaps impossible, to determine its native condition. Modern zoologists, however, ascribe our domesticated sheep to *Ovis Ammon*, called the *Argali* of Siberia, or to *Ovis Musimon*, termed the *Mouflon* or *Muflon* of Sardinia.

**Hab.**—Domesticated everywhere.

**Description.**—Mutton suet (sevum; sevum ovillum; adeps ovillus) is the fat from the neighbourhood of the kidneys of the animals. It is prepared (sevum preparatum) by melting it over a slow fire, and straining through linen or flannel in order to separate the membranous portions.

**Composition.**—The *ultimate* analysis of mutton suet has been made by Chevreul and by Bérard. The first of these chemists also ascertained its *proximate* composition.

<table>
<thead>
<tr>
<th>Ultimate Analyses.</th>
<th>Proximate Analysis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon ..................</td>
<td>78.996</td>
</tr>
<tr>
<td>Hydrogen .................</td>
<td>11.700</td>
</tr>
<tr>
<td>Oxygen ..................</td>
<td>9.304</td>
</tr>
<tr>
<td>Mutton Suet .............</td>
<td>100.000</td>
</tr>
</tbody>
</table>

**Physiological Effects and Uses.**—Like other fatty bodies, mutton suet is nutritious, but difficult of digestion. Its local effects are emollient and demulcent. In medicine it is used as a basis for ointments, cerates, and some plasters; being preferred, in some cases, to hog's lard, on account of its greater consistence.

4. *Bos Taurus*, Linnæus.—THE OX.

**(Lac.)**

**History.**—An animal very anciently known and highly valued. It is repeatedly mentioned by Moses.

**Zoology.** **Gen. Char.**—Incisors ½, canines ½—¾, molars ½—¾ = 32. Body large. Members strong. Head large; forehead straight; muzzle square. Eyes large. Ears generally funnel-shaped. A fold of the skin, or dewlap on the under side of the neck. Four mammae; tail long, tufted; horns simple, conical, round, with different inflections, but often directed laterally, and the points raised.

**Sp. Char.**—Horns round, lateral arched, with the point turned outwards. Face flat, or a little concave. Occipital crest in the same line as the base of the horns. Mammae disposed in a square form. Hair fawn-coloured, brown or black, not sensibly longer at the anterior than the posterior parts. About seven feet long.

---

Mammary glands two, placed close together, and constituting the udder. Each gland consists of a number of lobes, made up of yellowish or reddish soft granules, which consist of very fine blood-vessels, nerves, and the commencement of the milk or lactiferous ducts (ductus galactophori) which unite to form 8 or ten principal ducts, which open into the large duct, or duct of the teat. This tube is conical, and has a number of folds on its internal surface.

Hab. — Domesticated everywhere.

Description. — Milk (lac), or, to be more precise in our description, cow's milk (lac vaccinum), is an opake, white, emulsiive liquid, with a bland sweetish taste, a faint peculiar odour, and a sp. gr. of about 1·030: the latter property is subject to considerable variation. When recently drawn from the animal it is slightly alkaline. Subjected to a microscopical examination, milk is observed to consist of myriads of globular particles floating in a serous liquid. These globules are exceedingly minute: according to Raspail the diameter of the largest does not exceed in size the 0·0003937 (about 1-2500th of an inch). They instantly disappear by solution on the addition of a drop of caustic alkali. Both Donné and Sir A. Cooper have separated the globules by repeated filtration: the filtered liquid was transparent. The milk globules consist essentially of butter. Donné denies that they contain any caseum, since they are soluble both in alcohol and ether, which do not dissolve caseum. Being specifically lighter than the liquor in which they are suspended, they readily separate by standing. They, therefore, rise to the surface, carrying with them some caseum, and retaining some of the serum; thus forming what is called cream. The milk from which the cream is separated is termed skimmed milk.

Cream (cremor lactis; flos lactis) has a variable sp. gr. The average, perhaps, is 1·0244. The upper stratum of cream is richest in butter, the lowest in caseum. By agitation, as in the process termed churning, the fatty globules unite to form butter (butyrum); the residue, called butter-milk (lac butyratum), consists of caseum, serum, and a little butter.

Skimmed milk, like cream, has a variable sp. gr.; perhaps the ave-

---

1 Chim. Organ.
3 On the Anatomy of the Breast. 1840.
rage may be taken at 1.0348. If left to itself, it readily acquires acid properties, while white coagula, commonly termed curds, separate from it. If an acid or rennet (an infusion of the fourth stomach of the calf) be added to it, this change is immediately effected. The curd separated by rennet is called caseum. But after rennet has ceased to produce any more coagula, acetic acid will cause a further quantity to be formed. The curd thus separated by the acid is termed zieger or serai. The whey (serum lactis) left after the separation of the caseum and serai, yields, on evaporation, sugar of milk, one or more nitrogenous substances, lactic acid, and some salts.

COMPOSITION.—Milk has been the subject of repeated chemical investigation. The recent analysis of several kinds of milk, published by MM. O. Henry and Chevallier, has been already stated (see p. 57).

The following table shews the composition of several domestic preparations of milk:

|--------------|------------|------------|------------|-----------|-----------------|----------------|------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 1. Caseum or Casein; Albumen of Milk; Lactalbumen.—An albuminous substance distinguished from the albumen of the egg and of blood by its not coagulating when heated, and by the products of its spontaneous decomposition. When dried it is yellowish and transparent, like gum: it is odourless, and has a very slight taste. It is soluble in water. If its solution be boiled in contact with the air it becomes covered with a white pellicle insoluble in water. The acids unite to form with it, when they are in excess, insoluble compounds. Various salts (as sulphate of copper, bichloride of mercury, nitrate of silver, bichloride of tin, &c.) form insoluble compounds with it. Its composition has been already stated (see p. 53).

2. Butter.—This well-known substance consists of three fatty bodies, stearine, elaine or oleine, and butyrine. The latter substance is characterised by yielding, by saponification, three volatile, odorous, fatty acids, viz. butyric, capric, and caproic acids. A small quantity of these acids exists in ordinary butter, especially when it has been exposed to the air, and gives butter its peculiar odour. 

3. Sugar of Milk; Lactin; Saccholactin.—Obtained from whey by evaporation. As used in commerce it occurs in cylindrical masses, in the axis of which is the cord which serves as the nucleus for the crystals. It is extensively made in Switzerland. M. Hess has shown that, under certain conditions, caseum is susceptible of fermentation, as was before inferred from the fact that the Tartars prepare a vinous liquid, called Kowmiss, from mares' milk. It is gritty under the teeth, and is very slightly soluble in alcohol. It is much less sweet, and less
soluble in water, than common sugar. By the action of nitric acid it yields, like gum (see p. 1583), saccholactic or mucic acid; so that it forms, as it were, a connecting link between sugar and gum. The composition of it, according to Prout, has been already (see p. 47) stated. The formula of crystallized sugar of milk is $\text{C}_2\text{H}_9\text{O}_{19} + 5 \text{aq}$.

4. Lactic Acid.—This, though stated by Berzelius to be a constituent of milk, is probably a product of its decomposition.

5. Salts.—Some of these are soluble in alcohol, as the lactates of potash (principally), soda, ammonia, lime, and magnesia; others are soluble in water, but not in alcohol, as sulphate of potash and the phosphate of potash and soda; lastly, the salts insoluble in water are the phosphates of lime, magnesia, and iron. The latter are held in solution in milk by the caseum principally. Berzelius says by the lactic acid also.

Characteristics of Good Milk.—The changes produced in the quality of the milk by diseased conditions of the cows has recently attracted considerable attention in Paris, owing to the prevalence of a malady called the cocote, among the cows in that capital. The following are the essential morbid changes which have been recognised in milk:—want of homogeneousness, imperfect mobility or liquidity, capability of becoming thick or viscid on the addition of ammonia, and presenting, when examined by the microscope, certain globules (agglutinated, tuberculated, or mulberry-like, mucous or pus globules) not found in healthy milk. Hence, then, good milk should be quite liquid and homogeneous; not viscid; and should contain only spherical transparent globules, soluble in alkalis and ether; should not become thick when mixed with ammonia; and should form a flocculent precipitate with acetic acid, but not be coagulated by heat. The relative quantity of cream afforded by milk is estimated by a graduated glass tube, called a lactometer.

I have repeatedly submitted the milk supplied to me by a respectable dealer in this metropolis, to examination by the lactometer, but the results have been most unsatisfactory, as the quantity of cream which I procured varied from 5 to 23 per cent. by measure. I have usually found the afternoon's milk to yield less cream than the milk supplied me in the morning. On one occasion I found 11.5 per cent. of cream in the morning milk, but only 5 per cent. in the afternoon milk.

Physiological Effects.—The dietetical properties of milk have been already considered (see p. 57). As a medicinal agent it is regarded as a demulcent and emollient.

Uses.—The dietetical uses of milk have been already noticed (see p. 77).

As a demulcent milk is an exceedingly valuable substance in irritation of the pulmonary and digestive organs. It is an excellent sheathing agent in poisoning by caustic and acid substances, and in some of these cases it acts as a chemical antidote; for example in poisoning by bichloride of mercury, sulphate of copper, bichloride of tin, the mineral acids, &c. Milk is further employed on account of its demulcent qualities in the preparation of the bread and milk.

1 See Journ. de Pharm. vol. xxv. p. 301-318.

poultice, which requires to be frequently renewed on account of the facility with which it undergoes decomposition, and acquires acrid qualities.

Milk is a constituent of the *Mistura Scammonii, E.* (see p. 1270). Whey is an excellent diluent and nutritive. *Wine whey (serum lactis vinosum)* taken warm, and combined with a sudorific regimen, acts powerfully on the skin, and is a valuable domestic remedy in slight colds and febrile disorders. I have already referred to the uses of *cream of tartar whey* (see p. 527), *alum whey* (see p. 619), and *tamarind whey* (see p. 1597).

1. **LACTIC ACID.** $\text{C}_6\text{H}_5\text{O}_5 + \text{H}_2\text{O}$. This acid has been introduced into medicine by Magendie. As it is one of the constituents of the gastric juice he proposed its use in dyspepsia, and as it is a ready solvent of phosphate of lime he suggested its employment in phosphatic deposits in the urine. An Italian physician has more recently recommended it in gout, in consequence of its being a special solvent of the phosphate of lime. It has been exhibited in the form of lozenges, or in solution in water flavoured with sugar.

2. **OX BILE** (*Fel Bovinum seu Tauri*). Formerly extract of ox bile (*fel tauri inspissatum*) was employed in medicine as a tonic. It consists of biliary matter, mucus, alimentary extract, chloride of sodium, lactate and phosphate of soda, and phosphate of lime. The dose of it is a few grains in the form of pills.

**ORDER III.—PACHYDERMATA, Cuv.—THE PACHYDERMS.**

**Essential Characters.**—Three kinds of teeth. Four extremities, with the toes variable in number, and furnished with strong nails or hoofs. No clavicles. Organs of digestion not disposed for ruminating.

**SUS SCRO'FA, Linn. L. E. D.—THE HOG.**

(Adeps preparatus, L.—Fat, E.—Adeps ovillus, D.)

**History.**—The hog is an animal very anciently known. By the Levitical law the Jews were forbidden to eat its flesh; on account of either the filthy habits of the animal, or its supposed tendency to engender skin and other diseases, more especially leprosy. The Mahometans are also interdicted from eating it.

**Zoology. Gen. Char.**—Incisors, $\frac{3}{2}$ or $\frac{4}{2}$; canines, $\frac{1}{1}$; molars, $\frac{5}{5} - \frac{7}{7}; = 42$ or 44. Canines bent upwards and laterally; molars tuberculous; lower incisors bent forwards. Four toes on all the feet, the two middle ones only touching the ground, armed with strong hoofs. Nose elongated, cartilaginous. Body covered with bristles. Twelve teats.

**Sp. Char.**—Tusks strong, triangular, directed laterally. No protuberance under the eyes. Colour blackish-gray in the wild animal, but varying much in the domesticated races.

---

3. Levit. xl. 7.
The varieties of this animal are almost innumerable. They are most con-
vieniently reduced to the following:—

a. *S. Scrofa ferus*. The wild hog, or wild boar.

b. *S. Scrofa domesticus*. The domesticated hog, which varies in its form and
colour.

c. *S. Scrofa pedibus monungulis*. The hog with solid and undivided hoofs.

This variety was noticed by Aristotle and Pliny.

Hab.—The temperate parts of Europe and Asia; the northern parts
of Africa; America; the Islands of the South Sea, &c.

Preparation.—The fat of the animal is employed in medicine. That
about the loins being firmer and denser than the fat of the other
parts of the animal, is selected for medicinal use. In order to sepa-
rate it from the membranes in which it is contained, it is melted over
a slow fire, then strained through flannel or linen, and poured while
liquid into a bladder, where it solidifies by cooling (*adeps preparatus*).
Occasionally salt is added to preserve it; but unsalted lard should
be employed for medical purposes. By melting in boiling water, lard
may be deprived of any salt which may have been mixed with it.
While solidifying, lard should be kept stirred, to prevent the separation
of stearine and elaine.

Properties.—Hog’s lard (*adeps suillus vel porci*) or *axungeo*
(*axungia*, so called from the use anciently made of it, namely, greas-
ing the axle of a wheel,—*unguenti axem*) is at ordinary temperatures
a white or yellowish white solid. Its melting point varies from
78.5° F. to 87.5° F. In the liquid state it should be perfectly clear and
transparent; but if be intermixed with water it has a whitish or
milky appearance. It should have little or no taste or odour. By
exposure to the air, however, it acquires an unpleasant odour and
acid properties. In this state it is said to be *rancid*. This condi-
tion is induced by the oxygen of the air, part of which is absorbed,
while a small portion of carbonic acid is evolved. As stearine does
not become rancid in the air, while elaine does, the rancidity of lard
is referred to the latter constituent. But it has been found that the
purer the elaine the less readily does this change occur; whence it is
assumed that some foreign substance in the elaine is the primary
cause of rancidity, either by undergoing decomposition or by acting
on the elaine.

Composition.—The *ultimate* composition of lard was ascertained
by Chevreul*, as well as by Saussure and Berard. The first of these
chemists also made a *proximate* analysis of rancid lard; and Bracon-
not determined the composition of fresh lard.

<table>
<thead>
<tr>
<th>Ultimate Analysis.</th>
<th>Chevreul.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>79.098</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>11.146</td>
</tr>
<tr>
<td>Oxygen</td>
<td>9.756</td>
</tr>
</tbody>
</table>

| Lard...........          | 100.000   |

<table>
<thead>
<tr>
<th>Proximate Analysis of Fresh Lard.</th>
<th>Braconnot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearine</td>
<td>2</td>
</tr>
<tr>
<td>Margarine</td>
<td>$38</td>
</tr>
<tr>
<td>Elaine or Oleine</td>
<td>62</td>
</tr>
<tr>
<td>Lard...........................</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proximate Analysis of Rancid Lard.</th>
<th>Chevreul.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearine and Elaine</td>
<td></td>
</tr>
<tr>
<td>Volatile non-acid matter having a rancid odour.</td>
<td></td>
</tr>
<tr>
<td>Caproic (?) acid</td>
<td></td>
</tr>
<tr>
<td>Another volatile acid</td>
<td></td>
</tr>
<tr>
<td>Oleic, margaric, and perhaps stearic acids.</td>
<td></td>
</tr>
<tr>
<td>Yellow colouring matter.</td>
<td></td>
</tr>
<tr>
<td>Non-acid, non-volatile matter, soluble in water.</td>
<td></td>
</tr>
</tbody>
</table>

| Rancid lard. |

* Gmelin, Handb. d. Chem. ii.
Physiological Effects.—Lard, like other animal fats, is nutritious, but very difficult of digestion. Its topical effects are demulcent and emollient. Both the flesh and fat of the hog have been long supposed to dispose to cutaneous disease; but it is no easy matter either to prove or disprove this opinion.

Uses.—In medicine lard is principally employed as a basis for unguents. It has been used, by friction, as an emollient; but the practice is now obsolete. In pauper establishments it is sometimes employed, as a substitute for spermaceti ointment, to dress blisters; but the salt which lard sometimes contains, as well as the facility with which this fat becomes rancid, are objections to its use. I have seen it occasion considerable irritation.

ORDER IV.—RODENTIA, Cuvier.—THE RODENTS.

Glires, Linnaeus.

Essential Characters.—Two large incisors in each jaw, separated from the molars by a vacant space. No canine teeth. Molars with flat crowns or blunt tubercles. Extremities, the posterior longest, terminated by ungual toes, the number varying according to the species. Mammæ variable in number. Stomach empty. Intestines very long.

CAS'TOR FI'BER, Linna. L. E. D.—THE BEAVER.

(Concretum in folliculis preputii repertum, L.—A peculiar secretion from the preputial follicles, E.—Castoreum, D.)

History.—Castoreum was employed in medicine by Hippocrates, who considered it to possess the power of acting on the uterus. It was an ancient opinion that the castor sacs were testicles, and that when closely pursued by the hunter, the animal tore them off, leaving them behind as a ransom. Hence, it was said, arose the name of the animal, a castrando. This absurd notion seems to have been long ago disbelieved; for Pliny tells us that Sextius derided it, and said it was impossible the animal could bite them off, since they were fastened to the spine. Thus was one error confuted by another; the truth being, the testicles are so placed in the inguinal region, on the external and later part of the os pubis, that they are not discernible until the skin be removed. Moreover, female beavers also have castor sacs.

Zoology. Gen. Char.—Incisors ½, canines 2—4, molars 4—4 = 20. Molars composed of flat crowns, with smuous and complicated ridges of enamel. Five toes on each foot, the anterior short and close, the posterior longer and palmated. Tail broad, thick, flattened horizontally, of an oval form, naked, and covered with scales (Stark).

Sp. Char.—Fur consisting of two sorts of hair, one coarse and brownish, the other downy, more or less grey. About two feet long. The ordinary colour of the animal is brown; but yellow, black, spotted, and white beavers, are met with. The two latter are very
rare. Richardson has never seen either of them, though he has met with black beavers which were kept as curiosities. The tail is remarkable for its scaly appearance. Its great breadth (oftentimes 5 inches) depends, not on the width of the caudal vertebrae, but on numerous strong tendons inserted into these vertebrae. Incisor teeth smooth, orange-coloured anteriorly, white posteriorly.

There is some reason for supposing that the European and American beavers are distinct species. The former are burrowers, the latter are for the most part builders.

Anatomy of the Castor Sacs.—It has been before stated, that both male and female beavers are furnished with castor sacs: hence it will be convenient to consider them in the two sexes separately.

1. OF THE MALE CASTOR SAC.—If the animal be placed on his back, we observe, near the tail, a hollow (called by some a cloaca) inclosed by a large wrinkled, somewhat hairy, cutaneous protuberance, which according to Perrault is easily contracted and dilated, not by a sphincter, as the anus, but simply like a slit. In this hollow the anus, the prepuce, and the oil sacs open.

When the skin of the abdomen is removed, four eminences, covered by their appropriate muscles, are brought into view. They are placed between the pubic arch and the so-called cloaca. The two nearest the pubes are the castor sacs, while those next the cloaca are the oil sacs. Between the two castor sacs, in the male, lies the penis with its bone (os penis); it is lodged in a long preputial canal, which terminates in the cloaca, and has some analogy to a vagina; so that there is some difficulty to determine, until the skin be removed, whether the individual be male or female.

The penis points towards the tail, not towards the navel, as in the dog. Its surface is covered with longitudinal wrinkles and pits: in each of the latter is found a dark-coloured warty-like body. The testicles, vasa deferentia, and vesicula seminalis, present nothing remarkable. There is no scrotum. Like most other Rodentia, the beaver has vesicula accessoriae, or blind ducts, which open into the urethra near its commencement. Just at the point where the urethra joins the penis are observed Cowper’s glands. The castor sacs open by a common aperture into the preputial canal. This aperture is about one inch in width, and is placed opposite the extremity of the glans penis in the relaxed condition of the organ, and about one inch from the orifice of the prepuce. Between this common orifice of the castor sacs and the glans penis is a semilunar fold. There is also a second, similar, but thicker, fold covering the rectum. The castor sacs are pyriform and compressed. They communicate with each other at their cervical portion; but their fundi

---

*a Fauna Boreali-Americana.
*b See some remarks on the distinctions between the burrowing and building beavers, in Jamieson’s Journal, vol. xxviii. p. 68.
*c Mem. for a Nat. Hist. of Animals, p. 85, Lond. 1701.
Sexual organs of a male beaver.

- a. Under portion of the tail.
- b. Rectum.
- c. Anus.
- d, e, f, g. Openings of the anal glands.
- h. Common opening of the two castor sacs.
- i. Glans penis.
- j. Magnified view of a portion of the epidermis of the glans.
- k. Penis.
- l. Cowper's glands.
- m, n. Compressor muscles of the castor sacs and anal glands.
- o. Urethra cut off.
- p, q. Lobes of the prostate gland.
- r. Testicle.
- s, t. Spermatic vessels.
- w, x. Viscerlæ accessorlæ.
- y. Right vas deferens.
- z. Spermatic cord.

Castor and oil sacs, with their appropriate muscles.

- a. Spermatic vessels.
- b. Anus.
- d, e. Openings of the anal glands.
- f. Castor sacs.
- g, h. Compressor muscles of the castor sacs and anal glands.
- k. Penis.
- m, n. Cowper's glands.
- o. Urethra cut off.
- p. Lobes of the prostate gland.
- r. Testicle.

The figures refer to the probes passing from the caput gallinaginis to the vesiculae seminales and vasa deferentia.
diverge outwards and towards the pubes. Each castor sac is composed of an external or cellular coat which incloses muscular fibres. The latter are a continuation of the panniculus carnosus: their function appears to be to compress the sac. Within these fibres lies a very vascular coat, which covers the scaly or glandular coat, and sends processes in between the convolutions of the latter. The scaly or glandular coat forms numerous folds or convolutions, which are largest and most numerous in the fundus of the sac. Externally, it is shining, silvery, and iridescent. Internally, it presents numerous, small, lanceolate, oblong, or semilunar scales, which are mostly toothed at their margin, and envelope each a brown body, supposed to be a gland, and which is lodged in a small cavity. The inner surface of the castor sacs is lined with epithelium (a continuation of the epithelium of the prepuce), which invests the glands and scales of the scaly or glandular coat. In the cavity of the castor sac is found the castoreum, which, when recent, is thin, fluid, highly odorous, yellow or orange coloured, becoming deeper by exposure to the air. The quantity of this secretion is liable to great variation. The oil sacs are conglomerate glands, placed one on each side between the castor sac and anus: their ducts terminate in the cloaca. The secretion of these sacs is a fatty matter, having the consistency of syrup or honey, a peculiar odour, and a yellowish colour. It was formerly used in medicine under the name of pinguendo seu axungia castoris.

![Fig. 364.](image)

Fig. 364.

**Castor and oil sacs laid open.**

**Relative position of the castor and oil sacs and pelvis.**

The relative position of the castor and oil sacs, with respect to the pelvis of the animals, is shewn in fig. 364, taken from Perrault.

---

* For further details respecting the structure of the castor sacs consult Brandt and Ratzeburg, *Med. Zool.* i.

* Op. supra cit.*
2. Of the Female Castor Sac.—We are less perfectly acquainted with the anatomy of the female than of the male beaver. Indeed, I am acquainted with three dissections only of the former; viz. one by Gottwaldt, a second by Hegse, and a third by Moritimer. The subjoined description and figure is from the memoir of the last-mentioned authority.

He says the animal had two ovaria, and an uterus dividing into two horns (uterus bicornis) as in the bitch. The bladder lay exactly over the body of the uterus. The meatus urinarius ran upon the vagina above two inches in length. Just below the os pubis, on each side of the vagina, above the meatus urinarius (supposing the animal laid on her back), a pair of pyriform bags were found, about 1½ inches long, and 1 inch broad, diverging at their fundi or narrow extremities, which were canals communicating with the adjoining glands. The membranes which formed these bags were tough, wrinkled, and furrowed, of a livid dirty colour. They were hollow, and capable of containing about an ounce of water. Upon opening them a small quantity of dark brown liquor, like tar, was found, having an odour like castoreum, and in addition a smell of ammonia. It is probable that the emptiness of the sacs, and the unusual quality of their contents, arose from the youth of the animal. About an inch lower, on each side of the vagina, were a pair of glands (oil sacs), each about 1 inch long, and ½ inch broad. Their form was oblong but irregular, and having several protuberances externally; their colour was pale flesh, like the pancreas. They seemed to communicate with the castor sacs, the sac and gland on each side opening externally by one common orifice, around which were long black hairs.

**Hab.**—North America, from 67° or 68° to about 33° north latitude; Europe, from 67° to 36° north latitude, but becoming very scarce. It appears to have been indigenous.

**Capture of the Beaver.**—The beavers are caught in various ways; sometimes in traps, sometimes in nets. But the usual method is to break up the beaver houses when the animals retreat to their bank holes, where they are easily taken.

**Commerce.**—Castoreum is imported from North America by the Hudson’s Bay Company. The greater part of that brought over is sold for exportation. In 1839 duty (6d. per lb.) was paid on 801 lbs.
Description.—Two kinds of castor (castoreum) have long been known, viz. Russian and American. The latter, however, is the only one now met with in English commerce.

1. American Castor (Castoreum Americanum.) — It usually consists of two isolated sacs, frequently wrinkled, and which are connected so as to form two parts, like a purse, or like two testicles connected by the spermatic cords. The size of the sacs is liable to considerable variation. They are elongated and pyriform. The penis or the oil sacs, or both, are sometimes attached to them. The colour and other external characters are variable. In December 1834, I examined between three and four thousand pounds of castoreum, which was offered for sale by the Hudson's Bay Company. A considerable quantity of it was covered externally with a bluish white mouldiness, while the remainder was of a brownish colour. The brown colour, however, varies considerably; sometimes being dark, in some cases yellowish, or even reddish. Some castor sacs are found nearly empty, and present, in their dried state, a very fibrous character; these are of inferior quality. Others are found gorged with unctuous matter, and, when quite dry, break with a resinous character, presenting no fibres until they have been macerated in spirit of wine. In many well-filled sacs the castoreum is quite soft.

In English commerce, two varieties of American castoreum are made: one called the Hudson's Bay, the other the Canadian. Both are imported by the Hudson's Bay Company. The Hudson's Bay castoreum is usually considered the finest variety. The specimens of it which I examined at the house of the Company, in December, 1834, came from York Fort and Moose River. The finest samples were superior to any of the Canadian kind, though the average quality was much the same.

2. Russian Castor, (Castoreum Rossicum). — This is exceedingly scarce. When met with it fetches a very high price. I have paid for a museum sample £2 per oz., while American castor fetched only twenty shillings per lb. There are at least three kinds of castor sold as Russian. Chalky Russian castor occurs in smaller and more rounded sacs than the American kind. A pair of sacs in my museum weighs 557 grains. The specimens which I have seen had neither penis nor oil sacs attached. The colour is ash-brown. Its odour is peculiar, empyreumatic, and readily distinguishable from that of the American kind. Under the teeth it breaks down like starch, has at first little taste, then becomes bitter and aromatic. It is readily distinguished from all other kinds by dropping it into diluted hydrochloric acid, when it effervescies like a lump of marble. I have seen another kind of castor from Russia which may be termed Resinous Russian Castor. The sacs were large, well filled with resin, did not effervesc with hydrochloric acid, and had an odour very similar to that of American castor. The Russian castor de-

* See Lond. Med. Gaz. vol. xvii. p. 296, fig. 41.
scribed by Guibourt \(^x\) appears to have been subjected to some preparation \(^y\).

**Composition.**—Castoreum has been subjected to chemical analysis by several chemists. Those whose results deserve especial reference are Bonn \(^z\) and Brandes \(^a\).

### Brandes's Analyses.

<table>
<thead>
<tr>
<th></th>
<th>Volatile oil</th>
<th>Resin</th>
<th>Castorin</th>
<th>Cholesterol</th>
<th>Castorine</th>
<th>Albumen</th>
<th>Gelatine</th>
<th>Osmazome</th>
<th>Carbonate of lime</th>
<th>Other salts</th>
<th>Matter soluble in alcohol</th>
<th>Carbonate of lime</th>
<th>Other salts</th>
<th>Membrane</th>
<th>Moisture and loss</th>
<th>Canadian Castor</th>
<th>Russian Castor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile oil</td>
<td>2.0</td>
<td></td>
<td></td>
<td>58.6</td>
<td></td>
<td>9.30</td>
<td>100.0</td>
</tr>
<tr>
<td>Resin</td>
<td>13.85</td>
<td>0.33</td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Castorin</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Albumen</td>
<td></td>
<td>0.05</td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Osmazome</td>
<td></td>
<td>0.20</td>
<td></td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>Carbonate of lime</td>
<td>33.62</td>
<td>2.88</td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Other salts</td>
<td></td>
<td>2.30</td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Mucus</td>
<td></td>
<td>2.30</td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Animal matter like horn</td>
<td>2.30</td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Membrane</td>
<td></td>
<td>20.00</td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Moisture and loss</td>
<td>22.83</td>
<td></td>
<td></td>
<td>11.7</td>
<td></td>
</tr>
</tbody>
</table>

These analyses do not agree with my experiments and observations. The quantity of carbonate of lime assigned to Canadian castor is much too large. By incinerating 60 grains of American castor in a platinum crucible I found only 1.2 grs. of ashes, which if the whole were lime would be equal to little more than 3.57 per cent. of chalk.

1. **Volatile Oil of Castoreum.**—This is obtained by distilling the same water several times with fresh portions of castor. It is pale yellow, and has the odour of castor, with an acrid bitter taste. Bonn says he obtained 34 per cent. of oil, but there must be some error in this statement.

2. **Castorine; Castoreum Camphor, Gmelin.**—A crystalline, fatty, non-saponifiable substance. It is fusible, and in the liquid state floats on water. When pure it is quite white. It is soluble in ether and boiling alcohol. By long ebullition with nitric acid, it is converted into a yellow crystallizable acid, called castoric acid. The super-castorate of ammonia is crystallizable, and forms white precipitates with the salts of silver, lead, and protoxide of iron, and green precipitate with the salts of copper. Castorine is obtained by boiling castor in alcohol; the castorine deposits when the liquor cools. Scarcely any can be got from American castor.

3. **Resin.**—This is dark brown, has an acrid and bitter taste, and a slight odour of castor. It is insoluble in pure ether, but dissolves readily in alcohol. Water precipitates it from its alcoholic solution.

### Physiological Effects.

Castor is usually denominated a stimulant and antispasmodic. Since the time of Hippocrates it has been regarded as endowed with a specific influence over the uterus.

In 1768, Mr. Alexander \(^b\) took it in various doses to the extent of two drachms; and the only effect he experienced from it was disagreeable eructations. In 1824, Jörg and his pupils, males and females \(^c\), submitted themselves to its influence; but the only effects were a slight uneasiness in the epigastric region, and disagreeable eructations having the odour of castor, and which were not allayed by breakfast or dinner, and only ceased at night when sleep came on.

These facts seem to shew that castoreum possesses but little me-

---

\(^y\) *See Lond. Med. Gaz.* vol. xvii. p. 297, fig. 42.
\(^z\) *Quoted by Gmelin, Handb. d. Chem.* ii. 1449.
\(^a\) *Ibid.*
\(^b\) *Experiment. Essays,* p. 83.
dicinal power: yet Dr. Cullen declares that on many occasions it is certainly a very powerful antispasmodic. Its odorous particles become absorbed, for they have been recognized in the urine by their smell.

Uses.—Castoreum was formerly in great repute in those affections of the nervous system denominated spasmodic, such as hysteria, epilepsy, and catalepsy, more especially when these diseases occurred in females, and were attended with uterine disorder. In those kinds of fever called nervous, this medicine has also been recommended. In the northern parts of Europe it is used for its supposed uterine influence, as to promote the lochial discharge, and the expulsion of retained placenta. It is, however, little employed here, partly, perhaps, in consequence of its disagreeable taste and smell, its variable quality, and its high price; but, for the most part, I believe, because practitioners consider it an almost inert remedy.

Administration.—It is best given in substance, either reduced to powder or in the form of pills. The dose should be at least 3ij.

1. Tinctura Castorei, L. E.; Tinctura Castorei Rossici, D. Tincture of Castor. (Castor [Russian, D.], bruised, 3ijss. [3ij, D.]; Rectified Spirit, Oij. [Proof Spirit, Oij. wine-measure, D.]) Macerate for fourteen [seven, D.] days, and filter. “This tincture may be prepared either by digestion or percolation, like the tincture of Cassia.” [p. 1149], E.—Rectified spirit, used by the London and Edinburgh Colleges, is a better solvent for castor than proof spirit, employed by the Dublin College. The quantity of castor used in all the processes is much too small. A fluidounce of the Edinburgh tincture contains three-fourths of a drachm, while the London preparation contains only half a drachm; so that to give a medium dose of castor [3ij], it would be necessary to administer 15ij. of the tincture (rectified spirit) of the London Pharmacopoeia! Dr. Paris says the dose of this tincture is mxx. to f5ij.

2. Tinctura Castorei Ammoniata, E.; Ammoniated Tincture of Castor. (Castor, bruised, 3iss. ; Asafoetida, in small fragments, 5x.; Spirit of Ammonia, Oij. Digest for seven days in a well-closed vessel; strain and express strongly the residuum; and filter the liquor. This tincture cannot be so conveniently prepared by the method of percolation, E.)—Stimulant and antispasmodic. Spirit of Ammonia is a good solvent for both castor and asafoetida.—Dose f5ss. to f5ij.
<table>
<thead>
<tr>
<th>Page</th>
<th>Page</th>
<th>INDEX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912</td>
<td>Hydrocyonate of silver</td>
<td>Hydrocyanic acid</td>
</tr>
<tr>
<td>1551</td>
<td>180, 386</td>
<td>251</td>
</tr>
<tr>
<td>1041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>772</td>
<td></td>
<td></td>
</tr>
<tr>
<td>774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497</td>
<td></td>
<td></td>
</tr>
<tr>
<td>578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>718</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1916

INDEX.
P.ierc

Musa paradisiaca
sapientum
Muscovada su^ar
Mushroom, common
siiTsr
tribe
Mushrooms
Musk
mixture
artificial
426,
Must(mustam)
Mustard
black
ptmltice
white
Mvcodornia cerevisia;
Mvlabris cichorii
Fuwclini
Myrica cerifera
Myricine
Myri^tica mnschata
otiicinalis
MyristicaccaM \ ri.stira- ailt-ps
Myristicin
Alyroiiic acid
Myrosyne
Myrosponnine
Mynixiliiie
MyrosiJtTmum jHTiiifiTum
toluifeniiii
Myroxylon peniitVrum —
toluifcruni
Myrrh
Myrrlia turcica
M)rtacia;
Myrtlowax
Myrtus pinienta

loui
loio
S'J7
887
8h5
885
68
1878
1883
18S0
90t
1717
1717
1719
1720
IKM
1849
1835
1>*5'>
1K57
Il(>5
Il^>5
1 104
1 168
1163
1718
1718
1561
1561
1558
156'i
1558
1562
1628
1639
1510
1856
1518

TaffC
Nitrate of ammonia
326
camphor
1152
lead
805
potash
506
silver
688
Nitrates
289
Nitre
506
beds
508
drops
380
fixed
515
swef-t spirit of
380
w alls
508
Nitric acid
285
oxide of mercury
. . 733
Nitri^re.«, artificial
508
Nitroireii, protoxide of ... . 283
Nilroirenii protoxyduiu
283
Nitroueni'im
282
Nilromuriatic acid
293

oxide of antimony
f>5S
Nitrous acid
286
ether, apirit of
380
|
oxide
283
Nitrum
550 — 555
tlammans
326
soinivolatile
326
tabulatum, or sal
pruuellc
509
Nopal
1851
Nuniliuusen,
fuminij^ sulphuric acid of
468
Nut, imison
1290
Nuliralls
1079
Nuts, physic
1 133
Nulniei,'8
1166
butter of
1168
Nux barbadensis
11 33
cathartica amcricana 1 133
rnechil
1290
moschata
1166
vomica, strychnos
1290
N.
Nannari
1288
tribe
1289
887
Naiiiur. fjrass oil of
895
Naphtha
393
Darliadocs
423
blaik
422
vitrioli
368 Oak, ajraric of the
1075
common British
—
Narci'ina
1733 — 1736
cork
1083
1078
Naicissus, mlorous
1010
pseudo-narcissus 1010
dyer's
lunj^s
tazetta
1010
885
Narcotic salt
■_ 4j7 Oat, common
Oatmeal
!"■•• ' "^ Ocimum basilicum
905
ics
Narcot
1206
Nart otin, or narcotina
1 733 j
906
mininmm
1206
1492
Nardostachys.istamansi .. 1369
427
555 CEnanthe crocata
Natron carbonicum
1492
349
vitriolatum
542
apiifolia
Natrum cartionicuni
550 [CEnanthic ether
Natural-historical
classifications
Nauclea pambir
Neatsfoot oil
Nephrodium filLxmas
NeroU.oilof
Ner\inia volatilia
Nervines, volatile
Nenino alterantia
Neutral ointment
New Italian doctrine
medical doctrine —
Nicotiana persica
repanda
rustica
tabacum
Nicotianin
Nicotin, or nicotina
Nightshade, black
deadly
tribe
woody
Nihil album
Nitras aiit^nti
potaisje

160
1433
769
890
1691
184
184
176
814
12D
170
1243
1243
1242
1241
1247
1246
1260
1227
1221
1255
816
688
506

Oil of antimony
balm
balsam of Peru
bays
ln'r^amot
bitter almonds
orange
camomile
caraway
cai'damom, volatile
fi.xed
or

Pajre
654
1204
1561
1163
1683
1534
1691
1347
1445
1031

essential
cassia
cebadilla
cedra
cherry-laurel, volatile
cinnamon
leaf
citron
cloves

1031
1I49
958
1683
1543
1143
1144
if)82
1516

copaiba
cubcba
dill
ehler
erifot
fennel, sweet
parlic
pentian
prain
hartshorn
hemlock
hops
juniper
lavender
laurel berries
lemons
lemon x'rass
lettuce, empyreumatic
lime
linseed
mace
male fern
nuirjoram
mu.stard
myrrh, volatile
Nanmr
neroli
nutmejf
nutmegs, expressed. .
onions
orange flower
leaf.

I618
1108
1469
H43
927
1450
985
1278
.348
427
1481
1088
1065
1194
1 163
1680
895

1
|
1
;

1362
583
1703
iifis
892
1320
1718
1630
895
Ifigi
lies
1 168
986
1690
1690

pennyroyal
12(X)
peppermint
1193
pimento
1520
potatoes
1262
roses
1553
rosemary
1201
rue
1645
Oil, animal
sarsaparilla
994
581 !
1
1510
cajeput
•1126
savine
lOOiJ
camphor
i
1152
1865
;
senna
1604
carron
428 I
spearmint
I197
castor
1123spike
1ID3
Chabert's
sUir-anise
1790
348
cod
sweet marjoram
1204
427
com spirit
croton
sweet orange
1689
427
tar
1060
378
Dippel's
teel seeds
1 357
empyreumatic
tobacco
1247
etherial
1316
Florence
orange
1690
1316
thyme
1203
Galli|X)li
1316
1357
Genoa
turpentine
1049
vitriol
403, 408
1703
gin^ilie
378
miseed
1116' vitriol, sweet
1703
volatile
185
cold-drawn
wine
378
Lucca
769
1316
heavy
378
neatsfoot
light
379
of almonds, fixed or ex- 1533
olive
1315
pressed
or
butter
of
antimony.
.
054
allspice
1520
amber
palm
937
1448
426
Uiiise
paper
419


<table>
<thead>
<tr>
<th>INDEX.</th>
<th>1925</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpentine, American or</td>
<td>1043</td>
</tr>
<tr>
<td>Turpentine, African or</td>
<td></td>
</tr>
<tr>
<td>white</td>
<td>1044</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>1044</td>
</tr>
<tr>
<td>Canadian</td>
<td>1046</td>
</tr>
<tr>
<td>China</td>
<td>1049</td>
</tr>
<tr>
<td>common</td>
<td>1044</td>
</tr>
<tr>
<td>larch or Venice</td>
<td>1049</td>
</tr>
<tr>
<td>oil of</td>
<td>1049</td>
</tr>
<tr>
<td>Pistacia</td>
<td>1046</td>
</tr>
<tr>
<td>Turpeth or turbit mineral</td>
<td>772</td>
</tr>
<tr>
<td>Turpethum minerale</td>
<td>772</td>
</tr>
<tr>
<td>Tussilago farfara</td>
<td>1343</td>
</tr>
<tr>
<td>Tutia</td>
<td>1343</td>
</tr>
<tr>
<td>Tutty</td>
<td>1343</td>
</tr>
<tr>
<td>Unguentum</td>
<td>1343</td>
</tr>
<tr>
<td>Undulated ipecacuanha</td>
<td>1439</td>
</tr>
<tr>
<td>U.</td>
<td></td>
</tr>
<tr>
<td>Ulmaceae</td>
<td>1064</td>
</tr>
<tr>
<td>Ulna</td>
<td>1065</td>
</tr>
<tr>
<td>Ulmic acid</td>
<td>1063</td>
</tr>
<tr>
<td>Ulmus campestris</td>
<td>1064</td>
</tr>
<tr>
<td>Ulva</td>
<td>1068</td>
</tr>
<tr>
<td>Ulva latissima</td>
<td>877</td>
</tr>
<tr>
<td>Umbellularia</td>
<td>1069</td>
</tr>
<tr>
<td>Umbellularia californica</td>
<td>1343</td>
</tr>
<tr>
<td>Undulated ipecacuanha</td>
<td>1343</td>
</tr>
<tr>
<td>Unguentum</td>
<td>1343</td>
</tr>
<tr>
<td>acidus nitricus</td>
<td>202</td>
</tr>
<tr>
<td>sulphuricus</td>
<td>474</td>
</tr>
<tr>
<td>aconitina</td>
<td>1812</td>
</tr>
<tr>
<td>aeruginis</td>
<td>783</td>
</tr>
<tr>
<td>aegyptiacum</td>
<td>783</td>
</tr>
<tr>
<td>ammomice</td>
<td>305</td>
</tr>
<tr>
<td>antimonii</td>
<td>680</td>
</tr>
<tr>
<td>antimonii ipecacuanha</td>
<td>1431</td>
</tr>
<tr>
<td>argentati</td>
<td>680</td>
</tr>
<tr>
<td>auranti</td>
<td>680</td>
</tr>
<tr>
<td>belladonnae</td>
<td>1236</td>
</tr>
<tr>
<td>belladonnae</td>
<td>1236</td>
</tr>
<tr>
<td>calaminum</td>
<td>827</td>
</tr>
<tr>
<td>cantharidis</td>
<td>1847</td>
</tr>
<tr>
<td>carbonatis</td>
<td>805</td>
</tr>
<tr>
<td>cera</td>
<td>815</td>
</tr>
<tr>
<td>dafana</td>
<td>1063</td>
</tr>
<tr>
<td>cetacei</td>
<td>1874</td>
</tr>
<tr>
<td>cinerum</td>
<td>768</td>
</tr>
<tr>
<td>cocculi</td>
<td>1791</td>
</tr>
<tr>
<td>collim</td>
<td>1791</td>
</tr>
<tr>
<td>cucrucci</td>
<td>422</td>
</tr>
<tr>
<td>cuprum subacteosum</td>
<td>783</td>
</tr>
<tr>
<td>elemi</td>
<td>1633</td>
</tr>
<tr>
<td>galle composita</td>
<td>1083</td>
</tr>
<tr>
<td>et opii</td>
<td>1083</td>
</tr>
<tr>
<td>gallarum</td>
<td>1683</td>
</tr>
<tr>
<td>hydragryum</td>
<td>723</td>
</tr>
<tr>
<td>anemonie chloridis</td>
<td>735</td>
</tr>
<tr>
<td>himiodum</td>
<td>768</td>
</tr>
<tr>
<td>chloridis</td>
<td>746</td>
</tr>
<tr>
<td>fortress</td>
<td>723</td>
</tr>
<tr>
<td>iodidi</td>
<td>759</td>
</tr>
<tr>
<td>mitius</td>
<td>728</td>
</tr>
<tr>
<td>nitricus</td>
<td>728</td>
</tr>
<tr>
<td>nitricus oxydis</td>
<td>758</td>
</tr>
<tr>
<td>oxydi</td>
<td>758</td>
</tr>
<tr>
<td>infusi cantharis</td>
<td>1618</td>
</tr>
<tr>
<td>jodine</td>
<td>495</td>
</tr>
<tr>
<td>iodiuni</td>
<td>247</td>
</tr>
<tr>
<td>iodini compositum</td>
<td>495</td>
</tr>
<tr>
<td>oxydi hydrargyri</td>
<td>495</td>
</tr>
<tr>
<td>Unguentum plicis liquide</td>
<td>1062</td>
</tr>
<tr>
<td>nigra</td>
<td>1104</td>
</tr>
<tr>
<td>piperis nigri</td>
<td>809</td>
</tr>
<tr>
<td>plumbi acquis</td>
<td>805</td>
</tr>
<tr>
<td>carbonatis compositum</td>
<td>805</td>
</tr>
<tr>
<td>iodidi</td>
<td>802</td>
</tr>
<tr>
<td>potasse hydriodatis</td>
<td>495</td>
</tr>
<tr>
<td>potassii bromidi</td>
<td>499</td>
</tr>
<tr>
<td>potassii iodidi</td>
<td>499</td>
</tr>
<tr>
<td>precipitati albi</td>
<td>758</td>
</tr>
<tr>
<td>resinæ abæae</td>
<td>58</td>
</tr>
<tr>
<td>resinosum</td>
<td>1078</td>
</tr>
<tr>
<td>salde</td>
<td>1078</td>
</tr>
<tr>
<td>sambuci</td>
<td>1443</td>
</tr>
<tr>
<td>saturnine</td>
<td>809</td>
</tr>
<tr>
<td>scrophulariae</td>
<td>1220</td>
</tr>
<tr>
<td>simplex</td>
<td>1857</td>
</tr>
<tr>
<td>sulphuricus</td>
<td>461</td>
</tr>
<tr>
<td>compositum</td>
<td>461</td>
</tr>
<tr>
<td>iodidi</td>
<td>477</td>
</tr>
<tr>
<td>tabaci</td>
<td>1253</td>
</tr>
<tr>
<td>tatarari emacum</td>
<td>820</td>
</tr>
<tr>
<td>tutia</td>
<td>820</td>
</tr>
<tr>
<td>veratri</td>
<td>956</td>
</tr>
<tr>
<td>veratria</td>
<td>1322</td>
</tr>
<tr>
<td>zincii</td>
<td>819</td>
</tr>
<tr>
<td>Urari poison</td>
<td>1312</td>
</tr>
<tr>
<td>Usquebaugh</td>
<td>1448</td>
</tr>
<tr>
<td>Uve passae majores</td>
<td>1603</td>
</tr>
<tr>
<td>Uva Ursi</td>
<td>1335</td>
</tr>
<tr>
<td>Vaccinium vitis idaea</td>
<td>1335</td>
</tr>
<tr>
<td>Valeriana officinalis</td>
<td>1369</td>
</tr>
<tr>
<td>Valeriana officinalis</td>
<td>1369</td>
</tr>
<tr>
<td>Valerianaceae</td>
<td>1369</td>
</tr>
<tr>
<td>Vallesia</td>
<td>1312</td>
</tr>
<tr>
<td>Vanilla</td>
<td>1067</td>
</tr>
<tr>
<td>aromatica</td>
<td>1067</td>
</tr>
<tr>
<td>poudoula</td>
<td>1067</td>
</tr>
<tr>
<td>sativa</td>
<td>1067</td>
</tr>
<tr>
<td>sylvestris</td>
<td>1067</td>
</tr>
<tr>
<td>Vanillaceae</td>
<td>1067</td>
</tr>
<tr>
<td>Vauqueira</td>
<td>805</td>
</tr>
<tr>
<td>Vegetable alkaline</td>
<td>172-480</td>
</tr>
<tr>
<td>mild</td>
<td>515</td>
</tr>
<tr>
<td>ethiops</td>
<td>873</td>
</tr>
<tr>
<td>jelly</td>
<td>49</td>
</tr>
<tr>
<td>juice preserved</td>
<td>49</td>
</tr>
<tr>
<td>sinit</td>
<td>527</td>
</tr>
<tr>
<td>sulphuricus</td>
<td>1067</td>
</tr>
<tr>
<td>tar</td>
<td>1069</td>
</tr>
<tr>
<td>wax</td>
<td>1856</td>
</tr>
<tr>
<td>Velonia</td>
<td>1065</td>
</tr>
<tr>
<td>Venice</td>
<td>1063</td>
</tr>
<tr>
<td>Veratrem (veratrum)</td>
<td>1063</td>
</tr>
<tr>
<td>Veratrum album</td>
<td>951</td>
</tr>
<tr>
<td>sabadilla</td>
<td>824</td>
</tr>
<tr>
<td>Verbascum thapsus</td>
<td>1218</td>
</tr>
<tr>
<td>Verdigris</td>
<td>783</td>
</tr>
<tr>
<td>prepared</td>
<td>783</td>
</tr>
<tr>
<td>distilled or crystallized</td>
<td>784</td>
</tr>
<tr>
<td>Vermilion</td>
<td>762</td>
</tr>
<tr>
<td>Veronica beccabunga</td>
<td>1220</td>
</tr>
<tr>
<td>Vert de vessie</td>
<td>1664</td>
</tr>
<tr>
<td>Vertebrata</td>
<td>1665</td>
</tr>
<tr>
<td>Vescinatus</td>
<td>1665</td>
</tr>
<tr>
<td>Vescicemplate</td>
<td>1664</td>
</tr>
<tr>
<td>Vina medicatrix</td>
<td>1671</td>
</tr>
<tr>
<td>V.</td>
<td></td>
</tr>
<tr>
<td>Vingard</td>
<td>388</td>
</tr>
<tr>
<td>aromatic</td>
<td>403</td>
</tr>
<tr>
<td>distilled</td>
<td>402</td>
</tr>
<tr>
<td>of cantharides</td>
<td>1604</td>
</tr>
<tr>
<td>of opium</td>
<td>1774</td>
</tr>
<tr>
<td>of squills</td>
<td>984</td>
</tr>
<tr>
<td>malt</td>
<td>388</td>
</tr>
<tr>
<td>proof</td>
<td>398</td>
</tr>
<tr>
<td>white wine</td>
<td>391</td>
</tr>
<tr>
<td>thieves' or Marcellus</td>
<td>403</td>
</tr>
<tr>
<td>Vinum, medicated</td>
<td>404</td>
</tr>
<tr>
<td>Vinoce fermentation</td>
<td>406</td>
</tr>
<tr>
<td>liquor, production of</td>
<td>345</td>
</tr>
<tr>
<td>Vinum</td>
<td>347, 1664</td>
</tr>
<tr>
<td>album Hispanum</td>
<td>1665</td>
</tr>
<tr>
<td>aloes</td>
<td>972</td>
</tr>
<tr>
<td>anti monium</td>
<td>680</td>
</tr>
<tr>
<td>antimonii potassic</td>
<td>680</td>
</tr>
<tr>
<td>tartar.</td>
<td>680</td>
</tr>
<tr>
<td>colchici (semiun)</td>
<td>948</td>
</tr>
<tr>
<td>cornu colchici</td>
<td>948</td>
</tr>
<tr>
<td>ferri</td>
<td>898</td>
</tr>
<tr>
<td>gentiane</td>
<td>1322</td>
</tr>
<tr>
<td>ipecacuanha</td>
<td>1431</td>
</tr>
<tr>
<td>opii</td>
<td>724</td>
</tr>
<tr>
<td>rhei</td>
<td>1188</td>
</tr>
<tr>
<td>tabaci</td>
<td>1254</td>
</tr>
<tr>
<td>veratri</td>
<td>955</td>
</tr>
<tr>
<td>xericum</td>
<td>1693, 1671</td>
</tr>
<tr>
<td>Violaceae</td>
<td>1257</td>
</tr>
<tr>
<td>Violae odorata</td>
<td>1220</td>
</tr>
<tr>
<td>Violine</td>
<td>1711</td>
</tr>
<tr>
<td>Virgin sulphur</td>
<td>456</td>
</tr>
<tr>
<td>Virginicae acid</td>
<td>1707</td>
</tr>
<tr>
<td>Virginian snakeroot</td>
<td>1134</td>
</tr>
<tr>
<td>Virginian tobacco</td>
<td>1241</td>
</tr>
<tr>
<td>Viscum</td>
<td>1661</td>
</tr>
<tr>
<td>Vital air</td>
<td>220</td>
</tr>
<tr>
<td>Vitellosuivi</td>
<td>1871</td>
</tr>
<tr>
<td>Vitic vayr</td>
<td>895</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>1651</td>
</tr>
<tr>
<td>Vitriolated iron</td>
<td>1877</td>
</tr>
<tr>
<td>Vitriolatum</td>
<td>504</td>
</tr>
<tr>
<td>kallium</td>
<td>504</td>
</tr>
<tr>
<td>magnesia</td>
<td>608</td>
</tr>
<tr>
<td>tartar.</td>
<td>504</td>
</tr>
<tr>
<td>Vitriol, black</td>
<td>474</td>
</tr>
<tr>
<td>elixir</td>
<td>474</td>
</tr>
<tr>
<td>green</td>
<td>837</td>
</tr>
<tr>
<td>of Mars</td>
<td>837</td>
</tr>
<tr>
<td>oil of</td>
<td>463</td>
</tr>
<tr>
<td>Rutelolium</td>
<td>424</td>
</tr>
<tr>
<td>spirit of</td>
<td>473</td>
</tr>
<tr>
<td>sweet oil of</td>
<td>378</td>
</tr>
<tr>
<td>white</td>
<td>815, 822</td>
</tr>
<tr>
<td>Vitriol, sal</td>
<td>832</td>
</tr>
<tr>
<td>Vitriolica naphtha</td>
<td>368</td>
</tr>
<tr>
<td>Vitriolum cernuum</td>
<td>776</td>
</tr>
<tr>
<td>Martis</td>
<td>857</td>
</tr>
<tr>
<td>viride</td>
<td>857</td>
</tr>
<tr>
<td>Vitrum anobium</td>
<td>650</td>
</tr>
<tr>
<td>Volatile alkali</td>
<td>294</td>
</tr>
<tr>
<td>oil</td>
<td>180-185</td>
</tr>
<tr>
<td>limen</td>
<td>304</td>
</tr>
<tr>
<td>Volcanic acid</td>
<td>294</td>
</tr>
<tr>
<td>Vomicina</td>
<td>1293</td>
</tr>
<tr>
<td>Vomitoria</td>
<td>205</td>
</tr>
</tbody>
</table>

---

W. |  
---

| W. |  
---

| Ward's paste | 1103 |
| Warm bath | 1840 |
| Warming plaster | 1849 |
| Wash black | 731 |
| yellow | 753 |
| Washed sulphur | 438 |
| Washes | 347 |
| Washing or sponging | 351 |
| Water | 18, 68, 253 |
| barley | 73 |
| distilled | 237 |
| dock, great | 1190 |
| dressing | 237 |
| elder flower | 1442 |
| hemlock | 73 |
| lake | 261 |
| laurel | 1543 |
| lime | 262, 581 |
| marsh | 261 |
| of ammonia | 297 |
| orange flower | 1692 |
| oxigenated | 285, 224 |
| rain | 259 |
| river | 260 |
| sea | 262 |
| seltzer | 339 |
| snow | 259 |
| soda | 339, 550 |
| solutive | 285 |
| spring | 260 |
| tar | 1062 |
| toast | 69 |
| well | 260 |
| Waters, acidulous or carbonated | 268 |
| acidul-alkaline. . | 268 |
| alkaline | 271 |
| aluminous chalybeate | 266 |
| artificial mineral | 274 |
| carbonated chalybeate | 266, 863 |
| calcareous | 270 |
| chalybeate, or ferruginous | 266 |
| common | 259 |
| distilled | 258 |
| mineral | 254 |
| purging saline | 270 |
| saline, or brine | 270 |
| siliceous | 271 |
| sulphated chalybeate | 266 |
| sulphureous, or hepatic | 267 |
| Wax | 1853 |
| myrtle | 1856 |
| plaster | 1857 |
| vegetable | 1856 |
| white | 1856 |
| yellow | 1857 |
| Wheat-flour | 907 |
| starch | 907 |
| Whey, cream of tartar | 527 |
| Whiskey | 347 |
| White arsenic | 621 |
| bryony root | 1509 |
| flax | 517 |
| flux | 1552 |
| fraxinella | 1016 |
| ginger | 1016 |
| White hellebore | 951 |
| horehound | 1293 |
| iron pyrites | 849 |
| lead | 802 |
| lily | 986 |
| mustard | 1720 |
| of eggs | 1671 |
| pear | 785 |
| pepper | 1100 |
| poppy | 1724 |
| precipitate | 735 |
| precipitated mercury | 755 |
| Spanish | 785 |
| sugar | 899 |
| vinegar | 391 |
| vitriol | 812, 822 |
| wines | 339 |
| Whitlaw's ethereal tincture | 1342 |
| Wild carrot | 1474 |
| cinnamon | 266 |
| endive or succory | 1365 |
| palm | 1492 |
| Willow | 107—1071 |
| Wine | 947, 1601 |
| xanthin | 1438 |
| Xantliochymus ovalifolius | 1673 |
| Xanthorrhoea arborea | 987 |
| X. | 1438 |
| Yeast | 903 |
| Y. | 905 |
| Yellow arsenic | 621 |
| bark | 1387 |
| gentian | 1276 |
| gun | 957 |
| ointment | 768 |
| resin | 1057 |
| saffron | 430 |
| sulphate of mercury | 735 |
| wash | 773 |
| wax | 1857 |

THE END.